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Abstract— Meta-Learning has been used to predict the per- be included in the training set. In the so-callctive Meta-
formance of learning algorithms based on descriptive feattes of | earning proposal, Active Learning techniques are used
the learning problems. Each training example in this contex i.e. to reduce the set of meta-examples by selecting only the

each meta-example, stores the features of a given problem én most relevant problems for meta-example generation. and
information about the empirical performance obtained by the S v p s xample g 1on,

candidate algorithms on that problem. The process of constict- ~ consequently, reducing the number of empirical evaluation
ing a set of meta-examples may be expensive, since for eachperformed on the candidate algorithms.

problem avaliable for meta-example generation, it is necesiry In the current work, we propose an Active Meta-Learning
to perform an empirical evaluation of the candidate algorithms. approach which combines Uncertainty Sampling [6], a spe-

Active Meta-Learning has been proposed to overcome this .. . . - -
limitation by selecting only the most informative problemsin the cific Active Learning method, and Outlier Detection tech-

meta-example generation. In this work, we proposed an Actw  Niques [7]. Uncertainty Sampling has already been applied
Meta-Learning method which combines Uncertainty Sampling in isolation to Active Meta-Learning, obtaining satisfagt
and Outlier Detection techniques. Experiments were perfamed  results [4], [5]. However, the literature in Active Leargin
in a case study, yielding significant improvement in the Meta has pointed out that Uncertainty Sampling often fails by
Learning performance. . . g .
selecting examples which are outliers [8]. Hence, in ourkwor
|. INTRODUCTION we improved the performance of Uncertainty Sampling by

The selection of adequate algorithms for solving learninffMoVing outliers among the problems avaliable for meta-
problems is an important aspect to the success of the M&@mple generation. _
chine Learning process [1]. Meta-Learning is a framework 1N€ Proposed hybrid method was evaluated in a meta-
developed in the field of supervised Machine Learning witfE2Ming task which corresponds to predicting the pattém o
the aim of automatically predicting algorithms performanc Performance of Multi-Layer Perceptron (MLP) networks for
thus assisting users in the process of algorithm selecgipn [regressmn problems. Exper_lments performed on a set of 50

A training example in Meta-Learning (calledneta- problems revealed a gain in the meta-learner performance
exampl@ represents the experience obtained from empiricallpy USing the proposed method, compared to both a random
evaluating a set of candidate algorithms on a given Iearnirfsb'oced,ure_fo_r selecting problems and the use of Uncertainty
problem. Specifically, each meta-example stores: (1) featu S@mPpling in isolation. _ _
of a given problem (e.g. number of training examples and Th.e remaining of th,'s paper 1S .organlzed as fOHO,WS'
number of attributes); and (2) performance information re>€ction Il brings a brief presentation of Meta-Learning,
lated to the algorithms when empirically evaluated to thfP!lowed by section Il which describes some approaches
problem. Ameta-leareruses a set of such meta—exampleéor Active Learnmg. Section _IV presents, in more detalls_,
to acquire knowledge relating algorithms performance e tHD'® Proposed solution and an implemented prototype. Sectio
features of the learning problems. V presents the performed experiments and obtained results.

Generating a set of meta-examples may be a costly prgl_nally, section VI concludes the paper by presenting some
cess, since in order to produce a single meta-example, it flgure work.
necessary to perform an empirical evaluation of the canelida T

algorithms on a problem. Hence, the cost of generating a , _ . :
whole set of meta-examples may be high, depending, for According to [9], there are different interpretations oé th

instance, on the number and complexity of the candidafg™M Meta-LearningIn our work, we focused on the defini-

algorithms, the methodology of empirical evaluation anel thiion of Meta-Learning as the automatic process of acquiring

amount of available problems. knowledge that relates the empirical performance of legrni
In order to minimize the above difficulty, the use of Active"’llgorithms to the features of the learning problems [2]hia t

