
 Editorial Manager(tm) for Innovations in Systems and Software Engineering
 Manuscript Draft

Manuscript Number:

Title: Randomized Constraint Solvers: A Comparative Study

Article Type: SI: NFM 2009

Keywords: constraint solvers; software testing; concolic execution; random solvers

Corresponding Author: Mitsuo Takaki,

Corresponding Author's Institution: UFPE

First Author: Mitsuo Takaki

Order of Authors: Mitsuo Takaki; Diego Cavalcanti; Rohit Gheyi; Juliano Iyoda; Marcelo d'Amorim;
Ricardo Prudêncio

Abstract: The complexity of constraints is a major obstacle
for constraint-based software verification. Automatic
constraint solvers are fundamentally incomplete:
input constraints often build on some undecidable theory
or some theory the solver does not support. This paper
proposes and evaluates several randomized solvers
to address this issue.We compared the effectiveness of a
symbolic solver (CVC3), a random solver, two heuristic
search solvers, and seven hybrid solvers (i.e. mix of random,
symbolic and heuristic solvers). We evaluated the
solvers on a benchmark generated with a concolic execution
of 9 subjects. The performance of each solver
was measured by its precision, which is the fraction
of constraints that the solver can find solution out of
the total number of constraints that some solver can
find solution. As expected, symbolic solving subsumes
the other approaches for the 4 subjects that only generate
decidable constraints. For the remaining 5 subjects,
which contain undecidable constraints, the hybrid
solvers achieved the highest precision (fraction of constraints
that a solver can find a solution out of the total
number of satisfiable constraints). We also observed
that the solvers were complementary, which suggests
that one should alternate their use in iterations of a
concolic execution driver.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Innovations in Systems and Software Engineering: A NASA Journal manuscript No.
(will be inserted by the editor)

Randomized Constraint Solvers: A Comparative Study

Mitsuo Takaki‡ · Diego Cavalcanti† · Rohit Gheyi† · Juliano Iyoda‡
·

Marcelo d’Amorim‡
· Ricardo B. C. Prudêncio‡

Received: date / Accepted: date

Abstract The complexity of constraints is a major ob-
stacle for constraint-based software verification. Auto-

matic constraint solvers are fundamentally incomplete:

input constraints often build on some undecidable the-

ory or some theory the solver does not support. This pa-
per proposes and evaluates several randomized solvers

to address this issue. We compared the effectiveness of a

symbolic solver (CVC3), a random solver, two heuristic

search solvers, and seven hybrid solvers (i.e. mix of ran-

dom, symbolic and heuristic solvers). We evaluated the
solvers on a benchmark generated with a concolic ex-

ecution of 9 subjects. The performance of each solver

was measured by its precision, which is the fraction

of constraints that the solver can find solution out of
the total number of constraints that some solver can

find solution. As expected, symbolic solving subsumes

the other approaches for the 4 subjects that only gen-

erate decidable constraints. For the remaining 5 sub-

jects, which contain undecidable constraints, the hybrid
solvers achieved the highest precision (fraction of con-

straints that a solver can find a solution out of the total

number of satisfiable constraints). We also observed

that the solvers were complementary, which suggests
that one should alternate their use in iterations of a

concolic execution driver.

1 Introduction

Software testing is important and expensive [8,31,39].

Several techniques have been proposed to reduce this

cost. Automation of test data generation, in particular,

‡ Federal University of Pernambuco, Recife, Brazil. E-mail:
mt2,jmi,damorim,rbcp@cin.ufpe.br
† Federal University of Campina Grande, Campina Grande,
Brazil. E-mail: diegot,rohit@dsc.ufcg.edu.br

helps to improve software productivity by transfering a
tedious and error-prone search task to the machine [24].

It enables higher system coverage which often translates

to higher reliability [8]. Random testing [13,34] and

symbolic testing [27] are two widely used techniques
with this goal and with well-known limitations. On the

one hand, random testing might explore the same pro-

gram path repeatedly and also fail to explore impor-

tant paths (i.e., paths to which only a small portion of

the space of input data can lead to an execution). On
the other hand, pure symbolic testing is problematic

for indexing arrays, dealing with native calls, detect-

ing infinite loops and recursion, and, especially, deal-

ing with undecidable constraints. Combined random-
symbolic testing [22] has been recently proposed to cir-

cumvent these limitations. One important limitation it

attempts to address is the inability to solve general con-

straints. This is the focus of this paper. We study the

impact of alternative randomization strategies for solv-
ing constraints. In this setting, random-symbolic test-

ing reduces to random-symbolic constraint solving.

One can combine random and symbolic solvers by

first delegating to the random solver the parts of a con-

straint that build on theories a symbolic solver does
not support. Then use that partial solution to simplify

the original constraint and finally combine the ran-

dom solution with the one obtained from calling the

symbolic solver on the simplified constraint. To sim-

plify illustration of algorithms assume constraint are
satisfiable; solvers will timeout on unsatisfiable input

constraints which often arise in symbolic testing, in

general, and specifically in our experiments. Important

to note is that, as for typical decision procedures in
SMT solvers [20,41], random and symbolic solvers are

not independent in this combination, i.e., their input

constraints are very often related by data dependency.

compile from here: "latex main"
Click here to download Manuscript: main.tex

http://www.editorialmanager.com/isse/download.aspx?id=5061&guid=534668e5-27e1-4b26-ab46-4d6f61b30e32&scheme=1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

They should therefore collaborate. One practical con-

sequence of this is that the more constraints the sym-

bolic solver rejects the more complex random solving

becomes, and conversely. Therefore, random solving is

critical for the effectiveness of the combined solver.

In our work, we performed a comparison of 11 differ-
ent solvers. As a baseline, two solvers were considered:

a plain symbolic (in our case, CVC3 [2]) and a purely

random search. As an extension of the random solver,

we proposed two heuristic search solvers based on Ge-

netic Algorithms (GA) [23] and on Particle Swarm Op-
timization (PSO) [26]. GA and PSO are two widespread

and general search procedures adapted in our work as

constraint-based solvers. We can take advantage of their

complementary nature with respect to a symbolic solver
in the same way a pure random solver does. Finally,

seven hybrid solvers were implemented by combining

the symbolic, random and heuristic solvers.

