Definition 1 (The formal theory of (-equality)

Formulae The formulae of A\ are just equations M = N for all A\-term
M and N.

Axioms (1) Az.M = M\y.[y/x]M, whenever y & FV (M);
(2) (A\x.M)N = [N/z|M;

(3) M=M
Inference Rules
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Definition 2 (The formal theory of weak equality)

Formulae The formulae of C'Lw are just equations X =Y for all CL-
term X and Y.

Axioms (1) KXY = X;
(2) SXYZ =XZ(YZ);
(3) X =X

Inference Rules




Definition 3 (The formal theory of S-reduction)

Formulae The formulae of A\ are just equations M > N for all A-term
M and N.

Axioms (1) Az.M > A\y.[y/x]M, whenever y & FV (M);
(2) (Ax.M)N > [N/z]M;

(3) M> M
Inference Rules
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Definition 4 (The formal theory of weak reduction)

Formulae The formulae of C'Lw are just equations X > Y for all CL-
term X and Y.

Axioms (1) KXY > X;
(2) SXYZ > XZ(YZ);
3) Xp> X

Inference Rules

Xp> X / Z > 7 ’
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X>Z



Lemma 5 The following holds:
(1) M=3 N & MNFM=N;

(2) M>g N & ANGFEMpD> N;
3 M=,N < CLwkM=N;
4) M>,N < CLwFMp>N

Proof. By straightforward induction. I will show only (1), but the other
parts are similarly proven.

(=) By induction on f-reduction. Suppose that M =g N and N Db
L. By LH., we can assume that A3 = M = N. If N >4 L is obtained
from a-conversion, then A\ F M = L by rule (7) and axiom (1). We
will show the [-reduction case by subinduction on N.

e If N = z for some variable z, there is no 3-redex.

e Suppose N = AxP. Then the main redex occurs in P, and there
exists () such that

Prs@
L=, )x.Q.

Thus we have A\ = M = L by rule (£), (7) and L.H.

e Suppose N = PQ. If the main redex is in P, then A\ + M = L by
rule (v), (1) and L.H. If, on the other hans, the main redex is in Q.
Similarly we have A3 = M = L by rule (u), (7) and I.LH. Otherwise,
PQ) itself is the main redex. Then by Axiom (2) and (7), we have
AG =M = L.

(<) Almost obvious by what we have learned from the class. i



Definition 6 Let o be a first order vocabulary consisting of:
e Constant symbols S and K;
e 2-ary function symbol .

Function symbol * represent a concatenation of terms; e.g., (S* K )*(x*y)
represents a CL-term, SK(zy). In the following, we omit the functioni
symbol .

CL™ consists of the following three axioms:

(1) Va,y(Kzy = z);
(2) Va,y, 2(Szyz = v2(y=2));
(3) S # K.

We write CLw™ b, X =Y, if a formula X = Y is derivable from
CLw™ by predicate calculus.

Lemma 7 (Barendregt) CLw" is a conservative extention of CLw:
i.e., for any CL-term X and Y, if CLw" b,. X =Y then CLw - X =Y.

Proof. First of all, it is easily seen that CLw™ is an extention of CLw.
For instance, if CLw* +,. X = X’ then CLw™ F,. X *Y = X' %Y, just
because * is a function symbol; therefore (¢') is valid.

For conservativity, suppose CLw™ I, X = Y. Then by soundness,

A= X =Y for any model 2 of CLw™.
Consider the following first order structure 2:

the domain A of 2 is the set of all equivalence class X/ ~ of
CL-terms, where the equivalence relation = is defined by:

X~Y & (Clwk X =Y.

Then it sufficies to show that 2 is a model of CLw™; for, if 2 is a model
then, by soundness, CLw"™ = X =Y implies % = X = Y and thus
CLw - X =Y. However, it is obvious that 2 is a model of CLw™. The
proof is completed. |



Definition 8 Suppose we are given the set F' of all formulae in any
means: this means just we are give a certain set. Then a inference
rule over F'is a partial function R: F'® ~ F| where « is an ordinal (or
cardinal); but we will consider only the case where a < w. We call a set
7 of inference rules a formal theory.

