EZPetri: A Petri net interchange framework for
Eclipse based on PNML

Adilson Arcoverde, Jr.!, Gabriel Alves Jr.!, Ricardo Lima!, Paulo Maciel?,
Meuse Oliveira Jr?, and Raimundo Barreto?

! {aoaj,gabriel_alves}@ezpetri.com, ricardo@upe.poli.br
Departamento de Sistemas Computacionais — Universidade de Pernambuco
Recife, PE, Brazil
2 {prmm, mnoj, rsb}@cin.ufpe.br
Centro de Informética — Universidade Federal de Pernambuco
Recife, PE, Brazil

Abstract. Petri net community has suffered with the lack of a standard
format to represent Petri net models. This situation led to an undesir-
able tool incompatibility. In order to solve this drawback, the PNML has
been proposed. PNML is an interchange file format for Petri nets based
on XML. This paper presents a framework, called EZPetri, based on
PNML. The EZPetri framework is a perspective of the Eclipse platform.
The union of Eclipse and PNML has demonstrated to be an effective
instrument for integrating Petri net tools and applications. The paper
discusses the principles of the EZPetri framework, and presents three ap-
plications integrated into the EZPetri framework: software power estima-
tion; A SystemC model for Petri nets; and hard real-time software syn-
thesis. Such applications have been developed with no knowledge about
EZPetri. This is a demonstration of the integration facilities provided
by EZPetri. The framework is a fertile ground for combining existing of
Petri net tools and applications into a single environment, offering Petri
net community a new perspective of integration.

1 Introduction

Petri nets is a powerful specification language useful for modelling concurrent,
asynchronous, distributed, parallel, non deterministic, and/or stochastic sys-
tems. They are also a formal specification technique with powerful methods for
qualitative and quantitative analysis [mur89, rei85]. Since their introduction by
C. A. Petri in 1960, Petri nets has been widely applied in many fields of science
and industry.

There are numerous Petri net tools with support for specific type of net (high-
level, low-level, timed, stochastic, etc.). The lack of a standard forced Petri net
tools designers to create their own file format. Hereby, a model created through
a Petri net tool cannot be read by other tools. This assertion is true even for
tools supporting the same Petri net type.

This situation has motivated Petri net community towards creating a Petri
net interchange format. In order to define a single XML-based file for any Petri

net type, many proposals were presented during the International Conference
on Application and Theory of Petri nets 2000. The most prominent of them was
the Petri Net Markup Language (PNML)[jun00].

The development of a tool supporting PNML would be the next step. Such
tool is supposed to provide facilities for integrating existing Petri net tools. For
example, through importing/exporting functions. Not necessarily PNML has to
be its internal format, but it is a reasonable idea (otherwise, another format
would be created). Other desirable requirement of such kind of tool is the ability
to be easily extended with new features.

This paper presents a new Petri net PNML-based tool, called EZPetri, which
fulfills these requirements. EZPetri takes advantage of the plug-in technology
offered by the Eclipse platform[ecl01].

The paper is organized as follows: this introduction; some aspects of the PNK
tool are discussed in Section 2; Section 3 describes PNML; Section 4 presents the
Eclipse platform; the main features of the EZPetri project are discussed in Sec-
tion 5; Section 6 highlights the EZPetri perspective; Section 7 provide an outline
of the EZPetri modelling environment; Section 8 discusses the EZPetri integra-
tion facilities, and describes plug-ins developed for connecting two existent Petri
net tools with the EZPetri environment; Section 9 introduces three applications
integrated into EZPetri; Eventually, the conclusion remarks are given in Section
10.

2 Related works

Petri Net Kernel (PNK) [kin01] is a infrastructure for building Petri net tools
based on PNML. In the matter of fact, its description language lately became
the PNML proposal.

