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Abstract

Meta-Learning has been used to relate the performance
of algorithms and the features of the problems being tack-
led. The knowledge in Meta-Learning is acquired from a
set of meta-examples which are generated from the empir-
ical evaluation of the algorithms on problems in the past.
In this work, Active Learning is used to reduce the number
of meta-examples needed for Meta-Learning. The motiva-
tion is to select only the most relevant problems for meta-
example generation, and consequently to reduce the num-
ber of empirical evaluations of the candidate algorithms.
Experiments were performed in two different case studies,
yielding promissing results.

1 Introduction

One of the major challenges in several domains of ap-
plication is to predict when one algorithm is more ade-
quate than another to solve a particular problem [9]. Meta-
Learning is a framework developed in the field of super-
vised machine learning with the aim of automatically pre-
dicting algorithms performance, thus assisting users in the
process of algorithm selection [7, 23].

The knowledge in Meta-Learning is acquired from a set
of training examples (the meta-examples) that store the ex-
perience obtained in the application of a number of candi-
date algorithms in problems investigated in the past. More
specifically, each meta-example is related to a given prob-
lem and stores: (1) the features that describe the problem;
and (2) information about the performance obtained by the

algorithms when applied to the problem.
A limitation of Meta-Learning is related to the process

of generating meta-examples. In order to generate a meta-
example from a given problem, it is necessary to perform
an empirical evaluation (e.g. cross-validation) to collect
the performance information of the algorithms. The cost of
generating a whole set of meta-examples may be high, de-
pending, for instance, on the number and complexity of the
candidate algorithms, the methodology of empirical evalu-
ation and the amount of data available in the problems.

In this paper, we present the use of Active Learning [5] to
support the generation of meta-examples. The main motiva-
tion of Active Learning is to reduce the number of training
examples, at same time maintaining the performance of the
learning algorithms. In our proposal, it corresponds to re-
duce the set of meta-examples, consequently, reducing the
number of empirical evaluations performed on the candi-
date algorithms.

In [17], we presented the initial experiments performed
to evaluate the viability of the proposed solution. In that
work, an Active method based on Classification Uncer-
tainty [14] was used to select meta-examples for a k-NN
(k-Nearest Neighbors) algorithm used as meta-learner. In
the current work, we present new experiments that evalu-
ated the proposed solution, which was applied to two differ-
ent case studies. Experiments revealed a gain in the meta-
learner performance by using the Active Learning method.

Section 2 brings a brief presentation of Meta-Learning,
followed by section 3 which presents the Active Learning
paradigm. Section 4 describes the proposed solution and
the implemented prototype, followed by section 5 which
presents the performed experiments and obtained results.
Finally, section 6 concludes the paper.



2 Meta-Learning

Meta-Learning is a framework that defines techniques
to assist algorithm selection for learning problems (usually
classification and regression problems) [7]. Each training
example (or meta-example) is related to an individual prob-
lem investigated in the past and stores: (1) a set of features
(called meta-attributes) that describes the problem; and (2)
the performance information, derived from the empirical
evaluation of the candidate algorithms on the problem.

The meta-attributes usually are statistical and informa-
tion theory measures of the problem’s dataset, such as num-
ber of training examples and attributes, correlation between
attributes, class entropy, presence of outliers, among others
[3, 9]. In a strict formulation of Meta-Learning, the per-
formance information is a class attribute which indicates
the best algorithm for the problem, among a set of candi-
date algorithms. The class label stored in a meta-example is
usually defined via a cross-validation experiment using the
available problem’s dataset. The meta-learner in this case
is simply a classifier which predicts the best algorithm for a
given problem based on its descriptive meta-attributes [1].

Although the strict Meta-Learning has been investigated
by different authors (see for instance [1, 9, 12, 15, 16, 18]),
other Meta-Learning techniques have been proposed to pro-
vide more informative solutions to algorithm selection. In
[6], the authors proposed a meta-learner not only to predict
the best algorithm but also to predict the applicability of
each candidate algorithm to the new problems being tack-
led. In [10], the NOEMON system combined different strict
meta-learners in order to provide rankings of the candidate
algorithms. In [3], the authors applied instance-based learn-
ing to provide rankings of algorithms, taking into account
the predicted accuracy and execution time of the algorithms.
In [2], the authors used a regression model as meta-learner
in order to predict the numerical value of the accuracy for
each candidate algorithm.

