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Abstract. Meta-Learning has been used to select algorithms based on
the features of the problems being tackled. Each training example in this
context, i.e. each meta-example, stores the features of a given problem
and the performance information obtained by the candidate algorithms
in the problem. The construction of a set of meta-examples may be costly,
since the algorithms performance is usually defined through an empirical
evaluation on the problem at hand. In this context, we proposed the
use of Active Learning to select only the relevant problems for meta-
example generation. Hence, the need for empirical evaluations of the
candidate algorithms is reduced. Experiments were performed using the
classification uncertainty of the k-NN algorithm as the criteria for active
selection of problems. A significant gain in performance was yielded by
using the Active Learning method.

1 Introduction

In several domains of application, there are different algorithms that can be
applied to a single problem. In Machine Learning, for instance, different learn-
ing algorithms have been proposed to solve learning problems. An important
question that arises in such domains is the appropriate selection of algorithms
for each problem at hand [1]. The most traditional strategies to algorithm se-
lection involve, in general, expert knowledge, or costly procedures of empirical
evaluation [2]. Meta-Learning [3] arises in this context as an alternative solution,
capable of automatically acquire knowledge to be used in algorithm selection.

The knowledge in Meta-Learning is acquired from a set of meta-examples
that store the experience obtained in the application of a number of candidate
algorithms in problems investigated in the past. More specifically, each meta-
example is related to a given problem and stores: (1) the features that describe
the problem; and (2) information about the performance obtained by the can-
didate algorithms when applied to the problem (e.g. the best algorithm, error
rates, execution times,...). A meta-learner is a learning model that receives as
input a set of such meta-examples, and generates knowledge relating features of
the problems and the performance of the candidate algorithms.
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A limitation of Meta-Learning is related to the process of generating meta-
examples. In order to generate a meta-example from a given problem, it is nec-
essary to perform an empirical evaluation (e.g. cross-validation) to collect the
performance information of the candidate algorithms. Although the proposal of
Meta-Learning is to perform this empirical evaluation only in a limited number
of problems, the cost of generating a whole set of meta-examples may be high,
depending, for instance, on the number and complexity of the candidate algo-
rithms, the used methodology of empirical evaluation and the amount of data
available in the problems.

Considering the above context, we present here an original proposal in which
Active Learning [4] is used to select problems for meta-example generation. Ac-
tive Learning is a paradigm of Machine Learning, used in domains in which it is
hard or costly to acquire training examples [5]. The main motivation of Active
Learning is to reduce the number of training examples, at same time maintaining
the performance of the learning algorithms. In our proposal, it corresponds to
reduce the set of meta-examples by selecting only the more relevant problems,
consequently, reducing the number of empirical evaluations performed on the
candidate algorithms.

In order to evaluate the viability of our proposal, we implemented a proto-
type in which the k-NN (k-Nearest Neighbors) algorithm is used as meta-learner,
and a method based on uncertainty of classification [5] is used to select prob-
lems for meta-example generation. The prototype was evaluated in a case study
which corresponds to the task of selecting two specific algorithms for time se-
ries forecasting problems: the Time Delay Neural Network (TDNN) [6] and the
Simple Exponential Smoothing (SES) [7]. Experiments performed on a set of 99
problems revealed a gain in the meta-learner performance by using the imple-
mented Active Learning method, compared to a random procedure for selecting
problems.

The remaining of this paper is organized as follows. Section 2 brings a brief
presentation of Meta-Learning, followed by section 3 which describes, in more
details, the proposed solution and the implemented prototype. Section 4 presents
the performed experiments and obtained results. Finally, section 5 concludes the
paper by presenting some future work.

2 Meta-learning

In different knowledge areas, it is observed the existence of several algorithms
that compete to be applied to specific classes of problems. In such situations,
both empirical and theoretical results have shown that there is no algorithm
uniformly superior, independently on the problem being tackled [8,9,10].

Meta-Learning is a framework that defines techniques to assist algorithm selec-
tion for learning problems (usually classification and regression problems) [3]. In
a strict formulation of Meta-Learning, each training example (or meta-example)
is related to an individual learning problem investigated in the past and stores:
(1) a set of features (called meta-attributes) that describes the problem; and (2)
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a class attribute which indicates the best algorithm for the problem, among a set
of candidate algorithms. The meta-learner in the strict formulation is simply a
classifier algorithm which predicts the best algorithm for a given problem based
on its descriptive meta-attributes [8].

