
D∞, Category Theory, and All That

Ryan J. Wisnesky

Philosophy 351B

June 2006

Introduction

There are two main approaches to constructing and investigating models of the untyped

lambda calculus (λ-models). One approach, taken in [1], is to present the models in familiar,

set-theoretic terms. This approach has the advantage that the concepts involved are intuitive

and that the models, in this setting, feel very much like we would expect λ-models to feel.

The other approach, which has arguably become more popular over the years, is to

present λ-models in a category-theoretic setting. This approach has the advantage that once

the requisite category theory is mastered, the definition of a λ-model and the machinery

required to investigate them become much simpler. Unfortunately, category theory, even

though it is becoming the lingua franca of many sub-disciplines of computer science (for

instance, denotational semantics), is abstract and not as intuitive as set theory. Although

there are numerous books that purport to offer “category theory for the working computer

scientist” [5], these books often develop category theory in detail and only then examine its

applications to computer science.

To complicate matters even further, some texts [3] freely mix a set-theoretic and category-

theoretic approach. This mixing is also found in books on typed lambda calculus [4].

The goal of this paper to leverage category theory to help explain λ-models, while simul-

taneously leveraging λ-models to help explain category theory. Because this paper aims to

explain two unintuitive constructs in terms of each other, this work will be most useful to

the student who is already familiar with models of the typed lambda calculus and their set

theoretic construction, because many of the concepts found there also apply in this setting.

The outline of this paper is as follows: first, we show that constructing λ-models is not

trivial. Then, just enough category theory is presented to allow for further connections

to category theory to be made while we are developing λ-models. Thus, the connections to

category theory will appear “naturally” and where they are most relevant. General properties

of λ-models are then discussed, and applicative structures and several types of “easy” model

are introduced. Scott’s topology and the model D∞ are then presented.

1

The bulk of the set-theoretic material in this paper is taken from [1], while most of the

category-theoretic material is taken from [4]. Various other sources are cited as appropriate.

Regardless of the source, the material is re-ordered and modified to suit our needs; namely,

less of an emphasis on proofs, more emphasis on intuition, and a parallel set- and category-

theoretic development.

1 Why are λ-models Difficult?

The purpose of a λ-model is to associate with each λ-term an interpretation of that term

such that provably equal terms are interpreted the same. In addition, we do not want there

to be “junk” in the model; that is, elements in the model that are not the interpretation of

any term. Nor do we want terms to be equated in the model without good reason. It is also

desirable that the domain of the model – the domain from which interpretations are drawn

– be a “semantic” domain that is close to what we believe the terms “actually are.” For

instance, one model of Peano arithmetic is the set of natural numbers. In this model, the

constant symbol 1 is interpreted as the natural number 1.

We would like to examine what λ-models are like in general, and also to develop “natural”

models that correspond with our intuition of λ-terms as functions “on themselves.”

Unfortunately, it is impossible for such a straightforward model to exist. Consider the

lambda term λx.x and suppose we have a model with domain D. Then, using JMK to stand

for the interpretation of term M , we have that Jλx.xK ∈ D, because it is a term, and all

terms must have an interpretation in D. But notice that this term is also a function – in

fact, it is the identity function – which means it must have an interpretation in D → D,

which is D’s function space. This argument may be generalized: all λ-terms are functions,

and hence their interpretations belong in D → D, and all λ-terms are terms, and hence their

interpretations belong in D. Therefore, it must be the case that D ∼= D → D. If we simply

let D → D be the set of all functions from D to D, then the cardinality of D → D will be

2|D|, and so the required isomorphism cannot exist, because a set of cardinality N cannot be

put in a one-to-one correspondence with a set of cardinality 2N . The consequences of this

simple observation are felt throughout the model theory of untyped lambda calculus.

2 Just Enough Category Theory

There are numerous introductions to category theory; c.f. [5] However, most of these texts

present an extensive development of the theory before applications to semantics are intro-

duced. The introduction to category theory found in [4] section 7.2 is quite accessible and

relatively short, and these definitions are taken from there. It is often the case that the

definitions in category theory are straightforward but different enough from other branches

of mathematics to make developing an intuition about category theory difficult, and so this

section stresses the intuitive meanings of the definitions.

2

Category theory is the study of abstract structure – abstract enough that it is a long-

standing joke that category-theoretic results are said to be “true by abstract nonsense.”

Fundamentally, category theory seeks to understand structures and maps between struc-

tures; a category is simply a collection of objects and arrows between objects. (Arrows

are sometimes called maps or morphisms.) One classic example is the category of groups,

where the objects of the category are groups and the maps between groups are group ho-

momorphisms. There is even a category of all sets: the objects are sets and the arrows are

set-theoretic functions. (Of course, the domain of this category itself cannot be a set, as then

the domain would be the paradoxical set of all sets.) It is often the case that the category of

sets is the underlying intuitive device that we use to reason about how arbitrary categories

work; however, the intuition that the objects in a category are themselves collections is not

valid and can sometimes lead to trouble.

A category is an ordered tuple 〈Co, Cd, dom, cod, id, comp〉 of collections and functions,

where Co is the collection (not necessarily set) of objects in the category and Ca is the

collection of arrows. Each arrow a has a unique domain and codomain, given by dom(a) :

Ca → Co and cod(a) : Ca → Co. More specifically, the domain of an arrow is a single

object; likewise for the codomain. This conception of (co)domains as single objects can be

counter-intuitive, especially in the category of sets: here, the (co)domain of an arrow is a

single object that happens to be the set that is the arrow’s set-theoretic (co)domain. That

is, in the category of sets, these (co)domains are themselves sets, so an arrow/set-theoretic

function has a (co)domain two distinct senses. However, in a general setting, the (co)domain

of an arrow is simply an object; it is extremely important to remember that the objects of the

category need not be collections, and the arrows need not be functions. When the domain

of an arrow a is A and the codomain is B, we write this as a : A→ B, an unfortunate abuse

of notation that reinforces the incorrect notion that arrows are set-theoretic functions. To

avoid confusion, we will explicitly note when we are using this notation for arrows or for

functions. Note that there many be many arrows A → B. For a category C, this set of

arrows is often denoted C(A,B). Even when the objects themselves are not sets, there can

still be multiple arrows between two objects.

The function id : Co → Ca gives the identity arrow for an object. That is, for a ∈ Co,

id(a) is a map whose domain and codomain are both a. (Many arrows may have domain and

codomain a; one must be chosen as the identity, and different choices of identity will yield

different categories, at least from an intensional point of view.) Often, id(a) is written as ida.

The function comp : Ca×Ca ⇀ Ca characterizes function composition: for arrows f, g ∈ Ca,

comp(f, g) = (f ◦ g), provided that the composition is defined (hence the definition of comp

as a partial function). We require that comp(f, g) be defined whenever cod(g) = dom(f).

Note the abuse of the notation ◦, which is now used to denote both function and arrow

composition. Also note that the composition of two arrows g : a → b and f : b → c is an

arrow f ◦ g : a→ c.

Finally, we require two axioms. The first is that identity is a “unit.” Let arrow f : a→ b.

