An Interpretation for Typed Lambda Calculus:
Kripke-Style Models and Complete Equation
Calculus

Tomohiro Hoshi

06,/25,/2006

Motivation

The purpose of this presentation will be to give a Kripke-style semantics for
typed lambda calculus and prove the completeness for an equation calculus
that is complete with respect to the semantics.

e Syntax of Typed Lambda Calculus

Equation Calculus (EC)

e Kripke Lambda Structure (KLS)

Semantics for Typed Lambda Calculus based on KLS

e Soundness and Completeness Theorem of EC with respect to KLS

The presentation will be mainly based on “Kripke-style models for typed lambda
calculus” by J. C. Mitchell and Eugenio Moggi.

1 Syntax of Typed Lambda Calculus

Type Assignment

A type assignment I is a finite set of fomulas of the form z : o, with = a variable
and o a type, such that I' does not contain two distinct formulas with the same
variables x.

We write T',x : o for the type assingment I' U {z : o}, where does not occur
inI.

Terms

Terms are written in the form I'> M : 7, where I' is a type assignment, M, a
lambda term, and 7, a type. I' > M : 7 is read as “M has a type assignment 7
relative to I

Well-Typed Terms
Well-typed terms are defined as follows:

(var)
T:T>IT T
(— E)
'sM:0—7I>N:0o
I'sMN : 1
(= 1)
x:o>oM: T
' :oM:0—71
(add var)
I'sM:71
z:ooM: T

An easy inductiton shows that if I'> M : o is well-typed, then then I' must
mention every free variable of M.

It is also easy to see closed terms come with the empty type assignment (or
type assignments irrelevant to them). Thus, it is convenient to omit the type
assignement in such cases. For instance, we write Ax : 0.z for 0>z : 0.2 : 0 — 0.

Equations for Well-Typed Terms

With type assignments as a part of the syntactic formulation of terms, it is
natural to write equations in the form

I'M=N:T1

where we assume that ' M : 7 and I'> IV : 7 are both well-typed.

Also for a typographical reason, we omit types after equations when there is no
confusion. Thus we often write I'> M = N instead of writing 'b M =N : 7

2 Equational Calculus for «, 3, n-Equations
Axioms for reductions
(a) Fory¢ FV(M),

Do\t : o.M =Xy : ofy/z].M

(5)
> (Az:0.M)N =[N/z].M

(n) Foraxz¢ FV (M),
I'bXz:oMx=M

Reflexivity Axiom

'sM=M:o

Rules for Symmetricity and Transitivity
(sym)
I'sM=N:o
' N=M:0o
(trans)
I'sM=N:0,'>N=P:o
I'sM=P:o

Rules for Congruence with respect to Application and lambda ab-
straction

(cong)
I'eMy=My:0—>7,I'>b Ny =Ny:0

F[>M1N1 = M2N2 T

(€)
z:ooM=N:71

I'bXdXe:oM=MXx:0N:o—T

Rule for Additional Type Assignments

(add var)
I'sM=N:r1

e:ooM=N:71

We can extend this calculus by adding boolean operators and quantifiers in a
standard way.

Provability

If the equation I'> M = N : ¢ is provable from the equations in a set F, we

write
EFFIT'>M=N :0.

3 Kripke Lambda Structure

Kripke Applicative Structure (KAS)
A Kripke applicative structure A is a tuple:

(W, < AAL} AAppT7 Y {i%) »

that satisfies the conditions below.

e W is a set, which may be thought of as a set of “possible worlds”, or in

our case a set of type assignments.

< is a partial order on W, which may be thought of as accessibility rela-
tions between worlds.

a family{ A% } is a family of sets indexed by a type ¢ and a world w, which
may be thought of as a set of meanings assigned at w for terms typed as
ag.

a family {App%™} is a family of maps App%™ : A7~7 x A9 — AT indexed
by a pair of types o,7 and a world w. With the restrictions below, this
function can be thought of as the function that yields the meaning of the
result (a term typed as 7) of application of a term typed as ¢ — 7 to a
term typed as o.

a family {if, .} is a family of maps 7, ,, : A7, — A7, indexed by a type o
and a pair of worlds w,w’ such that w < w’. With the restriction below,
this may be thougth of as working as correlating, or identifying, a meaning

for a term at w with a meaning for the term at w’.