For the purpose of comparison, we consider a con-

straint as satisfiable only if one of our solvers can find

a solution to it and define precision as the fraction of
constraints that a solver can find solutions out of the

total number of satisfiable constraints. In our experi-

ments, we observed that the symbolic and the hybrid

solvers showed very satisfactory results in the subjects
that contain decidable constraints, as expected. Con-

sidering the other subjects, the hybrid solvers achieved

a more consistent performance compared to individual

symbolic and random solvers combined.

This paper makes the following contributions:

– The proposal of hybrid solvers combining random

and symbolic constraint solving;

– The implementation of existing and proposed

solvers;
– An empirical evaluation of solvers over constraints

generated from concolic executions of 9 subjects.

The remaining of this paper is organized as follows.
Section 2 describes the solvers implemented and eval-

uated in our work. Section 3 brings the performed ex-

periments and obtained results, followed by Section 4

which presents some related work. Finally, Section 5
concludes the paper.

2 Techniques: Randomized Solvers

In this section, we explain each of the solvers proposed

in this work. Before that, we present the common input-
output interface for them.

Input. All solvers take as input (i) a constraint system

pc (in reference to a path condition from a symbolic

execution), (ii) a random seed s, and (iii) a range of

values [lo, hi]. A constraint system takes the form
∧

bi,

where bi is a boolean expression constructed, in princi-

ple, with any logical system. For example, the expres-

sion x > 0 ∧ x > y+1 illustrates a valid constraint sys-

tem. We often use the term constraint alone or clause

in reference to a single boolean expression bi and con-

straint system or pc in reference to the conjunction

of all constraints.

Output. A solution is a vector of variable assign-

ments that satisfies a constraint system. For instance,

〈x 7→ 2, y 7→ 0〉 is a solution to the constraint x > y + 1

(using integer variables). A solver returns a solution

when it finds one, and the flag empty otherwise.

Note on implementation. We wrote all solvers in the

Java language and used part of the code from the Java

Pathfinder symbolic execution [5] for the integration
with CVC3.

2.1 Baseline solvers

We use the solvers ranSOL and symSOL as repre-

sentatives of plain random and symbolic solvers respec-

tively. In our experiments we use these solvers as base-
lines for comparison.

Random Solver. The random solver tries to solve a

constraint by randomly generating assignments to all
variables in a certain amount of time. Figure 1 shows

the pseudo-code for the random constraint solver ran-

SOL. The main loop generates random solutions (the

input vector
−→
iv) and selects those that satisfy pc (lines

1-6). The expression vars(pc) denotes the set of vari-
ables that occur in pc. Function random selects random

integer values in the range [lo, hi] and builds assign-

ments to each variable in this set (line 2). (For simplic-

ity, we only show the case for integers.) The function
eval(pc,

−→
iv) checks whether the candidate solution

−→
iv

models pc. This function evaluates the concrete boolean

expression that pc encodes using the variable assign-

ments in
−→
iv . ranSOL returns

−→
iv at line 4 if it is a solu-

tion to pc, or returns empty on timeout (line 7).

Symbolic Solver. We use a well-known SMT solver

to represent our baseline symbolic solver: CVC3 [2].

Symbolic constraint solvers are complete for a given

set of supported decidable theories. For example, CVC3
supports rational and integer linear arithmetic (among

others). However, these solvers are incomplete for solv-

ing constraints with non-linear arithmetic, integer divi-

sion and modulo. Constraints with these operators are
undecidable. Nevertheless it is important to note that

CVC3 can still find solutions to special cases of such

constraints.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Require: path condition pc
Require: random seed s, range [lo, hi]
1: while ¬timeout do

2:
−→
iv ⇐ random(vars(pc), range)

3: if eval(pc,
−→
iv) then

4: return
−→
iv

5: end if

6: end while

7: return empty

Fig. 1: Random (ranSOL)

Require: path condition pc
Require: random seed s, and range [lo, hi]
1: (pcgood , pcbad) ⇐ partition(pc)
2:

−→
iv1 ⇐ symSOL.solve(pcgood)

3: if (
−→
iv1 = empty) then

4: return empty

5: end if

6: newpc ⇐ pcbad\
−→
iv1

7:
−→
iv2 ⇐ ranSOL.solve(newpc,seed ,range)

8: return
−→
iv2 = empty ? empty :

−→
iv1 +

−→
iv2

Fig. 2: Decidable constraints first (DCF)

Require: path condition pc
Require: random seed s, and range [lo, hi]
1: (pcgood , pcbad) ⇐ partition(pc)
2: sols ⇐ eRanSOL.solve(pcbad ,seed ,range)
3: for all

−→
iv1 in sols do

4: newpc ⇐ pcgood\
−→
iv1

5:
−→
iv2 ⇐ symSOL.solve(newpc)

6: if
−→
iv2 6= empty then

7: return
−→
iv1 +

−→
iv2

8: end if

9: end for

10: return empty

Fig. 3: Undecidable constraints first (UCF)

Require: path condition pc
Require: random seed s, and range [lo, hi]
1: (goodvars , badvars) ⇐ partition(pc)
2: while ¬timeout do

3:
−→
iv1 ⇐ random(badvars)

4: newpc ⇐ pc\
−→
iv1

5:
−→
iv2 ⇐ symSOL.solve(newpc)

6: if
−→
iv2 6= empty then

7: return
−→
iv1 +

−→
iv2

8: end if

9: end while

Fig. 4: Bad variables first (BVF)

2.2 Heuristic search solvers

This section discusses two solvers based on well-

known heuristic search techniques: Genetic Algorithms

(GA) [23] and Particle Swarm Optimization (PSO) [26].
Conceptually, these solvers attempt to optimize the

random search of ranSOL. The basic task of these al-

gorithms is to search a space of candidate solutions to

identify the best ones in terms of a problem-specific
fitness function. The search process usually starts

with the selection of randomly-chosen individuals in

the search space (i.e., candidate solutions in the search

problem). The search proceeds by making changes to

each individual iteratively with search operators until
the search meets some stop criteria (e.g., the result is

good enough or the search time expires). The decision

to change individuals in the search space depends on

the evaluation of their current fitness values. The prin-
ciple of these algorithms is that the new individuals

generated across successive iterations will converge to

the best solutions in the search space, i.e., each iteration

potentially explores better regions in the search space.

