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Abstract

Support Vector Machines (SVMs) have achieved very
good performance on different learning problems. How-
ever, the success of SVMs depends on the adequate choice
of a number of parameters, including for instance the ker-
nel and the regularization parameters. In the current work,
we propose the combination of Meta-Learning and search
techniques to the problem of SVM parameter selection.
Given an input problem, Meta-Learning is used to recom-
mend SVM parameters based on well-succeeded parame-
ters adopted in previous similar problems. The parameters
returned by Meta-Learning are then used as initial search
points to a search technique which will perform a further
exploration of the parameter space. In this combination,
we envisioned that the initial solutions provided by Meta-
Learning are located in good regions in the search space
(i.e. they are closer to the optimum solutions). Hence, the
search technique would need to evaluate a lower number
of candidate search points in order to find an adequate so-
lution. In our work, we implemented a prototype in which
Particle Swarm Optimization (PSO) was used to select the
values of two SVM parameters for regression problems. In
the performed experiments, the proposed solution was com-
pared to a PSO with random initialization, obtaining better
average results on a set of 40 regression problems.

1 Introduction

An increasing attention has been given to Support Vec-
tor Machines (SVMs) due to both the theoretical founda-
tions of SVMs and the good empirical performance when
compared to other learning algorithms in different applica-
tions [1]. However, the SVM performance strongly depends
on the adequate choice of its parameters including, for in-

stance, the kernel function, the values of kernel parameters,
the regularization parameter, among others [2]. An exhaus-
tive trial-and-error procedure for selecting good values of
parameters is obviously not practical [3].

SVM parameter selection is commonly treated by differ-
ent authors as an optimization problem in which a search
technique is used to find the configuration of parameters
which maximizes the SVM performance estimated on the
problem at hand [4]. Although it represents a more system-
atic approach to parameter selection, this approach can still
be very expensive, since a large number of candidate config-
urations of parameters is often evaluated during the search
process [1].

An alternative approach to SVM parameter selection is
the use of Meta-Learning, which treats the SVM parameter
selection as a supervised learning task [1, 5]. Each training
example for Meta-Learning (i.e. each meta-example) stores
the characteristics of a past problem and the performance
obtained by a set of candidate configurations of parameters
on the problem. By receiving a set of such meta-examples
as input, a meta-learner is able to predict the best configu-
ration of parameters for a new problem based on its charac-
teristics. Meta-Learning is a less expensive solution com-
pared to the search approach. In fact, once the knowledge
is acquired by the meta-learner, configurations of parame-
ters can be suggested for new problems without the need
of empirically evaluating different candidate configurations
(as performed using search techniques).

In the current work, we propose the combination of
search techniques and Meta-Learning to the problem of
SVM parameter selection. In this proposal, configurations
of parameters suggested by Meta-Learning are adopted as
initial solutions which will be later refined by the search
technique. In previous work the search process starts evalu-
ating solutions randomly sampled from the parameter space
(e.g., [6, 7, 8]). In the proposed hybrid method in turn the



search process is started from solutions which were well-
succeeded in previous similar problems. Hence, we expect
that Meta-Learning guides the search directly to promising
regions of the search space, thus speeding up the conver-
gence to good solutions.

In order to evaluate our proposal, we implemented a pro-
totype to select two SVM parameters: the parameter γ of
the RBF kernel and the regularization constant C, which
may have a strong influence in SVM performance [9]. In
our work, a database of 40 meta-examples was produced
from the evaluation of a set of 399 configurations of (γ, C)
on 40 different regression problems. Each regression prob-
lem was described by a number of 20 meta-features pro-
posed in [10, 1, 11]. In the implemented prototype, the Par-
ticle Swarm Optimization (PSO) algorithm [12] was used as
the search technique to optimize the parameters (γ, C). In
our experiments, we evaluated the PSO in two different ver-
sions: (1) PSO with initial population suggested by Meta-
Learning and (2) PSO with random initial population. The
experiments’ results revealed that the hybrid method was
able to converge more quickly to good solutions when com-
pared to the randomly initialized PSO.

Section 2 brings a brief presentation on the SVM model
selection. Section 3 presents details of the proposed work,
as well as the case study. Section 4 describes the experi-
ments and obtained results. Finally, Section 5 presents some
conclusions and the future work.

