
Rigorous Development with UML-RT

Rodrigo Ramos1, Augusto Sampaio1, Alexandre Mota1

1Centre for Informatics, Federal University of Pernambuco
P.O.Box 7851, CEP 50740-540, Recife-PE, Brazil

{rtr,acas,acm }@cin.ufpe.br

Abstract. With model-driven development being on the verge of becoming an in-
dustrial standard, systematic development strategies based on safe model trans-
formations is a demand. However, the lack of a formal semantics makes the
application of such transformations inadequate, especially transformations that
must take into account changes in both behavioural and structural diagrams.
As part of the Master thesis briefly summarised in this paper [Ramos, 2005], we
have defined a semantics for UML-RT through a mapping into a formal nota-
tion, calledCircus. Based on the semantics, we have proposed a set of transfor-
mation laws that aims to systematise the evolution of UML-RT models during
development, with preservation of both static and dynamic aspects. Soundness
and completeness of the laws are also addressed, and a case study has been
developed to illustrate the overall approach.

1. Introduction

Recently, Model Driven software Engineering (MDE) has influenced Software Engineer-
ing with a development process driven by the activity of modelling, as well as abstraction
and automation of several tasks of a software development. Despite its strengths, the rig-
orous development of non-trivial applications (which need to emphasise the specification
and verification of components) do not seem feasible without the assignment of formal
semantics to the models. The reason is that well-known model transformations, which are
important artifacts for model evolution in MDE, might not preserve behaviour.

In the literature, several efforts address the problem through the integration of
object-oriented models with formal languages, proposing semantics and transforma-
tions for the Unified Modeling Language (UML), as well as its extensions. In our
work [Ramos, 2005], we emphasise the use of UML-RT [Selic and Rumbaugh, 1998], a
UML profile that has a clear definition for reactive components and protocols, and is use-
ful to describe concurrent and distributed applications. Our approach mainly differentiate
from related work (for instance, [Fischer et al., 2001, Engels et al., 2001]) for proposing
a unified formal semantics for the several views of the model [Ramos et al., 2005] via
mapping intoCircus [Woodcock and Cavalcanti, 2002], a formal language that combines
CSP and Z, and also support Morgan’s refinement calculus. We also propose a compre-
hensive set of transformation laws, simultaneously taking in account the static and dy-
namic views of the model [Ramos et al., 2006]. These transformations are algebraically
presented based on (and provably correct according to) the proposed semantics, focusing
on the new elements that UML-RT adds to UML, and showing the necessary provisos for
their application. Other works [Sandner, 2000, Engels et al., 2002] have taken in account
architectural refactoring in UML-RT like ours. However, these works fail to make side



conditions of laws explicit, and do not present a comprehensive set of algebraic laws, nor
systematise a strategy for algebraic-based model transformations, as we have done.

In our approach, two groups of laws are identified: the first one embodies a com-
prehensive set of laws that govern small changes in the main model views, like introduc-
ing or removing a model element; the second group presents more elaborate laws derived
from the composition of these basic laws, like decomposing a capsule into parallel com-
ponent capsules. The derived laws can be considered as precise model refactorings that
are easily applied in a rigorous development. The formalisation of these large grain trans-
formations is built on ideas informally presented in [Sampaio et al., 2004].

The next section presents an overview of the UML-RT semantics and Section
3 briefly discuss the laws, considering soundness and completeness. The final section
summarises our contributions.

2. UML-RT Semantics Overview

UML-RT, like other architectural description languages, models reactive systems with
active architectural components working concurrently and communicating among them-
selves. Communication is modelled by means of input and output message exchange,
which can be synchronous or asynchronous. These concepts have been introduced to
UML-RT via four new design elements: capsule, protocol, port and connector. Capsules
(active classes) describe architectural components whose unique points of interaction are
called ports, which are assembled by connectors and realise communication signals pre-
viously declared in a protocol.

To clarify the main concepts of UML-RT, we illustrate the UML-RT notation and
semantics using an example of a simplified industrial machine (Figure 1). This machine
is responsible for receiving work pieces and, after processing, making them available for
client requests. It is just a small component of major system, where it can be placed
to form a larger architectural pattern, such as a pipeline. In the structure diagramStrM
(bottom of Figure 1), it is possible to see that a capsuleMachineis actually composed of
two other capsules instancesprocandsonof typesProcessorandStorage, respectively. In
this specific diagram,Machinedelegates all messages that it communicates through ports
mi andmoto procandson. Their types are presented in the class diagramClsM (top-left of
Figure 1), showing the relationship among capsules, protocols, and classes. For instance,
a relationshipsonbetweenMachineandStoragerepresents that there is an instanceson
inside the structure ofMachine, and a relationshipsobetweenStorageand the protocol
STOrepresents a portsoof this protocol type inStorage. Another important part of the
system behaviour is described through statecharts (right-hand side of Figure 1). Via this
diagram, protocols might establish specific sequences of interaction, such as inSTO, and
capsules might define how their reactive behaviour is triggered by external signals.