For our application, an individual is simply a solution
as defined above: a vector of variable assignments (e.g.

〈x 7→ 2, y 7→ 0〉).

Two fitness functions have been widely used for con-

straint solving problems: MaxSAT [17,29,37] and Step-
wise Adaptation of Weights (SAW) [6,16]. MaxSAT is a

simple heuristic that counts the number of clauses that

can be satisfied by a solution. Maximum fitness is ob-

tained when the solution satisfies all clauses (boolean

expressions) in a constraint system (conjunction of

clauses). The main issue with MaxSAT is that the solver
can sometimes favor solutions that satisfy several easy-

to-solve constraints at the expense of solutions that sat-

isfy only a few hard-to-solve constraints. Bäck et al.

proposed SAW [6] to reduce the impact of this issue.

SAW associates a weight to each clause in a constraint.
Each weight is updated with each iteration when it is

not satisfied. The use of SAW helps to identify hard-

to-solve clauses with the progress of search iterations.

The solver can use this information to favor individ-
uals that are more fit to satisfy hard-to-solve clauses.

We used SAW to evaluate fitness in our GA and PSO

implementations.

Summary of GA and PSO. A GA search starts with

a population of individuals randomly selected from the
search space. The GA algorithm evaluates each indi-

vidual at each iteration in order to select and combine

them in pairs. The worst fitted are removed from the

population. Each iteration produces a new population

with special operators: a crossover combines two in-
dividuals to produce others and a mutation changes

one individual. The crossover operator splits two indi-

viduals (two solution vectors) in two parts by setting,

randomly, a cut-point, and produces two new subjects
that are the combination of both solutions. The muta-

tion operator randomly selects a variable of the solution

vector and changes its value.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Similar to GA, PSO operates with an initial ran-

dom population of candidate solutions called particles.

The interactive collaboration of particles to compute a

solution is the main difference between GA and PSO.

Each particle has a position in the search space and a
contributing factor to the population, typically called

velocity, which PSO uses to update the next position

of each particle. A typical PSO iteration updates the

velocity of a particle according to global best and local
best solutions. The next position of a particle depends

on the old position and the new computed velocity. The

mutually-recursive equations below govern the update

of velocity and position across successive iterations t.

vt+1 = ω ∗ vt + r1 ∗ c1 ∗ (bestpart − xt) +

r2 ∗ c2 ∗ (bestpop − xt)

xt+1 = xt + vt+1

The vectors v and x store respectively velocities and

positions for each particle. The label t refers to one it-

eration. The coefficient ω, called inertia, denotes the

fraction of velocity in iteration t that the particle will
inherit in iteration t+1. Coefficients r1 and r2 are num-

bers within the range [0,1] randomly generated accord-

ing to some probability distribution (in our implemen-

tation, the uniform distribution). The vector bestpart

stores the best solution each particle visited and c1 in-

dicates the confidence level to local solutions (i.e., to

one individual particle). The term bestpop indicates the

best solution in the population and c2 indicates the con-

fidence level to global solutions. Note that the position
of a particle at instant t + 1 is computed by simply

adding the velocity vt+1.

Discussion. Although the algorithms have a similar

behavior, each one has a different computational cost.

At each iteration GA needs to eliminate less fitted in-

dividuals, add new ones with crossover, and modify ex-
isting with mutation. The PSO algorithm updates the

search state more efficiently; it essentially only use ma-

trix arithmetic. Note also that both approaches eval-

uate each solution in every iteration. It is also impor-

tant to highlight that there is a trade-off associated to
the choice of the population size. Too large values for

this parameter will slow the convergence of the heuris-

tic search (in this case the heuristic search will be more

similar to a purely random search). On the other hand,
too small values for population size may be not ad-

equate to provide an effective space exploration, spe-

cially considering large search spaces.

2.3 Hybrid solvers

This section describes solvers that conceptually com-

bine ranSOL and symSOL. These hybrid solvers make

different decisions in (i) what to randomize and in (ii)

which order.

Note on terminology. We use the term eRanSOL

in reference to an extension of ranSOL that can return

many solutions. We use the term pc\
−→
iv to denote a

substitution of variables in pc with their concrete values

in
−→
iv . For example, (x > 0 ∧ x > y+1)\〈x 7→ 2〉 reduces

to (2 > 0 ∧ 2 > y + 1).

2.3.1 Decidable constraints first (DCF)

Figure 2 shows the pseudo-code for the DCF solver. At

line 1, the solver partitions the constraint pc into two:

the first, named pcgood , contains decidable constraints.
The second, pcbad , complements the first with undecid-

able constraints. Recall that pc consists of a conjunction

of boolean expressions. The algorithm reduces to plain

random solving if pcgood is empty and to plain symbolic
solving if pcbad is empty. (We omit these checks for sim-

plicity.) When both parts are non-empty, the combined

solver uses the symbolic solver to first find a solution

to pcgood (line 2). As pcgood only contains decidable

constraints, an empty answer from symSOL indicates
that pcgood is unsatisfiable (lines 3-5). Consequently,

pc is also unsatisfiable since ¬pcgood implies ¬pc (from

the partition function). In case symSOL finds a solu-

tion, the solver produces the constraint newpc with the
substitution pcbad\

−→
iv1 . If the random solver can find

one solution to newpc, then DCF returns
−→
iv1 +

−→
iv2 as

solution, i.e. variable assignments produced by the sym-

bolic and the random solvers, respectively. For illustra-

tion, DCF partitions the constraint b % a 6= 0 ∧ a
> 0 in two: pcgood = a > 0 and pcbad = b % a 6= 0.