PNK provides an interface which consists of several functions to access, to
manipulate, and to visualize Petri net elements. Hence, it relieves programmers
of Petri net tools from implementing standard functions on Petri nets, such as
read/write nets, modifying net structure, as well as building a graphical user
interface. Therefore, programmers can be focused on building new algorithms
for analysis, simulation, or verification of Petri nets. PNK was designed for im-
plementing new Petri net application in the Java (Python in its firsts versions)
language and for integrating these applications into a single Petri net tool. Au-
thors claim in [kin98] that PNK can be used to integrate existing Petri net
tools. To demonstrate this claim, they integrated INA tool into PNK. Unfortu-
nately, the developer must deeply understand the whole implementation of this
platform, which requires a lot of effort and project time.

Besides PNK, there are many tools (i.e. PEP, INA, TimeNet, CPN/Tools,
etc.) that have been developed in various parts of the world [wik96]. There are
also some tools (i.e. Jarp, Netlab, P3, etc.) which provides support for PNML.
These won’t be discussed here, since their main proposal isn’t the extensibility
feature.

3 Petri Net Markup Language

The number of Petri net types and tools has significantly increased over last four
decades. Such diversity represents an advance for the Petri net community. But,
due to the use of specific file format, these tools are generally incompatible. The
problem occurs even for tools supporting the same type of Petri nets. The lack
of integration among these tools imposes serious limitations on Petri nets users
productivity. Therefore, functions for importing/exporting Petri nets from/to
other tools are an important requirement nowadays.

An important step was taken during the International Conference on Appli-
cation and Theory of Petri nets 2000, when a number of XML-based interchange
formats for Petri nets were presented. The Petri Net Markup Language (PNML)
[web02] was one of these proposals. The first ISO/IEC 15909-2 working draft on
PNML was released in March 2003. Figure 1 and Figure 2 depicts a Petri net
example and its description in PNML format, respectively.

<pnml>
<net id="0">
<place id="1">

<graphics>
<position x="115" y="95"/>
</graphics>
<marking><value>1</value></marking>
</place>
<transition id="2">
<graphics>
<position x="218" y="94"/>
</graphics>
</transition>
<arc id="3" source="1" target="2"/>
</net>
</pnml>
Fig. 1. Petri net example Fig. 2. PNML description

EZPetri environment provides functions for importing/exporting nets from/to
other tools. Imported nets are translated to a PNML file. On the other hand,
exporting functions read a PNML file and translate it to a specific file format.
Indeed, all functionalities provided by EZPetri manipulate PNML files.

4 Eclipse Platform

Eclipse [ecl01] is an open source tool integration platform launched in 2001 by
the IBM Corporation and other companies.

Eclipse can run on a variety of operating systems. It may be considered an
open source community comprising corporate professionals, researchers, academy
members and individual developers. The Eclipse users are free (and encouraged)
to include new functionalities and tools.

Eclipse has a file-based approach that provides integration with other ex-
ternal tools and makes easy the management of different types of programming

artifacts, like images, documents and source codes. Its window interface has some
panes focused in the resources (projects, folders and files) that are stored in the
workspace.

The Graphical User Interface (GUI) of Eclipse is based on perspectives. A
perspective defines a set of views and editors arranged to fulfill the requirements
of a particular task. Views are useful to navigate through resources, to provide
information, or even to change values of a particular resource. Editors are used
to create, edit or simply show the resources contents. Designer might develop
from simple text editors to complex graphical editors, or even editors used to
work with a particular kind of file.

Eclipse has been developed thinking in extensibility. The result reached by
this approach is an Integrated Development Environment (IDE) which can be
easily extended by the addition of new plug-ins. Figure 3 depicts the basic ar-
chitecture of Eclipse distribution.

" Eclipse Project

Eclipse Platform

Help

Platform Runtime

Plug-in
Development
Environment
(PDE)

Java
Development
Tools (JDT)

Fig. 3. The Eclipse architecture

The architecture gives Eclipse a great extensibility. Moreover, it allows the
development process modularization since isn’t necessary to know the implemen-
tations of all plugged components.

5 The EZPetri Project

EZPetri is an extensible Eclipse-based tool suite that supports editing Petri
nets, as well as importing exporting Petri nets from/to different Petri net tools.
It takes advantage of plug-in technology of Eclipse to couple existing Petri net
tools and to implement new functionalities.

