
Tutorials | Exercises | Abstracts | LC Workshops | Comments | Search | Privacy & Legal Notice

POSIX Threads Programming
Author: Blaise Barney, Lawrence Livermore National Laboratory UCRL-MI-133316

Table of Contents

Abstract1.
Pthreads Overview

What is a Thread?1.
What are Pthreads?2.
Why Pthreads?3.
Designing Threaded Programs4.

2.

The Pthreads API3.
Compiling Threaded Programs4.
Thread Management

Creating and Terminating Threads1.
Passing Arguments to Threads2.
Joining and Detaching Threads3.
Stack Management4.
Miscellaneous Routines5.

5.

Mutex Variables
Mutex Variables Overview1.
Creating and Destroying Mutexes2.
Locking and Unlocking Mutexes3.

6.

Condition Variables
Condition Variables Overview1.
Creating and Destroying Condition Variables2.
Waiting and Signaling on Condition Variables3.

7.

LLNL Specific Information and Recommendations8.
Topics Not Covered9.
Pthread Library Routines Reference10.
References and More Information11.
Exercise12.

Abstract

In shared memory multiprocessor architectures, such as SMPs, threads can be used to
implement parallelism. Historically, hardware vendors have implemented their own proprietary
versions of threads, making portability a concern for software developers. For UNIX systems, a
standardized C language threads programming interface has been specified by the IEEE POSIX
1003.1c standard. Implementations that adhere to this standard are referred to as POSIX
threads, or Pthreads.

The tutorial begins with an introduction to concepts, motivations, and design considerations for
using Pthreads. Each of the three major classes of routines in the Pthreads API are then

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

1 de 35 17-04-2012 22:45

covered: Thread Management, Mutex Variables, and Condition Variables. Example codes are
used throughout to demonstrate how to use most of the Pthreads routines needed by a new
Pthreads programmer. The tutorial concludes with a discussion of LLNL specifics and how to mix
MPI with pthreads. A lab exercise, with numerous example codes (C Language) is also included.

Level/Prerequisites: This tutorial is one of the eight tutorials in the 4+ day "Using LLNL's
Supercomputers" workshop. It is deal for those who are new to parallel programming with
threads. A basic understanding of parallel programming in C is required. For those who are
unfamiliar with Parallel Programming in general, the material covered in EC3500: Introduction
To Parallel Computing would be helpful.

Pthreads Overview

What is a Thread?

Technically, a thread is defined as an independent stream of instructions that can be
scheduled to run as such by the operating system. But what does this mean?

To the software developer, the concept of a "procedure" that runs independently from its
main program may best describe a thread.

To go one step further, imagine a main program (a.out) that contains a number of
procedures. Then imagine all of these procedures being able to be scheduled to run
simultaneously and/or independently by the operating system. That would describe a
"multi-threaded" program.

How is this accomplished?

Before understanding a thread, one first needs to understand a UNIX process. A process is
created by the operating system, and requires a fair amount of "overhead". Processes
contain information about program resources and program execution state, including:

Process ID, process group ID, user ID, and group ID
Environment
Working directory.
Program instructions
Registers
Stack
Heap
File descriptors
Signal actions
Shared libraries
Inter-process communication tools (such as message queues, pipes, semaphores, or
shared memory).

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

2 de 35 17-04-2012 22:45

UNIX PROCESS THREADS WITHIN A UNIX PROCESS

Threads use and exist within these process resources, yet are able to be scheduled by the
operating system and run as independent entities largely because they duplicate only the
bare essential resources that enable them to exist as executable code.

This independent flow of control is accomplished because a thread maintains its own:
Stack pointer
Registers
Scheduling properties (such as policy or priority)
Set of pending and blocked signals
Thread specific data.

So, in summary, in the UNIX environment a thread:
Exists within a process and uses the process resources
Has its own independent flow of control as long as its parent process exists and the OS
supports it
Duplicates only the essential resources it needs to be independently schedulable
May share the process resources with other threads that act equally independently
(and dependently)
Dies if the parent process dies - or something similar
Is "lightweight" because most of the overhead has already been accomplished through
the creation of its process.

Because threads within the same process share resources:
Changes made by one thread to shared system resources (such as closing a file) will be
seen by all other threads.
Two pointers having the same value point to the same data.
Reading and writing to the same memory locations is possible, and therefore requires
explicit synchronization by the programmer.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

3 de 35 17-04-2012 22:45

Pthreads Overview

What are Pthreads?

Historically, hardware vendors have implemented their own proprietary versions of threads.
These implementations differed substantially from each other making it difficult for
programmers to develop portable threaded applications.

In order to take full advantage of the capabilities provided by threads, a standardized
programming interface was required.

For UNIX systems, this interface has been specified by the IEEE POSIX 1003.1c
standard (1995).
Implementations adhering to this standard are referred to as POSIX threads, or
Pthreads.
Most hardware vendors now offer Pthreads in addition to their proprietary API's.

The POSIX standard has continued to evolve and undergo revisions, including the Pthreads
specification.

Some useful links:
standards.ieee.org/findstds/standard/1003.1-2008.html
www.opengroup.org/austin/papers/posix_faq.html
www.unix.org/version3/ieee_std.html

Pthreads are defined as a set of C language programming types and procedure calls,
implemented with a pthread.h header/include file and a thread library - though this library
may be part of another library, such as libc, in some implementations.

Pthreads Overview

Why Pthreads?

The primary motivation for using Pthreads is to realize potential program performance
gains.

When compared to the cost of creating and managing a process, a thread can be created
with much less operating system overhead. Managing threads requires fewer system
resources than managing processes.

For example, the following table compares timing results for the fork() subroutine and the
pthread_create() subroutine. Timings reflect 50,000 process/thread creations, were performed
with the time utility, and units are in seconds, no optimization flags.

Note: don't expect the sytem and user times to add up to real time, because these are SMP
systems with multiple CPUs working on the problem at the same time. At best, these are
approximations run on local machines, past and present.

