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Abstract— We present a novel framework that applies a meta-
learning approach to clustering algorithms. Given a dataset, our
meta-learning approach provides a ranking for the candidate
algorithms that could be used with that dataset. This ranking
could, among other things, support non-expert users in the
algorithm selection task. In order to evaluate the framework
proposed, we implement a prototype that employs regression
support vector machines as the meta-learner. Our case study is
developed in the context of cancer gene expression microarray
datasets.

I. INTRODUCTION

In several domains, such as in Machine Learning, there is a

variety of algorithms that can be considered as candidates to

solve particular problems. One of the most difficulty tasks in

these domains is to predict when one algorithm is better than

another to solve a given problem [1]. Traditional approaches

to predicting the performance of algorithms often involve

costly trial-and-error procedures [2]. Other approaches re-

quire expert knowledge, which is not always straightforward

to acquire.

In the previous context, meta-learning approaches have

arisen as effective solutions, able to automatically predicting

algorithms performance for a given problem [2], [3], [4].

Thus, such approaches could support non-expert users in

the algorithm selection task. As pointed out in [3], there

are different interpretations for the term “meta-Learning”.

In our work, we use “meta-learning” meaning the automatic

process of generating knowledge that relates the performance

of machine learning algorithms to the characteristics of the

problem (i.e., characteristics of its datasets).

So far, in the literature, meta-learning has been used

only for selecting/ranking supervised learning algorithms [2],

[1], [4]. That is, up to now, there no such an approach

for the context of clustering algorithms (i.e., unsupervised

learning). Motivated by this, we extend the use of meta-

learning approaches for clustering algorithms. We develop

our case study in the context of clustering algorithms applied

to cancer gene expression data generated by microarray.

Cluster analysis techniques of gene expression microarray

data is of increasing interest in the field of functional

genomics [5], [6], [7]. One of the reasons for this is the need

for molecular-based refinement of broadly defined biological
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classes, with implications in cancer diagnosis, prognosis and

treatment. Although the choice of the clustering method

for the analysis of microarray datasets is a very important

issue, there are in the literature few guidelines or standard

procedures on how these data should be analyzed [8].

The choice of algorithms are basically driven by the

familiarity of biological experts to the algorithm rather

than the characteristics of the algorithms themselves and

of the data [8]. For example, the wide use of hierarchical

clustering methods is mostly a consequence of its similarity

to phylogenetic methods, which biologists are often acquaint

to. Thus, in this context, by using a meta-learning approach,

our aim is to provide a framework to support non-expert

users in the algorithm selection task.

The remain of this paper is divided into four sections.

Section II introduces a brief explanation about meta-learning

and some of its techniques. In Section III, we present

our meta-learning proposal to rank and select clustering

algorithms. Section IV introduce our case study. We describe

in Section V the experiments that we developed in order

to evaluate the performance of our prototype. Finally, in

Section VI, we present some final remarks and further work.

II. RELATED WORK

As pointed out before, in this work, we use the term

meta-learning meaning the automatic process of obtaining

knowledge that relates the performance of learning algo-

rithms to the characteristics of the learning problems [2]. In

such a context, each meta-example corresponds to a learning

task and is composed of: (1) the features describing the

problem, called meta-features or meta-attributes; and (2) the

information about the performance of one or more algorithms

when applied to the problem.

The meta-learner is a learning system that receives as

input a set of these meta-examples and, from them, acquires

knowledge that will be used to predict the performance

of the algorithms for new problems. In the context of

selecting supervised learning algorithms, the meta-attributes

are, in general, statistics describing the training dataset of

the problem. Examples of these statistics are: number of

training examples, number of attributes, correlation between

attributes, class entropy, among others [9], [1], [10].

In a more strict formulation of meta-learning, each meta-

example has, as performance information, a class attribute

that indicates the best algorithm for the problem, among a

set of candidates [11], [12], [13], [4], [14]. In such a case, the

class label for each meta-example is defined by performing a



cross-validation experiment using the available dataset. The

meta-learner is simply a classifier which predicts the best

algorithm based on the meta-attributes of the problem.

In order to add new functionalities for the meta-learning

process, other approaches have been proposed. In [15], [16],

for instance, a set of different meta-learners is employed not

only to predict a class label associated to the performance

of the algorithms, but also to recommend a ranking of the

algorithms. In such a framework, a meta-learner is built for

each different pair (X, Y) of algorithms. Given a new learning

problem, the outputs of the meta-learners are collected and,

then, points are given to the algorithms according to the

outputs. For example, if “X” is the output of meta-learner (X,

Y), then algorithm X is credited with one point. The ranking

of algorithms is recommended for the new problem directly

from the number of points assigned to the algorithms.