Conditions for KAS

Identity Condition on igyu,

(id)
io Ao — A7 is the identity.

w,w

Composition Condition on iJ .

(comp)

7

o1 for all w<w' <w”.

o o — 40
w’,w'’ w,w’ — ‘w,w’’

Commutability Condition on ¢ and App

(comm)
iy (AppGT (foa)) = App) (i3, 0 ()15 00 (@) -

Kripke Lambda Structure (KLS)

A KAS may still not be a good candidate for an interpretation of typed lambda
terms. There are two reasons:

1. There may not be enough elements at each world. If A7 is empty for
all w, then we would not be able to assign a meaning to, say, the identity
funciton Az : o.x.

2. There may be two distinct elements of the same functional type which
have the same functional behavior, in which case the extensional nature
of functions would not be represented. For instance, the meaning of a
term Az : o.M may not be determined uniquely.

For these two reasons, we put more constraint on a KAS to obtain an interpre-
tation for typed lambda calculus.

Additional Conditions for KLS

A Kripke lambda structure is a KAS that satisfies the following two conditions:
the extensionality condition and the condition for having combinators.

Extensionality Condition

Let A be a KAS and w € W. Then, for all f,g € A7™7,

[=g whenever Yw' >wVae A7, (il 7 f)a= (if, 7g)a.

w,w’

Conditions for having Combanators

Global Elements

A global element a : 0 of a KAS A is a mapping that assign to a world w an
element satisfying:

1. a, € A,

/ ;O —
2. whenever w < w’, we have iy, ,/y, = au

Having combinators

Let A be a KAS. Then, for every type p, o, T, there exist global elements K and
S such that:
Appy? (App™ 7 (Kw, a),b) = a.

w

for every w in W of A, every a, in A%; and every b in A7, (for short, K,,ab=a)
and:

Apply™ (Appl 7P =T (Appl o =TT (Suy,), 1), u) = AppS T (Appl® 7 (s,u), Apply? (t,u))

for every win W of A; every s, in A%7777; every ¢ in AP7; and every u in A
(for short, Sy, stu=su(tu).

4 Semantics for Typed Lambda Calculus based
on KLS

Now we give the semantics for typed lambda calculus based on KLS.

Environment (Variable Assignment)

An environment 7 (with respect to a KLS A) is a partial mapping from variables
and worlds to elements of A such that:

If nzwe Ay, and w' >w, then nzw' =if, . (nrw).

We write n[a/z] for the environment identitcal to 7 on variables except for z,
which, for all w’ > w, satisfies:

(nla/a))aw’ = i, .
Satisfaction of Type Assignments with respect to Worlds
and Environments
We write w = I'[n], if

nrw € Ay, for all z:0€l.

Notice that, if w = I'[n], then w’ = I'[n] for all w’ > w.

Semantics for Typed Lambda Terms

For every KLS A and evironment 1 such that w = T'[n], we define the interpre-
tation ||I'> M : o||nw of a well-typed termI'> M : o with respect to 7 at a world
w in the following way:

IT> 2 : o|| nw = nzw

IT>MN :7||nw=AppS"(IT>M : 0 — 7||nw)(||]T> N : of nw)

IT>Az:0.M:0— 7||nw=the unique de& AJ""

such that for all a € A%, and w' > w,

0T (:0—T

Appy) (ig, wid)a = |0,z o> M : 7] nla/z]w’

We can prove the existence and unqueness of d. The key is the extensionality
conditioin and the condition for combinators. For the purpose of the presenta-
tion, we do not look at the detial. Instead we refer interested hearers to by The
Lambda Calculus: Its Syntax and Semantics, H.P. Berendregt in 1984.

Satisfaction for Equations
We write w = (' M = N : 0)[n], if,
whenever w = Tn),
I05 M : ol w = |T'5 N : o .

We also write AE=T1> M = N : 0 for a KLS A4, if, for every w in A and every
environment 1 with respect to 4, w = (I'> M = N : 0)[n].