Platform
fork() pthread_create()

real user sys real user sys

Intel 2.8 GHz Xeon 5660 (12cpus/node) 4.4 0.4 4.3 0.7 0.2 0.5

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

4 de 35 17-04-2012 22:45

AMD 2.3 GHz Opteron (16cpus/node) 12.5 1.0 12.5 1.2 0.2 1.3

AMD 2.4 GHz Opteron (8cpus/node) 17.6 2.2 15.7 1.4 0.3 1.3

IBM 4.0 GHz POWER6 (8cpus/node) 9.5 0.6 8.8 1.6 0.1 0.4

IBM 1.9 GHz POWER5 p5-575
(8cpus/node)

64.2 30.7 27.6 1.7 0.6 1.1

IBM 1.5 GHz POWER4 (8cpus/node) 104.5 48.6 47.2 2.1 1.0 1.5

INTEL 2.4 GHz Xeon (2 cpus/node) 54.9 1.5 20.8 1.6 0.7 0.9

INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.5 1.1 22.2 2.0 1.2 0.6

 fork_vs_thread.txt

All threads within a process share the same address space. Inter-thread communication is
more efficient and in many cases, easier to use than inter-process communication.

Threaded applications offer potential performance gains and practical advantages over
non-threaded applications in several other ways:

Overlapping CPU work with I/O: For example, a program may have sections where it is
performing a long I/O operation. While one thread is waiting for an I/O system call to
complete, CPU intensive work can be performed by other threads.
Priority/real-time scheduling: tasks which are more important can be scheduled to
supersede or interrupt lower priority tasks.
Asynchronous event handling: tasks which service events of indeterminate frequency
and duration can be interleaved. For example, a web server can both transfer data
from previous requests and manage the arrival of new requests.

The primary motivation for considering the use of Pthreads on an SMP architecture is to
achieve optimum performance. In particular, if an application is using MPI for on-node
communications, there is a potential that performance could be greatly improved by using
Pthreads for on-node data transfer instead.

For example:
MPI libraries usually implement on-node task communication via shared memory,
which involves at least one memory copy operation (process to process).
For Pthreads there is no intermediate memory copy required because threads share
the same address space within a single process. There is no data transfer, per se. It
becomes more of a cache-to-CPU or memory-to-CPU bandwidth (worst case) situation.
These speeds are much higher.
Some local comparisons are shown below:

Platform
MPI Shared Memory

Bandwidth
(GB/sec)

Pthreads Worst Case
Memory-to-CPU

Bandwidth
(GB/sec)

Intel 2.8 GHz Xeon 5660 5.6 32

AMD 2.3 GHz Opteron 1.8 5.3

AMD 2.4 GHz Opteron 1.2 5.3

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

5 de 35 17-04-2012 22:45

IBM 1.9 GHz POWER5
p5-575

4.1 16

IBM 1.5 GHz POWER4 2.1 4

Intel 2.4 GHz Xeon 0.3 4.3

Intel 1.4 GHz Itanium 2 1.8 6.4

Pthreads Overview

Designing Threaded Programs

Parallel Programming:

On modern, multi-cpu machines, pthreads are ideally suited for parallel programming, and
whatever applies to parallel programming in general, applies to parallel pthreads
programs.

There are many considerations for designing parallel programs, such as:
What type of parallel programming model to use?
Problem partitioning
Load balancing
Communications
Data dependencies
Synchronization and race conditions
Memory issues
I/O issues
Program complexity
Programmer effort/costs/time
...

Covering these topics is beyond the scope of this tutorial, however interested readers can
obtain a quick overview in the Introduction to Parallel Computing tutorial.

In general though, in order for a program to take advantage of Pthreads, it must be able to
be organized into discrete, independent tasks which can execute concurrently. For example,
if routine1 and routine2 can be interchanged, interleaved and/or overlapped in real time,
they are candidates for threading.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

6 de 35 17-04-2012 22:45

Programs having the following characteristics may be well suited for pthreads:
Work that can be executed, or data that can be operated on, by multiple tasks
simultaneously
Block for potentially long I/O waits
Use many CPU cycles in some places but not others
Must respond to asynchronous events
Some work is more important than other work (priority interrupts)

Pthreads can also be used for serial applications, to emulate parallel execution. A perfect
example is the typical web browser, which for most people, runs on a single cpu
desktop/laptop machine. Many things can "appear" to be happening at the same time.

Several common models for threaded programs exist:

Manager/worker: a single thread, the manager assigns work to other threads, the
workers. Typically, the manager handles all input and parcels out work to the other
tasks. At least two forms of the manager/worker model are common: static worker pool
and dynamic worker pool.

Pipeline: a task is broken into a series of suboperations, each of which is handled in
series, but concurrently, by a different thread. An automobile assembly line best
describes this model.

Peer: similar to the manager/worker model, but after the main thread creates other
threads, it participates in the work.

Shared Memory Model:

All threads have access to the same global, shared memory

Threads also have their own private data

Programmers are responsible for synchronizing access (protecting) globally shared data.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

7 de 35 17-04-2012 22:45

Thread-safeness:

Thread-safeness: in a nutshell, refers an application's ability to execute multiple threads
simultaneously without "clobbering" shared data or creating "race" conditions.

For example, suppose that your application creates several threads, each of which makes a
call to the same library routine:

This library routine accesses/modifies a global structure or location in memory.
As each thread calls this routine it is possible that they may try to modify this global
structure/memory location at the same time.
If the routine does not employ some sort of synchronization constructs to prevent data
corruption, then it is not thread-safe.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

8 de 35 17-04-2012 22:45

The implication to users of external library routines is that if you aren't 100% certain the
routine is thread-safe, then you take your chances with problems that could arise.

Recommendation: Be careful if your application uses libraries or other objects that don't
explicitly guarantee thread-safeness. When in doubt, assume that they are not thread-safe
until proven otherwise. This can be done by "serializing" the calls to the uncertain routine,
etc.

The Pthreads API

The original Pthreads API was defined in the ANSI/IEEE POSIX 1003.1 - 1995 standard. The
POSIX standard has continued to evolve and undergo revisions, including the Pthreads
specification.

Copies of the standard can be purchased from IEEE or downloaded for free from other sites
online.

The subroutines which comprise the Pthreads API can be informally grouped into four
major groups:

Thread management: Routines that work directly on threads - creating, detaching,
joining, etc. They also include functions to set/query thread attributes (joinable,
scheduling etc.)

1.

Mutexes: Routines that deal with synchronization, called a "mutex", which is an
abbreviation for "mutual exclusion". Mutex functions provide for creating, destroying,
locking and unlocking mutexes. These are supplemented by mutex attribute functions
that set or modify attributes associated with mutexes.

2.

Condition variables: Routines that address communications between threads that
share a mutex. Based upon programmer specified conditions. This group includes
functions to create, destroy, wait and signal based upon specified variable values.
Functions to set/query condition variable attributes are also included.

3.

Synchronization: Routines that manage read/write locks and barriers.4.