Then it must be the case that f = id(b) ◦ f = f ◦ id(a). The second is that composition

3

is associative: Let arrows h : a → b, g : b → c, and f : c → d. We must have that

f ◦ (g ◦ h) = (f ◦ g) ◦ h. Notice that equality of arrows is necessarily defined by the objects

within the category. In other words, to determine if two arrows are equal, we must use the

definitions given by the objects in the category.

One particularly compact way to represent equations between compositions of arrows is

through the use of a commutative diagram. In a diagram, every composition of arrows that

begin at the same object and end at the same object are equated. In the following figure, it

must be the case that f ◦g = idA. Note, however, that the diagrams are not depictions of the

category. That is, the category may have arrows f and g such that f ◦ g 6= idA. In this case,

these arrows cannot appear in this diagram. In other words, a diagram is a compact way

to express a set of equations, not a way of pictorially representing the category. The figure

below defines category-theoretic isomorphism: when arrows f : A→ B and g : B → A have

the property that f ◦ g = idA and g ◦ f = idB, we say that A and B are isomorphic. This

definition of isomorphism is more general that our usual set-theoretic notion. In particular,

in the category of sets, two sets A and B are isomorphic if they have the same cardinality,

because in this case, we know must have at least one one-to-one, onto function from A to B

(by the definition of cardinality), and we may find an inverse that is also a one-to-one onto

function. Thus, not matter how many times we “cycle” through A and B, we still end up

with an identity function.

Figure 1: Diagram for Isomorphism

This is all the category theory that is required to understand later category-theoretic

concepts. The rest of the paper will build on these definitions to introduce further category-

theoretic connections as appropriate. With these preliminaries out of the way, we are now

ready to take our first steps toward constructing λ-models.

3 Toward Natural Models

Before we can examine the properties that λ-models should have, we must first define the

idea of a valuation. Valuations are necessary because not all λ-terms are closed. We desire

to assign an interpretation to every term in λ (λ generically refers to either λβ, λβη, or one’s

favorite lambda calculus), but it is unclear how to interpret variables: after all, they vary.

4

So, we interpret variables relative to an environment ; that is, we give them a valuation.

Intuitively, a free variable is very similar to a constant symbol. When we construct our

interpretation function, we will call upon the environment to give a meaning to a variable.

This idea is directly analogous to an environment in first-order logic.

Definition 1. Let D be a set. Any mapping from the free variables of λ into D is called

a valuation, usually denoted by ρ or σ. For d ∈ D and x a variable, [d/x]ρ denotes the

valuation ρ′ which is the same as ρ except that ρ′(x) = d.

For example, if ρ(x) = 3, then our interpretation of x may involve 3. This notion must

necessarily be left imprecise for now, as it is only in connection with applicative structures

that valuations become useful and necessary.

3.1 Applicative Structures

Applicative structures are structures that, in a certain sense, embody the notion of applica-

tion. Models of lambda calculus, both typed and untyped, are usually applicative structures.

This definition of such a structure is taken from [1], section 10A.

Definition 2. An applicative structure is a pair 〈D, ·〉, where D is a set, called the domain

of the structure, that has at least two members, and · is any mapping from D × D to D.

Intuitively, · “applies” the first argument to the second, yielding a third result element. (· is
total in our definition.)

A good example of an applicative structure is a non-trivial group. Because every element

in the group may be “applied” to any other through the group operation, the result is an

applicative structure. In fact, this view of an applicative structure as an algebra is both

convenient and useful. As it is our intention to build λ-models from applicative structures,

and vice-versa, we must study the relationship between arbitrary functions and functions

that can be expressed using ·.

Definition 3. Let 〈D, ·〉 be an applicative structure and let n ≥ 1. A function θ : Dn → D is

representable in D iff D has a member a such that for every d1, . . . , dn ∈ D, a · d1 · . . . · dn =

θ(d1, . . . , dn). Every such a us called a representative of θ. The set of all representable

functions from Dn to D is denoted (Dn → D)rep.

Simply put, a function θ is representable iff there is an element a ∈ D that a behaves

like θ does. (We sometimes say that a and θ track each other.) The distinction between

representable and non-representable functions is an important one, because in general, there

are many more functions Dn → D than there are functions that can be built using the

elements ofD and ·. In keeping with our group theory example, letG be a group; any function

f : G×G→ G that does not obey the group axioms is, by definition, not representable. If

it were, we’d no longer have a group!

We may also move from representable functions to functions:

5

Definition 4. For every a ∈ D, Fun(a) is the unique one-place function that a represents.

That is, for every d ∈ D, Fun(a)(d) = a · d. In addition, for θ ∈ (D → D)rep, let Reps(θ)

be the set of all of θ’s representatives in D.

If we construct an applicative structure for λ by letting · be the application of λ-terms

and have D = { every λ-term, then one obviously non-representable function is the halting

function halt : D → D given by

halt(x) =

{
0 if x has a normal form

1 otherwise.

(Here, 0 and 1 are the Church numerals representing 0 and 1. That is, 0 ≡ λf.λx.x and 1

≡ λf.λx.fx.) We know that if this function were representable, then there would be some

term f such that for every term x, fx reduces to 0 if x has a normal form and reduces to 1

otherwise. We know that this is impossible by Church’s proof.

With this simple definition of an applicative structure we already have properties that

will be useful in constructing λ-models. However, we need to examine how other concepts

that play key roles in λ-calculus are mirrored in applicative structures. One such concept is

extensionality.

Definition 5. Let a, b ∈ D. We say that a is extensionally equivalent to b, denoted a ∼ b,

iff for every d ∈ D, a · d = b · d. An applicative structure 〈D, ·〉 is extensional iff for every

a, b ∈ D, we have that for every d ∈ D, a · d = b · d implies that a = b.

This is a straightforward definition of extensionality; the general definition of extensional-

ity for functions is usually expressed as, for functions f and g: ∀x, f(x) = g(x) ⇐⇒ f = g.

A similar notion is also found in set theory, where the axiom of extensionality states that

for sets a and b, ∀c ∈ a ∧ c ∈ b ⇐⇒ a = b.

Extensionality in λ-calculus is usually given by η-conversion, which converts between

λx.fx and f whenever x is not free in f . At first, this definition is not obviously related to

extensionality; however, we can recover a more function-oriented definition of extensionality

from this rule by showing first, that if f and g are extensionally equivalent, then η-reduction

is valid, and second, that if η-conversion is valid, then we have extensionality. We do this

as follows: first, suppose f and g are extensionality equivalent (that is, fa =α ga for every

λ-term a). Let a be a variable x not appearing free in either f or g. Then we have that

fx =α gx and thus that λx.fx =α λx.gx. (The abstraction can be taken on both sides

because x is not free.) By η-conversion, we recover f =α g. Secondly, consider a term

(λx.fx)y =β fy. Here we have that λx.fx =α f , which is the definition of η-conversion.

(Note that in this proof we are implicitly using rule ξ.)

We may use extensionality to define equivalence classes:

Definition 6. Let a ∈ D. Then the extensional equivalence class containing a is the set

ã = { b ∈ D | b ∼ a }

6

Furthermore, the set of all these classes is denoted by D/ ∼ = { ã | a ∈ D }.

The notation D/ ∼ is highly indicative of the operation of forming a quotient group in

group theory. In a sense, D/ ∼ is D that has been “divided out” by mapping the equivalence

classes to single elements, much like the group G/N maps N to 1 by dividing out N .