In contrast to the previous approach, in [17], [18] one tries

to directly predict the accuracy (or alternatively the error)

of each candidate algorithm. The meta-learner in this case

can be used either to select the algorithm with the highest

predicted accuracy or to provide a ranking of algorithms

based on the order of predicted accuracies. In [18], for

instance, the authors obtained good results when a linear

regression model was used to predict the accuracy of 8

different classification algorithms.

Another interesting approach for meta-learning in the one

in [19]. In that work, the performance of the candidate

algorithms is related to the performance obtained by sim-

pler and faster designed learners, called landmarkers. The

authors claim that some widely used meta-attributes are very

time consuming. Thus, landmarking would be an economic

approach to the characterization of learning problems and to

provide useful information for the meta-learning process.

The concepts and techniques of meta-learning have been

mainly evaluated in the context of select the best algorithms

for classification tasks [2]. However, in recent years, they

have been extended to other domains of application, such as

in the selection of time series forecasting models [4] and in

the design of planning systems [20]. Particulary, in this paper,

we extend these concepts for the context of unsupervised

learning.

III. OUR APPROACH

A. General Architecture

Figure 1 illustrates the general architecture of systems used

for, given a dataset, ranking the candidates algorithms. As it

is usual in Machine Learning, the system has two phases:

training and use. In the training phase, the Meta-Learner

(ML) acquires knowledge from the set of meta-examples

stored in the Database (DB). This knowledge associates

characteristics of the data to the performance of the candidate

algorithms. In our case, these are clustering algorithms.

In the phase of use, given a new dataset, the Feature

Extractor (FE) generate the values of the meta-attributes that

describe these data. According to these values, the Meta-

Learner (ML) module produces a ranking of the available
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Fig. 1. System’s architecture.

candidate algorithms. In order to so, it uses the knowledge

previously provided as a result of the training phase.

The DB stores examples of datasets (i.e., meta-examples)

used in the training phase. Each meta-example associates a

dataset (represented by the chosen set of meta-attributes) to

the performance of the candidate algorithms in clustering that

data. This set of meta-examples is semi-automatically built:

(1) the selection of datasets and algorithms to be considered

is a manual task (as usual); (2) the generation of the meta-

attributes is automatically performed by the FE module; and

(3) the performance of the candidate algorithms in clustering

each dataset is empirically obtained by directly applying each

algorithm to the data and evaluating the obtained result.

The ML module implements the chosen meta-learning

approach to acquiring knowledge (training phase) to be used

in the selection or ranking of the candidate algorithms (use

phase). As seen in Section II, the meta-learning approaches

implement one or more machine learning algorithms to

perform these tasks. In this context, we could use a learning

technique to suggest one single algorithm from the set of

candidate ones. Although this is a valuable approach, a more

informative and flexible solution for algorithm selection is to

provide a ranking of the candidate algorithms to each dataset

under analysis [10]. In such a context, if enough resources

are available, more than one algorithm could be used to

cluster the data. Also, if the user has some preference for a

specific subset of candidate algorithms, he/she can select the

algorithms that obtained the best rank among the algorithms

of interest.

B. Implementation Issues

In order to implement a system according to the archi-

tecture described in the previous section, one has to take

into account some important issues. The first issue to be

addressed is the type of dataset to be considered, since it

will have an impact on all the other aspects in the system’s

implementation. In the case of this paper, as mentioned

before, we consider as case study datasets regarding various

types of cancer generated from microarray data.

Next, we need to specify which clustering algorithms

will be considered to form the set of candidate algorithms.

In this paper, seven clustering algorithms are employed to

generate the candidate solutions. These are the single linkage,

complete linkage, average linkage, k-means, mixture model



clustering, spectral clustering, and shared nearest neighbors

algorithm [21], [22], [23]. These algorithms have been cho-

sen to provide a wide range of recovery effectiveness, as well

as to give some generality to the results.

The third issue to be considered is which features will be

used by the FE module to describe the datasets. Such a choice

depends on the type of dataset being analyzed. For example,

in the context of classification problems, we can find standard

sets of meta-attributes that have been used in the meta-

learning area. This is the case of the Data Characterization

Tool, developed within the METAL project1. In contrast, for

cluster analysis, there is no such standard set of attributes,

since the application of meta-learning to this domain is

new. Nevertheless, we can follow some general guidelines

to define them. For instance, one should choose meta-

attributes that can be reliably identified, avoiding subjective

analysis, such as visual inspection of plots. Subjective feature

extraction is time consuming, requires expertise, and has

a low degree of reliability [24]. One should also use a

manageable number of features in order to avoid a time

consuming selection process.