For instance, one may decide to build a new analysis method for Time Petri
nets. Instead of implementing a new graphical interface, the developer may reuse
all features already defined, such as editors, compilers, etc, and maintain the
focus in what really matters: the new analysis method. Eventually, with no
knowledge of EZPetri graphical implementation, the new method is integrated.

PNML forms the kernel of EZPetri. It means that any Petri net types may
be represented through the PNML format in EZPetri environment. Therefore,

it glues together the integration facilities provided by Eclipse with the PNML
interchange format.

The project contributes to reduce the gap between members of Petri net
community which uses different Petri net types, tools and file formats. Moreover,
EZPetri improves productivity in the development of new products by offering
several functionalities in a single development platform.

Currently, there are a number of tools that take advantage of EZPetri under
development (see Section 9 for more details). Figure 4 depicts current state of
the EZPetri project. It also depicts the adopted design strategy. Each plug-in
accesses a single and shared PNML file. For example, the Eppc box, in this same
figure, is responsible to compile export/import the PEP format to/from PNML
format.

Source

A

Compiler

)\
.pnml
P Time Scale
Engine
Eclipse Platform

Fig. 4. EZPetri Architecture. Each plug-in accesses a single and shared PNML file.

Real Time
Input Table
Editor

Time Scale
Renderer

6 The EZPetri Perspective

The design of the EZPetri perspective took into account an Eclipse problem
known as loss of context. The problem occurs when a user doesn’t know where
they are in the User Interface (UI) or where to go to complete a task. A frequent
cause of the problem is the inclusion of an excessive number of views and editors
in the perspective. For instance, an object action may differ between two distinct
views or menu items may vary with views. Therefore, EZPetri perspective re-
duced the number of views and editor as much as possible. This decision yielded
an intuitive (consistent) platform. As can be seen in Figure 5, EZPetri perspec-
tive is composed of three views: navigator view, properties view, and outline view.
There is also the editors area, the menu bar and tool bar.

Menu bar includes functionalities found in many commercial tools: create
new files, help, arrange views and so on. The tool bar works as a shortcut for
functionalities most used of the menu bar. Some options of these bars are context-
sensitive and are available only when a specific view or editor is focused.

Navigator view enables users to show the workspace area. It is useful to
manage projects, folders and files. In addition to ordinary tasks, such as create

[ExPetri - teste pount - Ectipse Platiorm EEE
File Edb Mavi Search Froject Run ‘Window Help. Mel].l.LBal’
. ' = Tool Bar

F-A8a % x-|e ¢ *®
B |25 navgatar v x| =rdavzrond [@ Hesteponl x
B[F Ty sekect m
B B .
= °, fre /

5 o (———mm

& ey vl renstion | e

B doront Editors Area i

7
5 ,/‘\’/
Navigator View / (»)

Hagator |Package Evplorer T S y

View

?_E\Outlme View {T (\- \\\ »

.
—— v . Tabs (editor switch)

Fig. 5. EZPetri Views and Editors

a new folder or invoking an editor to modify a file, specific functionalities are
available. For example, user may right-click a PNML file, to choose the Compile
To option, and to translate PNML into the file format of a specific Petri net
tool.

Property view is useful to show and modify attributes of selected objects. For
instance, one may select a place and edit its name, marking, priority, etc.

Outline view displays attributes of specific files. A tree structure is usually
adopted in the outline view to represent attributes. A non-conventional usage
of outline view is provided by the EZPetri editor. It presents an overview of
the whole Petri net model, as seen in Figure 5, when the EZPetri graphical
editor is activated. Such view is useful for large models. The user may choose
the part of the specification to be presented in the editors area by clicking in the
corresponding point of the outline view.

Editors area is a large blank box where specific file formats are manipulated.
EZPetri provides a multipage editor which is the parent of several editors. It uses
tabs to switch between different children editors, i.e., source (PNML), graphi-
cal (Section 7). For instance, when user presses over Design tab in the parent
multipage editor, the graphical editor will be displayed.