Applicative structures, which in many ways “feel” like λ-models already, can actually be

related to special, stronger algebras known as combinatory algebras.

3.1.1 Combinatory Algebras

Combinatory algebras are essentially applicative structures with a small amount of additional

structure. This additional structure is often useful in defining λ-models.

Definition 7. A (total) combinatory algebra is a pair D = 〈D, ·〉, where D is a set with at

least two members, · : D×D → D, and D has members k and s such that for all a, b, c ∈ D,

k · a · b = a and s · a · b · c = a · c · (b · c). (In a partial combinatory algebra, · may be partial.)

Combinatory algebras are applicative structures that guarantee the existence of elements

k and s. This existence guarantee is not an accident: these definitions of k and s are exactly

analogous to the combinators K and S. In fact, that K and S form a basis for λ is a reflection

that combinatory algebras with k and s are combinatorially complete.

Definition 8. An applicative structure 〈D, ·〉 is combinatorially complete iff for every sen-

tence x1, . . . , xn, and every combination X of x1, . . . , xn only, the formula

∃u∀x1, . . . , xn(ux1 . . . xn = X)

is true in D.

Combinatory completeness intuitively expresses that elements in a sequence x1, . . . , xn

may be permuted in any way by choosing an appropriate term u. In λ and combinatory

logic, such permutation is usually accomplished by selector and pairing functions like K.

It is obvious that every applicative structure that is a combinatory algebra is combinato-

rially complete. However, we may use the definition of combinatory completeness to define

a combinatory algebra without needing to explicitly mention elements k and s.

We are ready to develop our first λ-models. In our development, we will try to use

applicative structures rather than combinatory algebras to keep the development as general

as possible. However, the use of combinatory algebras is often convenient because it simplifies

proofs and the existence of k and s are mirrored in the existence of combinators K and S in

most variants of λ.

4 Our First Models

With these definitions in mind, we may now define properties required of all models of

untyped lambda calculus.

7

Definition 9. A λ-model or model of untyped lambda calculus is a triple D = 〈D, ·, J K〉,
where 〈D, ·〉 is an applicative structure and J K is a mapping which assigns, to each lambda

term M and each valuation ρ, a member JMKρ ∈ D such that

(a) JxKρ = ρ(x) when x is an atom;

(b) JPQKρ = JP Kρ · JQKρ for terms P,Q;

(c) Jλx.P Kρ · d = JP K[d/x]ρ for terms P and every d ∈ D;

(d) JMKρ = JMKσ if σ(x) = ρ(x) for every x in the free variables of M ;

(e) Jλx.MKρ = Jλy.[y/x]MKρ if y is not free in M ;

(f) ∀d ∈ D, JMK[d/x]ρ = JNK[d/x]ρ implies Jλx.MKρ = Jλx.NKρ

Note that JMKρ may be written as JMKDρ , or simply JMK when it is independent of ρ.

As discussed in [1], we would intuitively expect each of these conditions to hold in a

model of untyped lambda calculus. We must be able to assign an interpretation or meaning

to every lambda term, and a change of valuation essentially creates a new model; hence the

inclusion of valuation ρ in the definition.

Clauses (a) and (b) give the meaning of JMKρ when M ≡ x and M ≡ PQ. Clauses (c)

through (f) are needed for the case when M ≡ λx.P . Clause (d) is a standard property

required by first-order model theory and the definition of valuations. Clause (e) corresponds

to the axiom scheme α, and is needed so that terms congruent by α-conversion have the

same interpretation. Clause (f) similarly is required for the rule ξ, which says that X =β Y

implies λx.X =β λx.Y , which holds because any contraction or change of bound variables

made in X can also be made in λx.X. Finally, clause (c) expressed the intuition behind

lambda abstraction: it says that Jλx.P Kρ acts like a function whose value is calculated by

interpreting x as s.

One consequence of these properties is called weak extensionality. This property is that

Jλ.MKρ ∼ Jλx.NKρ implies Jλx.MKρ = Jλx.NKρ

Intuitively, this states that terms in the same equivalence class have the same interpretation.

Probably the most important consequence of these properties (a)-(f) is that every λ-model

satisfies all provable equations of λβ. Here, satisfaction is defined as usual:

|=D,ρ M = N iff JMKρ = JNKρ, and

|=D M = N iff |=D,ρ M = N for every ρ,

Of course, our λ-model wouldn’t be much of a model if it didn’t satisfy all the provable

equations. It is an interesting question to ask if, in a λ-model, there are true equations that

are not provable.

For instance, an unsolvable term M is a term without a normal form such that there are

no terms Nn for which

MN1 . . . Nn = I

8

All of these terms may be equated by an axiom schema and the resulting theory will still

be consistent and non-trivial. Axioms (a)-(f) do not dictate whether or not all unsolvable

terms have the same interpretation. We may take this as an indication of the richness of the

model theory for λ.

Another useful result of these axioms is that if 〈D, ·, J K〉 is a λ-model, then 〈D, ·〉 is a

combinatory algebra. In a certain sense, this is to be expected, because applicative structures

that contain k and s are combinatory algebras, and we may construct k and s using the

axioms of λ.

We may also define models of lambda calculus with η reduction: a model of λβη is a

λ-model that satisfies the equation λx.Mx = M for every M with x not free. From this, we

may obtain that a λ-model us extensional iff it is a model of λβη.

Now that we know what properties our models must have, we may start to construct our

first models. Our first models are called term models, because they are constructed out of

the syntax of λ-terms.

4.1 Term Models

One easy to construct, but somewhat unsatisfying class of models are called term models of

λβ or λβη. Let Γ be λβ or λβη. For each lambda term M , define

[M] = { N | Γ `M = N }

The term model of Γ is 〈D, ·, J K〉, where D = { [M] | M is a term }, [M] · [N] = [MN],

and JMKρ = [[N1/x1, . . . , Nn/xN]M], where {x1, . . . , xn} are the free variables of M and

[N1/x1, . . . , Nn/xN] is simultaneous substitution.

In this model, a term is interpreted as the equivalence class of terms that are provably

equal to it. Thus, it is obvious that this model satisfies every provable equation. In fact, it is

too obvious: we gain very little insight from such a model. The situation is not unlike that

of term models for FOL that are used in model existence proofs – term models demonstrate

that models exist, but give us no other insight. We can try, with a debatable amount of

success, to remove the heavy reliance on syntax.

4.1.1 Syntax-free Models

We can remove the reliance of term models on syntax by focusing on extensional equivalence

classes instead of provability.

Definition 10. A syntax-free λ-model is a triple 〈D, ·,Λ〉, where 〈D, ·〉 is an applicative

structure, Λ is a map from D to D, and the following four properties hold:

1. 〈D, ·〉 is combinatorially complete,

2. for every a ∈ D, Λ(a) ∼ a,

9

3. for every a, b ∈ D, a ∼ b implies Λ(a) = Λ(b),

4. there exists an e ∈ D such that for every a ∈ D, e · a = Λ(a).