Naming conventions: All identifiers in the threads library begin with pthread_. Some
examples are shown below.

Routine Prefix Functional Group

pthread_ Threads themselves and miscellaneous subroutines

pthread_attr_ Thread attributes objects

pthread_mutex_ Mutexes

pthread_mutexattr_ Mutex attributes objects.

pthread_cond_ Condition variables

pthread_condattr_ Condition attributes objects

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

9 de 35 17-04-2012 22:45

pthread_key_ Thread-specific data keys

pthread_rwlock_ Read/write locks

pthread_barrier_ Synchronization barriers

The concept of opaque objects pervades the design of the API. The basic calls work to
create or modify opaque objects - the opaque objects can be modified by calls to attribute
functions, which deal with opaque attributes.

The Pthreads API contains around 100 subroutines. This tutorial will focus on a subset of
these - specifically, those which are most likely to be immediately useful to the beginning
Pthreads programmer.

For portability, the pthread.h header file should be included in each source file using the
Pthreads library.

The current POSIX standard is defined only for the C language. Fortran programmers can
use wrappers around C function calls. Some Fortran compilers (like IBM AIX Fortran) may
provide a Fortram pthreads API.

A number of excellent books about Pthreads are available. Several of these are listed in the
References section of this tutorial.

Compiling Threaded Programs

Several examples of compile commands used for pthreads codes are listed in the table
below.

Compiler / Platform Compiler Command Description

INTEL
Linux

icc -pthread C

icpc -pthread C++

PathScale
Linux

pathcc -pthread C

pathCC -pthread C++

PGI
Linux

pgcc -lpthread C

pgCC -lpthread C++

GNU
Linux, BG/L, BG/P

gcc -pthread GNU C

g++ -pthread GNU C++

IBM
BG/L and BG/P

bgxlc_r / bgcc_r C (ANSI / non-ANSI)

bgxlC_r, bgxlc++_r C++

Thread Management

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

10 de 35 17-04-2012 22:45

Creating and Terminating Threads

Routines:

pthread_create (thread,attr,start_routine,arg)

pthread_exit (status)

pthread_cancel (thread)

pthread_attr_init (attr)

pthread_attr_destroy (attr)

Creating Threads:

Initially, your main() program comprises a single, default thread. All other threads must be
explicitly created by the programmer.

pthread_create creates a new thread and makes it executable. This routine can be called any
number of times from anywhere within your code.

pthread_create arguments:
thread: An opaque, unique identifier for the new thread returned by the subroutine.
attr: An opaque attribute object that may be used to set thread attributes. You can
specify a thread attributes object, or NULL for the default values.
start_routine: the C routine that the thread will execute once it is created.
arg: A single argument that may be passed to start_routine. It must be passed by
reference as a pointer cast of type void. NULL may be used if no argument is to be
passed.

The maximum number of threads that may be created by a process is implementation
dependent.

Once created, threads are peers, and may create other threads. There is no implied
hierarchy or dependency between threads.

Thread Attributes:

By default, a thread is created with certain attributes. Some of these attributes can be

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

11 de 35 17-04-2012 22:45

changed by the programmer via the thread attribute object.

pthread_attr_init and pthread_attr_destroy are used to initialize/destroy the thread attribute
object.

Other routines are then used to query/set specific attributes in the thread attribute object.
Attributes include:

Detached or joinable state
Scheduling inheritance
Scheduling policy
Scheduling parameters
Scheduling contention scope
Stack size
Stack address
Stack guard (overflow) size

Some of these attributes will be discussed later.

Thread Binding and Scheduling:

Question: After a thread has been created, how do you know a)when it will be scheduled to
run by the operating system, and b)which processor/core it will run on?

Answer

The Pthreads API provides several routines that may be used to specify how threads are
scheduled for execution. For example, threads can be scheduled to run FIFO (first-in
first-out), RR (round-robin) or OTHER (operating system determines). It also provides the
ability to set a thread's scheduling priority value.

These topics are not covered here, however a good overview of "how things work" under
Linux can be found in the sched_setscheduler man page.

The Pthreads API does not provide routines for binding threads to specific cpus/cores.
However, local implementations may include this functionality - such as providing the
non-standard pthread_setaffinity_np routine. Note that "_np" in the name stands for
"non-portable".

Also, the local operating system may provide a way to do this. For example, Linux provides
the sched_setaffinity routine.

Terminating Threads & pthread_exit():

There are several ways in which a thread may be terminated:

The thread returns normally from its starting routine. It's work is done.

The thread makes a call to the pthread_exit subroutine - whether its work is done or not.

The thread is canceled by another thread via the pthread_cancel routine.

The entire process is terminated due to making a call to either the exec() or exit()

If main() finishes first, without calling pthread_exit explicitly itself

The pthread_exit() routine allows the programmer to specify an optional termination status
parameter. This optional parameter is typically returned to threads "joining" the terminated

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

12 de 35 17-04-2012 22:45

thread (covered later).

In subroutines that execute to completion normally, you can often dispense with calling
pthread_exit() - unless, of course, you want to pass the optional status code back.

Cleanup: the pthread_exit() routine does not close files; any files opened inside the thread
will remain open after the thread is terminated.

Discussion on calling pthread_exit() from main():
There is a definite problem if main() finishes before the threads it spawned if you don't
call pthread_exit() explicitly. All of the threads it created will terminate because main()
is done and no longer exists to support the threads.
By having main() explicitly call pthread_exit() as the last thing it does, main() will block
and be kept alive to support the threads it created until they are done.

Example: Pthread Creation and Termination

This simple example code creates 5 threads with the pthread_create() routine. Each thread
prints a "Hello World!" message, and then terminates with a call to pthread_exit().

Example Code - Pthread Creation and Termination

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
 long tid;
 tid = (long)threadid;
 printf("Hello World! It's me, thread #%ld!\n", tid);
 pthread_exit(NULL);
}

int main (int argc, char *argv[])
{
 pthread_t threads[NUM_THREADS];
 int rc;
 long t;
 for(t=0; t<NUM_THREADS; t++){
 printf("In main: creating thread %ld\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }

 /* Last thing that main() should do */
 pthread_exit(NULL);
}

Thread Management

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

13 de 35 17-04-2012 22:45

Passing Arguments to Threads

The pthread_create() routine permits the programmer to pass one argument to the thread
start routine. For cases where multiple arguments must be passed, this limitation is easily
overcome by creating a structure which contains all of the arguments, and then passing a
pointer to that structure in the pthread_create() routine.

All arguments must be passed by reference and cast to (void *).

