
Active Meta-Learning with Uncertainty Sampling and Outlier
Detection

Ricardo B. C. Prudêncio and Teresa B. Ludermir

Abstract— Meta-Learning has been used to predict the per-
formance of learning algorithms based on descriptive features of
the learning problems. Each training example in this context, i.e.
each meta-example, stores the features of a given problem and
information about the empirical performance obtained by the
candidate algorithms on that problem. The process of construct-
ing a set of meta-examples may be expensive, since for each
problem avaliable for meta-example generation, it is necessary
to perform an empirical evaluation of the candidate algorithms.
Active Meta-Learning has been proposed to overcome this
limitation by selecting only the most informative problemsin the
meta-example generation. In this work, we proposed an Active
Meta-Learning method which combines Uncertainty Sampling
and Outlier Detection techniques. Experiments were performed
in a case study, yielding significant improvement in the Meta-
Learning performance.

I. I NTRODUCTION

The selection of adequate algorithms for solving learning
problems is an important aspect to the success of the Ma-
chine Learning process [1]. Meta-Learning is a framework
developed in the field of supervised Machine Learning with
the aim of automatically predicting algorithms performance,
thus assisting users in the process of algorithm selection [2].

A training example in Meta-Learning (calledmeta-
example) represents the experience obtained from empirically
evaluating a set of candidate algorithms on a given learning
problem. Specifically, each meta-example stores: (1) features
of a given problem (e.g. number of training examples and
number of attributes); and (2) performance information re-
lated to the algorithms when empirically evaluated to the
problem. Ameta-learneruses a set of such meta-examples
to acquire knowledge relating algorithms performance to the
features of the learning problems.

Generating a set of meta-examples may be a costly pro-
cess, since in order to produce a single meta-example, it is
necessary to perform an empirical evaluation of the candidate
algorithms on a problem. Hence, the cost of generating a
whole set of meta-examples may be high, depending, for
instance, on the number and complexity of the candidate
algorithms, the methodology of empirical evaluation and the
amount of available problems.

In order to minimize the above difficulty, the use of Active
Learning [3] has been proposed to support the generation of
meta-examples [4], [5]. In Active Learning, the learner has
some ability to decide at each moment which examples will

Ricardo B. C. Prudêncio - Department of Information Science, Federal
University of Pernambuco, Av. dos Reitores s/n, 50670-901,Recife (PE),
Brazil; email: prudencio.ricardo@gmail.com. Teresa B. Ludermir - Center of
Informatics, Federal University of Pernambuco, PO Box: 7851, 50732-970,
Recife (PE), Brazil; email: tbl@cin.ufpe.br.

be included in the training set. In the so-calledActive Meta-
Learning proposal, Active Learning techniques are used
to reduce the set of meta-examples by selecting only the
most relevant problems for meta-example generation, and
consequently, reducing the number of empirical evaluations
performed on the candidate algorithms.

In the current work, we propose an Active Meta-Learning
approach which combines Uncertainty Sampling [6], a spe-
cific Active Learning method, and Outlier Detection tech-
niques [7]. Uncertainty Sampling has already been applied
in isolation to Active Meta-Learning, obtaining satisfactory
results [4], [5]. However, the literature in Active Learning
has pointed out that Uncertainty Sampling often fails by
selecting examples which are outliers [8]. Hence, in our work
we improved the performance of Uncertainty Sampling by
removing outliers among the problems avaliable for meta-
example generation.

The proposed hybrid method was evaluated in a meta-
learning task which corresponds to predicting the pattern of
performance of Multi-Layer Perceptron (MLP) networks for
regression problems. Experiments performed on a set of 50
problems revealed a gain in the meta-learner performance
by using the proposed method, compared to both a random
procedure for selecting problems and the use of Uncertainty
Sampling in isolation.

The remaining of this paper is organized as follows.
Section II brings a brief presentation of Meta-Learning,
followed by section III which describes some approaches
for Active Learning. Section IV presents, in more details,
the proposed solution and an implemented prototype. Section
V presents the performed experiments and obtained results.
Finally, section VI concludes the paper by presenting some
future work.

