
Selecting and Ranking Time Series Models Using the
NOEMON Approach

Ricardo B. C. Prudêncio, Teresa B. Ludermir

Center of Informatics – Federal University of Pernambuco
P. O. Box 7851. Cidade Universitária, Recife – PE, Brazil. 50.732-970

{rbcp,tbl}@cin.ufpe.br

Abstract. In this work, we proposed to use the NOEMON approach to rank and
select time series models. Given a time series, the NOEMON approach provides
a ranking of the candidate models to forecast that series, by combining the out-
puts of different learners. The best ranked models are then returned as the se-
lected ones. In order to evaluate the proposed solution, we implemented a pro-
totype that used MLP neural networks as the learners. Our experiments using
this prototype revealed encouraging results.

1 Introduction

Time series forecasting has been widely used to support planning and decision-making
processes [1]. Several models have been developed to forecast time series, such as the
Exponential Smoothing and the Box-Jenkins models, among others [1]. Given a set of
candidate models to choose, a forecaster may either select one best model for all se-
ries, or he/she may select the best model for each time series. The former is called an
aggregate selection rule and the latter an individual selection rule [2].

Although aggregate rules are simple to implement, empirical research has shown
that there is no single model that performs better than the others in all series [3]. This
fact motivated several authors to develop individual rules, commonly associating
characteristics of the series to the best model. An approach that formalizes this knowl-
edge in a reusable way is to use expert systems [3]. However, the process of acquiring
knowledge from experts may be very expensive and time-consuming [4]. In this sce-
nario, an interesting alternative is the use of Machine Learning (ML) techniques [5].

The ML algorithms were already used to model selection in different works
[6][7][8][9]. In general, these works used a learner as a classifier that suggests just one
model among the set of candidate ones. We believe that to provide a ranking of mod-
els is a more informative solution for model selection. In our work, we proposed to
use the NOEMON approach [10] to select and rank time series models. This approach
generates a ranking by combining the outputs of different learners. In our work, we
implemented a prototype using MLP (Multi-Layer Perceptron) neural networks [11]
as the learners, and performed experiments using a large set of time series. Our results
revealed that the models suggested by our prototype were in average more accurate
than the models suggested by different aggregate selection rules.

In section 2, we present the use of ML algorithms to model selection. Section 3
brings a brief explanation about the NOEMON approach and its application to model
selection. In section 4, we present the description of the implemented prototype. Sec-
tion 5 presents the experiments and results obtained by this prototype. Finally, we
have the conclusion and future work in section 6.

2 Machine Learning to Model Selection

As we have previously said, a way to select time series models is using expert systems.
The knowledge used in these systems is extracted from forecasting experts and it is
expressed in the form of rules. In this context, we highlight the Rule-Based Forecast-
ing system [3], which implemented an expert system with 99 rules, associating time
series features (such as level discontinuities, basic trend…) to the available models.
Although these systems can express knowledge in a practical and reusable way, the
process of knowledge acquisition depends on human experts, which are often scarce
and expensive [4]. In this scenario, ML techniques are an interesting alternative to
acquire knowledge [5]. These techniques can be used to automatically learn from data,
leading to potential improvement of performance, easy adaptability to new types of
data, and a reduced need for experts [4].

The use of ML algorithms to model selection was originally proposed by [6], and
adopted in other different works. In [6], the author used decision trees to select among
six available models. As training examples, he used a set of 67 time series described
by six features: level of detail (quarterly or yearly), the number of turning points,
autocorrelation coefficients, trend, coefficient of determination, and error of the linear
regression model. In [7], a neural network system was used to select among several
exponential smoothing models, using the autocorrelations. In [8], the authors used a
neural network to select a group of models and another neural network to select a
single model of the group. In [9], the authors used a decision tree algorithm to select
between the simple exponential smoothing model and a neural network model.

In general, these works treat the model selection as a classification problem where
the class attribute represents the best candidate model to forecast the series, and then,
they use a ML algorithm as the classifier. In this context, each training example con-
sists of a time series described by a set of time series features, associated to the class
attribute. The value of this attribute is commonly defined by experimenting all candi-
date models, and by choosing the one that obtained the best forecasting results for the
series. A set of such examples is given as input of the ML algorithm, responsible for
discovering knowledge associating the features to the candidate models.�

3 NOEMON Approach to Model Selection

Previous works used ML techniques to suggest either one single model or a small
group of models among the set of candidate ones. We believe that a more informative
and flexible solution for model selection is to provide a ranking of the candidate mod-

els. First, if enough resources are available, more than one model may be used to
forecasting a time series. Second, if the user has some preference for a specific subset
of candidate models, he/she can select the model that get the best rank among the
models of interest. In our work, we proposed the use of the NOEMON approach [10]
to select and rank time series models. This approach has been recently used to select
algorithms for classification problems and the results has been very promising [10]. In
our work, we adapted the NOEMON approach to the model selection problem.