Question: How can you safely pass data to newly created threads, given their
non-deterministic start-up and scheduling?

Answer

Example 1 - Thread Argument Passing
This code fragment demonstrates how to pass a simple integer to each
thread. The calling thread uses a unique data structure for each thread,
insuring that each thread's argument remains intact throughout the
program.

long *taskids[NUM_THREADS];

for(t=0; t<NUM_THREADS; t++)
{
 taskids[t] = (long *) malloc(sizeof(long));
 *taskids[t] = t;
 printf("Creating thread %ld\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *) taskids[t]);
 ...
}

Example 2 - Thread Argument Passing
This example shows how to setup/pass multiple arguments via a structure.
Each thread receives a unique instance of the structure.

struct thread_data{
 int thread_id;
 int sum;
 char *message;
};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *threadarg)
{
 struct thread_data *my_data;
 ...
 my_data = (struct thread_data *) threadarg;
 taskid = my_data->thread_id;
 sum = my_data->sum;
 hello_msg = my_data->message;
 ...
}

int main (int argc, char *argv[])
{
 ...

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

14 de 35 17-04-2012 22:45

 thread_data_array[t].thread_id = t;
 thread_data_array[t].sum = sum;
 thread_data_array[t].message = messages[t];
 rc = pthread_create(&threads[t], NULL, PrintHello,
 (void *) &thread_data_array[t]);
 ...
}

Example 3 - Thread Argument Passing (Incorrect)
This example performs argument passing incorrectly. It passes the address
of variable t, which is shared memory space and visible to all threads. As
the loop iterates, the value of this memory location changes, possibly before
the created threads can access it.

int rc;
long t;

for(t=0; t<NUM_THREADS; t++)
{
 printf("Creating thread %ld\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *) &t);
 ...
}

Thread Management

Joining and Detaching Threads

Routines:

pthread_join (threadid,status)

pthread_detach (threadid)

pthread_attr_setdetachstate (attr,detachstate)

pthread_attr_getdetachstate (attr,detachstate)

Joining:

"Joining" is one way to accomplish synchronization between threads. For example:

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

15 de 35 17-04-2012 22:45

The pthread_join() subroutine blocks the calling thread until the specified threadid thread
terminates.

The programmer is able to obtain the target thread's termination return status if it was
specified in the target thread's call to pthread_exit().

A joining thread can match one pthread_join() call. It is a logical error to attempt multiple
joins on the same thread.

Two other synchronization methods, mutexes and condition variables, will be discussed
later.

Joinable or Not?

When a thread is created, one of its attributes defines whether it is joinable or detached.
Only threads that are created as joinable can be joined. If a thread is created as detached,
it can never be joined.

The final draft of the POSIX standard specifies that threads should be created as joinable.

To explicitly create a thread as joinable or detached, the attr argument in the pthread_create()
routine is used. The typical 4 step process is:

Declare a pthread attribute variable of the pthread_attr_t data type1.
Initialize the attribute variable with pthread_attr_init()2.
Set the attribute detached status with pthread_attr_setdetachstate()3.
When done, free library resources used by the attribute with pthread_attr_destroy()4.

Detaching:

The pthread_detach() routine can be used to explicitly detach a thread even though it was
created as joinable.

There is no converse routine.

Recommendations:

If a thread requires joining, consider explicitly creating it as joinable. This provides
portability as not all implementations may create threads as joinable by default.

If you know in advance that a thread will never need to join with another thread, consider
creating it in a detached state. Some system resources may be able to be freed.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

16 de 35 17-04-2012 22:45

Example: Pthread Joining

Example Code - Pthread Joining
This example demonstrates how to "wait" for thread completions by using
the Pthread join routine. Since some implementations of Pthreads may not
create threads in a joinable state, the threads in this example are explicitly
created in a joinable state so that they can be joined later.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NUM_THREADS 4

void *BusyWork(void *t)
{
 int i;
 long tid;
 double result=0.0;
 tid = (long)t;
 printf("Thread %ld starting...\n",tid);
 for (i=0; i<1000000; i++)
 {
 result = result + sin(i) * tan(i);
 }
 printf("Thread %ld done. Result = %e\n",tid, result);
 pthread_exit((void*) t);
}

int main (int argc, char *argv[])
{
 pthread_t thread[NUM_THREADS];
 pthread_attr_t attr;
 int rc;
 long t;
 void *status;

 /* Initialize and set thread detached attribute */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 for(t=0; t<NUM_THREADS; t++) {
 printf("Main: creating thread %ld\n", t);
 rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t);
 if (rc) {
 printf("ERROR; return code from pthread_create()
 is %d\n", rc);
 exit(-1);
 }
 }

 /* Free attribute and wait for the other threads */
 pthread_attr_destroy(&attr);
 for(t=0; t<NUM_THREADS; t++) {
 rc = pthread_join(thread[t], &status);
 if (rc) {
 printf("ERROR; return code from pthread_join()
 is %d\n", rc);
 exit(-1);
 }
 printf("Main: completed join with thread %ld having a status
 of %ld\n",t,(long)status);
 }

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

17 de 35 17-04-2012 22:45

printf("Main: program completed. Exiting.\n");
pthread_exit(NULL);
}

Thread Management

Stack Management

Routines:

pthread_attr_getstacksize (attr, stacksize)

pthread_attr_setstacksize (attr, stacksize)

pthread_attr_getstackaddr (attr, stackaddr)

pthread_attr_setstackaddr (attr, stackaddr)

Preventing Stack Problems:

The POSIX standard does not dictate the size of a thread's stack. This is implementation
dependent and varies.

Exceeding the default stack limit is often very easy to do, with the usual results: program
termination and/or corrupted data.

Safe and portable programs do not depend upon the default stack limit, but instead,
explicitly allocate enough stack for each thread by using the pthread_attr_setstacksize routine.

The pthread_attr_getstackaddr and pthread_attr_setstackaddr routines can be used by applications
in an environment where the stack for a thread must be placed in some particular region of
memory.

Some Practical Examples at LC:

Default thread stack size varies greatly. The maximum size that can be obtained also varies
greatly, and may depend upon the number of threads per node.

Both past and present architectures are shown to demonstrate the wide variation in default
thread stack size.

Node
Architecture

#CPUs Memory (GB) Default Size
(bytes)

AMD Xeon 5660 12 24 2,097,152

AMD Opteron 8 16 2,097,152

Intel IA64 4 8 33,554,432

Intel IA32 2 4 2,097,152

IBM Power5 8 32 196,608

IBM Power4 8 16 196,608

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

18 de 35 17-04-2012 22:45

IBM Power3 16 16 98,304

Example: Stack Management

Example Code - Stack Management
This example demonstrates how to query and set a thread's stack size.