II. M ETA-LEARNING

According to [9], there are different interpretations of the
term Meta-Learning. In our work, we focused on the defini-
tion of Meta-Learning as the automatic process of acquiring
knowledge that relates the empirical performance of learning
algorithms to the features of the learning problems [2]. In this
context, eachmeta-exampleis related to a learning problem
and stores: (1) the features describing the problem (themeta-
features); and (2) information about the performance of one
or more algorithms when applied to the problem. Themeta-
learner is a learning system that receives as input a set of
such meta-examples and then acquires knowledge used to
predict the algorithms performance for new problems being
solved.



The meta-features are, in general, statistics describing
the training dataset of the problem, such as number of
training examples, number of attributes, correlation between
attributes, class entropy, among others [10], [1]. Each meta-
example commonly stores, as performance information, a
class attribute which indicates the best algorithm for the
problem (in terms of obtained accuracy), among a set of
candidates [11], [12], [13]. In this case, the class label
for each meta-example is defined by performing a cross-
validation experiment using the available dataset. The meta-
learner is simply a classifier which predicts the best algorithm
based on the meta-features of the problem.

In [14], the authors used an alternative approach to label-
ing meta-examples. Initially, 20 algorithms were evaluated
through cross-validation on 22 classification problems. For
each algorithm, the authors generated a set of meta-examples,
each one associated either to the class labelapplicable or
to the class labelnon-applicable. The class labelapplicable
was assigned when the classification error obtained by the
algorithm fell within a pre-defined confidence interval, and
non-applicablewas assigned otherwise. Each problem was
described by a set of 16 meta-features and, finally, a deci-
sion trees were induced to predict the applicability of the
candidate algorithms.

In [1], the authors performed the labeling of meta-
examples by deploying a clustering technique. Initially, the
error rates of 10 algorithms were estimated for 80 classi-
fication problems. From this evaluation, they generated a
matrix of dimension 80 X 10, in which each row stored
the ranks obtained by the algorithms in a single problem.
The matrix was given as input to a clustering technique,
aiming to identify groups (clusters) of problems in which the
algorithms obtained specific patterns of performance (e.g.a
cluster in which certain algorithms achieve a considerable
advantage relative to the others). The meta-examples were
then associated to the class labels corresponding to the
identified clusters. Hence, instead of only predicting the best
algorithm or the applicability of algorithms, the meta-learner
can predict more complex patterns of relative performance.

Other Meta-Learning approaches have been proposed in
the literature. For instance, the NOEMON system [15] com-
bines a pool of meta-learners in order to provide rankings of
candidate algorithms. In [16], [10], instance-based learning is
used to provide rankings of algorithms taking into account
both accuracy and execution time. In the Meta-Regression
approach [17], [18], regression models are used to directly
predict the numerical value of accuracy of the candidate
algorithms.

III. A CTIVE LEARNING

Active Leaning is a paradigm of Machine Learning in
which the learning algorithm has some control over the
inputs on which it trains [3]. The main objective of this
paradigm is to reduce the number of training examples,
at same time maintaining, or even improving, the perfor-
mance of the learning algorithm. Active Learning is ideal
for learning domains in which the acquisition of labeled

examples is a costly process, such as image recognition [6],
text classification [19] and information filtering [20].

Previous work in Active Learning has been concentrated
in the Selective Samplingapproach [6]. In this approach,
the learning algorithm begins with a small training set of
labeled examples and a potentially large set of unlabeled
examples to select. At each moment, the learner selects the
most informative unlabeled example and asks the teacher
to annotate it. According to [21], the Selective Sampling
methods can be distinguished on three main categories,
Uncertainty Samplingmethods,Version Space Reduction
methods andError Reductionmethods, described below.

In Uncertainty Sampling methods [22], [6], [23], at each
moment, the current learner is used to make predictions
for the available unlabeled examples. Following, the method
selects the unlabeled example for which the current learner
has the highest uncertainty in its prediction. According to
[21], these methods are straightforward and can be easily
adapted for a great variety of Machine Learning algorithms.