(The modulo operator makes the constraint undecid-

able.) DCF passes pcgood to the symbolic solver, and

uses the solution, say 〈x 7→ 2〉, to simplify pcbad and
finally call the random solver on b % 2 6= 0, which can

be easily solved by it.

2.3.2 Undecidable constraints first (UCF)

Figure 3 shows the pseudo-code for the UCF solver.

It differs from DCF in the order of randomization: it
attempts to solve the undecidable parts first. UCF uses

eRanSOL to find many solutions to pcbad . The main

loop checks for each solution
−→
iv1 whether symSOL can

find a solution to pcgood\
−→
iv1 (lines 3-9) . Note that,

differently from DCF, UCF calls symSOL once in each

iteration. This algorithm corresponds to the one we dis-

cussed in Section 1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

2.3.3 Bad variables first (BVF)

Figure 4 shows the pseudo-code for the BVF solver. It

is similar to UCF in the order of calls to random and

symbolic solvers. However, it partitions the problem dif-

ferently. While the previous hybrid solvers partition the

set of clauses from one input constraint, BVF partitions
the set of variables that occur in that constraint. For

example, BVF randomizes only the variable b to solve

the constraint a = b2 + c, while UCF and DCF ran-

domizes all variables in this case as they appear in a
clause involving non-linear arithmetic.

BVF is similar to the algorithm proposed in

DART [22] as it randomizes a selection of variables for

making the constraint decidable. DART, however, ran-

domizes variables incrementally from left to right in
the order they appear in the constraint. The constraint

a = b2 ∧ ... ∧ b = a2 illustrates one diference between

BVF and DART. BVF randomizes variables b and a

while DART can avoid the randomization of a as its
value is determined after b’s value selection. We did

not evaluate DART itself in this paper but we intend

to evaluate it as a future work.

2.3.4 Other combinations

Note that DCF and UCF use a random solver. We also

want to evaluate whether these solvers improve preci-

sion with the use of a guided random search. To that
end, we combine DCF and UCF with GA and PSO lead-

ing to 4 new solvers. It remains to be investigated how

UCF can be combined with heuristic search solvers.

3 Evaluation

This section reports the evaluation of the proposed

solvers with the constraints that a concolic execu-

tion [40] generates. To that end we use data-structures
from a variety of open source programs.

Concolic execution. A concolic execution interprets

the program simultaneously in a concrete and symbolic
domain. The use of a concrete state enables a concolic

execution to evaluate deterministically any program ex-

pression. This provides a way to handle typical limita-

tions of a pure symbolic execution such as infinite loops

and recursion, exploration of infeasible paths, and ar-
ray indexing. The use of a symbolic state (which the

concrete state is an instance of) enables a concolic ex-

ecution to collect constraints that lead to non-visited

paths along the execution of one concrete path.
Figure 5 shows the pseudo-code for a concolic exe-

cution test driver. The driver’s goal is to produce in-

puts to a procedure ptest . It takes as parameter the

Require: parameterized test ptest

Require: random seed s, range [lo, hi]
1:

−→
iv ⇐ random(vars(ptest), range)

2: result ⇐ {
−→
iv }

3: pcs ⇐ pcs + run(ptest ,
−→
iv)

4: while size(pcs) > 0 do

5:
−→
iv ⇐ solve(pickOne(pcs),s,range)

6: if
−→
iv 6= empty then

7: result ⇐ result ∪ {
−→
iv }

8: pcs ⇐ pcs + run(ptest ,
−→
iv)

9: end if

10: end while

11: return result

Fig. 5: Concolic Execution Driver

procedure ptest for which we want to generate input,

a random seed s and the range of values [lo, hi]. The

driver reports as output a set of input vectors to ptest ,

where each input leads ptest ’s execution to a different

program path. One iteration of the main loop explores
one concrete path and produces several path constraints

(corresponding to non-visited paths along that concrete

path). A solution to a constraint, when found, drives

the next concolic execution of ptest (line 8).

Subjects. We used data-structure from a variety of
sources. BST is an implementation of a binary search

tree from Korat [11]. FileSystem is a simplification of

the Daisy file system [35]. TreeMap is a jdk1.4 imple-

mentation (java.util.TreeMap) of red-black trees. Switch
refers to one example program from the jCUTE dis-

tribution [40]. RatPoly is an implementation of ra-

tional polynomial operations from the Randoop dis-

tribution [34]. RationalScalar is another implemen-

tation of rational polynomials from the ojAlgo li-
brary [3]. Newton is an implementation of the new-

ton’s method to iteratively compute the square root

of a number [44]. HashMap is a jdk1.4 implementation

(java.util.HashMap) of a map that uses hash values as
keys. Colt [1] is an open source Java library to support

scientific computing and data analysis. It includes data

structures and algorithms for linear algebra, statistics,

and Monte Carlo simulation. From this library, we have

chosen the MersenneTwister class to be tested. This class
is a random number generator that follows a normal dis-

tribution [30]. It contains large non-linear constraints.

We decided to extract our benchmark from real

software as our main motivation is software testing.

Surely benchmarks like SMT-LIB [36] could also be

good source of constraints provided that they contain
constraints that occur in software (in contrast to con-

straints from hardware or hybrid systems).