#include <pthread.h>
#include <stdio.h>
#define NTHREADS 4
#define N 1000
#define MEGEXTRA 1000000

pthread_attr_t attr;

void *dowork(void *threadid)
{
 double A[N][N];
 int i,j;
 long tid;
 size_t mystacksize;

 tid = (long)threadid;
 pthread_attr_getstacksize (&attr, &mystacksize);
 printf("Thread %ld: stack size = %li bytes \n", tid, mystacksize);
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 A[i][j] = ((i*j)/3.452) + (N-i);
 pthread_exit(NULL);
}

int main(int argc, char *argv[])
{
 pthread_t threads[NTHREADS];
 size_t stacksize;
 int rc;
 long t;

 pthread_attr_init(&attr);
 pthread_attr_getstacksize (&attr, &stacksize);
 printf("Default stack size = %li\n", stacksize);
 stacksize = sizeof(double)*N*N+MEGEXTRA;
 printf("Amount of stack needed per thread = %li\n",stacksize);
 pthread_attr_setstacksize (&attr, stacksize);
 printf("Creating threads with stack size = %li bytes\n",stacksize);
 for(t=0; t<NTHREADS; t++){
 rc = pthread_create(&threads[t], &attr, dowork, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 printf("Created %ld threads.\n", t);
 pthread_exit(NULL);
}

Thread Management

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

19 de 35 17-04-2012 22:45

Miscellaneous Routines

pthread_self ()

pthread_equal (thread1,thread2)

pthread_self returns the unique, system assigned thread ID of the calling thread.

pthread_equal compares two thread IDs. If the two IDs are different 0 is returned, otherwise a
non-zero value is returned.

Note that for both of these routines, the thread identifier objects are opaque and can not be
easily inspected. Because thread IDs are opaque objects, the C language equivalence
operator == should not be used to compare two thread IDs against each other, or to compare
a single thread ID against another value.

pthread_once (once_control, init_routine)

pthread_once executes the init_routine exactly once in a process. The first call to this routine
by any thread in the process executes the given init_routine, without parameters. Any
subsequent call will have no effect.

The init_routine routine is typically an initialization routine.

The once_control parameter is a synchronization control structure that requires initialization
prior to calling pthread_once. For example:

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Mutex Variables

Overview

Mutex is an abbreviation for "mutual exclusion". Mutex variables are one of the primary
means of implementing thread synchronization and for protecting shared data when
multiple writes occur.

A mutex variable acts like a "lock" protecting access to a shared data resource. The basic
concept of a mutex as used in Pthreads is that only one thread can lock (or own) a mutex
variable at any given time. Thus, even if several threads try to lock a mutex only one thread
will be successful. No other thread can own that mutex until the owning thread unlocks that
mutex. Threads must "take turns" accessing protected data.

Mutexes can be used to prevent "race" conditions. An example of a race condition involving
a bank transaction is shown below:

Thread 1 Thread 2 Balance

Read balance: $1000 $1000

Read balance: $1000 $1000

Deposit $200 $1000

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

20 de 35 17-04-2012 22:45

Deposit $200 $1000

Update balance $1000+$200 $1200

Update balance $1000+$200 $1200

In the above example, a mutex should be used to lock the "Balance" while a thread is using
this shared data resource.

Very often the action performed by a thread owning a mutex is the updating of global
variables. This is a safe way to ensure that when several threads update the same variable,
the final value is the same as what it would be if only one thread performed the update. The
variables being updated belong to a "critical section".

A typical sequence in the use of a mutex is as follows:
Create and initialize a mutex variable
Several threads attempt to lock the mutex
Only one succeeds and that thread owns the mutex
The owner thread performs some set of actions
The owner unlocks the mutex
Another thread acquires the mutex and repeats the process
Finally the mutex is destroyed

When several threads compete for a mutex, the losers block at that call - an unblocking call
is available with "trylock" instead of the "lock" call.

When protecting shared data, it is the programmer's responsibility to make sure every
thread that needs to use a mutex does so. For example, if 4 threads are updating the same
data, but only one uses a mutex, the data can still be corrupted.

Mutex Variables

Creating and Destroying Mutexes

Routines:

pthread_mutex_init (mutex,attr)

pthread_mutex_destroy (mutex)

pthread_mutexattr_init (attr)

pthread_mutexattr_destroy (attr)

Usage:

Mutex variables must be declared with type pthread_mutex_t, and must be initialized before
they can be used. There are two ways to initialize a mutex variable:

Statically, when it is declared. For example:
pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

1.

Dynamically, with the pthread_mutex_init() routine. This method permits setting mutex
object attributes, attr.

2.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

21 de 35 17-04-2012 22:45

The mutex is initially unlocked.

The attr object is used to establish properties for the mutex object, and must be of type
pthread_mutexattr_t if used (may be specified as NULL to accept defaults). The Pthreads
standard defines three optional mutex attributes:

Protocol: Specifies the protocol used to prevent priority inversions for a mutex.
Prioceiling: Specifies the priority ceiling of a mutex.
Process-shared: Specifies the process sharing of a mutex.

Note that not all implementations may provide the three optional mutex attributes.

The pthread_mutexattr_init() and pthread_mutexattr_destroy() routines are used to create and
destroy mutex attribute objects respectively.

pthread_mutex_destroy() should be used to free a mutex object which is no longer needed.

Mutex Variables

Locking and Unlocking Mutexes

Routines:

pthread_mutex_lock (mutex)

pthread_mutex_trylock (mutex)

pthread_mutex_unlock (mutex)

Usage:

The pthread_mutex_lock() routine is used by a thread to acquire a lock on the specified mutex
variable. If the mutex is already locked by another thread, this call will block the calling
thread until the mutex is unlocked.

pthread_mutex_trylock() will attempt to lock a mutex. However, if the mutex is already locked,
the routine will return immediately with a "busy" error code. This routine may be useful in
preventing deadlock conditions, as in a priority-inversion situation.

pthread_mutex_unlock() will unlock a mutex if called by the owning thread. Calling this routine
is required after a thread has completed its use of protected data if other threads are to
acquire the mutex for their work with the protected data. An error will be returned if:

If the mutex was already unlocked
If the mutex is owned by another thread

There is nothing "magical" about mutexes...in fact they are akin to a "gentlemen's
agreement" between participating threads. It is up to the code writer to insure that the
necessary threads all make the the mutex lock and unlock calls correctly. The following
scenario demonstrates a logical error:

 Thread 1 Thread 2 Thread 3
 Lock Lock
 A = 2 A = A+1 A = A*B
 Unlock Unlock

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

22 de 35 17-04-2012 22:45

Question: When more than one thread is waiting for a locked mutex, which thread will be
granted the lock first after it is released?