The final issue to be addressed in our work is which meta-

learning approach will be used in the ML module. This

choice depends upon the user’s requirements, since each

meta-learning approach has its advantages and limitations.

In this work, we will present results with the approach that

provides a ranking of the candidate algorithms to each dataset

under analysis.

IV. CASE STUDY

We focus on the problem of selecting algorithms for clus-

tering cancer gene expression data. According to what has

been defined in Section III-B, as our case study, we consider

seven candidate algorithms: single linkage (SL), complete

linkage (CL), average linkage (AL), k-means (KM), mixture

model clustering (M), spectral clustering (SP), and Shared

Nearest Neighbors algorithm (SNN) [21], [22], [23].

We implemented a prototype that according the architec-

ture introduced in Section III-A. In the next sections, we

present some relevant details about the three architecture’s

modules: the Feature Extractor, the Meta-Learner and the

Database.

A. The Feature Extractor

We use a set of eight descriptive attributes (meta-

attributes). Some of them were first proposed for the case

of supervised learning tasks [25].

1) LgE: log10 of the number of examples. A raw indica-

tion of the available amount of training data.

2) LgREA: log10 of the ratio of the number of examples

by the number of attributes. A rough indicator of

the number of examples available to the number of

attributes.

3) PMV: percentage of missing values. An indication of

the quality of the data.

1http://www.cs.bris.ac.uk/˜cgc/METAL

4) MN: multivariate normality, which is the proportion

of T 2 [26](examples transformed via T 2) that are

within 50% of a Chi-squared distribution (degree of

freedom equals to the number of attributes describing

the example). A rough indicator on the approximation

of the data distribution to a normal distribution.

5) SK: skewness of the T 2 vector. Same as the previous

item.

6) Chip: type of microarray technology used (either

cDNA or Affymetrix) - see Section V.

7) PFA: percentage of the attributes that were kept after

the application of the attribute selection filter.

8) PO: percentage of outliers. In this case, the values

stands for the proportion of T 2 distant more than two

standard deviations from the mean. Another indicator

of the quality of the data.

As this set is possibly not optimal, in future implementa-

tions we will consider new features.

B. Meta-Learner

Our system generates a ranking of algorithms for each

dataset given as input. In order to generate a ranking of

P candidates (clustering algorithms), we use P regressors,

each one responsible for predicting the ranking of a specific

algorithm for the input dataset.

For constructing the regressor associated to a given algo-

rithm i, we adopt the following procedure. First, we define

a set of meta-examples. Each meta-example corresponds to

a dataset, described by a set of meta-attributes, with one of

them representing the desired output. The value of the meta-

attribute representing the desired output is assigned according

to the ranking of the algorithm among all the seven ones

used to cluster the dataset. Next, we apply a supervised

learning algorithm to each of the P regressors, which will

be responsible for associating a dataset to a ranking.

As previously mentioned, we consider seven available

clustering algorithms: SL, AL, CL, KM, M, SP and SNN.

As a consequence, we build seven regressors, R1, . . . , R7,

associated to, respectively, SL, AL, CL, KM, M, SP and

SNN. Now, suppose that the outputs of the seven regressors

for a new dataset are, respectively, 7, 5, 6, 1, 2, 4 and 3. Such

an output means, for instance, that model SL is expected to

be the worst model (it is the last one in the ranking), AL is

fifth best model model, CL the fourth one, KM is supposed

to better than all the others, as it is placed as first one in the

ranking.

In our implementation, we use the regression Support

Vector Machine (SVM) algorithm, implemented in LIBSVM:

a library for support vector machines [27]. A reason for this

choice is that, in our preliminary results, SVMs showed a

better accuracy than models such as neural networks and k-

NN.

C. The Database

The Database stores meta-examples regarding cancer gene

expression microarray datasets. Each meta-example has two

parts: (1) the meta-attributes describing the gene expression



data, which are those presented in Section IV-A; and (2)

a vector with the ranking of each clustering algorithm for

that dataset. In order to assign this ranking for a dataset, we

run each of the seven clustering algorithms with the non-

normalized version of the dataset to produce the respective

partitions. The number of clusters is set to be equal to the

true number of the classes in the data. The known class

labels are not used in any way during the clustering. For

all non-deterministic algorithms, we run the algorithm 30

times. Then, for further analysis, we pick the partition with

the best corrected Rand index.