We can extend the notion of satisfaction based on this by adding boolean oper-
ators and quantifiers in a standard way.

5 Soundness and Completeness Theorems

Lemma 1 (Transition Lemma)hspacelem Let A be a KLS and n an envi-
ronment satisfying I' at w. Then for every w > w’, we have

IT>M :o||nuw = igy (0> M 2 o nw).
Proof: Simple induction on the complexity of M.

Lemma 2 (Substitution Lemma)hspacelem Let A be a KLS and n an envi-
ronment satisfying I' at w. For any well-typed term, I'> N : cand ',z : o> M : 7,
we have

IT> [N/z|M : 7||nw = ||Tyz:o>0M: 7| (n[|]T> N : of| nw/z])w.
Proof: Simple induction on the complexity of M.

Theorem 3 (Soundess Theorem)hspacelem Let E be a set of well-typed
equations. If E-T'>M = N : o, then every model satisfying E also satisfies
I'sM=N:o.

Proof: Easily follows from the previous lemmas.

Now, we prove the completeness, as usual, by constructing a so-called canonical
model.

Theorem 4 (Completeness Theorem)hspacelem Let E be a set of well-typed
equations closed under F. Then, there is a KIS A such that AET>M =N : 0o
iffT>M=N:cisin E.

Proof: We construct a KLM A=(W, <, {43}, {App37}, {igw), }) in the fol-

lowing way:

e W is the partially ordered set of finite type assignments I' ordered by
inclusion. In what follows, we will write I' for an arbitrary element of W.

o A7 ig the set of all ['> M : o], where I'> M : ¢ is well-typed, and
> M:o]={'> N:o | EFI'>M =N :0}.

o Appl"(T>M:0—1],[T>N:o])=[>MN:7|.
e 7 ([['>M:o])=[">Mo] for T CT.
Here, it is easy to see that 4 is at least a KAS. So we would like to check if it

satisfies the extensionality and the combinator. It is easy to see the combinator
condition is satisfied since we have, for instance,

K= x:oM\y:1.2]

S=[Ax:0Xy:T.Az: pxz(yz)]

Thus, we now prove the extensionality. Suppose that [['> M : o — 7] and
[[> N : o — 7] have the same functional behavior, i.e., for all I > T" and
I> P:o, we have

['sMP:7]=[">NP:7].

Then, in particular, for IV =T,z : o with z not in I, we have
C,z:o>0Mz:7|=[T,z:0>Nz:T7|

and so by rule (§) and axiom (n), we have ['>bM : 0 - 7] =[>N:0 — 7.
Thus, A4 is a KLS.

Now, we show that this MLS A is the model that is claimed in the theorem, i.e.
A satisfies precisely the formulas in E.

(=)
Given a type assignemnt I', we may define an environment 7 as follows:

r— Mpz:o] ifz:0el CTY
e = undefined otherwise

A straightforward induction on the complexity of terms shows that for any T,
we have

IT>M:o|pl' =[> M : o]

In particular, if A saitsfies an equation I'>M = N : o, we have T’ = T'[n] by the
construction of 7 and so

[>M:o]=[>N:ol

This applies to every I and every equation. Therefore, every equation satisfied
by A must be provable from FE.

(<)

First, notice that the closed term equation
Doy o1zt o.M = Axq : 0.\ : 0. N.

is provable from
Ty :01,., 00, >M =N

and vice versa by the successive application of (cong) or (§). Therefore, by the
soundness, without loss of generality, we can only look at closed terms.

For any closed term equation § > M = N : 7, we have
EFT>M=N:rT

for any I', by the successive applicatino of (add var). Therefore, for every world
I' of A, the two equivalence classes [['>M : 7] and [['> N : 7] are identical. Here,
we have seen above that ||I'>M : of||nl’ = [['>M : o]. Since the meaning of closed
terms is not affected by an environment, it follows that, for all environment 7/,
[[0>M : o|lnd = [@> M : o]. Then, by the definition of if ., the meaning of
() M : 7 in any environment at any world I" is [['> M : 7'],’ and similarly for.
(> N : 7. Therefore, A satisfies) > M = N : 7. This completes the proof.