Answer

Example: Using Mutexes

Example Code - Using Mutexes
This example program illustrates the use of mutex variables in a threads
program that performs a dot product. The main data is made available to all
threads through a globally accessible structure. Each thread works on a
different part of the data. The main thread waits for all the threads to
complete their computations, and then it prints the resulting sum.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*
The following structure contains the necessary information
to allow the function "dotprod" to access its input data and
place its output into the structure.
*/

typedef struct
 {
 double *a;
 double *b;
 double sum;
 int veclen;
 } DOTDATA;

/* Define globally accessible variables and a mutex */

#define NUMTHRDS 4
#define VECLEN 100
 DOTDATA dotstr;
 pthread_t callThd[NUMTHRDS];
 pthread_mutex_t mutexsum;

/*
The function dotprod is activated when the thread is created.
All input to this routine is obtained from a structure
of type DOTDATA and all output from this function is written into
this structure. The benefit of this approach is apparent for the
multi-threaded program: when a thread is created we pass a single
argument to the activated function - typically this argument
is a thread number. All the other information required by the
function is accessed from the globally accessible structure.
*/

void *dotprod(void *arg)
{

 /* Define and use local variables for convenience */

 int i, start, end, len ;
 long offset;
 double mysum, *x, *y;
 offset = (long)arg;

 len = dotstr.veclen;

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

23 de 35 17-04-2012 22:45

 start = offset*len;
 end = start + len;
 x = dotstr.a;
 y = dotstr.b;

 /*
 Perform the dot product and assign result
 to the appropriate variable in the structure.
 */

 mysum = 0;
 for (i=start; i<end ; i++)
 {
 mysum += (x[i] * y[i]);
 }

 /*
 Lock a mutex prior to updating the value in the shared
 structure, and unlock it upon updating.
 */
 pthread_mutex_lock (&mutexsum);
 dotstr.sum += mysum;
 pthread_mutex_unlock (&mutexsum);

 pthread_exit((void*) 0);
}

/*
The main program creates threads which do all the work and then
print out result upon completion. Before creating the threads,
the input data is created. Since all threads update a shared structure,
we need a mutex for mutual exclusion. The main thread needs to wait for
all threads to complete, it waits for each one of the threads. We specify
a thread attribute value that allow the main thread to join with the
threads it creates. Note also that we free up handles when they are
no longer needed.
*/

int main (int argc, char *argv[])
{
 long i;
 double *a, *b;
 void *status;
 pthread_attr_t attr;

 /* Assign storage and initialize values */
 a = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));
 b = (double*) malloc (NUMTHRDS*VECLEN*sizeof(double));

 for (i=0; i<VECLEN*NUMTHRDS; i++)
 {
 a[i]=1.0;
 b[i]=a[i];
 }

 dotstr.veclen = VECLEN;
 dotstr.a = a;
 dotstr.b = b;
 dotstr.sum=0;

 pthread_mutex_init(&mutexsum, NULL);

 /* Create threads to perform the dotproduct */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

24 de 35 17-04-2012 22:45

for(i=0; i<NUMTHRDS; i++)
 {

/*
Each thread works on a different set of data.
The offset is specified by 'i'. The size of
the data for each thread is indicated by VECLEN.
*/
pthread_create(&callThd[i], &attr, dotprod, (void *)i);
}

pthread_attr_destroy(&attr);

 /* Wait on the other threads */
for(i=0; i<NUMTHRDS; i++)

 {
 pthread_join(callThd[i], &status);
}

 /* After joining, print out the results and cleanup */
 printf ("Sum = %f \n", dotstr.sum);
 free (a);
 free (b);
 pthread_mutex_destroy(&mutexsum);
 pthread_exit(NULL);
}

Serial version

Pthreads version

Condition Variables

Overview

Condition variables provide yet another way for threads to synchronize. While mutexes
implement synchronization by controlling thread access to data, condition variables allow
threads to synchronize based upon the actual value of data.

Without condition variables, the programmer would need to have threads continually
polling (possibly in a critical section), to check if the condition is met. This can be very
resource consuming since the thread would be continuously busy in this activity. A
condition variable is a way to achieve the same goal without polling.

A condition variable is always used in conjunction with a mutex lock.

A representative sequence for using condition variables is shown below.

Main Thread
Declare and initialize global data/variables which require synchronization
(such as "count")
Declare and initialize a condition variable object
Declare and initialize an associated mutex
Create threads A and B to do work

Thread A
Do work up to the point where a
certain condition must occur (such

Thread B
Do work
Lock associated mutex

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

25 de 35 17-04-2012 22:45

as "count" must reach a specified
value)
Lock associated mutex and check
value of a global variable
Call pthread_cond_wait() to perform a
blocking wait for signal from
Thread-B. Note that a call to
pthread_cond_wait() automatically
and atomically unlocks the
associated mutex variable so that
it can be used by Thread-B.
When signalled, wake up. Mutex is
automatically and atomically
locked.
Explicitly unlock mutex
Continue

Change the value of the global
variable that Thread-A is waiting
upon.
Check value of the global
Thread-A wait variable. If it fulfills
the desired condition, signal
Thread-A.
Unlock mutex.
Continue

Main Thread
Join / Continue

Condition Variables

Creating and Destroying Condition Variables

Routines:

pthread_cond_init (condition,attr)

pthread_cond_destroy (condition)

pthread_condattr_init (attr)

pthread_condattr_destroy (attr)

Usage:

Condition variables must be declared with type pthread_cond_t, and must be initialized before
they can be used. There are two ways to initialize a condition variable:

Statically, when it is declared. For example:
pthread_cond_t myconvar = PTHREAD_COND_INITIALIZER;

1.

Dynamically, with the pthread_cond_init() routine. The ID of the created condition
variable is returned to the calling thread through the condition parameter. This
method permits setting condition variable object attributes, attr.

2.

The optional attr object is used to set condition variable attributes. There is only one
attribute defined for condition variables: process-shared, which allows the condition
variable to be seen by threads in other processes. The attribute object, if used, must be of
type pthread_condattr_t (may be specified as NULL to accept defaults).