All editors in the multipage editor are supposed to implement a synchroniza-
tion interface. Such interface defines methods to translate the editor contents
into PNML, and vice-versa. When one selects an editor through the multipage
editor tab, the parent editor executes the method in the corresponding interface
to synchronize the contents of the currently opened editor and the requested
editor. In order to not compromise performance, synchronization is performed
only when either users switch between editors, or the work is saved.

7 Modelling Environment

EZPetri contains a plug-in for graphical edition of Petri nets. It provides func-
tionalities found in many Petri net graphical editors: drawing by select-and-click,
drag and drop, resize, undo, redo, zoom in, zoom out, select all, select all of the
same type, etc. The editor gives flexibility for changing the source/target of an
arc by dragging it to another valid source/target. Some functionalities are en-
abled in specific situations. For instance, select all of the same type is enabled
only when one transition or place, but never both at same time, is selected.

The editor includes an overview of the Petri net model in the outline view.
The overview is a small view with a picture of the whole Petri net model. The
corresponding area clicked in the overview becomes visible in the editors area.
This innovative functionality is useful for large projects. It allows users to rapidly
move to a specific point of the model by clicking in the corresponding area (see
gray area in Figure 5) of the outline view. It also made possible to take off
the page concept used by PNK. Besides nice to modularize large models, the
pages make the net edition confusing to users, since they have to manage many
windows to edit a single net.

Alignment functionalities are useful to organize objects in the model. Select-
ing two or more objects and right-clicking over them, shows a popup menu that
provides a number of alignment functionalities. For instance, Align Left aligns
the left side of all selected objects with the left side of the last selected ob-
ject. This includes object labels. The last selected object is identified by a black
border. Figure 6 exemplifies the usage of the alignment functionality.

Similarly, same size functionality applies the same width and height to all
selected object. The width and height used will be that of last object selected.

#® 2 Undo Are Command
@ Redo Delete
% Delete
o
— »
erter
ight:

Ci Align Top
o34 Align Middle
1% Align Battom

Fig. 6. Aligning left two places of the net

The graphical editor was developed using the Eclipse plug-in Graphical Edit-
ing Framework(GEF)[hud03]. GEF assists the task of building several GUIs. It
is based on the widespread Model-View-Controller (MVC) pattern, which rec-
ommends the definition of different classes for the implementation of modelling,
viewing and controlling functionalities. The Figure 7 represents an MVC archi-
tecture overview.

Model classes encapsulate data used to represent Petri net elements (place,
transition, arc, etc). View classes are responsible for painting graphical elements

04; > P < }
e

Model Controller View

Fig. 7. The MVC architecture

in the editors’ area. Control classes is the bridge between the model and the
view. So, they are responsible to propagate changes in the view to the model
and vice-versa.

8 Integration of Petri Net Tools

Currently, two well-known Petri net tools are integrated to EZPetri. The Inte-
grated Net Analyzer (INA) [sta99] and the Programming Environment based on
Petri nets (PEP) [bes96]. INA provides a rich set of analysis techniques. PEP
is a comprehensive set of modelling, compilation, simulation and verification
components, linked together within a Tcl/Tk graphical user interface.

The EZPetri PNML INA Compiler (Epic) and EZPetri PNML PEP Com-
piler (Eppc) converts, respectively, INA and PEP formats into PNML, and vice-
versa. Subsection 8.2 describe the implementation of Epic and Eppc.

8.1 Tool integration principles

The implementation of EZPetri compilers has followed two principles. First, the
compiler is supposed to translate from a specific file format into PNML, and vice-
versa. The second principle is important to improve the compiler modularity.
The core of the compiler (parser, helper, etc) is part of a single plug-in. The
GUI should be kept in a different plug-in. For instance, Eppc compiler was
implemented through the Eppc core and Eppc UI plug-ins (see Figure 4).

8.2 Epic and Eppc

This subsection describes the implementation of the EZPetri PNML INA Com-
piler - Epic and the EZPetri PNML PEP Compiler - Eppc compilers. Currently,
both Epic and Eppc support Place/Transition Petri nets. Additionally, Epic
supports Time Petri nets.