In fact, in terms of the index to measure the success of

the algorithm in recovering the true partition of the dataset

and build the ranking, we also employ the corrected Rand

index (cR) [21], [28]. The cR can take values from -1 to 1,

with 1 indicating a perfect agreement between the partitions,

and the values near 0 or negatives corresponding to cluster

agreement found by chance.

Formally, let U = {u1, . . . , ur, . . . , uR} be the par-

tition given by the clustering solution, and V =
{v1, . . . , vc, . . . , vC} be the partition formed by an a priori

information independent of partition U (the gold standard).

The corrected Rand is defined as:

cR =
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where (1) nij represents the number of objects in clusters

ui and vj ; (2) ni· indicates the number of objects in cluster

ui; (3) n·j indicates the number of objects in cluster vj ; (4)

n is the total number of objects; and (5)
(

a

b

)

is the binomial

coefficient a!
b!(a−b)! .

Based on the values of the cR, the ranking for the

algorithms is generated as follows. The clustering algorithm

that presents the highest cR come higher in the ranking.

Algorithms that generate partition with the same cR receive

the same ranking number, which is the mean of what they

would have under ordinal rankings.

V. EXPERIMENTAL DESIGN

A. Description of the Datasets

We describe here the experiments that we developed in

order to evaluate the performance of our prototype. Thirty

two microarray datasets are included in this analysis (see

Table I). These datasets present different values for char-

acteristics such as type of microarray chip (second column),

number of patterns (third column), number of classes (fourth

column), distribution of patterns within the classes (fifth

column), dimensionality (sixth column), and dimensionality

after feature selection (last column).

In terms of the datasets, it is important to point out that

microarray technology is usually available in two different

platforms, cDNA and Affymetrix [5], [6], [7]. Measurements

of Affymetrix arrays are estimates on the number of RNA

copies found in the cell sample, while cDNA microarrays

values are ratios of the number of copies in relation to a

control cell sample.

In the case of Affymetrix, following other works, for our

datasets, all genes with expression level below to 10 are set to

the minimum threshold of 10. The maximum threshold is set

at 16,000. Values below or above these thresholds are often

not reliable [5], [29], [30]. That is, our analysis is performed

on the scaled data to which the ceiling and threshold values

have been applied.

Furthermore, in order to remove uninformative genes

for the case of Affymetrix arrays, we apply the following

procedure. For each gene j (attribute), we compute the mean

mj . But before doing so, in order to get rid of extreme values,

we discard the 10% largest and smallest values. Based on

this mean, we transform every value x∗

ij of example i and

attribute j to:

yij = log2(x
∗

ij/mj)

After the previous transformation, we select for further

analysis genes whose expression level differed by at least

l-fold, in at least c samples, from their mean expression

level across samples. With few exceptions, the parameters

l and c were chosen in such a way as to yield a filtered

dataset with around at least 10% of the original number of

genes (features). It is important to point out that the data

transformed with the previous equation is only used in the

filtering step.

A similar filter procedure was applied for the case of

cDNA microarray, but without the need to transform the data.

In the case of cDNA microarray datasets, whose attributes

(genes) could present missing values, we discard the ones

with more than 10% of missing values. The attributes that are

kept and still present missing values have the values replaced

for the respective mean value of the attribute.

B. System Performance

For a given dataset, in order to generate the ranking, we

considered the configuration that obtained the best corrected

Rand. We executed the algorithms with Euclidean distance,

Pearson correlation and Cosine, but always with the number

of cluster set to the real number of classes in the dataset.

We evaluate the performance of the meta-learners using

the leave-one-out procedure. At each step, 31 examples are

used as the training set, and the remaining example is used

to test the generated SVMs. This step is repeated 32 times,

using at each time a different test example.

The quality of a suggested ranking for a given dataset is

evaluated by measuring the similarity to the ideal ranking,

which represents the correct ordering of the models according

to the corrected Rand. In our work, we used the Spearman’s

rank correlation coefficient (see [10]) to measure the simi-

larity between a suggested and the ideal rankings.