The meta-attributes usually are statistical and information theory measures
of the problem’s dataset, such as number of training examples and attributes,
correlation between attributes, class entropy, presence of outliers in the dataset,
among others [11]. The class label stored in a meta-example is usually defined by
empirically evaluating each candidate algorithm on the problem. This can be per-
formed, for instance, via a cross-validation experiment using the available prob-
lem’s dataset. The accuracy of each classifier is estimated by cross-validation,
and the class label is assigned to a problem according to the algorithm with
highest estimated accuracy.

Although the strict Meta-Learning has been investigated by different authors
(see for instance [1,8,12,13,14,15]), other Meta-Learning techniques have been
proposed to provide more informative solutions to algorithm selection. In [16],
the authors proposed a meta-learner not only to predict the best algorithm
but also to predict the applicability of each candidate algorithm to the new
problems being tackled. In [9], the NOEMON system combined different strict
meta-learners in order to provide rankings of the candidate algorithms. In [10],
the authors applied instance-based learning to provide rankings of algorithms,
taking into account the predicted accuracy and execution time of the algorithms.
In [17], the authors used a regression model as meta-learner in order to predict
the numerical value of the accuracy for each candidate algorithm.

The concepts and techniques of Meta-Learning were originally evaluated to se-
lect algorithms for classification and regressionproblems. However, in recent years,
Meta-Learning has been extrapolated to other domains of application [12,14,18].
In [12,14], for instance, the authors proposed the use of Meta-Learning to select
algorithms for time series forecasting. In [18], the authors applied Meta-Learning
to support the construction of planning systems. Considering these applications,
Meta-Learning can be viewed as a more general framework to algorithm selection,
and it is expected to be useful in problems related to a large range of domains.

3 Active Learning for Meta-example Generation

An important step in the generation of meta-examples is to estimate the perfor-
mance of the candidate algorithms on a set of problems. The evaluation of per-
formance is accomplished by applying a pre-defined methodology of experiments
(e.g. hold-out, cross-validation,...) to the available datasets. The information re-
sulting from the performance evaluation is used to define the target attribute in
the Meta-Learning task (e.g. the class corresponding to the best algorithm).

The generation of meta-examples may be a costly process depending on a
number of aspects, such as the methodology of experiments adopted to perfor-
mance evaluation, the number of problems available to generate meta-examples,
and the number and complexity of the candidate algorithms.
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Fig. 1. System Architecture

In the above context, we proposed here the use of Active Learning to sup-
port the generation of training examples for Meta-Learning. Active Leaning is a
paradigm of Machine Learning in which the learning algorithm has some control
over the inputs on which it trains [4]. The main objective of this paradigm is to
reduce the number of training examples, at same time maintaining the perfor-
mance of the learning algorithm. Active Learning is ideal for learning domains
in which the acquisition of labeled examples is a costly process, such as image
recognition [5], text classification [19] and information filtering [20].

The main motivation of the use of Active Learning in our context is to select
only the more relevant problems for Meta-Learning, and hence, to reduce the
number of empirical evaluations on the candidate algorithms. Figure 1 presents
the general architecture of system following our proposal. The system has three
different phases: meta-example generation, training and use, described as follows.

In the meta-example generation, the Active Learning (AL) module selects from
a base of problems, those ones considered the most relevant for the Meta-Learning
task. The selection of problems is performed based on a pre-defined criteria imple-
mented in the module. The candidate algorithms are then empirically evaluated
on the selected problems, in order to collect the performance information related
to the algorithms. Each generated meta-example (composed by meta-attributes
and performance information) is then stored in an appropriate database.

In the training phase, the Meta-Learner (ML) acquires knowledge from the
database of meta-examples generated by the AL module. This knowledge as-
sociates meta-attributes to the performance of the candidate algorithms. The
acquired knowledge may be refined as more meta-examples are provided by the
AL module.

In the use phase, given a new input problem, the Feature Extractor (FE)
module extracts the values of the meta-attributes. According to these values,
the ML module predicts the best candidate algorithm. For that, it uses the
knowledge previously acquired as a result of the training phase.
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In order to evaluate the proposal, we implemented a prototype to select be-
tween two candidate algorithms for time series forecasting problems: the Time-
Delay Neural Network (TDNN) [6] and the Simple Exponential Smoothing model
(SES) [7]. Both algorithms were used for short-term forecasting of stationary
time series (with no trend or seasonality). According to [14], both algorithms
are indicated to forecast stationary time series, however the quality of the fore-
casts provided by the algorithms may be very different depending on the time
series at hand.

In the current prototype, the k-Nearest Neighbors (k-NN) algorithm was used
in the ML module, and an Active Learning method based on classification un-
certainty of the k-NN [5] is used in the AL module. In the next sections, we
provide more details of the implemented prototype.