Table 1 shows the characteristics of each concolic

execution in terms of the size, used domains, and used

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

Subject Literal Type
Avg. Number
of Literals

Avg. Clause
Size

Avg. Number
of Clauses

Operators

BST int 12.13 2 95.35 > ≥ < ≤

FileSystem int 3.54 2 41.67 ≥ < = 6=

TreeMap int 12.67 2 154.14 ≥ < = 6=

Switch int 10.95 2.55 106.93 + ∗ > ≤ = 6=

RatPoly int 3.89 8.11 60.36 + − ∗ / % > ≥ < ≤ = 6=

RationalScalar int 3.43 36.72 25.7 ∗ / % = 6=

Newton float 1.56 4818.02 27.48 + − ∗ / > ≤

HashMap int 17.73 63 78.31 + ≪ ≫ >>>ˆ=

Colt int 1 1390.82 16.81 + ∗ ≫ >>> & |ˆ= 6=

Table 1: Experiments features.

ranSOL GA PSO CVC3 DCF UCF BVF DCF UCF DCF UCF BEST
+ GA + GA + PSO + PSO

BST 0.015 0.010 0.022 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FileSystem 0.060 0.00 0.060 0.999 0.999 0.999 0.999 1.000 0.999 1.000 0.999 1.000
TreeMap 0.021 0.013 0.020 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Switch 0.484 0.000 0.349 0.994 0.997 0.995 0.996 0.079 0.994 0.074 0.993 0.997

avg. 0.145 0.005 0.112 0.998 0.999 0.999 0.999 0.769 0.998 0.768 0.998 -

RatPoly 0.119 0.011 0.100 0.092 0.855 0.271 0.173 0.855 0.129 0.855 0.192 0.855
RationalScalar 0.442 0.010 0.370 0.040 0.428 0.180 0.100 0.220 0.040 0.500 0.144 0.500

Newton 0.743 0.143 0.571 0.000 0.486 0.314 0.000 0.143 0.000 0.286 0.171 0.743

HashMap 0.023 0.000 0.632 0.000 0.023 0.023 0.000 0.000 0.000 0.643 0.652 0.652
Colt 0.856 0.320 0.351 0.000 0.930 0.931 0.000 0.321 0.320 0.363 0.366 0.931

avg. 0.436 0.096 0.404 0.026 0.544 0.344 0.055 0.308 0.098 0.529 0.305 -

Table 2: Average precision observed for each pair of subject (row) and solver (column).

ranSOL GA PSO CVC3 DCF UCF BVF DCF UCF DCF UCF
+ GA + GA + PSO + PSO

BST 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FileSystem 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.002 0.000 0.002 0.000

TreeMap 0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Switch 0.004 0.000 0.034 0.008 0.004 0.006 0.010 0.045 0.013 0.033 0.011

RatPoly 0.012 0.006 0.002 0.000 0.000 0.119 0.078 0.000 0.023 0.000 0.010
RationalScalar 0.033 0.017 0.014 0.000 0.052 0.025 0.000 0.000 0.000 0.000 0.008

Newton 0.060 0.000 0.000 0.000 0.100 0.259 0.000 0.000 0.000 0.000 0.148
HashMap 0.000 0.000 0.153 0.000 0.000 0.000 0.000 0.000 0.000 0.198 0.178

Colt 0.019 0.020 0.019 0.000 0.013 0.014 0.000 0.020 0.021 0.027 0.021

Table 3: Standard deviation observed for each pair of subject (row) and solver (column).

operators. The operators ≪, ≫, >>> &, | andˆare the
bitwise operators: shift left, shift right, unsigned shift

right, “and”, “or” and exclusive “or”, respectively. The

others correspond to typical arithmetic, relational and

boolean operators. Although one cannot infer the prob-
lem complexity based on such data (as it depends on

the unknown size of the solution space), it is still use-

ful to understand the performance and the behavior

of the discussed solvers. The number of dimensions
of the search space is called dimensionality and, on

the random and search-based algorithms, each literal

is mapped as a search space dimension.

General Results. Table 2 shows the average precision
obtained by the implemented solvers (each solver was

executed 10 times with different random seeds). Table 3

in turn presents the standard deviation of precision ob-

served in these experiments. In each run, we used a 1s
timeout associated to each solver call and a 180 min-

utes timeout per subject. The first group of 4 subjects

on top of the tables 2 and 3 (namely, BST, FileSys-

tem, TreeMap and Switch) produces only decidable con-
straints. For this group, the symbolic solver and, con-

sequently, all hybrid solvers showed roughly the same

average precision and low standard deviation values.

The second group of 5 subjects at the bottom of ta-

bles 2 and 3 (namely, RatPoly, RationalScalar, Newton,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

HashMap, and Colt) produces only undecidable con-

straints. For this group, CVC3 rarely finds a solution.

The best results in turn were obtained by using hy-

brid solvers: the DCF solver had the best performance

(0.544 of precision in average), followed by DCF+PSO
(0.529 of precision in average). The results observed

in these subjects presented in general higher variation

compared to the subjects which contain only decidable

constraints.

Comparing the random and the search-based algo-
rithms applied to the bottom 5 subjects on Table 2, we

notice that the random solver was more consistent: it

finds more solutions in 4 out of 5 subjects, and presents

higher average precisions particularly when compared
to the GA solver. We highlight that the search-based

solvers are affected by its computational complexity. In

fact, a candidate solution must be evaluated on each

iteration and a set of new solutions must be gener-

ated through the application of search operators. This
is more drastic for the GA algorithm, since it has more

complex search operators compared to PSO. ranSOL,

due to its lower complexity, traverses the search space

swiftly and is able to find solutions for more than half
of the satisfiable constraints.

It is important to note that one solver often found

solutions that another solver missed, particularly when

the subjects contain undecidable constraints. In order

to illustrate this feature, Figure 6 shows a pairwise com-
parison of the solvers observed in an experiment for the

subject Colt. A cell on line i and column j indicates the

number of constraints that solver i solved and solver j

missed. As we can see, the behavior of the solvers var-

ied significantly in the set of constraints they solved.
No single solver was able to find solutions to all con-

straints in this subject. By comparing PSO and GA, for

instance, we can see that PSO is able to solve 79 con-

straints not solved by GA. Conversely, the GA solver
finds solutions to 39 constraints that PSO is not able

to solve. This result shows a complementary behavior

between the two techniques.