The Version Space Reduction methods (or committee-
based methods) [24], [19], [25] deploy an idea which is
similar to Uncertainty Sampling. Here, a subset of the version
space (i.e. a committee of hypotheses consistent with the
current labeled examples) is generated and then applied
to make predictions for each unlabeled example. A high
degree of disagreement on the predictions of the committee
is defined as a measure of uncertainty.

In the Error Reduction methods [8], [6], the selected exam-
ple is the one that minimizes the expected error of the learner,
once labeled and included in the training set. Although more
sophisticated, they are computationally expensive, sincefor
each unlabeled example and possible label, it is necessary
to re-train the learner in order to compute the expected
reduction in the error rate [8].

IV. A CTIVE META-LEARNING

A limitation that can be pointed out in the process of Meta-
Learning is related to the generation of meta-examples. Given
a learning problem, in order to produce a meta-example, it is
necessary to perform an empirical evaluation of the available
algorithms in order to collect its performance information
on the problem. Although the proposal of Meta-Learning
is to perform this empirical evaluation only in a limited
number of problems, the cost of generating a whole set of
meta-examples may be high, depending, for instance, on the
number and complexity of the candidate algorithms and the
amount of data available in the learning problems.

In order to minimize the above difficulty, in [4], [5] the
authors proposed the Active Meta-Learning, in which the
generation of meta-examples is supported by using Active
Learning techniques. In Active Meta-Learning, the use of
Active Learning techniques improves the efficiency of the
Meta-Learning process by reducing the number of required
meta-examples, and consequently the number of empirical
evaluations on the candidate algorithms.

Figure 1 represents the process of generating meta-
examples by following our proposal. Initially, the meta-



features are computed for each available problem, in order to
generate a set ofunlabeledmeta-examples. Each unlabeled
meta-example stores the description of a problem, but the
performance information of the candidate algorithms is not
known yet.

In order to generatelabeled meta-examples, the Active
Learning module selects those unlabeled meta-examples con-
sidered the most relevant for the Meta-Learning task. The
selection of unlabeled meta-examples is performed based on
a pre-defined Active Learning method implemented in the
module.

Given the selected unlabeled meta-example, the candidate
algorithms are then empirically evaluated on the related
problem, in order to collect the performance information.
Each new labeled meta-example (composed by meta-features
and performance information) is then stored in the training
set of the Meta-Learner module. This module in turn will use
this training set to acquire knowledge relating meta-features
to the performance of the candidate algorithms.

�
�

�
�

Meta-
Knowledge

-Meta-
Learner

-
�
�

�
�

Labeled
Meta-Examples

New Labeled
Meta-Example

Labeling

6

Selected Unlabeled
Meta-Example� Active

Learning

6

�
�

�
�

Unlabeled
Meta-Examples

-Extraction of
Meta-Features

-
�
�

�
�

DB of
Learning Problems

Fig. 1. Active generation of meta-examples

In [4], [5], an Active method based onUncertainty Sam-
pling [6] was used to select meta-examples for a k-NN
(k-Nearest Neighbors) algorithm used as meta-learner. The
experiments performed in [4], [5] have shown a significant
gain in meta-learning performance when the Uncertainty
Sampling method is used. A limitation of Uncertainty Sam-
pling, however, is that it often selects examples that are
outliers [8]. Such examples have in fact a high degree of
uncertainty but they should not be considered as informative.

In the current work, we extend our previous research by
combining Uncertainty Sampling and Outlier Detection tech-
niques, applied to Active Meta-Learning. In this combination,
we first removed unlabeled meta-examples considered as
outliers, and then applied an Uncertainty Sampling technique
in order to progressively select from the remaining unlabeled
meta-examples the most informative ones to be labeled.

In the next subsections, we present details about an
implemented prototype which followed the above proposal.
Section V brings the experiments performed in a case study
by using the implemented prototype.

A. Meta-Learner

The Meta-Learner in the prototype corresponds to a con-
ventional classifier, and it is applicable to tasks in which the
performance information is formulated as a class attribute
(e.g. the class associated to the best algorithm or the class
related to patterns of algorithms performance). In the imple-
mented prototype, we used the k-NN algorithm which has
some advantages when applied to Meta-Learning [10]. For
instance, when a new meta-example becomes available, it can
be easily integrated without the need to initiate re-learning
[10]. In this section, we provide a description of the meta-
learner based on the k-NN algorithm.