3.1 Feature Extractor

In our proposal, the FE module implements p meta-attributes X1, . . . , Xp which
correspond to features that describe the input problems. Hence, each problem e
is described by a vector x = (x1, . . . , xp) in which xj = Xj(e), (j = 1, . . . , p).

In the implemented prototype, each input problem consists of a time series to
be forecasted, and p = 10 features were used as meta-attributes:

1. Length of the time series (X1): number of observations of the series.
2. Mean of the absolute values of the 5 first autocorrelations (X2): high values

of this feature suggests that the value of the series at a time point is very
dependent of the values in recent past points.

3. Test of significant autocorrelations (X3): presence of at least one significant
autocorrelation taking into account the first 5 ones.

4. Significance of the first, second and third autocorrelation (X4, X5 and X6):
indicates significant dependences in more recent past points.

5. Coefficient of variation (X7): measures the degree of instability in the series.
6. Absolute value of the skewness and kurtosis coefficient (X8 and X9): measure

the degree of non-normality in the series.
7. Test of Turning Points for randomness (X10): The presence of a very large

or a very low number of turning points in a series suggests that the series is
not generated by a purely random process.

All implemented features are directly computed from the avaliable series data,
which has the advantage of avoiding subjective analysis, such as visual inspection
of plots.

3.2 Meta-learner

The Meta-Learning task in the current prototype corresponds to the strict for-
mulation described in Section 2, i.e. the meta-learner is a conventional classifier
that uses the meta-attributes to predict the best candidate algorithm. In the im-
plemented prototype, we used the k-NN algorithm as the strict meta-learner. In
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[10], the authors presented some advantages of using instance-based algorithms,
such as the k-NN, as meta-learners. Instance-based algorithms are extensible:
once a new meta-example becomes available, it can be easily integrated without
the need to initiate re-learning. According to [10], this is relevant for algorithm
selection since the user typically starts with a small set of meta-data that in-
creases steadily with time.

In this section, we describe more formally the meta-learner used in the pro-
totype. Let E = {e1, . . . , en} be the set of n problems used to generate a set
of n meta-examples ME = {me1, . . . , men}. Each meta-example is related to a
single problem and stores the values of p features X1, . . . , Xp for the problem
and the value of a class attribute C, which indicates the best algorithm for the
problem, among L candidates. In our prototype, we have p = 10 meta-attributes
describing problems and L = 2 candidate algorithms (TDNN and SES).

Let D = {c1, . . . , cL} be the domain of the class attribute C where each class
label cl ∈ D represents a candidate algorithm. In this way, each meta-example
mei ∈ ME is represented as the pair (xi, C(ei)) storing: (1) the description xi

of the problem ei, where xi = (x1
i , . . . , x

p
i ) and xj

i = Xj(ei); and (2) the class
label associated to ei, i.e. C(ei) = cl, where cl ∈ D.

Given a new input problem described by the vector x = (x1, . . . , xp), the
k-NN meta-learner retrieves k meta-examples from ME, according to the dis-
tance between meta-attributes. The distance function (dist) implemented in the
prototype was the unweighted L1-Norm, defined as:

dist(x,xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i ) − mini(x

j
i )

(1)

The prediction of the class label for the new problem (i.e. the prediction of
the best algorithm) is performed according to the number of occurrences (votes)
of each cl ∈ D in the class labels associated to the retrieved meta-examples.

3.3 Active Learning

As seen, the ML module predicts the best algorithms by using a set of meta-
examples generated from labeled problems, i.e. the problems in which the best
candidate algorithm is known. The AL module, described in this section, receives
a set of unlabeled problems, i.e. the problems in which the candidate algorithms
were not yet evaluated and, hence, the best algorithm for each problem is not
known. Therefore, the main objective of the AL module is to incrementally select
unlabeled problems to be used for generating new meta-examples.

In the prototype, the AL module implements a method for selecting unla-
beled problems which is based on the criteria of classification uncertainty of
the k-NN algorithm [5]. In this criteria, initially, the k-NN algorithm classifies
each unlabeled example by using the available labeled examples. A degree of
uncertainty of the provided classification is assigned for each unlabeled example.
Finally, the unlabeled example with the highest classification uncertainty is then
selected.
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The classification uncertainty of the k-NN algorithm is defined in [5] as the
ratio of: (1) the distance between the unlabeled example and its nearest labeled
neighbor; and (2) the sum of the distances between the unlabeled example and
its nearest labeled neighbors of different classes. A high value of uncertainty
indicates that the unlabeled example has nearest neighbors with similar dis-
tances but conflicting labeling. Hence, once the unlabeled example is labeled, it
is expected that the uncertainty of classification in its neighborhood should be
reduced.