2 SVM Parameter Selection

According to [13], the SVM parameter selection task is
often performed by evaluating a range of different combi-
nations of parameters and retaining the best one in terms
of performance estimated using the problem’s dataset. In
order to automatize this process and to avoid an exhaus-
tive or a random exploration of parameters, different au-
thors have deployed search and optimization techniques
[3, 4, 6, 7, 8, 13, 14, 15]. In this context, the search space
consists on a set of possible configurations of parameters
and the objective function corresponds to a performance
measure (e.g., precision estimated by cross-validation) ob-
tained by the SVM on the problem. Different search tech-
niques were adopted in this approach, including gradient-
based techniques [3], Evolutionary Algorithms [6, 7, 8],
Tabu Search [13] and Particle Swarm Optimization [15].

Although the use of search techniques is more efficient
when compared to an exhaustive process of parameter se-
lection, this solution may still be very expensive since for
each configuration being evaluated during the search it is
necessary to train the SVM [1]. This limitation can be
even more drastic depending on the problem at hand and
the number of parameters to be optimized.

Alternatively, Meta-Learning has been proposed and

investigated in recent years to SVM parameter selection
[1, 5, 10, 11, 16, 17]. In this approach, the choice of param-
eters for a problem is based on well-succeeded parameters
adopted to previous similar problems. In Meta-Learning,
it is necessary to maintain a set of meta-examples where
each meta-example stores: (1) a set of features (called meta-
features) describing a learning problem; and (2) the em-
pirical evaluation of a set of candidate parameters on the
problem. A meta-learner is then used to acquire knowl-
edge from a set of such meta-examples in order to recom-
mend (or predict) the adequate configurations of parameters
for new problems based on the problems’ characteristics.
In this sense, Meta-Learning is a more economic approach
in terms of computational cost since SVM models can be
suggested for new problems without executing the SVM on
each candidate configuration of parameters.

As it will be seen, in the current work we propose to
use Meta-Learning to recommend parameters which will be
later refined by a search technique.

3 Proposed Solution

As discussed in the previous section, SVMs have a
strong generalization power, however the performance of
these algorithms depends on an adequate choice of their pa-
rameters. The work presented here proposes a new method
to automate the design of SVMs based on the combination
of Meta-Learning and search techniques. In the proposal,
a meta-learner suggests the initial search points from well-
succeeded parameters to problems which are similar to the
current one. As discussed in [18], good solutions to a par-
ticular search problem can be used to indicate promising
regions of the search space for similar problems. Hence, we
expected that the initialization provided by Meta-Learning
enables the search technique to speed up its convergence to
good solutions.

Figure 1 depicts the general architecture of the proposed
solution. Initially, the Meta-Learner (ML) module retrieves
a predefined number of past meta-examples stored in a
Database (DB), selected on the basis of their similarity to
the input problem. Following, the Search module adopts as
initial search points the configurations of parameters which
were well-succeeded on the retrieved meta-examples. The
Search module iterates its search process by generating new
candidate configurations to be evaluated in the SVM. The
output configuration of parameters will be the best one gen-
erated by the Search module up to its convergence or an-
other stopping criteria.

In the current work, we implemented a prototype to se-
lect two specific SVM parameters: the γ parameter of RBF
kernel and the regularization parameter C. The choice of
RBF kernel is due to its flexibility in different problems
compared to other kernels [9, 19]. It is known that the γ pa-
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Figure 1. General Architecture

rameter has an important influence in learning performance
since it controls the linearity of the induced SVM. The pa-
rameter C is also important for learning performance since
it controls the complexity of the induced SVMs [19].

As it will be seen, the current prototype was imple-
mented to select the parameters (γ, C) for regression prob-
lems. Details of implementation will be presented in the
next subsections.

3.1 Search Module

In our prototype, we implemented the version of the Par-
ticle Swarm Optimization (PSO) algorithm originally pro-
posed in [20] and adapted here to perform the search for
configurations (γ, C). The objective function evaluated the
quality of each configuration of parameters on a given re-
gression problem. In our work, given a SVM configuration,
we defined the objective function as the Normalized Mean
Squared Error (NMSE) obtained by the SVM in a 10-fold
cross validation experiment. So, the objective of PSO was
to find the configuration (γ, C) with lowest NMSE value for
a given regression problem.