Let E = {e1, . . . , en} be the set ofn problems already
used to generate a set ofn labeled meta-examplesME =
{me1, . . . , men}. Each meta-example is related to a problem
and stores the values ofp featuresX1, . . . , Xp for the
problem and the value of a class attributeC, which is the
performance information

Let C = {c1, . . . , cL} be the domain of the class attribute
C, which hasL possible class labels. In this way, each meta-
examplemei ∈ ME is represented as the pair(xi, C(ei))
storing: (1) the descriptionxi of the problemei, where
xi = (x1

i , . . . , x
p
i ) andx

j
i = Xj(ei); and (2) the class label

associated toei, i.e. C(ei) = cl, wherecl ∈ C.
Given a new input problem described by the vector

x = (x1, . . . , xp), the k-NN meta-learner retrieves thek
most similar meta-examples fromME, according to the
distance between meta-attributes. The distance function (dist)
implemented in the prototype was the unweightedL1-Norm,
defined as:

dist(x, xi) =

p∑

j=1

|xj − x
j
i |

maxi(x
j
i ) − mini(x

j
i )

(1)

The prediction of the class label for the new problem is
performed according to the number of occurrences (votes)
of eachcl ∈ C in the class labels associated to the retrieved
meta-examples.

B. Active Learning

As seen, the Meta-Learner acquires knowledge from a set
of labeled meta-examples associated to a set of learning
problems. The Active Learning module, described in this
section, receives a set of unlabeled meta-examples, associated
to the problems in which the candidate algorithms were not
yet evaluated and, hence, the class labels are not known.
Therefore, the main objective of this module is to incremen-
tally select unlabeled meta-examples to be labeled.

As said, in this module we combined two techniques. First,
an Outlier Detection technique is used to remove unlabeled
meta-examples which are considered as spurious points in
the meta-learning task. Following, an Uncertainty Sampling
method is used to select from the remaining set of unlabeled
meta-examples, the most informative ones to be labeled.
Details of the two techniques are described as follows.



1) Outlier Detection: In our prototype, we adapted the
Distance-Based method proposed in [7] for Outlier Detec-
tion. Here, we eliminated from the set of the unlabeled meta-
examples, those ones which most deviates from the others in
terms of its distances.

Let Ẽ = {ẽ1, . . . , ẽm} be the set ofm problems associated
to the available set ofm unlabeled meta-examples̃ME =
{m̃e1, . . . , m̃em}. Eachm̃ei ∈ M̃E stores the description
x̃i of a problem ẽi ∈ Ẽ. For detecting outliers, we first
calculate the average distance between the meta-examples in
M̃E. Formally, for each different pair(m̃ei, m̃ej), we first
calculate the distance:dist(x̃i, x̃j). Following, we compute
the average of these distances as follows:

µdist =
1

m ∗ (m − 1)

∑

m̃ei,m̃ej∈M̃E,i6=j

dist(x̃i, x̃j) (2)

Finally, in order to measure how much an unlabeled meta-
examplem̃ei is considered as an outlier, we compute the
proportion of the other unlabeled meta-examples iñME

which are distant from it by at least the reference valueµdist.
Formally, letGi = {m̃ej ∈ M̃E |i 6= j, dist(x̃i, x̃j) ≥ µdist}
be the set of unlabeled meta-examples which are distant from
m̃ei. The measureOutlierDegree is defined as:

OutlierDegree(m̃ei) =
|Gi|

m − 1
(3)

The unlabeled meta-examples can be sorted by using this
measure, in such a way that the meta-examples with the
highest values ofOutlierDegree are considered as outliers.
In our prototype, the top 10% of unlabeled meta-examples
in this ranking are removed from the set of candidates to
generate labeled meta-examples.

2) Uncertainty Sampling:As said, in this Active Learning
method, the learner uses the currently labeled examples to
generate a prediction for each unlabeled example. A degree
of uncertainty of the provided prediction is assigned for each
unlabeled example. Finally, the active method selects the
example with highest uncertainty.