INA provides a simple textual representation for Petri nets. This fact yields
a simple implementation of the INA parser. Design decisions regarding the im-
plementation of PNML parser recommended the usage of the Document Object
Model (DOM) [w3c02]. DOM is a platform which allows accessing and updating
the content of XML files. DOM was used to parse and also to write PNML files.

Both INA and PNML parsers generate a similar object structure which rep-
resents the net information.

PNML defines more information than INA requires. For instance, INA file
format does not contain graphical information. This extra information in PNML
is discarded during generation of the INA file format. On the other hand, INA
supports transitions with time, but the current version of basic PNML does not.
This information was included in PNML using the toolspecific tag®.

The implementation of Eppc employed the same strategy and technology
adopted by Epic. Parse trees of both compilers are similar.

9 EZPetri applications

EZPetri is a fertile ground for applications based on Petri nets. This section
describes three applications developed with no knowledge about EZPetri and
their integration into the framework.

The integration of these applications are a demonstration of the integration
capability of EZPetri.

9.1 Software power estimation

This subsection describes the ongoing work for integrating the software power
estimation framework presented in [meu04] with the EZPetri environment. That
framework was conceived to be applied to embedded systems design in which
energy consumption is the main concern. In particular, in order to capture power
consumption and its distribution along the code so that to implement code
optimization and software-hardware migration [sti02].

The software behavior is modelled in Colored Petri Net (CPN). The model
captures the behavior of individual instructions computing the energy consump-
tion of each instruction (instruction base-cost) and the inter-instruction con-
sumption. Both parameters comes from a previous instruction power-model.
Initially, an instruction level model for the 8051 architecture was proposed,
but it is also possible to adapt the model for different architectures at either
higher or lower abstraction level. A compiler translates the binary-code to CPN-
Model. The model can be extended to deal with hardware power models under
the trace-driven approach [giv01l], the CPN engine would be able to deal with
parallel instructions allowing modelling complex hardware cores and processor
architectures. The integration on the EZPetri environment resolves the lost of
context problem present when handling the power model under a general purpose
CPN tool. The EZPetri offer a front-end to tackle with specifics analysis function
from the CPN-Model. As back-end is used a widespread CPN engine, the CP-
NTools. The CPNTools is integrated to EZPetri via a TCP/IP channel [gal01]
allowing the construction of a Grid. The CPN-Model would be dispatched for
each engine instance (spread over a net) , allowing to perform parallel analysis,
hugely improving the analysis time cost. In a first approach, an analysis tool
with a single engine will be developed.

% Readers are reported to [web02] for more information about toolspecific tag.

Using a plugged compiler, the EZPetri takes the machine-code program and
the library with CPN models of 8051 ISA* in order to generates a CPN model
representing the 8051 program. Both the library and the resulting program model
are represented in PNML. The library is transparent for EZPetri users. During
the machine-code importation, the compiler automatically consults the specific
library to generate the CPN model. At this point, the model can be processed by
a internal engine or sent to a remote engine generating a specific output format
such as the CPNTools and Design/CPN format. Through the EZPetri interface
the user can request analysis that will be performed by the engine under control
of EZPetri environment. The results is shown by the EZPetri user-interface and
by reporting files. The Figure 8 depicts this mechanism.

EZPetri Environment

t Machine-Code > - " S p——

Results e ™ s
i |||||1" i e g
ki ..l_,_.__‘.".""'_* e
|CPN-Model CPN-Engine
Library
ot o

Fig. 8. Power estimation environment

9.2 A Petri net model for SystemC

The Open SystemC Initiative (OSCI) is a collaborative effort among a broad
range of companies to support and advance SystemC as a de facto standard
system-level design. SystemC specifications are essentially C++ programs. Its
class library includes constructors for modelling concurrency, reactive behavior
and hardware timing. SystemC is a modelling platform consisting of C++ class

4 Instruction Set Architecture

libraries and a simulation kernel for System on a Chip [syc03] (SOC) design at the
system-behavioral and register-transfer levels, therefore supporting embedded
system design methodology.

The design methodology adopted takes into account a Petri net model as
an intermediate model allowing qualitative analysis, verification and metrics
estimations [mac99].