Learning [3] has been proposed to support the generation gpntext, eachmeta-examples relatgq to a leaming problem
meta-examples [4], [5]. In Active Learning, the learner ha@d stores: (1) the features describing the problemr(téa-
some ability to decide at each moment which examples wilfatures; and (2) information about the performance of one
or more algorithms when applied to the problem. Theta-
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The meta-features are, in general, statistics describimgamples is a costly process, such as image recognition [6],
the training dataset of the problem, such as number tdxt classification [19] and information filtering [20].
training examples, number of attributes, correlation leemv Previous work in Active Learning has been concentrated
attributes, class entropy, among others [10], [1]. Eachametin the Selective Samplingpproach [6]. In this approach,
example commonly stores, as performance information, the learning algorithm begins with a small training set of
class attribute which indicates the best algorithm for thiabeled examples and a potentially large set of unlabeled
problem (in terms of obtained accuracy), among a set @xamples to select. At each moment, the learner selects the
candidates [11], [12], [13]. In this case, the class labghost informative unlabeled example and asks the teacher
for each meta-example is defined by performing a cros$s annotate it. According to [21], the Selective Sampling
validation experiment using the available dataset. Theametmethods can be distinguished on three main categories,
learner is simply a classifier which predicts the best atori  Uncertainty Samplingmethods, Version Space Reduction
based on the meta-features of the problem. methods andrror Reductionmethods, described below.

In [14], the authors used an alternative approach to label- In Uncertainty Sampling methods [22], [6], [23], at each
ing meta-examples. Initially, 20 algorithms were evaldatemoment, the current learner is used to make predictions
through cross-validation on 22 classification problems. Fdor the available unlabeled examples. Following, the meétho
each algorithm, the authors generated a set of meta-exampkelects the unlabeled example for which the current learner
each one associated either to the class laipglicableor has the highest uncertainty in its prediction. According to
to the class labehon-applicable The class labeapplicable [21], these methods are straightforward and can be easily
was assigned when the classification error obtained by tlaglapted for a great variety of Machine Learning algorithms.
algorithm fell within a pre-defined confidence interval, and The Version Space Reduction methods (or committee-
non-applicablewas assigned otherwise. Each problem wakased methods) [24], [19], [25] deploy an idea which is
described by a set of 16 meta-features and, finally, a deaimilar to Uncertainty Sampling. Here, a subset of the wersi
sion trees were induced to predict the applicability of thepace (i.e. a committee of hypotheses consistent with the
candidate algorithms. current labeled examples) is generated and then applied

In [1], the authors performed the labeling of metato make predictions for each unlabeled example. A high
examples by deploying a clustering technique. Initialhe t degree of disagreement on the predictions of the committee
error rates of 10 algorithms were estimated for 80 classis defined as a measure of uncertainty.
fication problems. From this evaluation, they generated a In the Error Reduction methods [8], [6], the selected exam-
matrix of dimension 80 X 10, in which each row storedple is the one that minimizes the expected error of the learne
the ranks obtained by the algorithms in a single problenonce labeled and included in the training set. Although more
The matrix was given as input to a clustering techniquesophisticated, they are computationally expensive, sfoce
aiming to identify groups (clusters) of problems in whicle th each unlabeled example and possible label, it is necessary
algorithms obtained specific patterns of performance @.g.to re-train the learner in order to compute the expected
cluster in which certain algorithms achieve a considerabkeduction in the error rate [8].
advantage relative to the others). The meta-examples were
then associated to the class labels corresponding to the ] )
identified clusters. Hence, instead of only predicting testb A limitation that can be pointed out in the process of Meta-
algorithm or the applicability of algorithms, the metasieer Learnlng is related tq the generation of meta—examplesalellv_
can predict more complex patterns of relative performancé !€arning problem, in order to produce a meta-example, it is