Impact of timeout on precision. In order to ob-
serve the impact of timeout on precision, we run each

solver with increasing timeout values: 100, 300, 500 and

700ms. In general, the impact of the timeout on preci-

sion was not significant. This behavior is illustrated by

the precision of the solvers for BST, which is presented
in Figure 7 as stacked bars. The precision is aggregated

at each timeout increase. The subjects that generate

linear-integer constraints are solved more efficiently by

CVC3, and no significant gain is observed with a time-
out increment. The only exception was Switch (Fig-

ure 8), in which the timeout affected the CVC3 per-

formance in such a way that it was no better than the

other solvers. This is, to some extent, unexpected as

the constraints generated by Switch are supported by

CVC3, which should therefore outperform the others.

Just like Switch, the solver precision for Colt also

increased as the timeout increased (see Figure 9). As
Colt generates constraints that CVC3 cannot solve, we

did not include CVC3 in Figure 9.1

Fig. 7: Solvers precision on BST for different timeout values.

Fig. 8: Solvers precision on Switch for different timeout values.

Impact of the search parameters. As shown in Ta-

ble 2, the random solver outperformed PSO and GA.
As mentioned before, the complexity of the algorithms

1 The complete set of data for these experiments are available
at http://www.cin.ufpe.br/~jmi/isse.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

Colt

ranSOL GA PSO CVC3 DCF UCF BVF DCF UCF DCF UCF
+ GA + GA + PSO + PSO

ranSOL - 226 181 311 0 0 311 226 226 184 180

GA 10 - 39 95 7 7 95 0 0 48 43

PSO 5 79 - 135 4 4 135 79 79 26 23

CVC3 0 0 0 - 0 0 0 0 0 0 0

DCF 33 256 213 344 - 1 344 256 256 216 213

UCF 34 257 214 345 2 - 345 257 257 217 214

BVF 0 0 0 0 0 0 - 0 0 0 0

DCF+GA 10 0 39 95 7 7 95 - 0 48 43

UCF+GA 10 0 39 95 7 7 95 0 - 48 43

DCF+PSO 4 84 22 131 3 3 131 84 84 - 24

UCF+PSO 3 82 22 134 3 3 134 82 82 27 -

Summary: 358 SAT, 323 UNK.
ranSOL:311, GA:95, PSO:135, CVC3:0, DCF:344, UCF:345
BVF:0, DCF+GA:95, UCF+GA:95, DCF+PSO:131, UCF+PSO:134

Fig. 6: Results of various solvers for Colt. Column and row show solver identifiers. A cell denotes the difference of constraints that a
solver (from row) can solve and another (from column) cannot. The bottom line summarizes the results.

Fig. 9: Solvers precision on Colt for different timeout values.

of the heuristic solvers impacts significantly their per-

formance when a short timeout is set.

Another aspect that can have an impact on the
heuristic solver performance is the choice of the search

parameters. In our experiments, we have used default

values for GA and PSO parameters, adopted in other

domains of application. However, the best values for

the search parameters are dependent on the subject at
hand. For instance, the ranSOL solver obtained a bet-

ter performance in comparison to both GA and PSO

for the Colt subject (Table 2). In a new experiment, we

adopted a high value of 30 individuals in the popula-
tion size, for which it is expected that both GA and

PSO present a more similar behavior compared to a

random search. In this experiment, the precision rates

achieved by GA and PSO were respectively 0.52 and
0.49, which are still lower than the ranSOL precision

(0.85), but higher than the precision rates observed by

the GA and the PSO default parameters (0.32 and 0.35

respectively).

The above experiment indicates that an improve-

ment in performance of the heuristic solvers could be

achieved by an adequate choice of the search param-

eters. Obviously, a trial-and-error procedure to choose
the parameters is not feasible in practice. In future, we

intend to investigate strategies to define the search pa-

rameters taking into account the features of the subject

being tackled.

Discussion. On linear-integer subjects, except for

Switch, the expected behavior was observed: the sym-
bolic solver performed well. Switch was an exception

as the symbolic solver ran out of time constantly when

solving its constraints. For the second group of sub-

jects, which produces undecidable constraints, no solver
came out as the most appropriate. Each solver seems

to be useful for different problems. On average, DCF

and DCF+PSO have shown an equivalent performance

with the highest precision values. BVF was observed as

the less appropriate for those subjects.

GA and its hybrids did not performed well com-

pared to the other search solvers. This can be explained

by its higher complexity in comparison to the ranSOL
and the PSO algorithms. Its operators (crossover and

mutation) have a computational cost that makes it in-

appropriate for symbolic testing. Nevertheless, a hybrid

algorithm combining GA and PSO could be useful to
provide a further space traversing technique since GA

was able to solve constraints not solved by PSO (as it

was mentioned in the Colt experiment).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

The ranSOL solver and its hybrids came out as the

most adaptable solvers, with better results in compar-

ision to the solvers based on GA and PSO. In fact,

its low computational cost allowed it to find solutions

without timing out.

The results indicate that the random and the hybrid

solvers are effective to solve undecidable constraints.
However, one can not predict which solver fits best for

a particular subject since the solvers typically solve dif-

ferent sets of constraints. The results suggest that one

should alternate the use of different solvers in successive

concolic execution iterations. The solvers could also run
in parallel and take advantage of multi-core processors

and larger memories (this trend has already been inves-

tigated by Holzmann et al. [25] for the model-checking

domain).

Regarding the domain size, the choice of domain

size is driven by a tradeoff between efficiency and cov-

erage: random solver performs better with the small-
est domain that includes all solutions. To the best of

our knowledge it is not possible to statically infer such

ideal domain. Although we have not carried out exper-

iments with different domain sizes, we believe that ran-
dom solvers perform consistently for different domain

sizes.

Concerning different data-types, we understand
that a fuzzing of programs with String and reference

types can be adjusted to only generate integer con-

straints. One can encode a string object with an array

of characters (integers), and object references as integer
symbolic variables.

4 Related Work

Random-symbolic testing has been widely investigated

recently to automate test input generation [21,22,28].
It alternates concrete and symbolic execution to allevi-

ate their main limitations. It is important to note that

random-symbolic testing provides two orthogonal con-

tributions: (i) constraint generation and (ii) constraint
solving. Our goal is to improve constraint solving. In

this context, DART [22] conceptually uses a random

solver to simplify symbolic solving. We plan to eval-

uate the solvers we proposed with a DART solver as

discussed in Section 2. Another approach to automate
test input generation is random testing [10,18,32,33].