This work proposes the first formal model for SystemC. The model is based on
time Petri net. The proposed translation methodology considers two consistent
Petri models for SystemC, each one more suitable for a given kind of analysis.
The first model is based on High Level Petri Nets (HLPN) [jen94]. This model
represents the system’s behavior at a high level of abstraction and provides
more succinct and manageable descriptions than low-level nets and still offers a
wide range of analysis methods, especially those based on state space analysis.
The second model is based on time Petri nets (low-level Petri nets). Although
low-level nets tend to be very large for even medium size systems, the analytical
methods developed for such models are better understood, especially those based
on structural analysis, than analytical methods for HLPN. Besides, some specific
analysis, such as dependency analysis (data-dependency and control-dependency
analysis), are more directly performed if a low-level model is available. The
proposed low-level model is represented by two interconnected sub-models that
describe both control and data-dependencies.

A compiler for translating SystemC system design into Petri Net Markup
Language (PNML) was developed. The compiler is another plug-in of the EZPetri
framework.

9.3 Hard Real-Time Scheduling Synthesis

Embedded hard real-time systems are dedicated computer applications having
to satisfy stringent timing constraints. In other words, systems must guarantee
that all tasks complete before their deadlines. A failure to meet deadlines may
have serious consequences such as resources damage or even loss of human life.
Examples of embedded hard real-time systems include systems for military ap-
plications, flight mission control, traffic control, production control, robotics, and
so on. In order to meet timing requirements, scheduling performs an important
role.

This section aims to present a solution, based on time Petri net formalism,
for the problem of finding feasible schedules considering time-critical systems.
However, this problem is known to be NP-Hard in its general form. Nevertheless,
differently from other works that have the same objective, the proposed approach
describes a method for modelling the system, not just the scheduling problem.
This feature allows not only the computation of a feasible scheduling, but also
it makes possible to extend system’s constraints (such as memory and energy
requirements) and automatic code generation.

The input specification is composed by a set of periodic preemptive tasks
that run on a set of pre-allocated processors. Each task has discrete and bounded
timing constraints (release time, worst-case execution time, deadline and period).

The specification also provides arbitrary inter-task relations, such as precedence
and exclusion relations.

The system is modelled by time Petri nets through building blocks. There
are specific blocks for modelling task arrival, task structure (release, computa-
tion, processor granting and releasing), deadline checking, exclusion relations,
precedence relations, processors, inter-processor communication, etc.

In order to guarantee that timing constraints are satisfied, the proposed
scheduling method is pre-runtime, where the schedule is computed entirely off-
line, can achieve 100% processor utilization, reduces context switching, its exe-
cution is predictable, and excludes the need for complex operating systems.

In order to find a feasible pre-runtime schedule, this work uses state space ex-
ploration on a timed labelled transition system (TLTS) derived from a time Petri
net (TPN) model. In spite of the fact that a scheduling can be found using this
strategy, it may be limited by the excessive size of its state space. This problem
comes up due to the analysis based on the interleaving of concurrent activities.
This exponential growth is known as the state explosion problem [val98]. The
proposed method applies minimization techniques (partial-order reduction and
undesirable states elimination) on the state space in order to maintain the state
space size under control. Furthermore, the proposed algorithm is a depth-first
search method on a TLTS. Thus, the TLTS is partially generated, according to
the need. When successful, the result of the proposed algorithm is a sequence of
transition firings that represents a feasible schedule found.

Table 1. Simple Task Timing Specification

Task release WCET Deadline Period

T1 0 2 7 8
T2 2 3 6 6

As an example, suppose we have the task timing specification depicted in
Table 1. This specification is entered into the EZPetri framework by using a
task/message editor plug-in, that is a graphical editor for specifying timing in-
formation of both tasks and inter-tasks message passing, as well as, inter-task
relations. After that, the time Petri net model is automatically generated by
a Petri net model generator plug-in and this model is used for finding a feasi-
ble schedule. When successful, the EZPetri framework shows a timing diagram
representing the feasible schedule found by using a schedule renderer plug-in.
Figure 9 shows the timing diagram representing a feasible schedule found for the
task timing specification presented in Table 1.