Other Meta-Learning approaches have been proposed'lgcessary to perform an empirical evaluation of the avigilab
the literature. For instance, the NOEMON system [15] com@lgorithms in order to collect its performance information
bines a pool of meta-learners in order to provide rankings & the problem. Although the proposal of Meta-Learning
candidate algorithms. In [16], [10], instance-based leayis S to perform this empirical evaluation c_mly in a limited
used to provide rankings of algorithms taking into accourumber of problems, the cost of generating a whole set of
both accuracy and execution time. In the Meta-Regressidieta-examples may be high, depending, for instance, on the
approach [17], [18], regression models are used to directﬂ}-’mber and complexity of the candidate algorithms and the

predict the numerical value of accuracy of the candida@mount of data available in the learning problems.
algorithms. In order to minimize the above difficulty, in [4], [5] the

authors proposed the Active Meta-Learning, in which the

IIl. ACTIVE LEARNING generation of meta-examples is supported by using Active

Active Leaning is a paradigm of Machine Learning inLearning techniques. In Active Meta-Learning, the use of
which the learning algorithm has some control over théctive Learning techniques improves the efficiency of the

inputs on which it trains [3]. The main objective of thisMeta-Learning process by reducing the number of required

paradigm is to reduce the number of training exampleseta-examples, and consequently the number of empirical

at same time maintaining, or even improving, the perforevaluations on the candidate algorithms.

mance of the learning algorithm. Active Learning is ideal Figure 1 represents the process of generating meta-

for learning domains in which the acquisition of labelecexamples by following our proposal. Initially, the meta-

IV. ACTIVE META-LEARNING



features are computed for each available problem, in ocder A. Meta-Learner

generate a set afnlabeledmeta-examples. Each unlabeled

meta-example stores the description of a problem, but theThe Meta-Learner in the prototype corresponds to a con-
P b P ' ventional classifier, and it is applicable to tasks in whicé t

performance information of the candidate algorithms is no|t3[erformance information is formulated as a class attribute
known yet. (e.g. the class associated to the best algorithm or the class
In order to generatdéabeled meta-examples, the Active rejated to patterns of algorithms performance). In the énpl
Learning module selects those unlabeled meta-examples ceRented prototype, we used the k-NN algorithm which has
sidered the most relevant for the Meta-Learning task. Thgyme advantages when applied to Meta-Learning [10]. For
selection of unlabeled meta-examples is performed based ptance, when a new meta-example becomes available, it can
a pre-defined Active Learning method implemented in thge easily integrated without the need to initiate re-lezgni
module. [10]. In this section, we provide a description of the meta-
Given the selected unlabeled meta-example, the candidéarner based on the k-NN algorithm.
algorithms are then empirically evaluated on the related Let £ = {ej,...,e,} be the set ofn problems already
problem, in order to collect the performance informationused to generate a set oflabeled meta-example® E =
Each new labeled meta-example (composed by meta-featufese;, . . ., me, }. Each meta-example is related to a problem
and performance information) is then stored in the trainingnd stores the values qf features X,..., X, for the
set of the Meta-Learner module. This module in turn will us@roblem and the value of a class attribdte which is the
this training set to acquire knowledge relating meta-feegu performance information
to the performance of the candidate algorithms. LetC = {c1,...,cr} be the domain of the class attribute
C, which hasL possible class labels. In this way, each meta-
exampleme; € ME is represented as the pdi;, C(e;))

Labeled Meta- Meta storing: (1) the descriptiorx; of the probleme;, where
CMeta—ExampIeD Learner ( Knowledge> X; = (z},...,2¥) andz! = X;(e;); and (2) the class label
associated te;, i.e. C(e;) = ¢;, whereg; € C.
New Labeled Given a new input problem described by the vector
Selected Unlabeled _ 1 p _ _ i
Meta-Example Meta Examble x = (x*,...,2P), the k-NN meta-learner retrieves the
Labeling P LAC“V? most similar meta-examples from/ E, according to the
earning

distance between meta-attributes. The distance funatist) (
implemented in the prototype was the unweighigeNorm,
defined as:

DB of Extraction of Unlabeled
. —> >
Learning Proble Meta-Features| Meta-Example D |:cj B :Cj
dist(X,X;) = S : 1)

= 1) — min;(x])

% %

Fig. 1. Active generation of meta-examples maxi(:c
The prediction of the class label for the new problem is
In [4], [5], an Active method based ddncertainty Sam- performed according to the number of occurrences (votes)
pling [6] was used to select meta-examples for a k-NNf eachc; € C in the class labels associated to the retrieved
(k-Nearest Neighbors) algorithm used as meta-learner. THeeta-examples.
experiments performed in [4], [5] have shown a significant
gain in meta-learning performance when the Uncertaint. Active Learning

Sampling method is used. A limitation of Uncertainty Sam- As seen, the Meta-Learner acquires knowledge from a set

pling, however, is that it often selects examples that a5t labeled meta-examples associated to a set of learning

outl|ers.[8]. Such examples have in fa}ct a h'gh. degree. roblems. The Active Learning module, described in this
uncertainty but they should not be considered as 'nformat'vsection, receives a set of unlabeled meta-examples, associ
In the current work, we extend our previous research by the problems in which the candidate algorithms were not
combining Uncertainty Sampling and Outlier Detection techyet evaluated and, hence, the class labels are not known.
niques, applied to Active Meta-Learning. In this combioafi Therefore, the main objective of this module is to incremen-
we first removed unlabeled meta-examples considered ggly select unlabeled meta-examples to be labeled.
outliers, and then applied an Uncertainty Sampling teaiq  As said, in this module we combined two techniques. First,
in order to progressively select from the remaining unlefel 5y Qutlier Detection technique is used to remove unlabeled
meta-examples the most informative ones to be labeled. meta-examples which are considered as spurious points in
In the next subsections, we present details about ahe meta-learning task. Following, an Uncertainty Sangplin
implemented prototype which followed the above proposamethod is used to select from the remaining set of unlabeled
Section V brings the experiments performed in a case studyeta-examples, the most informative ones to be labeled.
by using the implemented prototype. Details of the two techniques are described as follows.



1) Outlier Detection: In our prototype, we adapted the

Distance-Based method proposed in [7] for Outlier Detec- . MiNe, 2 dist(X, X;)

tion. Here, we eliminated from the set of the unlabeled meta- ~ S(me|ME) = —7—— st (X (4)

examples, those ones which most deviates from the others in 2y Mime,enm, dist(X, Xi)

terms of its distances. In the above equatiorx is the problem description stored
LetE = {€1,...,ém} be the set ofn problems associated in me. The AL module then selects, to be labeled, the unla-

to the available set ofn un|abe@ meta_examp|dﬁ = beled meta-exampIeTe* € M E with hlghest uncertainty:

{mes, ..., mey}. Eachme; € MFE stores the description

%; of a problemé; € E. For detecting outliers, we first me” = argmaz . iipS(me|ME) (5)

calculate the average distance between the meta-examples igjng|ly, the selected meta-example is labeled (i.e. thescla
ME. Formally, for each different paifme;, me;), we first - \ajyue C(¢*) is defined), through the empirical evaluation
calculate the distancelist(X;,X;). Following, we compute ¢ the candidate algorithms using the avaliable data of the

the average of these distances as follows: probleme*.
1 . V. CASE STuDY
Hdist = 70 (m —1) Z\, dist(X;, %) (2) In this section, we present the application of the imple-
mei,me; EME,ij mented prototype in a case studies that correspond to a