Note that not all implementations may provide the process-shared attribute.

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

26 de 35 17-04-2012 22:45

The pthread_condattr_init() and pthread_condattr_destroy() routines are used to create and
destroy condition variable attribute objects.

pthread_cond_destroy() should be used to free a condition variable that is no longer needed.

Condition Variables

Waiting and Signaling on Condition Variables

Routines:

pthread_cond_wait (condition,mutex)

pthread_cond_signal (condition)

pthread_cond_broadcast (condition)

Usage:

pthread_cond_wait() blocks the calling thread until the specified condition is signalled. This
routine should be called while mutex is locked, and it will automatically release the mutex
while it waits. After signal is received and thread is awakened, mutex will be automatically
locked for use by the thread. The programmer is then responsible for unlocking mutex
when the thread is finished with it.

The pthread_cond_signal() routine is used to signal (or wake up) another thread which is
waiting on the condition variable. It should be called after mutex is locked, and must unlock
mutex in order for pthread_cond_wait() routine to complete.

The pthread_cond_broadcast() routine should be used instead of pthread_cond_signal() if more than
one thread is in a blocking wait state.

It is a logical error to call pthread_cond_signal() before calling pthread_cond_wait().

Proper locking and unlocking of the associated mutex variable is essential when using these
routines. For example:

Failing to lock the mutex before calling pthread_cond_wait() may cause it NOT to block.

Failing to unlock the mutex after calling pthread_cond_signal() may not allow a matching
pthread_cond_wait() routine to complete (it will remain blocked).

Example: Using Condition Variables

Example Code - Using Condition Variables
This simple example code demonstrates the use of several Pthread
condition variable routines. The main routine creates three threads. Two of
the threads perform work and update a "count" variable. The third thread
waits until the count variable reaches a specified value.

#include <pthread.h>

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

27 de 35 17-04-2012 22:45

#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS 3
#define TCOUNT 10
#define COUNT_LIMIT 12

int count = 0;
int thread_ids[3] = {0,1,2};
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t)
{
 int i;
 long my_id = (long)t;

 for (i=0; i<TCOUNT; i++) {
 pthread_mutex_lock(&count_mutex);
 count++;

 /*
 Check the value of count and signal waiting thread when condition is
 reached. Note that this occurs while mutex is locked.
 */
 if (count == COUNT_LIMIT) {
 pthread_cond_signal(&count_threshold_cv);
 printf("inc_count(): thread %ld, count = %d Threshold reached.\n",
 my_id, count);
 }
 printf("inc_count(): thread %ld, count = %d, unlocking mutex\n",

 my_id, count);
 pthread_mutex_unlock(&count_mutex);

 /* Do some "work" so threads can alternate on mutex lock */
 sleep(1);
 }
 pthread_exit(NULL);
}

void *watch_count(void *t)
{
 long my_id = (long)t;

 printf("Starting watch_count(): thread %ld\n", my_id);

 /*
 Lock mutex and wait for signal. Note that the pthread_cond_wait
 routine will automatically and atomically unlock mutex while it waits.
 Also, note that if COUNT_LIMIT is reached before this routine is run by
 the waiting thread, the loop will be skipped to prevent pthread_cond_wait
 from never returning.
 */
 pthread_mutex_lock(&count_mutex);
 while (count<COUNT_LIMIT) {
 pthread_cond_wait(&count_threshold_cv, &count_mutex);
 printf("watch_count(): thread %ld Condition signal received.\n", my_id);
 count += 125;
 printf("watch_count(): thread %ld count now = %d.\n", my_id, count);
 }
 pthread_mutex_unlock(&count_mutex);
 pthread_exit(NULL);
}

int main (int argc, char *argv[])
{

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

28 de 35 17-04-2012 22:45

 int i, rc;
 long t1=1, t2=2, t3=3;
 pthread_t threads[3];
 pthread_attr_t attr;

 /* Initialize mutex and condition variable objects */
 pthread_mutex_init(&count_mutex, NULL);
 pthread_cond_init (&count_threshold_cv, NULL);

 /* For portability, explicitly create threads in a joinable state */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_create(&threads[0], &attr, watch_count, (void *)t1);
 pthread_create(&threads[1], &attr, inc_count, (void *)t2);
 pthread_create(&threads[2], &attr, inc_count, (void *)t3);

 /* Wait for all threads to complete */
 for (i=0; i<NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }
 printf ("Main(): Waited on %d threads. Done.\n", NUM_THREADS);

 /* Clean up and exit */
 pthread_attr_destroy(&attr);
 pthread_mutex_destroy(&count_mutex);
 pthread_cond_destroy(&count_threshold_cv);
 pthread_exit(NULL);

}

LLNL Specific Information and Recommendations

This section describes details specific to Livermore Computing's systems.

Implementations:

All LC production systems include a Pthreads implementation that follows draft 10 (final) of
the POSIX standard. This is the preferred implementation.

Implementations differ in the maximum number of threads that a process may create. They
also differ in the default amount of thread stack space.

Compiling:

LC maintains a number of compilers, and usually several different versions of each - see the
LC's Supported Compilers web page.

The compiler commands described in the Compiling Threaded Programs section apply to
LC systems.

Mixing MPI with Pthreads:

This is the primary motivation for using Pthreads at LC.

Design:

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

29 de 35 17-04-2012 22:45

Each MPI process typically creates and then manages N threads, where N makes the
best use of the available CPUs/node.
Finding the best value for N will vary with the platform and your application's
characteristics.
For IBM SP systems with two communication adapters per node, it may prove more
efficient to use two (or more) MPI tasks per node.
In general, there may be problems if multiple threads make MPI calls. The program
may fail or behave unexpectedly. If MPI calls must be made from within a thread, they
should be made only by one thread.

Compiling:
Use the appropriate MPI compile command for the platform and language of choice
Be sure to include the required Pthreads flag as shown in the Compiling Threaded
Programs section.

An example code that uses both MPI and Pthreads is available below. The serial,
threads-only, MPI-only and MPI-with-threads versions demonstrate one possible
progression.

Serial
Pthreads only
MPI only
MPI with pthreads
makefile (for IBM SP)

Monitoring and Debugging Threads:

Debuggers vary in their ability to handle threads. The TotalView debugger is LC's
recommended debugger for parallel programs, and is well suited for debugging threaded
programs. See the TotalView Debugger tutorial for details.

The Linux ps command provides several flags for viewing thread information. Some
examples are shown below. See the man page for details.