In our PSO implementation, each particle i represents a
configuration si = (γ, C), indicating the position of the par-
ticle in the search space. Each particle also has a velocity
which indicates the current search direction performed by
the particle. PSO basically works by updating the position
and velocity of each particle in order to progressively ex-
plore the best regions in the search space. The update of
position and velocity in the basic PSO is given by the fol-
lowing equations:

vi ← ωvi + c1r1(ŝi − si) + c2r2(ĝ − si) (1)

si ← si + vi (2)

In Equation 1, ŝi is the best position achieved by the par-
ticle so far, and ĝi is the best position achieved by any par-
ticle in the population so far. Hence, each particle is pro-
gressively moved in direction of the best global positions

achieved by the population (the social component of the
search) and the best local positions obtained by the parti-
cle (the cognitive component of the search).

The parameters ω, c1 and c2 control the trade-off be-
tween exploring good global regions in the search space and
refining the search in local regions around the particle. In
equation 1, r1 and r2 are random numbers used to enhance
the diversity of particle positions. In our prototype, we fixed
PSO parameters using ω=0.8, c1=2 and c2=2.

In our work, the PSO was implemented to perform a
search in a space represented by a discrete grid of SVM
configurations, consisting of 399 different settings of pa-
rameters γ and C. By following the guidelines provided
in [19], we considered the following exponentially growing
sequences of γ and C as potentially good configurations:
the parameter γ assumed 19 different values (from 2−15 to
23) and the parameter C assumed 21 different values (from
2−5 to 215), thus yielding 19 x 21 = 399 different combina-
tions of parameters in the search space.

3.2 Database

In order to generate meta-examples, we collected 40
datasets corresponding to 40 different regression problems,
available in the WEKA project1. Each meta-example is re-
lated to a single regression problem and stores: (1) a vector
of meta-features describing the problem; and (2) the perfor-
mance grid which stores the performance obtained by the
SVM in the search space of configurations (γ, C).

3.2.1 Meta-Features

In the developed work, a total number of 20 meta-features
was used to describe the datasets of regression problems. A
number of 17 meta-features were based on the set of fea-
tures defined in [10], corresponding to descritive measures
of the regression datasets (see Table 1). The remaining 3
meta-features were defined by [1], corresponding to fea-
tures computed from the kernel matrix (see Table 2). Both
sets of meta-features have shown to be useful for model se-
lection purposes (see [10] and [1]). In our work, we com-
bined these sets in order to provide a more complete de-
scription of the regression problems.

3.2.2 Performance Grid

The performance grid stores the empirical performance ob-
tained by the SVM on a problem considering different SVM
configurations. The performance grid was built consider-
ing the same 399 settings of configurations defined in PSO

1These datasets are specifically the sets provided in the files numeric
and regression available in http://www.cs.waikato.ac.nz/ml/weka/



Table 1. Meta-features proposed by [10] for
regression problems

Number of examples
Number of attributes
Ratio of the number of examples to the number of attributes
Correlation matrix between attributes and target
Correlation between continuous attributes
Ratio of the standard-deviation to the standard-deviation of al-
pha trimmed mean.
Number of continuous attributes with outliers
Proportion of the attributes with outliers
Coefficient of variation of the target (ratio of the standard-
deviation to the mean)
Sparsity of the target (coefficient of variation discretized into 3
values)
Presence of outliers in the target
Stationarity of the target (the standard-deviation is larger than
the mean)
R2 coefficient of linear regression (without symbolic at-
tributes)
R2 coefficient of linear regression (with binarized symbolic at-
tributes)
Average absolute correlation between numeric attributes
Average absolute correlation of numeric attributes to the target
Average dispersion gain

Table 2. Meta-features proposed by [1] for re-
gression problems

Mean of off-diagonal values
Variance of the off-diagonal values
Kernel-target alignment

search space in Section 3.1. For each of the 399 configura-
tions, a 10-fold cross validation experiment was performed
to evaluate SVM performance. The obtained 399 NMSE
values were stored in the performance grid. In these experi-
ments, we deployed the LIBSVM library [21] to implement
the SVMs and to perform the cross-validation experiments.

