

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Bem-Ordenados

Números Ordinais

Teoria dos Conjuntos (Aula 13)

Ruy J. G. B. de Queiroz

Centro de Informática, UFPE

2009.1

Conteúdo

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Bem-Ordenados

Números Ordinais Conjuntos Bem-Ordenados

2 Números Ordinais

Conjuntos Bem-Ordenados

Teoria dos Conjuntos (Aula 13)

> Ruy de Queiroz

Conjuntos Bem-Ordenados

Número: Ordinais

Observação (Ponto de Partida)

- (1) A operação de sucessor de um conjunto x: $S(x) = x \cup \{x\}.$
- (2) $n = \{m \in \mathbb{N} \mid m < n\}.$
- (3) N: o menor conjunto contendo 0 e fechado sob S.

Conjuntos Bem-Ordenados

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Números

Questão

Qual é o sucessor de №?

Resposta: $\mathbb{N} \cup \{\mathbb{N}\}$.

Questão

E o sucessor de $\mathbb{N} \cup \{\mathbb{N}\}$?

Observação (O menor número transfinito)

Seja $\omega = \mathbb{N} = \{0, 1, 2, \ldots\}$. Agora:

$$\begin{array}{lcl} \mathcal{S}(\omega) & = & \omega \cup \{\omega\} & = \{0, 1, 2, \dots, \omega\} \\ \mathcal{S}(\mathcal{S}(\omega)) & = & \mathcal{S}(\omega) \cup \{\mathcal{S}(\omega)\} & = \{0, 1, 2, \dots, \omega, \mathcal{S}(\omega)\} \\ \vdots & = & \vdots & = \vdots \end{array}$$

Conjuntos Bem-Ordenados

Teoria dos Conjuntos (Aula 13)

> Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais

Notação

Dado que a função S deve denotar o sucessor de um número (finito), vamos transportar isso para os números transfinitos:

$$S(\omega) = \omega + 1$$

 $S(S(\omega)) = (\omega + 1) + 1 = \omega + 2$
 $\vdots = \vdots$

Teoria dos Conjuntos Conjuntos Bem-Ordenados

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Número Ordinais

Definição (Boa-Ordenação)

Um conjunto W é bem-ordenado pela relação < se

- (a) (W, <) é um conjunto linearmente ordenado.
- (b) Todo subconjunto nã-vazio de W tem um elemento mínimo.

Definição (Segmento inicial)

Seja (L, <) um conjunto linearmente ordenado. Um conjunto $S \subseteq L$ é chamado de um segmento inicial de L se S é um subconjunto próprio de L e para todo $a \in$, todos x < a sã também elementos de S.

Conjuntos Bem-Ordenados

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais

Exemplo

- O conjunto de todos os reais negativos é um segmento inicial de ℝ.
- (2) O conjunto de todos os reais não-positivos é um segmento inicial de \mathbb{R} .

Lema

Se (W, <) é um conjunto bem-ordenado e S é um segmento inicial de (W, <), então existe $a \in W$ tal que $S = \{x \in W \mid x < a\}$.

Demonstração do Lema

Teoria dos Conjuntos (Aula 13)

Ruy de

Conjuntos Bem-Ordenados

Número Ordinais

Demonstração.

Seja X = W - S. Como S é um subconjunto próprio de W, X é não-vazio, e portanto tem um elemento mínimo na boa-ordenação <. Seja a o elemento mínimo de X. Vamos mostrar que S é o conjunto de todos os elementos que estão abaixo de a. Se x < a então x não pode pertencer a X, pois a é o menor elemento de X, portanto x pertence a S. Caso contrário (i.e. $x \ge a$), x não pode estar em S porque se estivesse então a também estaria em S pois S é um segmento inicial. Logo, $S = \{x \in W \mid x < a\}$.

Teoria dos Conjuntos Segmento inicial

chamamos o conjunto

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais

Definição (Segmento inicial dado por um elemento a)

Se a é um elemento de um conjunto bem-ordenado (W. <),

$$W[a] = \{x \in W \mid x < a\}$$

de segmento inicial de W dado por a.

Teorema (1.3)

Se $(W_1,<_1)$ e $(W_2,<_2)$ são conjuntos bem-ordenados, então exatamente uma das condições abaixo se dá:

Em cada caso, o isomorfirsmo é único.

- (a) W_1 e W_2 são isomorfos, ou
- (b) W₁ é isomorfor a um segment inicial de W₂, ou
- (c) W_2 é isomorfor a um segmento inicial de W_1 .

Segmento inicial (cont.)

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais Definição (Tipos de ordem de conjuntos bem-ordenados sets)

 W_1 tem tipo de ordem menor que W_2 se W_1 for isomorfo a $W_2[a]$ para algum $a \in W_2$.

Definição

Uma função f sobre um conjunto linearmente ordenado (L,<) em L é crescente se $x_1 < x_2$ implica $f(x_1) < f(x_2)$. (N.B. Uma função crescente é um-para-um, e é um isomorfismo de (L,<) e $(\operatorname{ran} f,<)$.)

Teoria dos Conjuntos Segmento inicial

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais

Lema

Se (W,<) for um conjunto bem-ordenado e $f:W\to W$ for uma função crescente, então $f(x)\geq x$ para todo $x\in W$.

Demonstração.