In our context, let E be the set of labeled problems, and let Ẽ be the set of
unlabeled problems. Let El be the subset of labeled problems associated to the
class label cl, i.e. El = {ei ∈ E|C(ei) = cl}. Given the set E, the classification
uncertainty of k-NN for each ẽ ∈ Ẽ is defined as:

S(ẽ|E) =
minei∈E dist(x̃,xi)∑L

l=1 minei∈El
dist(x̃,xi)

(2)

In the above equation, x̃ is the description of problem ẽ. The AL module then
selects, for generating a new meta-example, the problem ẽ∗ ∈ Ẽ with highest
uncertainty:

ẽ∗ = argmax
�e∈ �ES(ẽ|E) (3)

Finally, the selected problem is labeled (i.e. the class value C(ẽ∗) is defined),
through the empirical evaluation of the candidate algorithms using the avaliable
data of the problem.

In our prototype, the labeling of a time series is performed through the empir-
ical evaluation of TDNN and SES in forecasting the series. For this, a hold-out
experiment was performed, as described in [13]. Given a time series, its data
was divided into two parts: the fit period and the test period. The test period
consists on the last 30 points of the time series and the fit period consists on the
remaining data. The fit data was used to calibrate the parameters of both models
TDNN and SES. Both calibrated models were used to generate one-step-ahead
forecasts for the test data. Finally, the class attribute was assigned as the model
which obtained the lowest mean absolute forecasting error on the test data.

4 Experiments and Results

In the performed experiments, we used 99 time series collected from the Time
Series Data Library (TSDL)1. This repository contains time series data from
several domains, most of them used as benchmark problems in the forecasting
field. Both algorithms (TDNN and SES) were empirically evaluated for fore-
casting each series (as seen in section 3.3), and hence, 99 meta-examples were
generated for the experiments with Meta-Learning.

The prototype was evaluated for different configurations of the k-NN meta-
learner (with k = 1, 3, 5, 7, 9 and 11 nearest neighbors). For each configuration,

1 TSDL - http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL
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Fig. 2. Average curves of error rates obtained by k-NN meta-learner for both the
classification uncertainty and the random active learning methods

a leave-one-out experiment was performed to evaluate the performance of the
meta-learner, also varying the number of meta-examples provided by the Active
Learning module. This experiment is described just below.

At each step of leave-one-out, one problem is left out for testing the ML
module, and the remaining 98 problems are considered as candidates to generate
meta-examples. The AL module progressively includes one meta-example in the
training set of the ML module, up to the total number of 98 training meta-
examples. At each included meta-example, the ML module is judged on the test
problem left out, receiving either 1 or 0 for failure or success. Hence, a curve with
98 binary judgments is produced for each test problem. Finally, the curve of error
rates obtained by ML can be computed by averaging the curves of judgments
over the 99 steps of the leave-one-out experiment.

As a basis of comparison, the same above experiment was applied to each
configuration of k-NN, but using in the AL module a random method for selecting
unlabeled problems. According to [5], despite its simplicity, the random method
has the advantage of performing a uniform exploration of the example space.

Figure 2 presents the curve of error rates obtained by the k-NN meta-learner av-
eraged across the different configurations of the parameter k. The figure presents
the average curve obtained when both methods were used: the classification un-
certainty (described in section 3.3) and the random method. As it is expected, for
both methods, the error rate obtained by the ML module decreased as the number
of meta-examples in the training set increased. However, the error rates obtained



Active Learning to Support the Generation of Meta-examples 825

by deploying the classification uncertainty method were, in general, lower than
the error rates obtained by deploying the random method. In fact, from 8 to 84
meta-examples included in the training set, the classification uncertainty method
steadily achieved better performance compared to the random method.

5 Conclusion

In this paper, we presented an original work that proposes the use of Active
Learning to enhance the generation of examples for Meta-Learning. In order to
verify the viability of our proposal, we implemented a prototype in which the
classification uncertainty criteria is used to select meta-examples for a k-NN
meta-learner. The prototype was evaluated in a task of selecting two candi-
date algorithms for time series forecasting, and the experiments results were
promissing.

We highlight here that, despite the originality of the proposal, it still has some
limitations that will be dealt with in future work. Although the classification
uncertainty method obtained good results in the investigated Meta-Learning
task, other Active Learning methods for k-NN have presented very competitive
results in tasks related to other contexts [5].

Another question to investigate is the use of Active Learning not only for strict
k-NN meta-learners, but also for other Meta-Learning techniques (as those cited
in section 2). The choice of the strict k-NN meta-learner in our prototype was due
to the fact that different authors in literature have focused their efforts on this
kind of meta-learner or on similar techniques. However, other Meta-Learning
techniques have been achieved good results in algorithm selection and hence,
they also have to be investigated in the context of the current proposal.
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