The NOEMON generates a ranking of models for each time series given as input,
and suggests to the user the models that get the top position in the ranking. To gener-
ate a ranking of n models, the NOEMON uses (n 2) classifiers (learners), each one
associated to a specific pair of models. For constructing the classifier associated to a
pair (X, Y), the NOEMON adopts the following procedure. First, it defines a set of
learning examples where each example corresponds to a time series described by a set
of features and associated to a class attribute (either 'X' or 'Y'). The class attribute is
assigned according to the model (X or Y) which obtained the best forecasting results
for that series. At following, the NOEMON applies a ML algorithm, which will be
responsible for associating new time series either to the class 'X' or to the class 'Y'

Given a new time series as input, NOEMON collects the outputs of the (n 2) classi-
fiers for the series. At following, NOEMON defines a score for each candidate model
by counting how many times the model appears among the (n 2) collected outputs.
The ranking is then generated by sorting the scores associated to the models. As an
example, suppose that we have 3 available models (X, Y and Z). The NOEMON con-
struct (3 2) = 3 classifiers C1, C2 and C3, associated to the pairs (X, Y), (X, Z) and (Y,
Z), respectively. Now, suppose that the outputs of the three classifiers for a new time
series be 'Y', 'X' and 'Y', respectively. In this case, the scores associated to the models
X, Y and Z are 1, 2 and 0, respectively. By sorting these values, the NOEMON gener-
ates the ranking [Y, X, Z] and consequently suggests the model Y as the best one for
the input series. In fact, the model Y is supposed to be better than X according to the
classifier C1, and better than Z according to the classifier C3.

4 The Implemented Prototype

In order to verify the viability of our proposal, we implemented and tested a proto-
type. In our prototype, the NOEMON approach was used to rank and select the fol-
lowing models: Random Walk (RW), Holt's Linear Exponential Smoothing (HL) and
Auto-Regressive model (AR). We choose these models based on criteria suggested in
[8]. First, the models should be well established in the literature and commonly used
in practice. The models should also require a minimal degree of user intervention and
they should represent different forecasting procedures.

For these models, the NOEMON creates 3 different classification problems, each
one associated to the pairs of models: (RW, HL), (RW, AR) and (HL, AR). For each
problem, the NOEMON uses a ML algorithm as classifier. At following, we described
the most important points in the construction of these classifiers.

4.1 Time Series Features

We followed some criteria to define the time series features. First, we tried to choose
features that can be reliably identified, avoiding any subjective analysis, such as visual
inspection of plots. According to [12], judgmental identification is time consuming,
requires expertise, and has a low degree of reliability. Second, we tried to use features
that had already been used by other authors. Finally, we tried to use a manageable
number of features. Based on these criteria, we defined the following features:
1. Length of the time series (LEN): number of observations of the series.
2. Basic Trend (BT): slope of the linear regression model. Large values of this feature

suggest the existence of a global trend in the series.
3. Ratio of Turning Points (TP): percentage of turning points in the series (100* num-

ber of turning points divided by the length of the series). A point Xt is a turning
point of a series if Xt-1< Xt >Xt+1, or Xt-1> Xt <Xt+1. This feature attempts to meas-
ure the degree of oscillation in a series.

4. First Coefficient of Autocorrelation (AC1): Large values of this feature suggest that
the value of the series at a point influences the value at the next point.

5. Type of the time series (TYPE): categorical variable that indicates the source of the
data. It is represented by 6 categories: 'micro', 'macro', 'industry', 'finances', 'demo-
graphic' and 'others'.

4.2 Definition of the Training Examples

For each pair of models (X, Y), the NOEMON stores a set of training examples where
each example has two parts: (1) the features describing a time series (see Section 4.1);
and (2) the class attribute, which has one of the values ‘X’ or ‘Y’. In order to assign
the class attribute, we observed the forecasting performance of the models on a sample
which was not used to estimate them. We used the first T observations of the series to
estimate the models and the last H observations to test the models. We compared the
Mean Absolute Error (MAE) obtained by each model on these h points, and assigned
to the class attribute the model which obtained lower MAE.

4.3 Definition of the ML Technique

In our implementation of NOEMON, we decided to use MLP (Multi-Layer Percep-
tron) neural networks [11] as the classifiers. A reason for this choice is the good per-
formance of neural networks when compared to other ML algorithms in several prob-
lems [13]. Another advantage of the MLP model is the reduced amount of time
needed to generate an output to a given input pattern. This feature is crucial to
NOEMON since it has to collect the outputs of (n 2) classifiers (O(n2)) in order to
generate a ranking. In the original implementation of NOEMON [10], the authors used
the KNN algorithm, which requires less computation during training, but more compu-
tation to return an output [5]. Using an eager algorithm, such as the MLP neural net-
work, the prototype can efficiently answer the new queries of the user.