Como W é bem-ordenado, qualquer subconjunto não-vazio $X \subseteq W$ tem um elemento mínimo. Em particular, o conjunto $X = \{x \in W \mid f(x) < x\}$ tem um elemento mínimo. Chame-o a. Mas então f(a) < a, e f(f(a)) < f(a), pois f é crescente. Daí, $f(a) \in X$, o que é uma contradição porque a era supostamente o elemento mínimo em X.

Teoria dos Conjuntos Segmento inicial

Teoria dos Conjuntos (Aula 13)

> Ruy de Queiroz

Conjuntos Bem-Ordenados

Número Ordinais

Corolário

- (a) Nenhum conjunto bem-ordenado é isomorfo a um segmento inicial de si próprio.
- (b) Cada conjunto bem-ordenado tem apenas um automorfismo, a identidade.
- (c) Se W₁ e W₂ forem conjuntos bem-ordenados isomorfos, então the isomorfismo entre W₁ e W₂ é único.

Demonstração do Teorema 1.3

Teoria dos Conjuntos (Aula 13)

Ruy de

Conjuntos Bem-Ordenados

Número Ordinais

do Teorema 1.3.

Sejam W_1 e W_2 conjuntos bem-ordenados. Do Lema 1.4, os casos (a), (b), e (c) do teorema são mutuamente exclusivos: se W_1 fosse isomorfo a $W_2[a_2]$ para algum $a_2 \in W_2$, e ao mesmo W_2 fosse isomorfo a $W_1[a_1]$ para algum $a_1 \in W_1$, então a composição dos dois isomorfismos seria um isomorfismo de um conjunto bem-ordenado sobre um de seus próprios segmentos iniciais.

Também, a unicidade do isomorfismo em cada caso segue do Corolário 1.5.

Demonstração do Teorema 1.3 (cont.)

Teoria dos Conjuntos (Aula 13)

Ruy de Queiroz

Conjuntos Bem-Ordenados

Número Ordinais

Cont.

Agora temos que mostrar que um dos três casos (a), (b), ou (c) sempre se dá. Seja

$$f = \{(x, y) \in W_1 \times W_2 \mid W_1[x] \text{ \'e isomorfo a } W_2[y]\}.$$

Do Corolário 1.5, f é um-para-um: se $W_1[x]$ é isomorfo a ambos $W_2[y]$ e $W_2[y']$, então y = y' pois do contrário $W_2[y]$ seria um segmento inicial de $W_2[y']$ (ou vice-versa) enquanto que eles são isomorfos, o que é impossível. Igualmente $(x,y) \in f$ e $(x',y) \in f$ implica x = x'. Agora, x < x' implica f(x) < f(x'): se h é o isomofismo entre $W_1[x']$ e $W_2[f(x')]$, então a restrição $h \upharpoonright W_1[x]$ é um isomorfismo entre $W_1[x]$ e $W_2[h(x)]$, portanto f(x) = h(x) e f(x) < f(x').

Demonstração do Teorema 1.3 (cont.)

Teoria dos Conjuntos (Aula 13)

> Ruy de Queiroz

Conjuntos Bem-Ordenados

Números Ordinais

Cont.

Daí, f é um isomorfismo entre seu domínio, um subconjunto de W_1 , e seu contradomínio, um subconjunto de W_2 . Se o domínio de f é W_1 e o contradomínio de f é W_2 , então W_1 é isomorfo a W_2 . Vamos mostrar que se o domínio de f não é o conjunto W_1 todo então ele é seu segmento inicial, e o contradomínio de f é o conjunto W_2 todo.

Assuma que $\operatorname{dom} f \neq W_1$. Note que o conjunto $S = \operatorname{dom} f$ é um segmento inicial de W_1 : se $x \in S$ e z < x, seja h o isomorfismo entre $W_1[x]$ e $W_2[f(x)]$; então $h \upharpoonright W_1[z]$ é um isomorfismo entre $W_1[z]$ e $W_2[h(z)]$, portanto $z \in S$. Agora, para mostrar que $T = \operatorname{ran} f = W_2$, assuma ao contrário, e derive uma contradição, e.g. mostre que T é um segmento inicial de W_2 . Mas então $\operatorname{dom} f = W_1[a]$ para algum $a \in W_1$, e $\operatorname{ran} f = W_2[b]$ para algum $b \in W_2$. Em outras palavras, f é um isomorfismo entre $W_1[a]$ e $W_2[b]$. Isso é o mesmo que $(a,b) \in f$, portanto $a \in \operatorname{dom} f = W_1[a]$, i.e., a < a, uma contradição.

Teoria dos Conjuntos Conjunto Transitivo

Teoria dos Conjuntos (Aula 13)

Ruy de

Conjuntos Bem-Ordenado

Números Ordinais

Definição

Um conjunto T é transitivo se todo elemento de T é um subconjunto de T.

Observação

Um conjunto transitivo T é tal que para quaisquer u, v, se $u \in v \in T$ então $u \in T$. Note que isso se dá para todo número natural n: se $k \in m \in n$ então $k \in n$.

Teoria dos Conjuntos (Aula 13)

Ruy de

Conjuntos Bem-Ordenado

Números Ordinais

Definição

Um conjunto α é um número ordinal se

- (a) α é transitivo.
- (b) α é bem-ordenado por \in_{α} .

Teorema

Todo número natural é um ordinal.

Definição

$$\omega = \mathbb{N}$$
.

Lema

Se α é um número ordinal, então $S(\alpha)$ também é um número ordinal.