Using the EZPetri framework is easier for integrating several tools. In this
specific situation, we specify the system and have as result the timing diagram
that represents a feasible schedule found. Moreover, all formal activities, from
the specification up to the final result, are hidden from the final user.

Fig. 9. Timing Diagram for Example in Table 1

10 Conclusions

The paper described a framework for the development of Petri net applications
and integrating existent Petri net tools. The framework joins together the PNML
interchange file format with extensions facilities provided by the Eclipse plat-
form. The combination of these technologies demonstrated to be an effective
instrument for integrating Petri net tools and applications.

A description of the EZPetri architecture and its implementation were pro-
vided. The paper detailed the EZPetri perspective, including their editors and
views. The EZPetri modelling environment was also briefly discussed.

The successful and quick integration of two existent Petri net tools, namely
INA[sta99] and PEP[bes96], into EZPetri demonstrated the potential of the
framework for importing/exporting Petri net file formats of other Petri net tools.
It must be highlighted that the PEP and INA plug-ins required less than sixteen
hours (each) to be implemented.

We demonstrated that EZPetri can be extended to incorporate Petri net ap-
plications. In particular, we described three Petri net based applications devel-
oped with no knowledge about EZPetri and their integration into the framework.
The software power estimation is under development, but the SystemC model
for Petri nets, and the hard real-time software synthesis are already integrated
into the framework.

We believe that EZPetri framework offers more than another tool for Petri
net community. It offers them a perspective of real integration. Through collabo-
ration, corporate professionals, researches, members of academia, and individual
developers can further the goal of producing interoperable Petri net based prod-
ucts and offerings.

References

[ball] Balbo, G. Introduction to Stochastic Petri Nets. LNCS 2090, Springer-Verlag,
Lectures on Formal Methods and Performance Analysis, 2001.

[bes96] Best, B. and Grahlmann, B. PEP - more than a Petri net tool. LNCS 1055,
Springer-Verlag, p397-401, 1996.

[cpnt] CPN Group (2002): CPN Tools. www.daimi.au.dk/CPNtools.

[depn] Design/CPN Online. www.daimi.au.dk/designCPN.

[ecl0l] Eclipse Platform Technical Overview. Object Technology International Inc.,
July 2001.

[gal01]

[givO1]

[hud03]

[jen94]

[jun00]

[kin98]

[kinO1]

[kin01b)]

[mac99]

[mar85]

[mer76]

[meu04]

[mol81]
[mur89)
[pet81]

[pet62]

[ramT73]

[rei85]

Gallasch, G. and Kristensen, L. M. Comms/CPN: A Communication Infras-
tructure for External Communication with Design/CPN. 3rd Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN’01)
/ Kurt Jensen(Ed.). DAIMI PB-554, Aarhus University. Aug. 2001

Givargis T. and Vahid, F. and Henkel, J. Trace-driven System-level Power
Evaluation of System-on-a-chip Peripheral Cores. Asia South-Pacific Design
Automation Conference. Jan. 2001.

Hudson, R. How to get started with the GEF. http://www.eclipse.org/gef.
2003

Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Prac-
tical Uses. EACTS Monographs on Theoretical Computer Science, Springer-
Verlag, 1994.

Jingel, M. and Kindler, E. and Weber, M. Towards a Generic Interchange
Format for Petri Nets, i 21st International Conference on Application and
Theory of Petri Nets Aarhus, Denmark, June 26-30, 2000.

Kindler, E. and Oschmann, F., The Petri Net Kernel: An INA-Pilot. In
J. Desel, P. Kemper, E. Kindler, A. Oberweis: Workshop Algorithmen und
Werkzeuge fiir Petrinetze, Oct. 1998.

Kindler, E. and Weber, M., The Petri Net Kernel: An Infrastructure for
Building Petri Net Tools. Software Tools For Technology Transfer; DOI
10.1007/s100090100055, Springer Verlag Online First, 2001.