Given a dataset i, we calculate the squared difference be-

tween the suggested and the ideal rankings for each algorithm

j (D2
ij). Then, we compute the sum of these differences for

all algorithms:



TABLE I

DATASET DESCRIPTION

Dataset Chip n Nr. Classes Dist. Classes d Filtered d

Alizadeh-V1 [31] cDNA 42 2 21,21 4022 1095

Alizadeh-V2 [31] cDNA 62 3 42,9,11 4022 2093

Armstrong-V1 [32] Affy 72 2 24,48 12582 1081

Armstrong-V2 [32] Affy 72 3 24,20,28 12582 2194

Bhattacharjee [33] Affy 203 5 139,17,6,21,20 12600 1543

Bittner [34] cDNA 38 2 19, 9 8067 2201

Bredel [35] cDNA 50 3 31,14,5 41472 1739

Chen [36] cDNA 180 2 104,76 22699 85

Chowdary [37] Affy 104 2 62,42 22283 182

Dyrskjot [38] Affy 40 3 9,20,11 7129 1203

Garber [39] cDNA 66 4 17,40,4,5 24192 4553

Golub-V1 [40] Affy 72 2 47,25 7129 1877

Gordon [41] Affy 181 2 31,150 12533 1626

Khan [42] cDNA 83 4 29,11,18,25 6567 1069

Laiho [43] Affy 37 2 8,29 22883 2202

Lapoint-V1 [44] cDNA 69 3 11,39,19 42640 1625

Lapoint-V2 [44] cDNA 110 4 11,39,19,41 42640 2496

Liang [45] cDNA 37 3 28,6,3 24192 1411

Nutt-V1 [46] Affy 50 4 14,7,14,15 12625 1377

Nutt-V2 [46] Affy 28 2 14,14 12625 1070

Nutt-V3 [46] Affy 22 2 7,15 12625 1152

Pomeroy-V1 [47] Affy 34 2 25,9 7129 857

Pomeroy-V2 [47] Affy 42 5 10,10,10,4,8 7129 1379

Ramaswamy [29] Affy 190 14 11,10,11,11,22,10,11,10,30,11,11,11,11,20 16063 1363

Risinger [48] cDNA 42 4 13,3,19,7 8872 1771

Shipp [49] Affy 77 2 58,19 7129 798

Singh [50] Affy 102 2 58,19 12600 339

Su [51] Affy 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571

Tomlins-V1 [52] cDNA 104 5 27,20,32,13,12 20000 2315

Tomlins-V2 [52] cDNA 92 4 27,20,32,13 20000 1288

West [53] Affy 49 2 25,24 7129 1198

Yeoh-V1 [54] Affy 248 2 43,205 12625 2526

D2
i =

∑

j

D2
ij (1)

Finally, the Spearman coefficient is calculated using the

equation:

SRCi = 1 −
6 ∗ D2

i

P 3 − P
, (2)

where P is the number of candidate algorithms. The value of

this coefficient ranges from [−1, 1] . The larger is the value

of SRCi, the greater is the similarity between the suggested

and the ideal rankings for the dataset i.
In order to evaluate the rankings generated for datasets

in the test set, we calculated the average of the Spearman’s

correlation for all these datasets (Equation 3).

SRC =
1

32
∗

∑

i∈test

SRCi (3)

The result of our approach was compared to a de-

fault ranking method, where the average ranking is sug-

gested for all datasets. In our case, the default ranking is:

SL=6.41, AL=4.60, CL=3.84, KM=2.31, M=3.40, SP=3.07,

SNN=4.36. In Table II, we show the mean and standard devi-

ation for the Spearman coefficient for the rankings generated

by our approach and for the default ranking.

As it can be seen, the rankings generated by our method

were more correlated to the ideal ranking. In fact, according

to a hypothesis test, at a significance level of 0.05, the mean

of the correlation value found with our method was signifi-

cantly higher than that obtained with the default ranking.

VI. FINAL REMARKS

In this work, we proposed a new approach to providing

knowledge for the selection of clustering algorithms. We can

point out contributions of this work to two different fields:

(1) we applied meta-leaning concepts to a problem which had



TABLE II

MEAN OF THE SPEARMAN COEFFICIENT

Method SRC

Default 0.59 ± 0.37
Meta-Leaner 0.75 ± 0.21

not yet been tackled: clustering algorithm selection; and (2)

in terms of cluster analysis, we provided a novel framework

to support non-expert users in the algorithm selection task.

In order to evaluate our framework, we developed a case

study in the context of cancer gene expression microarray

datasets. The experiment performed revealed good results in

that our method, compared to the default ranking, generated

rankings that were more correlated to the ideal ranking. In

fact, according to a hypothesis test, at a significance level of

0.05, the mean of the Spearman coefficient value found with

our method was significantly higher than that obtained with

the default ranking.

Finally, we would like to highlight that several works can

be developed from our proposal by implementing other meta-

learners for different categories of datasets, and by using

other meta-learning approaches that have not yet been used

in the algorithm selection problem.
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