For instance, suppose R: F™ ~ F, (A;,...,A,) € dom(R), and
R(Ay,...,A,) = A. Then we say that we have a inference rule:

Ay, A,
A

We call inferencerules R with no premises (i.e., dom(R) = F° = {(})
axioms.

Let Z be a set of inference rules over F'. We can define as usual the
derivation of A from (Ag}s<q in Z; we write this as (Ag)p<a F1 A.

Definition 9 Let Z be a set of inference rules, and let R: F'* ~ F be
a inference rule. Then we say R is derivable in Z, if for any (Ag)p<a €
dom(R) we have <A5>5<a I_I R(<A5>5<a).

Definition 10 Let Z be a set of inference rules, and let R: F* ~ F be
a inference rule. Then we say R is admissible in Z, if the following holds:

for any (Ag)s<a € dom(R), if we have 7 Ag for all § < «,
then I_I R(<Aﬁ>5<a).

Lemma 11

(1) R is admissible in Z, iff the theorems of T U{R} coincides with the
theorems of Z: i.e.,

ThI):={d € F |-z ¢} = TH(Z U{R}) :={¢ € F |Fr U{R}¢}.

(2) If R is derivable in Z, then R is admissible in Z, but not vice versa.

(3) If R is derivable in Z, then R is also derivable in any extention of
7.



Proof. (1) (=) Suppose R is admissible in Z and A is a theorem of
ZU{R}. We will show that A is also a theorem of Z by induction
on the deduction of A. If the last inference is R, then since the
premises are all theorem of Z by I.LH. and R is admissible, A is a
theorem of Z. Otherwise, the last inference is in Z and obviously A
is a theorem of Z by I.H.

(<) Let (Ag | B < a) € dom(R). If Agis a theorem of Z for all 5 <
a, then they are also a theorem of ZU{R} and thus A = R(A43)p<a
is a theorem of Z U {R}. Then by the assumption, A is a theorem
of Z; this means that R is admissible in Z.

(2) Obvious.

(3) Obvious.
i

Lemma 12 In the previous lemma, the opposit direction in (2) does
not hold.

Proof. Trivial. Let Z = (). Then every inference rule is trivially admis-
sible. But every inference rule trivially non-derivable. i

Example. Let add just four new constants a, b, ¢ and d to A\3; that is,
Term(AB) ::= alb|c|d|z| M N | zM.

Let A\3* denote this new system.
Consider the following new rule R.

a=1b
c:dR

In fact, R is admissible in A3, since a = b is not a theorem in \j.
However, R is not derivable in A\, since we cannot derive ¢ = d, even if
we assume a = b.

This fact is proven by showing (modified) Curch-Rosser Theorem
holds for \5.



Definition 13 Let Z and Z’ be formal theories (i.e., sets of inference
rules) with the same set of formulae. We say Z and 7’ are therem-
equivalent, iff every inference rules in Z is admissible in Z’, and vice
versa. We say Z and Z’ are rule-equivalent, iff every inference rules in 7
is derivable in Z’, and vice versa.

Lemma 14 Let 7 and I’ be formal theories with the same set of for-
mulae. Then, T and I’ are theorem-equivalent, iff they have the same
set of theorems: i.e., 7 A <4 A.

Proof. By easy and straightforward induction on deduction. i

Definition 15 Let Z be a formal theory, and let some of its formulae
be of the form X = Y. Then the equality relation determined by Z,
written by =z, is defined by

X=Y & FHX=Y

Lemma 16 Let Z and I’ be formal theories with the same formulae.
Suppose it includes some formulae of the form X =Y. Then, if T and
7' are theorem-equivalent, then they give the same equality relation.

Proof. Immediate from the previour lemma. i