In our prototype, we used a MLP with one hidden layer. The input layer represents
the time series features (see Section 4.1). The first four features were normalized and
the categorical feature 'TYPE' was represented by 5 binary attributes, each one associ-
ated to one of the categories 'micro', 'macro', 'industry', 'finances', and 'demographic'.
In the case of the category 'others', all 5 input received the value 0. The output layer
represents the class of the input pattern, i.e. the model associated to the time series.

5 Experiments and Results

We describe here the experiments that evaluated the performance of our prototype. In
our experiments, we used the 645 yearly time series of the M3-Competition [14].
Although, these series only represent certain economic and demographic domains,
they represent a convenient sample for expository purposes [2]. The series of the M3-
Competition has been commonly used as a benchmarking sample to evaluate model
selection strategies [2][3][8].

For each series, we estimated the three candidate models using the first observations
and we used the last H = 6 observations to evaluate the performance of the models.
This number was defined following the definitions of the M3-Competition [14]. In
table 1, we present the class distributions for each classification problem.

Table 1. Class distributions.

 (RW, HL) (RW, AR) (HL, AR)
RW 281 344 --
HL 364 -- 379
AR -- 301 266

The set of 645 examples was equally divided into training, validation and test sets,
each one composed of 215 examples. The number of hidden nodes was defined by a
trial-and-error procedure. We trained networks using 2, 4 and 6 hidden nodes (five
times for each configuration), and then saved the trained network which obtained the
lowest Sum of Squared Errors (SSE) in the validation set. The training process was
performed by the standard Backpropagation algorithm [11], using 0.002 as the value
of the learning rate.

5.1 Classification Performance

Here, we present the classification performance obtained by the MLPs in the previ-
ously defined classification problems. The MLPs were compared to the default classi-
fier, which always associates a new example to the most frequent class (for example
the class 'HL' in the problem (RW, HL)). Table 2 shows the classification test error
obtained by the MLPs, the default test error and the gain obtained by using the MLPs.
As we can see, for each pair of models, we obtained a gain in the classification error
when the MLPs were used. These results showed us that the networks were able to

learn relationships associating the time series features to the forecast models. We
observed that the best test result (around 18%) was obtained in the problem (RW,
AR), where the classes are more equally distributed.

Table 2. Classification performance of the MLPs

 (RW, HL) (RW, AR) (HL, AR)
% Test Error Default 89/215 (41.40%) 106/215 (49.30%) 86/215 (40.00%)

% Test Error NN 78/215 (36.28%) 66/215 (30.70%) 72/215 (33.49%)
Obtained Gain 5.12% 18.6% 6.51%

5.2 Quality of the Suggested Rankings

The quality of a suggested ranking for a series was evaluated by measuring the simi-
larity to the ideal ranking, which represents the correct ordering of the models accord-
ing to the MAE error. In our work, we used the Spearman's rank correlation coeffi-
cient [15] to measure the similarity between a suggested and the ideal rankings. Given
a series i, we calculate the squared difference between the suggested and the ideal
ranks for each model j (D2

ij). Then we calculate the sum of these squared differences
for all models. Finally, the Spearman coefficient is defined by the equation:

SRCi = 1 - (6. Σj D
2

ij)/(n
3 - n)� �1��

where n is the number of models. The larger is the value of SRCi, the greater is the
similarity between the suggested and the ideal rankings for the series i.

In order to evaluate the rankings generated for series in the test set, we calculated
the average of the Spearman’s correlation for all these series.

SRC = (1/215) Σi∈ test set SRCi�
�2��

The NOEMON approach was compared to an aggregate ranking method, where the
same ranking is suggested for all series. This ranking was defined by observing the
number of series in which each candidate model obtained the best performance (see
table 1). In our case, the aggregate ranking was [HL, RW, AR]. In table 3, we show
the average Spearman coefficient for the rankings generated by NOEMON and for the
aggregate ranking. As we can see, the rankings generated by the NOEMON method
were in average more correlated to the ideal ranking.

Table 3. Average Spearman coefficient of the NOEMON and aggregate methods

Method SRC
Aggregate 0.15
NOEMON 0.38

5.3 Forecasting Performance

We evaluated here the NOEMON approach as an individual selection rule. As we
have previously said, the NOEMON selects the models that get the top position in the
ranking. When more than one model is selected for a given series, the final forecasting
is the simple average of the forecasts generated by the selected models. In our experi-
ments, we compared the NOEMON method with three aggregate selection rules. The
first one is merely to use RW as the forecast model for all series, the second is to use
HL and the third is to use the AR model.