The classification uncertainty of the k-NN algorithm is
defined in [6] as the ratio of: (1) the distance between the
unlabeled example and its nearest labeled neighbor; and (2)
the sum of the distances between the unlabeled example and
its nearest labeled neighbors of different classes.

In the above definition, a high value of uncertainty in-
dicates that the unlabeled example has nearest neighbors
with similar distances but conflicting labeling. Hence, once
the unlabeled example is labeled, it is expected that the
uncertainty of classification in its neighborhood should be
reduced.

Formally, letME be the set of labeled meta-examples, and
let M̃E be the set of unlabeled meta-examples. LetMEl be
the subset of labeled meta-examples associated to the class
labelcl, i.e.MEl = {mei ∈ ME|C(ei) = cl}. Given the set
ME, the classification uncertainty of k-NN for each̃me ∈
M̃E is defined as:

S(m̃e|ME) =
minmei∈ME dist(x̃, xi)∑L

l=1
minmei∈MEl

dist(x̃, xi)
(4)

In the above equation,̃x is the problem description stored
in m̃e. The AL module then selects, to be labeled, the unla-
beled meta-examplẽme

∗
∈ M̃E with highest uncertainty:

m̃e
∗

= argmax
m̃e∈M̃E

S(m̃e|ME) (5)

Finally, the selected meta-example is labeled (i.e. the class
value C(ẽ∗) is defined), through the empirical evaluation
of the candidate algorithms using the avaliable data of the
problemẽ∗.

V. CASE STUDY

In this section, we present the application of the imple-
mented prototype in a case studies that correspond to a
meta-learning task originally presented in [4]. Details about
this task will be provided in this section, followed by the
performed experiments and obtained results.

The meta-learning task consists in predicting a class label
related to the performance of Multi-Layer Perceptron (MLP)
networks for regression problems. The set of meta-examples
in this case study was generated from the application of MLP
to 50 regression problems, available in the WEKA project1.
Hence, 50 different meta-examples were generated.

Each meta-example in this case study stored the values of
p = 10 meta-features, which correspond to:

1) Log of the number of training examples (X1);
2) Log of the ratio between number of training examples

and number of attributes (X2);
3) Min, max, mean and standard deviation of the absolute

values of correlation between predictor attributes and
the target attribute (X3, X4, X5 andX6);

4) Min, max, mean and standard deviation of the abso-
lute values of correlation between pairs of predictor
attributes (X7, X8, X9 andX10).

In [4], each meta-example also stored the value of a class
attribute which indicated the performance pattern obtained
by the MLP network when applied to the problem. More
specifically, each meta-example was assigned to one of the
class labels:cluster1, corresponding to problems in which
the MLP obtained good test error rates; andcluster2, corre-
sponding to tasks in which the MLP obtained from low to
medium test error rates. These class labels were defined after
an empirical evaluation (using a cross validation experiment)
of the MLP on the 50 regression problems, and a cluster
analysis of the obtained results.

A. Experiments Description

In order to evaluated the performance of the k-NN meta-
learner by using the Uncertainty Sampling with Outlier
Detection, we performed a leave-one-out experiment, which
is described just below.

1These datasets are specifically the sets provided in the filesnumericand
regressionavailable to download in http://www.cs.waikato.ac.nz/ml/weka/



At each step of leave-one-out, one meta-example is left
out for testing the Meta-Learner, and the remaining 49 meta-
examples are considered as candidates to be included in the
training set. Initially, 5 candidate meta-examples (about10%
of the meta-examples) were removed by using the Outlier
Detection technique. Following, the Uncertainty Sampling
method incrementally included one meta-example in the
training set of the Meta-Learner, up to the total number of 44
training meta-examples. At each included meta-example, the
Meta-Learner is judged on the test problem left out, receiving
either 1 or 0 for failure or success. Hence, a curve with 44
binary judgments is produced for each test problem. Finally,
a curve of 44 error rates obtained by Meta-Learner can be
computed by averaging the curves of judgments over the 50
steps of the leave-one-out experiment.