Rather than letting a term be interpreted as an equivalence class of the terms provably

equal to it, here we use Λ to select a representative for each extensional equivalence class

and interpret a term as its representative. As before, it is obvious that provably equal terms,

being in the same extensional equivalence class, will have the same interpretation. The

“advantage” of this definition is that it only deals with extensionality and does make use of

syntactic notions of provability; hence the “syntax-free” moniker. However, extensionality

and provable equality are intimately related, and there is an interesting connection between

syntax-free and regular λ-models: 〈D, ·,Λ〉 is a syntax-free λ-model iff 〈D, ·, J K〉 is a λ-model

with J K is defined as

JxKρ = ρ(x)

JPQKρ = JP Kρ · JQKρ

Jλx.P Kρ = Λ(a) where for every d ∈ D, a · d = JP K[d/x]ρ

(This is just a formalization of what we would expect.) Conversely, we may define Λ in terms

of J K by

Λ(x) = Jλx.uxK[a/u]σ for any σ

(This just formalizes that any representative of the equivalence class may be chosen.)

Technically speaking, the constructions of J K and Λ are mutual inverses, in the sense

that if we let 〈D, ·, J K′〉 be a λ-model, and we define Λ from J K′, and then define J K from Λ,

we will find that J K = J K′. Conversely, if we start with a syntax free model 〈D, ·,Λ′〉 and

define first J K and then Λ, we get Λ = Λ′.

Syntax free models are a bit more useful than terms models because they shed some light

on a useful construction called a retraction.

4.2 Retractions

The concept of a retraction may be the single most important concept in the denotational

semantics of the untyped lambda calculus. It is retraction that allows us to find a domain

D such that D ∼= D → D. A retraction is a set that may be embedded into another in a

special way.

Definition 11. Let C and D be sets, and let IC denote the identity function on C. Let the

functions φ : C → D and ψ : D → C satisfy ψ ◦ φ = IC. Then ψ is called a left inverse of φ

and C is called a retract of D by φ and ψ. The pair 〈φ, ψ〉 is called a retraction.

The name “retraction” may be justified by observing that D may be retracted into C via

ψ in such a way that C’s image under φ is preserved. Basic properties of φ and ψ include

that ψ is onto and that φ is one-to-one. We say that φ is an embedding of C onto a subset

of D, and that C is a retract of D.

10

Figure 2: Retraction

4.2.1 Syntax-free models as Retractions

We can obtain a very algebraic feeling syntax-free λ-model as follows. Let 〈D, ·,Λ〉 be

a syntax free λ-model. Recall that (D → D)rep is the set of all representable one-place

functions, Reps(θ) is the set of all representatives of a function θ ∈ (D → D)rep, and Fun(a)

is the one-place function represented by a ∈ D. Note that Reps(θ) may have many members,

but Λ gives us a way of singling one out as the representative of the equivalence class. We call

this Rep(θ) = Λ(a), for any a ∈ Reps(θ). Thus, we have that Fun(Rep(θ)) = θ. Therefore

Fun is a left inverse of Rep, and so Rep is a one-to-one embedding of (D → D)rep into D,

and so (D → D)rep is a retract of D. This is best illustrated in the figure. (Note, however,

that unlike in the previous diagram, here it is the right side that is the retract.)

Figure 3: Syntax-free retractions.

We may also reverse this discussion to define application in terms of representability.

Let D be a set, and C any set of one-place function from D to D. Let Rep : C → D and

11

Fun : D → C be any pair of functions that form a retraction (specifically, Fun ◦Rep = IC).

Then we can define application as follows: for every a, b ∈ D, let a · b = (Fun(a))(b). This

definition of · has the property that C becomes exactly the set of all functions representable

in 〈D, ·〉. That is, it becomes the gray circle on the right side of the diagram. If we take

Λ = Rep◦Fun, then we have a λ-model. In other words, given any term in D, to interpret it

we “project” it into the set of representable functions, and then “retract” it back by finding

its representative.

Admittedly, using Λ, Rep, and Fun in this way resembles a dog chasing its tail. However,

this game of circularity yields an extremely important result: any retraction where D has at

least two members, · is defined as above (and hence 〈D, ·〉 is combinatorially complete), and

Rep ◦ Fun ∈ C gives rise to a λ-model. (Bear in mind that D may have far few elements

than we would expect, and this it becomes a λ-model through combinatory completeness,

rather than by having a domain that “feels right.”)

Retractions are only the first concepts needed on the road to natural λ-models.

5 CPOs and Scott’s Topology

Complete partial orders and Scott’s topology (named after Dana Scott, who essentially

invented the concept in the 1970’s) the are key to understanding realistic models of the

untyped lambda calculus. That is, we may use the concepts to construct, from the ground

up, more semantic feeling λ-models. At first, these definitions may seem like they have little

to do with lambda calculus; indeed, many of these definitions have a strong relationship

to topology. (For instance, consider topological spaces A ⊆ X and let r : X → A be a

continuous map whose restriction to A is the identity map on A. In this case, A is a retract

of X.) These definitions are taken from [1]; other, slightly different definitions are available

in related texts. Interestingly, many of the concepts introduced in this section are more

intuitive in a typed setting. See, for instance, [4]. The foundational concept is that of a

partially ordered set:

Definition 12. A partially ordered set, or poset, is an ordered pair 〈D,v〉 where D is a set

and v is a transitive, anti-symmetric and reflexive binary relation on D. If D has a least

element, it is called bottom, and is denoted by ⊥. When a v b, we say that a is less than or

equal to b, or that b is greater than or equal to a.

Recall that a transitive relation v has the property that ∀a, b, c, a v b −→ b @ c.

Reflexivity implies that ∀a, a v a. Finally, antisymmetry implies that ∀a, b, a v b −→ ¬(b v
a).

Partially ordered sets capture the notion that some elements are greater than others;

however, any given element is not necessarily comparable to any other. As such, a poset

is a much like a set of ascending chains. When the poset has a least element, then all the

chains must be connected to ⊥, and so the poset resembles a tree. Posets are most often

12

used to express that some functions are “more defined” than others; this use will come in

handy later. We now proceed to examine posets themselves.

Definition 13. Let 〈D,v〉 be a poset. An upper bound of a subset X ⊆ D is any b ∈ D

such that a v b for any a ∈ X. The least upper bound, or lub, of X is denoted tX and is v
any upper bound of X. For arbitrary X, tX may not necessarily exist or be in X, but if it

does exist, then it is unique.

The uniqueness easily follows from reflexivity, transitivity, and antisymmetry. If v is

used to order functions by degree of definedness, the lub of a directed set is often used to

denote a “completely defined” function.

Definition 14. Let 〈D,v〉 be a poset. A subset X ⊆ D is directed if X is non-empty and

∀a, b ∈ X,∃c ∈ X s.t. a v c and b v c

A good intuition that captures the essence of directedness, and also demonstrates why

the word “directed” was chosen, is this: imagine the set X laid out as a series of pegs on

a pegboard, where pegs that are related by v are connected by strings, with the greater

element to the right of the smaller element. Pick two pegs a and b. There must be a c to

the right of them both that you can get to by following strings from a and b. Then, pick

another element d. There must be a peg to the right of both c and d that you can get to by

following strings connected to c and d. Then, pick another element d, and so on. Through

this process we are moving steadily to the right; hence, a directed set X somehow directs

you to greater and greater elements. If this traveling stops, then tX exists.

