161, Winter, 2005–6 Homework 4, Due Feb 8

Exercise 1 (2.1 (Chapt. 3) (15 points)) Let $n \in \mathbb{N}$. Show that there is no $k \in \mathbb{N}$ such that n < k < n + 1.

Exercise 2 (2.2 (Chapt. 3) (15 points)) Use the previous exercise to prove for all $m, n \in \mathbb{N}$: if m < n, then $m + 1 \le n$. Conclude that m < n implies m + 1 < n + 1 and that therefore the successor S(n) = n + 1 defines a one-to-one function on \mathbb{N} .

Exercise 3 (2.4 (Chapt. 3) (20 points)) Prove that for every $n \in \mathbb{N}$, $n \neq 0, 1$, there is a unique $k \in \mathbb{N}$ such that n = (k + 1) + 1.

Exercise 4 (3.1 (Chapt. 3) (25 points)) Let f be an infinite sequence of elements of A, where A is ordered by \prec . Assume that $f_n \prec f_{n+1}$ for all $n \in \mathbb{N}$. Prove that n < m implies $f(n) \prec f(m)$ for all $n, m \in \mathbb{N}$. [*Hint:* Use induction on m in the form of Exercise 2.11 of the textbook, with k = n + 1.]

Exercise 5 (3.2 (Chapt. 3) (25 points)) Let (A, \prec) be a linearly ordered set and $p, q \in A$. We say that q is a *successor* of p if $p \prec q$ and there is no $r \in A$ such that $p \prec r \prec q$. Note that each $p \in A$ can have at most one successor. Assume that (A, \prec) is nonempty and has the following properties:

- (a) Every $p \in A$ has a successor.
- (b) Every nonempty subset of A has a \prec -least element.
- (c) If $p \in A$ is not the \prec -least element of A, then p is a successor of some $q \in A$.

Prove that (A, \prec) is isomorphic to $(\mathbb{N}, <)$. Show that the conclusion need not hold if one of the conditions (a)–(c) is omitted.