In our work, we also performed experiments with the
Uncertainty Sampling without using Outlier Detection, which
corresponds to the Active method evaluated in our previous
research [4], [5]. The motivation here is to evaluate the
usefulness of Outlier Detection to improve the Uncertainty
Sampling method. We followed the same methodology of
experiments as described above, however at each step of
leave-one-out, all the remaining 49 meta-examples were
incrementally included in the training set. Hence, in this
experiment, a curve of 49 error rates was generated.

As a basis of comparison, the leave-one-out experiment
was applied by using Random Sampling for selecting unla-
beled problems. According to [6], despite its simplicity, the
random method has the advantage of performing a uniform
exploration of the example space.

Finally, we highlight that each of the three above methods
were evaluated for different configurations of the k-NN meta-
learner (withk = 1, 3, 5, 7, 9 and 11 nearest neighbors). For
each configuration, 30 runs of experiments were executed.

B. Results

Figure 2 presents the curve of error rates obtained by the k-
NN meta-learner averaged across the different configurations
of the parameterk and runs of experiments. As it was
expected, the Uncertainty Sampling was better than the
Random Sampling in both executions: with and without
Outlier Detection. This result indicates the viability of using
Active Learning methods for selecting meta-examples.

The use of Outlier Detection steadily improved the per-
formance of the Uncertainty Sampling from 14 to 39 meta-
examples included in the training set, which correspond to
26 points in the curve of error rates. By applying a t-test
(95% of confidence) to the difference of error rates, we
observed that the performance gain obtained with the use
of Outlier Detection was statistically significant in 16 points
in the curve of error rates.

Figure 3 presents the average gain in performance obtained
by the Uncertainty Sampling (with and without Outlier
Detection), relative to the Random Sampling for different
intervals of the number of meta-examples in the training set.
For each considered interval, we observed an improvement
in performance by using Outlier Detection. However this

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

Number of Meta−Examples in the Training Set

A
ve

ra
ge

 E
rr

or
 R

at
e 

(%
)

Random Sampling
Uncertainty Sampling
Uncertainty Sampling and Outlier Detection

Fig. 2. Average curves of error rates for the Random Samplingand the
Uncertainty Sampling (without and with Outlier Detection)

improvement was higher as the number of meta-examples
in the training set increased, which indicates that, without
Outlier Detection, the inclusion of outliers in the training set
progressively harmed the performance of the meta-learner.

[1 − 10] [11 − 20] [21 − 30] [31 − 40]
0

2

4

6

8

10

12

14

16

18

20

22

A
ve

ra
ge

 G
ai

n 
R

el
at

iv
e 

to
 th

e 
R

an
do

m
 S

am
pl

in
g 

(%
)

Uncertainty Sampling
Uncertainty Sampling and Outlier Detection

Number of Meta−Examples in the Training Set 

Fig. 3. Average gain relative to the Random Sampling for different intervals
of the number of meta-examples in the training set

VI. CONCLUSION

In this paper, we presented the use of an Active Meta-
Learning method which combined Uncertainty Sampling
and Outlier Detection techniques. The Uncertainty Sampling
was used to support the selection on informative examples
for Meta-Learning. In order to improve the Uncertainty
Sampling, an Outlier Detection technique was used to remove
from the set of learning problems those ones considered as
outliers for meta-example generation.



An implemented prototype which used a k-NN meta-
learner was evaluated in a case study. In the performed
experiments, the performance obtained by using the proposed
method was better than the results obtained in previous work
on Active Meta-Learning. The experiments revealed that the
Uncertainty Sampling method was in fact sensitive to the
presence of outliers, in such a way that its performance was
improved when the Outlier Detection technique was applied.

Finally, we highlight some aspects of our work which will
be investigated in the future. First, other Outlier Detection
techniques can be applied to improve the Uncertainty Sam-
pling. In future work, we intend to evaluate the performance
of the proposed method compared to other Active methods
(e.g. error-reduction methods). Finally, we also intend tode-
veloped Active methods for other Meta-Learning techniques.

VII. A CKNOWLEDGMENTS

The authors would like to thank CNPq (Brazilian Agency)
for its financial support.

REFERENCES

[1] A. Kalousis, J. Gama, and M. Hilario, “On data and algorithms -
understanding inductive performance,”Machine Learning, vol. 54,
no. 3, pp. 275–312, 2004.