Definition 15. A complete partial order, or cpo, is a partially ordered set 〈D,v〉 such that

D has a least member ⊥ and every directed X ⊆ D has a least upper bound tX. Usually we

will speak of the cpo D rather than the cpo 〈D,v〉 because the v in question is obvious from

context. Note that a set D may have many such vs.

In a certain sense, these partial orders are considered complete because there are no

“missing” limits (either ⊥ or any lub of a directed set.) The existence of these limits has

certain nice properties that we will use when we construct our models. (In fact, every cpo

that has a continuous function space that can be embedded in it via a retraction is a λ-model

in which exactly the representable functions are continuous, and vice versa.)

One very common way to construct cpos from sets is via lifting :

Definition 16. Let D be a set. Then the cpo 〈D⊥,v〉, called “D lifted,” is constructed by

taking D⊥ = D∪{⊥}, where ⊥ is some distinguished element such that ⊥ is less than every

element of D. The elements of D ⊂ D⊥ that are not ⊥ are not related by v at all. A good

intuition may be found in the example in following picture:

13

Figure 4: N⊥

The reason that lifting is useful is because it is commonly used to transform partial

functions in to total ones. For instance, let f : N ⇀ N. Then, for any x ∈ N that is not

in the domain of f , define f ′(x) = ⊥ and let f ′ agree with f on all other values. Then

f ′ : N → N⊥ is a total function, and we have that f ′(x) v f ′(y) whenever x v y. In other

words, we use ⊥ and v to express that “undefinedness” is less than “definedness.” We will

formalize this intuition later; for now, we have stumbled upon an important property:

Definition 17. Let 〈D,v〉 and 〈D′,v′〉 be cpos and let φ : D → D′. We say φ is monotonic

iff for all a, b ∈ D, a v b implies φ(a) v′ φ(b). We say φ is continuous iff for all directed

X ⊆ D, φ(tX) = t(φ(X)).

The intuition behind monotonicity is the same as in other fields of mathematics: if we

arrange the preimage and imagine of a monotonic function in ascending chains, and connect

the elements related by the map, then none of the connections will cross each other.

One trivial but important property of these definitions is that every continuous function

is monotonic. In many respects, there is no simple intuition that captures why this is true,

but we can see that if a function φ maps a lub to a non-lub, then the ordering on D′ has

been violated by φ, either by breaking monotonicity or by having extra elements below where

the lub “should be.” Note that not every monotonic function is continuous. We say that a

function that has f(⊥) = ⊥ is strict. (The class of strict functional programming languages

are called strict because their functions behave in this manner. In addition, a kind of ⊥ has

made it into programming languages via the type unit.)

It is possible to characterize the Scott topology in purely topological terms, for instance,

defining open sets. However, that approach requires an understanding of topology.

An extremely interesting and important result from denotational semantics is that con-

tinuous functions on cpos are computable in a recursion-theoretic sense. A related fact is

that the functions always have fixed points. We will not diverge into this intriguing subject

here; instead, we will examine the connection of cpos to category theory.

5.1 Connections to Category Theory

There are many natural connections between cpos and category theory. For instance, the

class of cpos forms a category, called Cpo, where the objects are cpos and the arrows are

continuous functions between cpos (objects). (In some texts, for instance [4], our cpos are

14

considered pointed, because they contain ⊥. In this case, the pointed cpos form a subcategory

of Cpo.).

In addition, a single partial order 〈D,v〉 is a category: the objects are the elements of D

and two objects a, b have an arrow from a→ b iff a v b. Note that here there is necessarily at

most one arrow between any two objects. Also note that the identity function exists because

a v a for every a ∈ D, and that comp exists because a partial order is transitive. A partial

order is a good example of where set-theoretic intuition can fail us, because the arrows in

a partial order category aren’t functions, and so it seems like the category is nothing more

than a directed, and possibly disconnected, graph.

Another particularly illustrating connection is that both lifting and product construction

are functors.

Definition 18. Let C and D be categories. A functor from C to D is a pair of maps 〈F o, F a〉
with the following properties:

• F o : Co → Do, that is, F o maps objects to objects

• F a : Ca → Da, that is, F a maps arrows to arrows

• whenever f : a→ b, we have F a(f) : F o(a)→ F o(b)

• F a(idC(a)) = idD(F o(a)) for every a ∈ Co, that is, F a maps identity to identity

• F a(f ◦ g) = F a(f) ◦ F a(g) for every f, g ∈ Ca.

We usually omit the superscripts from functors when no confusion is possible. Intuitively,

functors are functions from categories to categories that preserve structure. In a sense,

functors are the categorical equivalents of homomorphisms.

Figure 5: A Functor f .

Lifting is a functor from the category of non pointed (without ⊥) cpos to Cpo; the object

map takes a non pointed cpo D to the cpo D⊥ ∈ Cpo, and the arrow map takes a continuous

function f : A → B to the strict continuous function f⊥ : A⊥ → B⊥. The product functor

15

is a functor from Cpo× Cpo to Cpo. The object map takes a pair of cpos 〈C,D〉 and maps

them to the product CPO C × D, whilst the arrow map takes a pair 〈f, g〉 of continuous

functions with f : C → C ′ and g : D → D′ and maps them to the continuous function

f × g : (C ×D)→ (C ′ ×D′) such that (f × g)(〈x, y〉) = 〈fx, gy〉.
The formation of a continuous function space is also a functor, although its construction

is slightly more involved than the previous examples – it involves working with a construction

called an opposite category, and it will not be given here.

5.2 Cartesian Closed Categories

A Cartesian closed category (ccc) is a special kind of category that is a suitable structure

for capturing pairing and function application; in fact, much of the motivation for using

category theory is to have a common framework for working with constructions that are

useful in constructing λ-models. One consequence of this natural connection between λ-

models and cccs is that λ-models are quite often cccs, and vice-versa.

To give a definition of a ccc, we must first define how products and functions are repre-

sented inside of categories.

Definition 19. Let a, b, and c be objects of a category. We say that [a × b] is the product

of a and b if there are arrows p1 : [a× b]→ a and p2 : [a× b]→ b such that for every arrow

f, g as indicated below, there is a unique h such that the following diagram commutes.

Figure 6: Product formation inside a category.

In this figure, we have adopted the common convention that existentially qualified arrows

are denoted with dashed lines. Intuitively, p1 and p2 are the projection functions for the

pairing constructor h. (Note that square brackets are now used in a categorical settings

for pairing and functions, and also for function space construction. The two uses are not

related. The square brackets are often used to help remind the reader that the × is inside

the category, and does not denote cartesian product; when there is no danger of confusion,

the square brackets are often dropped.)

The second definition we need is that of a function object (also called an exponential

object). This definition makes use of our previous definition of ×.

16

Definition 20. Let a, b, and c be objects in a category. Then [a → b] is a function object

of a and b when there is an arrow apply : [a→ b]× a→ b such that for every f : c× a→ b

as indicated below, there is a unique h such that the following diagram commutes.

Figure 7: Function formation inside a category.

Intuitively, h is the curried form of f . That is, by using h on c, we obtain a function

[a→ b], that, when applied to a via apply, yields b. f itself operates on c× a to yield b. It

is perhaps not obvious, but it can be verified that all the function objects of a given pair of

objects are isomorphic.

With these definitions in hand, we may proceed to the definition of ccc.