In order to compare the quality of the selection rules for all series in the test set, we
considered the Percentage Better (PB) measure [2]. This measure associated to a
selection method i is defined as follows:

PBi = 100 * (1/m) Σ j∈ test set Σ t = T+1
T+6 δijt�

�3��

where,

δijt = 1 se | eRjt | < | eijt |
 0 otherwise.�

�

In the above definition, R represents a reference rule which serves as a basis for
comparison. The eijt is the one-step-ahead error obtained by the method i in the series j
at time t, and m is the number of times in which | eRjt | ≠ | eijt |. Hence, PBi indicates in
percentage terms, the number of times the error obtained by the reference method R
was lower than the error obtained using the rule i, for all series and all points of test.
Values greater than 50 for PBi, indicates that the models selected by the rule i are in
average, more accurate than the models suggested by the reference rule R.

In table 4, we show the PB estimates of the NOEMON method for the 215 series of
test, using the three aggregate rules as the reference methods. As we can see, for all
aggregate rules the PB measure was lower than 50%. Although the PB measure was
not significantly low for the rule HL, it was nevertheless lower than 50%. These re-
sults indicate that the individual rule provided by the NOEMON method was in gen-
eral more accurate than the aggregate rules.

Table 4. Comparative forecasting performance measured by PB

Aggregate Method PB
RW 36.0
HL 47.9
AR 37.3

6 Conclusion

In this work, we proposed the use of the NOEMON approach to rank and select time
series models. In order to evaluate the proposed solution, we implemented a prototype

to select between three widespread models. In our prototype, we used MLP neural
networks as the classifiers of NOEMON. In our experiments, the trained MLPs ob-
tained a good classification performance for all the classification problems created by
the prototype. We also observed that the rankings generated by NOEMON were well
correlated to the ideal rankings, and the forecasting accuracy of the selected models
was improved when the NOEMON approach was used. As future work, we intend to
improve the performance of this prototype by augmenting the set of time series fea-
tures and by performing feature selection for each pair of models.

References

1. Montgomery, D. C., Johnson, L. A. and Gardiner, J. S.: Forecasting & Time Series Analysis.
Mc-Graw-Hill, New York (1990)

2. Shah, C.: Model Selection in Univariate Time Series Forecasting Using Discriminant Analy-
sis. International Journal of Forecasting, 13 (1997) 489-500

3. Collopy, F. and Armstrong, J.S.: Rule-based Forecasting: Development and Validation of an
Expert Systems Approach to Combining Time Series Extrapolations. Management Science,
38(10) (1992) 1394-1414

4. Arinze, B., Kim, S-L. and Anandarajan M.: Combining and Selecting Forecasting Models
Using Rule Based Induction. Computers & Operations Research, 24(5) (1997) 423-433

5. Mitchel, T.: Machine Learning, MacGraw Hill, New York (1997)
6. Arinze, B.: Selecting Appropriate Forecasting Models Using Rule Induction. Omega-

International Journal of Management Science, 22(6) (1994) 647-658
7. Chu C-H, Widjaja D: Neural Network System for Forecasting Method Selection. Decision

Support Systems, 12(1) (1994) 13-24
8. Venkatachalan, A. R. and Sohl, J. E.: An Intelligent Model Selection and Forecasting Sys-

tem. Journal of Forecasting, 18 (1999) 167-180
9. Prudêncio, R. B. C. and Ludermir, T. B.: Selection of Models for Time Series Prediction via

Meta-Learning. Proceedings of the 2th International Conference on Hybrid Intelligent Sys-
tems (HIS’ 02), Santiago, Chile, IOS Press (2002) 74-83

10. Kalousis A. and Theoharis, T.: NOEMON: Design, Implementation and Performance Re-
sults of an Intelligent Assistant for Classifier Selection. Intelligent Data Analysis, 3(5)
(1999) 319-337

11. Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learning Representations by Backpropa-
gation Errors. Nature, 323 (1986) 533-536

12. Adya M., Collopy. F., Armstrong, J.S. and Kennedy, M.: Automatic Identification of Time
Series Features for Rule-Based Forecasting. Int. Jour. of Forecasting, 17(2) (2001) 143-157

13. Shavlik, J. W., Mooney, R.J. and Towell, G.G.: Symbolic and Neural Learning Algorithms:
An Experimental Comparison. Machine Learning, 6(2) (1991) 111-143

14. Makridakis S., Hibon M.: The M3-Competition: Results, Conclusions and Implications.
International Journal of Forecasting, 16(4) (2000) 451-476

15. Soares, C. and Brazdil, P.: Zoomed Ranking: Selection of Classification Algorithms Based
on Relevant Performance Information. Principles of Data Mining and Knowledge Discov-
ery: 4th European Conference (PKDD-2000), Springer-Verlag, (2000) 126-135