We assume that events, guards and actions in a statechart are expressed using the
Circus notation. For example, in the statechart ofStorage, there are two transitions from
stateSa. The one on the right triggers if thereq signal arrives through portso and the
buffer is non-empty. The corresponding action declares a variablex to capture the result
of the methodremove. This is the way it is done inCircus, sinceremove is actually
interpreted as a Z Schema. The value ofx is then sent through portso. The syntax for
writing these actions of communication are as in CSP.



Figure 1. A simplified industrial machine

Language constructs similar to those of UML-RT concepts are also available in
Circus, where concurrent components are represented by processes that interact via chan-
nels. Therefore, capsules and protocols are semantically mapped into processes, ports into
channels, and classes into Z paragraphs, which act as passive data registers. Furthermore,
connections are represented by means of using shared channels. As an example, consider
the following mapping of the capsuleStorage into Circus, which was obtained using a
sequence of mapping rules presented in [Ramos, 2005, Ramos et al., 2005]. The process
declaration body ofStorage (delimited by thebeginandendkeywords) is composed of a
Z state schema, action paragraphs and a main action (delimited after the• symbol), which
defines the process behaviour; action paragraphs are used to structure the behaviour of a
main action and to express data operations. Each method is a Z schema, specified with its
pre- and postcondition.

| N : N
TSTI ::= input � Piece �
TSTO ::= req | output � Piece �
channelsi : TSTI, so : TSTO

processStorage =̂ begin
stateStorageStatê= [buffer : seqPiece; size : 0..N | size = #buffer ≤ N]
initial StorageInit=̂ [StorageState′ | buffer′ = 〈〉 ∧ size′ = 0]
insert =̂ [∆StorageState; x? : Piece | size < N ∧

buffer′ = buffer a 〈x?〉 ∧ size′ = size + 1]
remove =̂ [∆StorageState; x! : Piece | size > 0 ∧ x! = headbuffer ∧

buffer′ = tail buffer ∧ size′ = size− 1]
Sa =̂ (size < N & si?input.x → insert; Sa)

2 (size > 0 & so.req → (var x : Piece • remove; so!output.x); Sa)
• StorageInit; Sa
end

3. Transformation Laws

Based on the formal semantics briefly discussed in the previous section, as well as on the
refinement notions and laws ofCircus [Sampaio et al., 2002], we propose some transfor-
mation laws for UML-RT. The laws deal with static and dynamic model aspects repre-
sented by the three most important diagrams of UML-RT: statechart, class and structure
diagrams. The complete set of laws and our approach to their formal proofs can be found
in [Ramos, 2005].



As illustration, we present an elaborate transformation law that decomposes a cap-
suleA into parallel component capsules (B andC) in order to tackle design complexity
and to potentially improve reuse.

Law 1 Capsule Decomposition

provided

(→) 〈batts, binv, bmeths, (b1, b2), Sb〉 and 〈catts, cinv, cmeths, (c1, c2), Sc〉 partition A.

(↔) The statecharts of the protocols X and Z are deterministic.

Protocols X and Z are not illustrated because any deterministic machine can be
used. On the left-hand side of Law 1, the side condition requires thatA must be parti-
tioned, a concept formalised in [Ramos, 2005]. Informally, the capsule must be formed
by two disjoint groups of variables, methods, ports and statechart regions, which commu-
nicates only by internal ports of the capsule; each partition is forbidden to access methods
and variables of the other part.

The effect of the decomposition is to create two new component capsules,B and
C, one for each partition, and redesign the original capsuleA to act as a mediator. The
external signature and observable behaviour ofA is preserve. In general, the new internal
behaviour ofA might depend on the particular form of decomposition. Law 1 captures
a parallel decomposition. On the right-hand side of the law,A has no state machine. It
completely delegates its original behaviour to an instance ofB andC through the structure
diagram. WhenA is created, it automatically creates the instances ofB andC, which
execute concurrently and play the same roles of the partitions that originated them.