The ranSOL solver differs from random testing in two

important ways: (a) random testing generates inputs

for program parameters; a classification of good input
depends on the result of an actual execution, and (b)

random testing typically generates test sequence and

data simultaneously. We plan to combine random se-

quence generation together with random-symbolic in-

put generation to automate testing.

We used the Satisfiability Modulo Theories

(SMT) [12,20,41] solver CVC3 [2], which uses built-in

theories for rationals and integer linear arithmetic (with
some support to non-linear arithmetic). SAT solving re-

search of undecidable theories has focused on the analy-

sis of hybrid and control systems, as recently evidenced

by the iSAT [19] and the ABSolver [7] systems. The first
integrates the power of SMT solvers to solve boolean

constraints with the capability of Interval Constraint

Propagation (ICP) [9] to deal with non-linear constraint

systems, while the second uses a DPLL-based [14] algo-

rithm to perform the search and defers theory problems
to subordinate solvers. As in hybrid and control sys-

tems, undecidable theories also arise in the domain of

software systems. This paper shows simple algorithms

that can be effective to solve both decidable and unde-
cidable fragments of constraints that a concolic program

execution generates. Another distinguishing feature of

our solvers is that, in contrast to a DPLL(T) [20] solver,

they are not dependent on a background theory T. One

can use the solvers this paper describes in combina-
tion with any theory-specific solver to benefit from their

complementary nature.

There are variations to the search-based solvers pre-

sented in Section 2 which we plan to investigate. Ru
and Jianhua propose a hybrid technique which com-

bines GA and PSO by creating individuals in a new

generation by crossover and mutation operations [38].

Instinct-based PSO adds another criterion (the in-

stinct) to influence a particle’s behavior [4]. The instinct
represents the intrinsic “goodness” of each variable of

a particle’s candidate solution. We also plan to analyze

how test inputs generated from our solvers compare to

those generated directly with a PSO algorithm whose
fitness function is based on coverage [42].

Dwyer et al. [15] propose a technique, called Par-

allel Randomized State-space Search, that runs multi-

ple parallel randomized state-space searches, and ter-

minates all searches when the first one finds an error.
They aim at detecting hard to find errors in concurrent

programs. Holzmann et al. [25] propose a new approach

that allows to perform verifications within strict time

bounds. Their tool uses parallelism and search diversity

to optimize coverage. They focus on improving perfor-
mance of a number of model checking tasks using par-

allelization. We propose randomized solvers that can be

improved using parallelization.

Wintersteiger et al. [43] implement a parallel SMT
solver. They parallelize a sequential solver by running

multiple solvers, each configured to use different heuris-

tics. Our results show that it is difficult to predict the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

best heuristic that will fit for a particular subject. As

a future work, we intend to run our solvers in parallel.

An approach can incorporate our solvers in their infras-

tructure [43]. We aim at obtaining a solver with results

that are closer to our “BEST” column in Table 2. In
other contexts that are sensitive to the range, we can

parallelize our random solvers using different ranges.

5 Conclusions

This paper proposes and implements a plain random

solver, seven hybrid solvers combining random, search-

based and symbolic solvers, and two heuristic search-
based solvers. We use a random solver and a symbolic

solver (CVC3) as baselines for comparison. We evaluate

the solvers with constraints that a concolic execution

generates on 9 subjects. For the concolic execution on

subjects that generated only decidable constraints the
experiments revealed, as expected, that CVC3 is supe-

rior in all but 2 cases. CVC3 timed out in these cases.

For solving undecidable constraints, no solver subsumes

another. It suggests that one may not be able to predict
the heuristic that will fit best for a particular subject;

it is preferable to run them all in parallel.

Next we want to analyse several open source
projects to quantify the number of constraints that

would produce undecidable constraints. We believe this

is a necessary step to provide evidence for the practical

relevance of this research.

Acknowledgements. We are grateful to Augusto
Sampaio, Alexandre Mota, Leopoldo Teixeira and the

anonymous reviewers for the comments on this work.

This work was partially supported by the CNPQ grant

136172/2008.3 and FACEPE grants APQ-0093-1.03/07

and APQ-0074-1.03/07.

References

1. Colt webpage. http://acs.lbl.gov/˜hoschek/colt
2. CVC3 webpage. http://www.cs.nyu.edu/acsys/cvc3/

3. ojAlgo webpage. http://ojalgo.org
4. Abdelbar, A., Abdelshahid, S.: Instinct-based PSO with local

search applied to satisfiability. In: IEEE International Joint
Conference on Neural Networks, pp. 2291–2295 (2004)

5. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A sym-
bolic execution extension to Java PathFinder. In: Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 134–138 (2007)

6. Bäck, T., Eiben, A.E., Vink, M.E.: A superior evolutionary
algorithm for 3-SAT. In: 7th Conference on Evolutionary
Programming, pp. 125–136. Springer-Verlag, UK (1998)

7. Bauer, A., Pister, M., Tautschnig, M.: Tool-support
for the analysis of hybrid systems and models. In:
R. Lauwereins, J. Madsen (eds.) Design, Automa-
tion and Test in Europe Conference and Exposition

(DATE), pp. 924–929. ACM, Nice, France (2007). URL
http://doi.acm.org/10.1145/1266366.1266565

8. Beizer, B.: Software Testing Techniques. International
Thomson Computer Press (1990)

9. Benhamou, F., Granvilliers, L.: Continuous and inter-
val constraints. In: F. Rossi, P. van Beek, T. Walsh
(eds.) Handbook of Constraint Programming, Foun-
dations of Artificial Intelligence, chap. 16. Else-
vier Science Publishers, Amsterdam, The Nether-
lands (2006). URL http://www.lina.sciences.univ-
nantes.fr/Publications/2006/BG06

10. Bird, D.L., Munoz, C.U.: Automatic generation of random
self-checking test cases. IBM Systems Journal 23(3), 228–
245 (1983)

11. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Auto-
mated testing based on Java predicates. In: Proceed-
ings of the International Symposium on Software Test-
ing and Analysis (ISSTA), pp. 123–133 (2002). DOI

http://doi.acm.org/10.1145/566172.566191
12. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van

Rossum, P., Schulz, S., Sebastiani, R.: An incremental and
layered procedure for the satisfiability of linear arithmetic
logic. In: Proceedings of the International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 317–333 (2005)

13. Csallner, C., Smaragdakis, Y.: JCrasher: An automatic ro-
bustness tester for Java. Software - Practice and Experience
34, 1025–1050 (2004)

14. Davis, M., Logemann, G., Loveland, D.: A machine program
for theorem-proving. Communications of ACM 5(7), 394–397
(1962). DOI http://doi.acm.org/10.1145/368273.368557

15. Dwyer, M.B., Elbaum, S., Person, S., Purandare, R.: Parallel

randomized state-space search. In: ICSE ’07: Proceedings of
the 29th international conference on Software Engineering,
pp. 3–12. IEEE Computer Society, Washington, DC, USA
(2007)

16. Eiben, A., van der Hauw, J.: Solving 3-SAT by GAs adapt-
ing constraint weights. Evolutionary Computation pp. 81–86
(1997). DOI 10.1109/ICEC.1997.592273

17. Folino, G., Pizzuti, C., Spezzano, O.: Combining cellular ge-
netic algorithms and local search for solving satisfiability
problems. In: IEEE Conference on Tools with Artificial In-
telligence, pp. 192–198 (1998)

18. Forrester, J., Miller, B.: An empirical study of the robust-
ness of windows NT applications using random testing. In:
USENIX Windows Systems Symposium, pp. 59–68 (2000)

19. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert,
T.: Efficient solving of large non-linear arithmetic constraint
systems with complex boolean structure. Journal on Satis-
fiability, Boolean Modeling and Computation 1(?), 209–236
(2007)

20. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A.,
Tinelli, C.: DPLL(T): Fast decision procedures. In: R. Alur,
D. Peled (eds.) Computer aided verification : 16th Interna-
tional Conference, CAV 2004, Lecture Notes in Computer

Science, vol. 3114, pp. 175–188. Springer, Boston, Mas-
sachusetts (2004)

21. Godefroid, P.: Compositional dynamic test generation. In:
34th Symposium on Principles of Programming Languages
(POPL), pp. 47–54. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1190216.1190226

22. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed
Automated Random Testing. In: Procedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), vol. 40, pp. 213–
223. ACM Press, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1064978.1065036

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (1989)

24. Harman, M.: Automated test data generation using search
based software engineering. In: AST ’07: Proceedings of the
Second International Workshop on Automation of Software
Test, p. 2. IEEE Computer Society, Washington, DC, USA
(2007). DOI http://dx.doi.org/10.1109/AST.2007.4

25. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification. In:
Proceedings of the International Conference on Automated
Software Engineering (ASE), pp. 1–6. IEEE (2008)

26. Kennedy, J., Eberhart, R.: Particle swarm optimization. In:
IEEE Neural Networks, pp. 1942–1948 (1995)

27. King, J.C.: Symbolic execution and program testing. Com-
munications of ACM 19(7), 385–394 (1976)

28. Majumdar, R., Sen, K.: Hybrid concolic testing. In:
Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pp. 416–426 (2007). URL
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.41

29. Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard
3-SAT problems. In: Genetic and Evolutionary Computation
Conference, vol. 1, pp. 393–400. Morgan Kaufmann, Orlando,
Florida, USA (1999)

30. Matsumoto, M., Nishimura, T.: Mersenne Twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling
and Computer Simulation 8(1), 3–30 (1998). DOI
http://doi.acm.org/10.1145/272991.272995

31. National Institute of Standards and Technology. The eco-
nomic impacts of inadequate infrastructure for software test-
ing. Planning Report 02-3 (2002)

32. Pacheco, C., Ernst, M.: Randoop: feedback-directed ran-
dom testing for Java. In: Companion to the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA, pp.
815–816 (2007)

33. Pacheco, C., Ernst, M.D.: Eclat documents. Online manual
(2004). http://people.csail.mit.edu/people/cpacheco/eclat/

34. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-
directed random test generation. In: Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pp. 75–
84. IEEE Computer Society, Washington, DC, USA (2007).
DOI http://dx.doi.org/10.1109/ICSE.2007.37

35. Qadeer, S.: Daisy File System. Joint CAV/ISSTA Special
Event on Specification, Verification, and Testing of Concur-
rent Software. 2004

36. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2.
Tech. rep. (2006)

37. Rossi, C., Marchiori, E., Kok, J.N.: An adaptive evolutionary
algorithm for the satisfiability problem. In: Symposium on
Applied Computing (SAC), pp. 463–469. Como, Italy (2000)

38. Ru, N., Jianhua, Y.: A GA and particle swarm optimization
based hybrid algorithm. In: IEEE World Congress on Com-
putational Intelligence. Hong Kong (2008)

39. Santhanam, P., Hailpern, B.: Software debugging, testing,
and verification. IBM Systems Journal 41, 4–12 (2002)

40. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools. In: CAV, pp. 419–423
(2006)

41. Tinelli, C.: A DPLL-based calculus for ground satisfiability
modulo theories. In: Proceedings of the European Conference
on Logics in Artificial Intelligence, pp. 308–319. Springer-
Verlag, London, UK (2002)

42. Windisch, A., Wappler, S., Wegener, J.: Applying parti-
cle swarm optimization to software testing. In: H. Lipson
(ed.) Genetic and Evolutionary Computation Conference, pp.
1121–1128 (2007)

43. Wintersteiger, C., Hamadi, Y., de Moura, L.: A concurrent
portfolio approach to SMT solving. pp. 715–720 (2009)

44. Ypma, T.J.: Historical development of the Newton-Raphson

method. SIAM Review 37(4), 531–551 (1995)