Finally, in order to measure how much an unlabeled metd?€ta-learning task originally presented in [4]. Detail®atb
examplerme; is considered as an outlier, we compute théhis task will be_prowded in thls_ section, followed by the
proportion of the other unlabeled meta-exampleshiz ~ Performed experiments and obtained results.
which are distant from it by at least the reference valug;. The meta-learning task consists in predicting a class label
Formally, letG; = {me; € Z\ﬁh’ # §, dist(X;,X;) > faist } related to the performance of Multi-Layer Perceptron (MLP)

be the set of unlabeled meta-examples which are distant frd#gtWorks for regression problems. The set of meta-examples
;. The measur®utlier Degree is defined as: in this case study was generated from the application of MLP

to 50 regression problems, available in the WEKA prdject
|G| 3 Hence, 50 different meta-examples were generated.
m—1 ®) Each meta-example in this case study stored the values of

The unlabeled meta-examples can be sorted by using tfig~ 10 Meta-features, which correspond to:
measure, in such a way that the meta-examples with thel) L0g of the number of training exampleX’();
highest values oDutlier Degree are considered as outliers. 2) Log of the ratio between number of training examples
In our prototype, the top 10% of unlabeled meta-examples  @nd number of attributes();
in this ranking are removed from the set of candidates to 3) Min, max, mean and standard deviation of the absolute
generate labeled meta-examples. values of corr_elation between predictor attributes and

2) Uncertainty SamplingAs said, in this Active Learning the target attribute X, X,, X5 and X);
method, the learner uses the currently labeled examples to?) Min, max, mean and standard deviation of the abso-
generate a prediction for each unlabeled example. A degree [Uté values of correlation between pairs of predictor
of uncertainty of the provided prediction is assigned farrea attributes {7, Xs, X9 and Xyo).
unlabeled example. Finally, the active method selects theln [4], each meta-example also stored the value of a class
example with highest uncertainty. attribute which indicated the performance pattern obthine

The classification uncertainty of the k-NN algorithm isby the MLP network when applied to the problem. More
defined in [6] as the ratio of: (1) the distance between thgpecifically, each meta-example was assigned to one of the
unlabeled example and its nearest labeled neighbor; and @4ss labelscluster], corresponding to problems in which
the sum of the distances between the unlabeled example ¢h@ MLP obtained good test error rates; amaster2 corre-
its nearest labeled neighbors of different classes. sponding to tasks in which the MLP obtained from low to

In the above definition, a high value of uncertainty in‘medium test error rates. These class labels were defined afte
dicates that the unlabeled example has nearest neighbafsempirical evaluation (using a cross validation expenitne
with similar distances but conflicting labeling. Hence, encof the MLP on the 50 regression problems, and a cluster
the unlabeled example is labeled, it is expected that tinalysis of the obtained results.
tl;(;:eéteadinty of classification in its neighborhood should bg\_ Experiments Description

uced.

Formally, letM E be the set of labeled meta-examples, an?j In order to eyaluated the performance of the I_(-NN mgta-
let M E be the set of unlabeled meta-examples. LeE, be  '€&Mer by using the Uncertainty Sampling with Outlier
the subset of labeled meta-examples associated to the clR§IeCtion, we performed a leave-one-out experiment, which
labelc;, i.e. ME; = {me; € ME|C(e;) = c;}. Given the set 'S described just below.

ME, the classification uncertainty of k-NN for eache < 1These datasets are specifically the sets provided in thenfilericand
ME is defined as: regressionavailable to download in http://www.cs.waikato.ac.nzmelka/

Outlier Degree(me;) =
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At each step of leave-one-out, one meta-example is le
out for testing the Meta-Learner, and the remaining 49 met: \ - Uncertainty Sampling and Outier Detection
examples are considered as candidates to be included in 1 |
training set. Initially, 5 candidate meta-examples (alid#o
of the meta-examples) were removed by using the Outlie *
Detection technique. Following, the Uncertainty Samplin¢s
method incrementally included one meta-example in th &
training set of the Meta-Learner, up to the total number of 4f
training meta-examples. At each included meta-exampde, tt gsst
Meta-Learner is judged on the test problem left out, reogijvi
either 1 or O for failure or success. Hence, a curve with 4. 5|
binary judgments is produced for each test problem. Fipall
a curve of 44 error rates obtained by Meta-Learner can t
computed by averaging the curves of judgments over the &
steps of the leave-one-out experiment. 20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
In our work, we also performed experiments with the ° ° % Num;:rofMeth-Exa;;esm theTrain?r?g TR
Uncertainty Sampling without using Outlier Detection, aHni
corresponds to the Active method evaluated in our previowsy. 2. Average curves of error rates for the Random Sampaimg the
research [4], [5]. The motivation here is to evaluate th&ncertainty Sampling (without and with Outlier Detection)
usefulness of Outlier Detection to improve the Uncertainty
Sampling method. We followed the same methodology of