[2] C. Giraud-Carrier, R. Vilalta, and P. Brazdil, “Introduction to the
special issue on meta-learning,”Machine Learning, vol. 54, no. 3,
pp. 187–193, 2004.

[3] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,”Machine Learning, vol. 15, pp. 201–221, 1994.

[4] R. B. C. Prudêncio and T. B. Ludermir, “Active learning to support the
generation of meta-examples,” inProc. of the International Conference
on Artificial Neural Networks, 2007, pp. 817–826.

[5] ——, “Active selection of training examples for meta-learning,” in
Proc. of the International Conference on Hybrid Intelligent Systems,
2007.

[6] M. Lindenbaum, S. Markovitch, and D. Rusakov, “Selective sampling
for nearest neighbor classifiers,”Machine Learning, vol. 54, pp. 125–
152, 2004.

[7] E. Knorr and R. Ng, “A unified notion of outliers: Properties and
computation,” inProceedings of the KDD, 1997.

[8] N. Roy and A. McCallum, “Toward optimal active learning through
sampling estimation of error reduction,” inProc. 18th International
Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA,
2001, pp. 441–448.

[9] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Journal of Artificial Intelligence Review, vol. 18, no. 2, pp.
77–95, 2002.

[10] P. Brazdil, C. Soares, and J. da Costa, “Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results,”Machine
Learning, vol. 50, no. 3, pp. 251–277, 2003.

[11] R. B. C. Prudêncio, T. B. Ludermir, and F. A. T. de Carvalho, “A modal
symbolic classifier to select time series models,”Pattern Recognition
Letters, vol. 25, no. 8, pp. 911–921, 2004.

[12] R. B. C. Prudêncio and T. B. Ludermir, “Meta-learning approaches to
selecting time series models,”Neurocomputing, vol. 61, pp. 121–137,
2004.

[13] R. Leite and P. Brazdil, “Predicting relative performance of classifiers
from samples,” inProceedings of the 22nd International Conference
on Machine Learning, 2005.

[14] D. J. S. D. Michie and C. C. Taylor, Eds.,Machine Learning, Neural
and Statistical Classification. Ellis Horwood, New York, 1994.

[15] A. Kalousis and T. Theoharis, “Noemon: Design, implementation and
performance results of an intelligent assistant for classifier selection,”
Intelligent Data Analysis, vol. 3, no. 5, pp. 319–337, 1999.

[16] C. Soares and P. Brazdil, “Zoomed ranking - selection ofclassification
algorithms based on relevant performance information,”Lecture Notes
in Computer Science, vol. 1910, pp. 126–135, 2000.

[17] C. Koepf, C. C. Taylor, and J. Keller, “Meta-analysis: Data characteri-
sation for classification and regression on a meta-level,” in Proceedings
of the International Symposium on Data Mining and Statistics, 2000.

[18] H. Bensusan and K. Alexandros, “Estimating the predictive accuracy
of a classifier,” inProceedings of the 12th European Conference on
Machine Learning, 2001, pp. 25–36.

[19] S. Tong and D. Koller, “Support vector machine active learning
with applications to text classification,”Journal of Machine Learning
Research, vol. 2, pp. 45–66, 2002.

[20] I. Sampaio, G. Ramalho, V. Corruble, and R. Prudêncio,“Acquiring
the preferences of new users in recommender systems - the role of
item controversy,” inProceedings of the ECAI 2006 Workshop on
Recommender Systems, 2006, pp. 107–110.

[21] I. Muslea, S. Minton, and C. Knobrock, “Active learningwith multiple
views,” Journal of Artificial Intelligence Research, vol. 27, pp. 203–
233, 2006.

[22] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” inProceedings of 17th ACM International Conference on
Research and Development in Information Retrieval, 1994, pp. 3–12.

[23] H. Raghavan, O. Madani, and R. Jones, “Active learning with feedback
on both features and instances,”Pattern Recognition Letters, vol. 7,
pp. 1655–1686, 2006.

[24] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
in Computational Learning Theory, 1992, pp. 287–294.

[25] P. Melville and R. Mooney, “Diverse ensembles for active learning,”
in Proceedings of the 21th International Conference on Machine
Learning, 2004.