We highlight here that the performance grid is equiva-
lent to the search space explored by PSO. By generating
a performance grid for a problem, we can evaluate which
configurations of parameters were the best ones in the prob-
lem (i.e., the best points in a search space) and we can use
this information to guide the search process for new similar
problems.

3.3 Meta-Learner

Given a new input problem described by the vector x =
(x1, . . . , xp), the Meta-Learner retrieves the k most similar
meta-examples from the database, according to the distance
between meta-attributes. The distance function (dist) im-

plemented in the prototype was the unweighted L1-Norm,
defined as:

dist(x, xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i )−mini(x

j
i )

(3)

For each retrieved meta-example, the meta-learner se-
lects in the performance grid the configuration of param-
eters (among the 399 candidates) that obtained the lowest
NMSE value, i.e. the best SVM configuration. Hence, the
meta-learner will suggest as initial PSO population the set
of k best configurations selected in the performance grids
of the retrieved meta-examples.

4 Experiments

In this section, we present the experiments which evalu-
ated the proposed solution on the set of 40 regression prob-
lems considered in our work. The proposed solution was
evaluated by following a leave-one-out methodology de-
scribed bellow.

At each step of leave-one-out, one meta-example was
left out to evaluate the implemented prototype and the re-
maining 39 meta-examples were considered in the DB to be
selected by the ML module. Initially, a number of k con-
figurations were suggested by the ML module as the initial
PSO population (see Section 3.3) (in our experiments, we
adopted k = 3, 5 and 7). The PSO then optimized the SVM
configurations for the problem left out up to the number of
10 generations. In each generation, we recorded the lowest
NMSE value obtained so far (i.e. the best fitness). Hence,
for each problem left out a curve of N values of NMSE
was generated aiming to analyze the search progress on the
problem. Finally, the curves of NMSE values were averaged
over the 40 steps of the leave-one-out experiment in order to
evaluate the quality of the PSO search on optimizing SVM
parameters for the 40 regression problems considered.

As a basis of comparison, the same above experiment
was adopted for each value of k but using a randomly initial-
ized population for PSO. Despite its simplicity, the random
initialization has the advantage of performing a uniform ini-
tial exploration of the search space. Finally, we highlight
that each evaluated version of PSO (randomly initialized
PSO and the hybrid solution) was executed 100 times and
the average results were recorded.

Figures 2, 3 and 4 show the average NMSE curves (over
100 runs) obtained by the two evaluated methods for differ-
ent sizes of the PSO population (k= 3, 5 and 7 respectively).
As it can be seen, in all experiments the Meta-Learner was
able to suggest an initial population of models with lower
NMSE values compared to the values obtained by a random
initial population. For k=3 and k=5 (see figures 2 and 3),
the NMSE values obtained by the randomly initialized PSO



Figure 2. Average NMSE results obtained by
PSO using k=3 particles

were equivalent to the initial values obtained by the hybrid
solution only after four generations. For k=7, the results of
the random PSO was equivalent to the results obtained by
the hybrid solution on its first population only after two gen-
erations (see figure 4). The hybrid proposed solution started
its search process in better regions in the search space. The
Search module in our hybrid solution just refined the initial
solutions provided by Meta-Learning, which were in fact
closer to the best found solutions.

5 Conclusion

In the current work, we combined Meta-Learning and
search techniques to the problem of SVM parameter se-
lection. A prototype was implemented in which PSO was
adopted as the search technique to select the parameter γ of
the RBF kernel and the regularization parameter C. In our
implementation, a number of 40 regression problems was
used to generate meta-examples. In the performed exper-
iments, we observed that the proposed approach was able
to find adequate parameters in a lower number of iterations
compared to a randomly initialized PSO.

In future work, we intend to augment the number
of meta-examples as we believe that the performance of
the proposed approach can be improved as more meta-
examples are considered. Also, different search techniques
can be considered in the future implementations. Our ex-
periments suggested that the search process just refines the
initial solutions provided by Meta-Learning. Hence, we can
suppose that simpler techniques (e.g., hill climbing) once
adopted in the Search Module can achieve good relative re-
sults compared to more complex technique (e.g., PSO). Fi-

Figure 3. Average NMSE results obtained by
PSO using k=5 particles

nally, we intend to evaluate the proposed solution in other
case studies, such as in the SVM parameter selection for
classification problems.
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