Definition 21. A category C is cartesian closed when it has a specified object unit and

specified binary maps × and → on objects such that for all objects a, b, and c,

C(a, unit) has exactly one arrow,

C(a, b)× C(a, c) ∼= C(a, b× c) and

C(a× b, c) ∼= C(a, b→ c)

(Technically, there are a few conditions on the isomorphism above, but they are “natural”

and as such, we will ignore them in the following discussion.)

Simply put, a ccc is a category with a special object unit that “contains” exactly one

element. However, because we cannot treat the elements in the category as collections,

we must state this condition by saying that C(a, unit) has exactly one arrow, which is an

equivalent statement in most non-pathological categories. The intuition here is that if there

is only map from b to a, then a must only have one element – this is particularly easy to see

in the category of sets, where for every object (set), there can be only one arrow into unit;

namely, the constant function whose range is unit.

In a similar way, the condition C(a, b)×C(a, c) ∼= C(a, b×c) uses this method of “counting”

to express that b × c is the collection of pairs of elements drawn from b and c. Intuitively,

we “fix” an a and then we can pull the cartesian product into the category itself. The final

axiom, that C(a× b, c) ∼= C(a, b→ c), states that b→ c is the collection of all arrows from b

to c. This is best illustrated by the example of a = unit, that C(unit×b, c) ∼= C(unit, b→ c).

17

Since unit is a one “element” collection, we have that b ∼= unit×b. So, C(unit×b, c) ∼= C(b, c).
From here we have that C(unit, b → c) ∼= C(b, c). In other words, we are saying that b → c

captures all the arrows from b to c inside the category, in much the same way that × captures

cartesian product inside the category.

Many of the structures we have defined earlier have direct analogs in cccs. For instance,

we may construct a term ccc in much the same way as we construct a term model. In

addition, the category Cpo⊥ of (pointed) cpos and strict continuous functions is cartesian

closed.

There are two extremely important connections with category theory:

1. Given a ccc, we can recover an applicative structure, and

2. Given an applicative structure, we can construct a ccc.

It is this equivalence that allows us to move freely from category theoretic investigations into

a more classical setting, and vice versa, allowing the full power of both approaches to be

harnessed. In fact, a large number of “categorical semantics” of λ have been developed [5].

(Of course, there are a few conditions on the above connections. Not just any applicative

structure or ccc will do.)

With the connections to category firmly established, we may now investigate the first

natural λ-model, D∞, itself.

6 D∞

6.1 Preliminaries

Dana Scott’s model D∞ was the first λ-model to be constructed in a way that captures

our intuition of λ-terms as functions on themselves. Because the set-theoretic construction

of a function space D → D from a domain D results in a function space with strictly

greater cardinality than D, more sophisticated mathematical techniques were required to

both determine what the domain of the model was and to characterize an adequate subset

of the function space construction that would not create cardinality concerns.

Definition 22. Let 〈D,v〉 and 〈D′,v′〉 be cpos. The function space [D → D′] is defined to

be the set of all continuous functions from D to D′. Furthermore, let φ, ψ ∈ [D → D′]. We

define a partial order ≤ based on v′ such that φ v ψ iff for every d ∈ D, φ(d) v′ ψ(d). Note

that 〈[D → D′],≤〉 is a cpo, with a least element ⊥ with the property that for every d ∈ D,

⊥(d) = ⊥′.

Intuitively, we can think that a v b means that a is less well defined than b, or that a

gives “less information” than b. In the familiar terms of N⊥, this just means that numbers

are more well defined than ⊥, which can be thought of as non-termination. In keeping with

18

this way of thinking, we say that φ ≤ ψ whenever for each input value, φ yields a less

informative answer than ψ.

It is often useful to know that when D = D′, the identity function ID is in the function

space [D → D].

Of paramount importance to the construction of D∞ is that compositions of continuous

functions are continuous. That is, let D,D′, D′′ be cpos. Then for every φ ∈ [D → D′]

and ψ ∈ [D′ → D′′], we have that ψ ◦ φ ∈ [D → D′′]. That composition behaves this way

provides a sense of closure that will be useful in reasoning about function spaces in general.

Definition 23. Let D and D′ be cpos and let φ ∈ [D → D′] and ψ ∈ [D′ → D] satisfy

φ◦ψ = ID′ and ψ ◦φ = ID. In this case, we say that D is isomorphic to D′, written D ∼= D′.

Definition 24. Let D and D′ be cpos. A projection from D′ to D is a pair of functions

φ ∈ [D → D′] and ψ ∈ [D′ → D] such that ψ ◦ φ = ID and φ ◦ ψ ≤ ID. When such φ, ψ

exist, we say that D′ is projected onto D by 〈φ, ψ〉.

Intuitively, every projection is a retraction, but with the added property that φ, ψ are

continuous and that φ ◦ψ ≤ ID. Therefore, φ, ψ make D isomorphic to a subset φ(D) of D′.

In addition, the bottom members of D and D′ correspond: φ(⊥) = ⊥′ and ψ(⊥′) = ⊥.

Figure 8: Projection.

6.2 The Intuition

D∞ is the limit of a sequence D0, D1, . . . of cpos, each of which is the function space of the

one before it.

Definition 25. Let D0 = N⊥, and let Dn+1 = [Dn → Dn]. We will generically refer to vDn

as v and refer to the least member of Dn as ⊥n.

We cannot construct a λ-model 〈D∞, ·, J K〉 in set theory with · as function application

and D∞ a set of functions, because in set theory, a function cannot be applied to itself.

(There are λ-models constructed in non-well-founded set theory, but we ignore them here.)

19

Dana Scott avoided this difficulty by using an intuitively simple device. That is, the

members of D∞ are not functions, but are infinite sequences of functions:

φ = 〈φ0, φ1, . . .〉

where φn ∈ Dn. Application can then be defined as

φ · ψ = 〈φ1(ψ0), φ2(ψ1), . . .〉

And self-application becomes possible. As we increase n, we would like that our construction

of Dn gives us that D ∼= [D → D]. Therefore, we must now formalize the notion of a limit

to find D∞.

Figure 9: To D∞.

6.3 The Construction

To define the proper limit we must figure out how to embed each D into the next “larger”

D. To do so we must first define a bit of notation.

Definition 26. We wish to describe functions using the convenient lambda notation, but

without the possibility of confusion with λ-terms. So, let Λ be a “meta” lambda. That is,

λx.x is a syntactic term, whereas Λx.x is the identity function, whose domain we have not

yet defined.

This notation is simply a convenient device that allows us to quickly and intuitively

express functions. The first functions we need to define D∞ are the map φ0 and the reverse

map ψ0, which embed D0 into D1 and project D1 onto D0. (The symbol Λ was also used to

determine a representative for an equivalence class. It is important not to confuse these two

uses.)

Definition 27. The initial maps φ0 and ψ0 are defined as follows:

φ0(d) = Λa ∈ D0.d for every d ∈ D0

ψ0(g) = g(⊥0) for every g ∈ D1

20

For every d ∈ D0, φ0(d) is simply the constant function with value d; note that this

function is continuous, and so φ0(d) ∈ D1 = [D0 → D0]. Note also that ψ0 is also continuous

and hence also in [D0 → D0]. Mapping a constant to the corresponding constant function

seems like an intuitive way to embed a set of elements into its function space; likewise, the

reverse map is a convenient way to “collapse” a function space by mapping each function to

its value at a particular point. In a certain sense, as we move up the Dn, we are “nesting”

λ-terms an additional time at every move upward (n to n + 1), and are peeling away the

nesting at every move downward (n+ 1 to n).