Kindler, E. and Weber, M., A Universal Module Concept for Petri Nets. An
Implementation-Oriented Approach. Informatik-Bericht Nr. 150, Humboldt-
Universitat zu Berlin, April 2001.

Maciel, P. and Barros, E. and Rosenstiel, W. A Petri Net Model for Hard-
ware/Software Codesign. Design Automation for Embedded Systems Journal,
Kluwer Academic Publishers,n’4, Vol 4, October, 1999.

Marsan, A. M. and Balbo, Bobbio, A. and Chiola, G. and Conte, G. and
Cumani A. On the Petri Nets with Stochastic Timing. International Workshop
on Timed Petri Nets. IEEE press. Torino, Italy, 1985.

Merlin, P. M. and Faber, D. J. Recoverability of Communication Protocol Im-
plications of Theoretical Study. IEEE Transaction Communication, vol COM-
24, September, 1976.

Oliveira, M. and Maciel,P. and Barreto, R. and Carvalho, F. Towards A Soft-
ware Power Cost Analysis Framework Using Colored Petri Net. PATMOS
2004. LNCS Kluwer Academic Pubishers. Sep. 2004.

Moloy, M. K. On the Integration of Delay and Throughput Measures in Dis-
tributed Processing Models. PhD thesis. UCLA, USA, 1981.

Murata, T. Petri Nets: Properties, Analysis and Applications. Proceeding of
The IEEE, 1989.

Peterson, L. J. Petri Net Theory and the Modelling of Systems. Prentice-Hall,
Englewood Cli s, NJ, USA, 1981.

Petri, C. A. Kommunikation mit Automaten. Bonn: Institut fiir Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition:, New
York: Griffiss Air Force Base, Technical Report RADC-TR-65-377, v.1, 1966,
Pages: Suppl. 1, English translation.

Ramchandani, C.: Analysis of Asynchronous Concurrent Systems by Timed
Petri Net. Technical Report n 120, Laboratory of Computer Science, MIT,
Cambridge, MA, USA. 1973.

Reisig, W. Petri Nets. An Introduction, Volume 4 of Monographs on Theo-
retical Computer Science. Springer-Verlag, 1985.

[r0z98a]
[r0z98b]
[su02]
[sta99]
[5ti02]
[syc03]
[val9s]
[web02]
[wik96]
[w3c00]
[w3c02]

[zub91]

Rozemberg. G. and Reisig. W., Informal Introduction to Petri Nets, Lecture
Notes on Petri Nets I: Basic Models. Springer Verlag. 1998.

Rozemberg, G. and Engelfriet, J. Elementary Net Systems. Lecture Notes on
Petri Nets I: Basic Models. Springer Verlag. 1998.

Su, S. and Hsiung, A. Extended quase-static scheduling for formal synthesis
and code generation of embedded software. In CODES, May 2002.

Starke, P. H. and Roch, S. INA - Integrated Net Analyzer - Version 2.2.
Humbolt Universitit zu Berlin - Institut fiir Informatik. 1999.

Stitt, G. and Vahid, F. Hardware/software partitioning of software binaries.
Proceedings of the 2002 IEEE/ACM international conference on Computer-
aided design. San Jose, California. ACM Press. 2002.

SystemC Reference Manual 1.0. Synopsys Inc., http://www.systemc.org.
Valmari, A. The state explosion problem. LNCS: Lectures on Petri Nets I:
Basic Models, 1491:429-528, June 1998.

Weber M., Kindler, E. The Petri Net Markup Language. Petri net Technology
Communication Systems. Advances in Petri Nets 2002.

Wikarski, D. Petri Net Tools: a Comparative Study. ISST-Bericht Nr. 39.
Fraunhofer ISST. Berlin, 1996.

World Wide Web Consortium (W3C) (ed.). Extensible Markup Lan-
guage(XML). http://www.w3.org/XML/.

World Wide Web Consortium (W3C) (ed.). Document Object Model.
http://www.w3.org/DOM.

Zuberek, W.M. Timed Petri Nets Definitions, Properties and Applications.
Microelectronic and Reliability, vol. 31, no.4, pp 627-644, 1991.