Completeness The comprehensiveness of a set of algebraic laws is usually studied
through a normal form reduction process. In our case, the expressiveness of our set of
laws can be asserted by a reduction strategy that transforms an arbitrary UML-RT mod-
els into a UML model extended with a single capsule responsible for all the interactions
with the environment; this capsule is also responsible for maintaining the active behaviour
of the entire modeled system. In [Ramos, 2005, Ramos et al., 2006], we show that, col-
lectively, our set of laws is power enough to carry out this reduction. This target UML
model can be regarded as anormal form, and, therefore, our strategy can be regarded as a
contribution to a completeness strategy captured bynormal formreduction.

Case Study The focus of our approach is to support a formal transition from analysis
into design. The transformation laws we have proposed may be useful to formalise in-
formal analysis and design guidelines widely adopted by development processes as, for
instance, the Rational Unified Process (RUP). The analysis and design disciplines of RUP



include several activities that, broadly, identify abstractions, develop an abstract (anal-
ysis) model, and progressively refine it into a concrete design model. This is illustrated
through the development of two case studies: a simple manufacturing system and a simple
operational system [Ramos, 2005, Ramos et al., 2006, Sampaio et al., 2004].

4. Summary of Contributions
Our contributions can be summarised as follows.

• Assignment of a formal semantics for UML-RT via mapping intoCircus, which
acts as a useful hidden formalism for software engineering practise.

• Proposition and proof of a comprehensive set of basic algebraic laws for UML-RT
that preserve the system behaviour on both static and dynamic views.

• Presentation of larger grain laws, derived from basic laws, that might be consid-
ered as precise model refactorings and easily applied in a rigorous development.

• A notion of relative completeness, briefly presented through a strategy of reducing
an arbitrary UML-RT model to a UML model, entirely based on the laws.

• Seamless application of the laws through design activities of the Rational Unified
Process in the development of a case study.

As far as we are aware, an entirely formal approach to model transformations
using UML-RT, including a unified semantic mapping, is an original contribution.

References
Engels, G., Heckel, R., K̈uster, J. M., and Groenewegen, L. (2002). Consistency-Preserving Model

Evolution Through Transformations. InProc. of the UML Conference, volume 2460 ofLecture
Notes in Computer Science, pages 212–226. Springer-Verlag.

Engels, G., K̈uster, J. M., Heckel, R., and Groenewegen, L. (2001). A methodology for specifying
and analyzing consistency of object-oriented behavioral models. InProc.of the ACM ESEC
Conference, pages 186–195. ACM Press.

Fischer, C., Olderog, E.-R., and Wehrheim, H. (2001). A CSP View on UML-RT Structure Dia-
grams. InProc. of the FASE Conference, pages 91–108. Springer-Verlag.

Ramos, R. (2005). Desenvolvimento Rigoroso com UML-RT. Master’s thesis, Federal University
of Pernambuco, Recife, Brazil.

Ramos, R., Sampaio, A., and Mota, A. (2005). A Semantics for UML-RT Active Classes via
Mapping intoCircus. In Proc. of the 7th IFIP FMOODS Conference, volume 3535 ofLecture
Notes in Computer Science, pages 99–114. Springer-Verlag.

Ramos, R., Sampaio, A., and Mota, A. (2006). Transformation Laws for UML-RT. InProc. of the
8th IFIP FMOODS Conference, Italy. To appear in Lecture Notes in Computer Science.

Sampaio, A., Mota, A., and Ramos, R. (2004). Class and Capsule Refinement in UML For Real
Time. InProc. WMF’03, volume 95 ofENTCS, pages 23–51. Elsevier.

Sampaio, A., Woodcock, J., and Cavalcanti, A. (2002). Refinement inCircus. In Proc. of the FME
Symposium, volume 2391 ofLecture Notes in Computer Science, pages 451–470. Springer.

Sandner, R. (2000). Developing Distributed Systems Step By Step With UML-RT. InProc. of the
VVVNS Workshop. Universiẗat Münster.

Selic, B. and Rumbaugh, J. (1998). Using UML For Modeling Complex RealTime Systems.
Rational Software Corporation. available at http://www. rational.com.

Woodcock, J. and Cavalcanti, A. (2002). Semantics ofcircus, the. In Bert, D., Bowen, J. P.,
Henson, M. C., and Robinson, K., editors,ZB 2002: Formal Specification and Development in
Z and B, volume 2272 ofLecture Notes in Computer Science, pages 184–203. Springer-Verlag.