It is relatively straightforward to show that 〈φ0, ψ0〉 is a projection from D1 to D0. We

have embedded D0 into D1; hence we have a projection from D1 to D0.

We can use this projection to “induce” a projection 〈φn, ψn〉 from Dn+1 to Dn in a natural

way. That is, we will have Dn ← [Dn → Dn], where ← denotes projection. In the limit,

projection will become isomorphism, and we will have that D∞ ∼= [D∞ → D∞], which is

exactly the property we need.

Definition 28. Let n ≥ 1. For every f ∈ Dn and g ∈ Dn+1, we define

φn(f) = φn−1 ◦ f ◦ ψn−1

ψn(g) = ψn−1 ◦ g ◦ φn−1

The pair 〈φn, ψn〉 is a projection from Dn+1 to Dn. The proof is rather involved; we omit

it here.

Intuitively, we are trying to figure out how to treat f , which “lives” in Dn, as something

“one level higher” so that it may operate on members of Dn. To do this, we take an argument

to f in Dn, drop it down into Dn−1, apply f , and the bump up the result to Dn. This process

is a function from Dn → Dn, and hence is f as it appears in Dn+1.

To get a feel for what is going on, first notice that the “cardinality” of each of φn, ψn, f, g

is correct. That is, we have f ∈ Dn : Dn−1 → Dn−1, g ∈ Dn+1 : Dn → Dn, φn : Dn → Dn+1,

and ψn : Dn+1 → Dn. So, we can check to make sure that our compositions are correct:

φn should return something in Dn+1, and suppose we supply some x ∈ Dn to φn; then the

compositions collapse as follows:

1. We apply ψn−1 to x to get something in Dn−1.

2. Then, we apply f to the result in Dn−1 to get an element in Dn−1.

3. From here, we apply φn−1 to finally get something in Dn. The whole process is then

a function from Dn to Dn, and hence the whole process is an element in Dn+1. The

whole process is how f is embedded into Dn+1.

It is certainly possible to formalize the above discussion, but it is more important to under-

stand that φn is mapping an element f in Dn into the function space Dn+1 in a very special

way. We cannot use f on elements of Dn directly, because f is a function from Dn−1 → Dn−1.

21

So, we first use ψn−1 to “drop down” arguments to f into Dn−1. In this way, elements in Dn

are now considered in Dn−1 and so f may apply to them. From there, we then apply φn−1

to “bump up” the result of f back into Dn. The reverse map ψn is defined similarly.

This definition of how to move functions from one Dn to another Dn+1 preserves appli-

cation in an important sense. Let a ∈ Dn+1 and b ∈ Dn. Then

ψn(a)(ψn−1(b)) v ψn−1(a(b)) if n ≥ 1

φn(a(b)) = φn+1(a)(φn(b)) if n ≥ 0

Intuitively, this means that if we have one element applied to another, if we “bump up” or

“drop down,” then the result “does not produce more than we started with” (if we go down)

and “acts the same” (if we go up). The intuition is that moving through the Dn does not

affect how functions “work.”

By using induction beginning withD0, it is possible to show that certain functions exist in

particular Dn. For instance, let n ≥ 2. Then Dn contains the analog of K: Λa ∈ Dn−1.Λb ∈
Dn−2.ψn−2(a). When n ≥ 3, we can show that an analog of S exists. Having these analogs

of combinators will be helpful in establishing that D∞ is, in fact, a λ-model.

One easy extension is that we may define φm,n as the “up or down” function from Dm to

Dn in a straightforward way. (That is, we move from Dm to Dn, going either up or down,

as required.) This is mostly a convenience.

Figure 10: Projection.

6.4 D∞

We are now in a position to define D∞. That is, D∞ is the set of all infinite sequences

d = 〈d0, d1, . . .〉

such that dn ∈ Dn and ψn(dn+1) = dn for every n ≥ 0. Note that here we are saying that

each dn is the result of a projection from Dn+1, rather than saying that each dn+1 is the

result of an embedding from Dn. That is, we are using ψ rather than φ. If instead we tried

to use φ, we would be limited having only elements in D∞ that could be built up using D0

22

rather than having all elements that can be projected down to D0; these are two different

sets of element. With this in mind, let d, d′ ∈ D∞ and define

d v d′ iff for every n ≥ 0, dn v d′n

Intuitively, this means that D∞ is the collection of sequences where each member of the

sequence is the projection of the function after it. v is intuitively capturing that one element

is less than another when this is true piecewise. From this construction we can begin to

examine the structure of D∞. One particularly important property is that D∞ is a cpo with

least member ⊥〈⊥0,⊥1, . . .〉. Another definition comes in handy here:

Definition 29. Let X ⊆ D∞. Define Xn = { an : a ∈ X }, where an is the n-th member of

the sequence a.

We have that when X ⊆ D∞ is directed, tX = 〈tX0,tX1, . . .〉.
Finally, for every n, we can embed Dn into D∞, and project D∞ onto Dn, as follows. We

can define the mappings φ∞,n : D∞ → Dn and φn,∞ : Dn → D∞ as, for every d ∈ D∞ and

every a ∈ Dn,

φ∞,n(d) = dn, and

φn,∞(a) = 〈φn,0(a), φn,1(a), . . .〉

(Notice that when a ∈ Dn, we have that φn,n(a) = a.) We have that 〈φn,∞, φ∞,n〉 is a

projection from D∞ to Dn.

Thus, because φn,∞ embeds every Dn isomorphically into (a subset of) D∞, we have,

modulo isomorphism, that D0 ⊆ D1 ⊆ . . . D∞, and that D∞ does, in fact, contain its own

function space. (Intuitively, D∞ contains all the Dn, and hence contains all the function

spaces.) Thus we can identify each d ∈ D∞ with φn,∞(d) ∈ D∞ and treat d as though it

were actually in D∞. In this way, we can restate some of our earlier results; for instance, we

have that for any a ∈ D∞, that a0 v a1 v a2 v . . . and that a = t{a0, a1, . . . }. In the latter

case, a may be thought of as the limit of a sequence of better and better approximations to

a.

We may now define application. Let a, b ∈ D∞, and define

a · b =vn≥0 φn,∞(an+1(bn))

Intuitively, this means that a ·b is the limit of a sequence of better and better approximations

an+1(bn).

We may interpret variables, or terms that do not contain λ, as follows. Let ρ : V ars →
D∞ be an environment. Then define JxKρ = ρ(x) and JPQKρ = JP Kρ · JQKρ.

Furthermore, this way of interpreting variables leads to an approximation in each Dn.

To wit, JxKn
ρ = (ρ(x))n and JPQKn

ρ = JP Kn+1
ρ (JQKn

ρ). Essentially, this approximation, for a

variable x, is just the n-th member of the interpretation of x; for function application, the

approximation is just a “stratified” version of what we would expect.