experiments as described above, however at each stepihrovement was higher as the number of meta-examples
leave-one-out, all the remaining 49 meta-examples wefg the training set increased, which indicates that, withou
incrementally included in the training set. Hence, in thigyytlier Detection, the inclusion of outliers in the traigiset

experiment, a curve of 49 error rates was generated.  progressively harmed the performance of the meta-learner.
As a basis of comparison, the leave-one-out experiment

was applied by using Random Sampling for selecting unla 2 ‘
beled problems. According to [6], despite its simplicityet
random method has the advantage of performing a uniforr
exploration of the example space.

Finally, we highlight that each of the three above method:
were evaluated for different configurations of the k-NN reta
learner (withk = 1, 3, 5, 7, 9 and 11 nearest neighbors). Fot
each configuration, 30 runs of experiments were executed.
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B. Results

Figure 2 presents the curve of error rates obtained by the |
NN meta-learner averaged across the different configuratio

of the parametert and runs of experiments. As it was ap I 8
[

Average Gain Relat
to the Random Sampl|

expected, the Uncertainty Sampling was better than th )
Random Sampling in both executions: with and without ‘ ‘ ‘
Outlier Detection. This result indicates the viability afing ’ [L-10] [11-20] [21-30] [31-40]
Active Learning methods for selecting meta-examples. Number of Meta-Examples i the Training Set
The use of Outlier De_tect|on Ste_ad"y improved the perI':ig. 3. Average gain relative to the Random Sampling foredéht intervals
formance of the Uncertainty Sampling from 14 to 39 metaof the number of meta-examples in the training set
examples included in the training set, which correspond to
26 points in the curve of error rates. By applying a t-test
(95% of confidence) to the difference of error rates, we
observed that the performance gain obtained with the use
of Outlier Detection was statistically significant in 16 pts In this paper, we presented the use of an Active Meta-
in the curve of error rates. Learning method which combined Uncertainty Sampling
Figure 3 presents the average gain in performance obtainaad Outlier Detection techniques. The Uncertainty Sangplin
by the Uncertainty Sampling (with and without Outlierwas used to support the selection on informative examples
Detection), relative to the Random Sampling for differenfor Meta-Learning. In order to improve the Uncertainty
intervals of the number of meta-examples in the training sebampling, an Outlier Detection technique was used to remove
For each considered interval, we observed an improvemenbm the set of learning problems those ones considered as
in performance by using Outlier Detection. However thioutliers for meta-example generation.

VI. CONCLUSION



An implemented prototype which used a k-NN metaf17] C. Koepf, C. C. Taylor, and J. Keller, “Meta-analysisat® characteri-

learner was evaluated in a case study. In the performe
experiments, the performance obtained by using the prtnbos[gg]
method was better than the results obtained in previous work
on Active Meta-Learning. The experiments revealed that the

Uncertainty Sampling method was in fact sensitive to th[elg]
presence of outliers, in such a way that its performance was
improved when the Outlier Detection technique was applied?0]

Finally, we highlight some aspects of our work which will
be investigated in the future. First, other Outlier Detati

techniques can be applied to improve the Uncertainty Sarf#!
pling. In future work, we intend to evaluate the performance
of the proposed method compared to other Active method®]

(e.g. error-reduction methods). Finally, we also intendde

veloped Active methods for other Meta-Learning techniquegg;
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