% ps -Lf
UID PID PPID LWP C NLWP STIME TTY TIME CMD
blaise 22529 28240 22529 0 5 11:31 pts/53 00:00:00 a.out
blaise 22529 28240 22530 99 5 11:31 pts/53 00:01:24 a.out
blaise 22529 28240 22531 99 5 11:31 pts/53 00:01:24 a.out
blaise 22529 28240 22532 99 5 11:31 pts/53 00:01:24 a.out
blaise 22529 28240 22533 99 5 11:31 pts/53 00:01:24 a.out

% ps -T
 PID SPID TTY TIME CMD
22529 22529 pts/53 00:00:00 a.out
22529 22530 pts/53 00:01:49 a.out
22529 22531 pts/53 00:01:49 a.out
22529 22532 pts/53 00:01:49 a.out
22529 22533 pts/53 00:01:49 a.out

% ps -Lm
 PID LWP TTY TIME CMD
22529 - pts/53 00:18:56 a.out
 - 22529 - 00:00:00 -
 - 22530 - 00:04:44 -
 - 22531 - 00:04:44 -
 - 22532 - 00:04:44 -
 - 22533 - 00:04:44 -

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

30 de 35 17-04-2012 22:45

LC's Linux clusters also provide the top command to monitor processes on a node. If used
with the -H flag, the threads contained within a process will be visible. An example of the top
-H command is shown below. The parent process is PID 18010 which spawned three
threads, shown as PIDs 18012, 18013 and 18014.

Topics Not Covered

Several features of the Pthreads API are not covered in this tutorial. These are listed below. See
the Pthread Library Routines Reference section for more information.

Thread Scheduling
Implementations will differ on how threads are scheduled to run. In most cases, the
default mechanism is adequate.
The Pthreads API provides routines to explicitly set thread scheduling policies and
priorities which may override the default mechanisms.
The API does not require implementations to support these features.

Keys: Thread-Specific Data
As threads call and return from different routines, the local data on a thread's stack
comes and goes.
To preserve stack data you can usually pass it as an argument from one routine to the
next, or else store the data in a global variable associated with a thread.
Pthreads provides another, possibly more convenient and versatile, way of
accomplishing this through keys.

Mutex Protocol Attributes and Mutex Priority Management for the handling of "priority
inversion" problems.

Condition Variable Sharing - across processes

Thread Cancellation

Threads and Signals

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

31 de 35 17-04-2012 22:45

Synchronization constructs - barriers and locks

Pthread Library Routines Reference

For convenience, an alphabetical list of Pthread routines, linked to their corresponding man
page, is provided below.

pthread_atfork
pthread_attr_destroy
pthread_attr_getdetachstate
pthread_attr_getguardsize
pthread_attr_getinheritsched
pthread_attr_getschedparam
pthread_attr_getschedpolicy
pthread_attr_getscope
pthread_attr_getstack
pthread_attr_getstackaddr
pthread_attr_getstacksize
pthread_attr_init
pthread_attr_setdetachstate
pthread_attr_setguardsize
pthread_attr_setinheritsched
pthread_attr_setschedparam
pthread_attr_setschedpolicy
pthread_attr_setscope
pthread_attr_setstack
pthread_attr_setstackaddr
pthread_attr_setstacksize
pthread_barrier_destroy
pthread_barrier_init
pthread_barrier_wait
pthread_barrierattr_destroy
pthread_barrierattr_getpshared
pthread_barrierattr_init
pthread_barrierattr_setpshared
pthread_cancel
pthread_cleanup_pop
pthread_cleanup_push
pthread_cond_broadcast
pthread_cond_destroy
pthread_cond_init
pthread_cond_signal
pthread_cond_timedwait
pthread_cond_wait
pthread_condattr_destroy
pthread_condattr_getclock
pthread_condattr_getpshared
pthread_condattr_init
pthread_condattr_setclock
pthread_condattr_setpshared

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

32 de 35 17-04-2012 22:45

pthread_create
pthread_detach
pthread_equal
pthread_exit
pthread_getconcurrency
pthread_getcpuclockid
pthread_getschedparam
pthread_getspecific
pthread_join
pthread_key_create
pthread_key_delete
pthread_kill
pthread_mutex_destroy
pthread_mutex_getprioceiling
pthread_mutex_init
pthread_mutex_lock
pthread_mutex_setprioceiling
pthread_mutex_timedlock
pthread_mutex_trylock
pthread_mutex_unlock
pthread_mutexattr_destroy
pthread_mutexattr_getprioceiling
pthread_mutexattr_getprotocol
pthread_mutexattr_getpshared
pthread_mutexattr_gettype
pthread_mutexattr_init
pthread_mutexattr_setprioceiling
pthread_mutexattr_setprotocol
pthread_mutexattr_setpshared
pthread_mutexattr_settype
pthread_once
pthread_rwlock_destroy
pthread_rwlock_init
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_unlock
pthread_rwlock_wrlock
pthread_rwlockattr_destroy
pthread_rwlockattr_getpshared
pthread_rwlockattr_init
pthread_rwlockattr_setpshared
pthread_self
pthread_setcancelstate
pthread_setcanceltype
pthread_setconcurrency
pthread_setschedparam
pthread_setschedprio
pthread_setspecific
pthread_sigmask
pthread_spin_destroy

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

33 de 35 17-04-2012 22:45

pthread_spin_init
pthread_spin_lock
pthread_spin_trylock
pthread_spin_unlock
pthread_testcancel

This completes the tutorial.

Please complete the online evaluation form - unless you are doing the
exercise, in which case please complete it at the end of the exercise.

Where would you like to go now?

Exercise
Agenda
Back to the top

References and More Information

Author: Blaise Barney, Livermore Computing.

POSIX Standard: www.unix.org/version3/ieee_std.html

"Pthreads Programming". B. Nichols et al. O'Reilly and Associates.

"Threads Primer". B. Lewis and D. Berg. Prentice Hall

"Programming With POSIX Threads". D. Butenhof. Addison Wesley
www.awl.com/cseng/titles/0-201-63392-2

"Programming With Threads". S. Kleiman et al. Prentice Hall

https://computing.llnl.gov/tutorials/pthreads/
Last Modified: 02/14/2012 19:38:21 blaiseb@llnl.gov
UCRL-MI-133316

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

34 de 35 17-04-2012 22:45

POSIX Threads Programming https://computing.llnl.gov/tutorials/pthreads/

35 de 35 17-04-2012 22:45