23

Rather than interpreting λ directly, it is easier to show that D∞ is an extensional com-

binatory algebra, because all extensional combinatory algebras are λ-models. This leads to

the somewhat unsatisfying situation where, given a λ-term, we cannot interpret it directly

in D∞, but must first instead pass through D∞ as a combinatory algebra.

Earlier we remarked that we could define kn as an approximation to K for each Dn. We

can now define k = 〈⊥0, ID0 , k2, k3, k4, . . .〉. We have that for every a, b ∈ D∞, k · a · b = a.

Likewise, we can define s = 〈⊥0, ID0 , ψ2(s3), s3, s4, . . .〉. Having s and k, D∞ is a combinatory

algebra. With these definitions, we also have that D∞ is extensional: that is, that if a·c = b·c
for every c, then a = b.

Finally, there are several interesting facts about D∞ that we will simply state here. First,

that the continuous functions from D∞ to D∞ are exactly the representable ones. Second,

that [D∞ → D∞] is a cpo that is isomorphic to D∞. Our third property relates to the

interesting notion of fixed points.

One of the advantageous of working with ⊥ as an element representing non-termination

in the way we have done is that it guarantees that λ-term interpretations have fixed points.

In fact, given a cpo D and φ ∈ [D → D], the least fixed point of φ is given by vn≥0 φ
n(⊥).

These least fixed points play a larger part in the theory of typed lambda calculus, where we

must explicitly interpret a fixed-point finding operator, as such an operator is not definable

in a typed system. This operator is definable in λ.

Finally, we will mention only that an equation M = N is true in D∞ iff the “infinite

Bohm-trees” of M and N have the same “infinite normal form,” providing a strong sense

that D∞ is a “natural” λ-model.

6.5 Connections to Category Theory

The construction of D∞ can be accomplished inside the category Cpo using the categorical

limit construction. Inside Cpo, if we regard arrows as projections, then we can find the

limiting object from which every Dn can be projected from. First, we must define what a

limit in a category is, and for that we must define a cone.

Definition 30. Let F be a functor from category J to category C. A cone of F is an object

L in C, together with a set of arrows {φX : L → F (X)}, one arrow for every object X of

J , such that for every arrow f : X → Y in J , it is the case that F (f) ◦ φX = φY . That is,

Figure 11 commutes.

Intuitively, we have that whenever two objects X and Y are related by an arrow f in the

source category J , they are related in C under the functor F . The object L is a “source”

in the target category C because it has arrows to X and Y under F . In this way, if we

have some sequence of objects in J related by arrows, then the cone object L has arrows to

the images of these objects in C. For example, in a partial order, a lower bound is a cone.

Viewed in this setting, the term “source” may be more appropriate than “cone.” Remember,

24

Figure 11: A Cone.

however, that a cone is defined relative to a functor. Finally, note that this construction is

called a cone because the set of all these diagrams, being triangles, can be arranged to form

a three-dimensional cone with L as the tip.

Simply put, the limit of a functor is a universal cone.

Definition 31. Let F be a functor from J to C with a cone 〈L, φX〉. This cone is a limit

of F iff for any cone 〈N,ψX〉 of F , there exists exactly one arrow u from N to L such that

φ ◦ u = ψX for every object X. That is, the following diagram commutes.

Figure 12: A Limit.

In other words, a limit captures the common essence of every cone in a unique way.

In [5], a limit is described as an entity which has a privileged behavior among a class of

objects that satisfy a certain property. Intuitively, the limit of a set of objects captures some

property that each object approaches individually. In a partial order, a limit is a greatest

lower bound; the greatest lower bound captures the property of being a lower bound in a

way that intuitively feels like a limit.

The concept of a limit may appear strange because these limits seem to be “backwards,”

in the sense that we are only sure of a great many arrows leaving the limit; the only arrows

we are sure of that point to the limit are those coming from cones. So in a sense, the limit

is really the limit of the cones; that is, the object that all the cones point to: the limit is a

25

universal source. (One may be tempted to imagine a limit as a universal target. In fact, it

matters very little if the limit is a source or target, because these notions are related through

the categorical concept of duality. For the purposes of constructing D∞, treating limits as

sources is more useful.)

D∞ is isomorphic to a special limit, lim
←
〈Dnφn〉 in the cpo Cpo. Here, projections form

the arrows (so the arrows are from Dn+1 to Dn), and although it seems like we are taking

the limit as n → ∞, as our projections are from Dn+1 to Dn, we are really speaking of the

limit where all the projections can be projected from; that n increases as we take this limit

is a consequence of how we numbered the Dn. In this setting, the term “source” for this

limit is also quite appropriate than limit here, because D∞ can be viewed as the source from

which each Dn is projected. Ironically, this makes the concept of a categorical limit easier

to grasp using the category D∞ than with other, simpler categories. We may take this as an

indication that D∞ is easy to manipulate in a categorical setting.

More formally (but not completely formally), we can define a functor F that maps each

cpo D to its function space: the cpo [D → D]. To find D∞, we are really trying to find a

fixed point of the functor F . To do so we would like to let n → ∞, but we are not sure in

what sense to take the limit; that is, we can let n increase, but we do not know what the

limit of a sequence of objects looks like; we do not know how to construct one. Moreover,

we don’t even know that such a limit exists in the category. Fortunately, we can formalize

our above intuition of a “universal source” from which all Dn are projected from in terms

of a category-theoretic construction called an inverse limit, denoted lim
←

. In our case, the

example of D∞ as an inverse limit is actually more intuitive to grasp than both any other

example and than the formal definition of what an inverse limit is, and so we will not give

a formal definition here. Intuitively, an inverse limit exists when we have chains of objects

(called inverse systems) for which there is an object that can serve as a universal source of

projections, where projections are defined very similarly to how we defined them for D∞.

One strength and weakness of category theory is that is is general enough that most

category theoretic constructs can be defined in many different ways. In [4], for instance,

there are three separate definitions of a ccc. Because of the great many techniques available

in category theory, it can often be quite beneficial to treat D∞ in this setting.

7 Conclusion

The path from the definition of a category to D∞ is long and complex. Along the way, we

have encountered applicative structures, which capture the essential properties of applicative

elements that are so essential to λ-models. We have seen term models and syntax-free models:

models built out of the syntax of λ itself, that seem trivial but point us in the right direction

for reaching D∞. We have seen glimpses of extremely abstract and powerful category-

theoretic constructions like functors and cones. We have seen the connections of λ-models to

category theory captured in the concepts of retraction, limit, and cartesian closure. When

26

we arrived at D∞, we found both a classical approach to its construction and a categorical

approach. We have witnessed computability characterized as topology.

It is these connections between fields, and the emergence of new fields from the construc-

tions required to give meaning to such a powerful system as λ, that make studying lambda

calculus so very rewarding.

References

[1] Introduction to Combinators and λ-calculus. J. Roger Hindley and Jonathan P. Seldin,

Cambridge University Press, 1996.

[2] Domains and Lambda-Calculi. Roberto M. Amadio and Pierre-Louis Curien, Cambridge

University Press, 1998.

[3] The Lambda Calculus. H.P. Barendregt, North-Holland Publishing Company, 1981.

[4] Foundations for Programming Languages. John C. Mitchell, MIT University Press, 1996.

[5] Categories, Types, and Structures. Andrea Asperti and Giuseppe Longo, MIT University

Press, 1991.

27