3 Active Learning

Active Leaning is a paradigm of Machine Learning in
which the learning algorithm has some control over the
inputs on which it trains [5]. The main objective of this
paradigm is to reduce the number of training examples, at
same time maintaining the performance of the learning al-
gorithm. Active Learning is ideal for learning domains in
which the acquisition of labeled examples is a costly pro-
cess, such as image recognition [14], text classification [22]
and information filtering [20].

Previous work in Active Learning has been concentrated
in the selective sampling approach [14]. In this approach,
the learning algorithm begins with a small training set of
labeled examples and a potentially large set of unlabeled

examples to select. At each moment, the learner selects the
most informative unlabeled example and asks the teacher to
annotate it.

In certainty-based methods [13] for selective sampling,
the learner uses the currently labeled examples to generate a
prediction for each unlabeled example. A degree of uncer-
tainty of the provided prediction is assigned for each unla-
beled example. Finally, the active method selects the exam-
ple with highest uncertainty. The committee-based meth-
ods [21] deploy a similar idea, however the predictions are
generated by a committee of learners, instead of a single
learner. In this case, a high degree of disagreement on the
predictions indicates that an unlabeled example is informa-
tive. In the direct methods [19], the selected example is the
one that minimizes the expected error of the learner, once
labeled and included in the training set.

4 Active Learning for Meta-Example Gener-
ation

As seen, in order to generate a meta-example, it is nec-
essary to perform an empirical evaluation of the candidate
algorithms on a given problem. The generation of a set
of meta-examples may be a costly process depending for
instance on the methodology of empirical evaluation, the
number of available problems, and the number and com-
plexity of the candidate algorithms. In this context, the use
of Active Learning may improve the Meta-Learning pro-
cess by reducing the number of required meta-examples,
and consequently the number of empirical evaluations on
the candidate algorithms.

Figure 1 presents the architecture of system following
our proposal, which has three phases. In the meta-example
generation phase, the Active Learning (AL) module selects
from a base of problems, the most informative for the Meta-
Learning task. The candidate algorithms are then evaluated
on the selected problems, in order to generated a new meta-
example. In the training phase, the Meta-Learner (ML) ac-
quires knowledge from the generated meta-examples, asso-
ciating meta-attributes of the problems to the performance
of the algorithms. Finally, in the use phase, given an in-
put problem, the Feature Extractor (FE) module extracts the
values of the meta-attributes, and according to the knowl-
edge acquired in the training phase, the ML module predicts
the performance information of the algorithms.

In order to evaluate the proposal, we implemented a pro-
totype which was applied in two different case studies. In
this prototype, the k-Nearest Neighbors (k-NN) algorithm
was used in the ML module, and an Active Learning method
based on classification uncertainty of the k-NN [14] is used
in the AL module. In the next sections, we provide more
details of the proposed implemented prototype. In section
5, we present the two case studies as well as the experiments
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Figure 1. System Architecture.

and obtained results.

4.1 Meta-Learner

The Meta-Learner in the prototype corresponds to a con-
ventional classifier, and it is applicable to tasks in which the
performance information is formulated as a class attribute
(e.g. the class associated to the best algorithm or the class
related to patterns of algorithms performance). In the im-
plemented prototype, we used the k-NN algorithm which
has some advantages when applied to Meta-Learning [3].
For instance, when a new meta-example becomes available,
it can be easily integrated without the need to initiate re-
learning [3]. In this section, we provide a description of the
meta-learner based on the k-NN algorithm.

Let E = {e1, . . . , en} be the set of n problems
used to generate a set of n meta-examples ME =
{me1, . . . , men}. Each meta-example is related to a prob-
lem and stores the values of p features X1, . . . , Xp (imple-
mented in the FE module) for the problem and the value of
a class attribute C, which is the performance information

Let D = {c1, . . . , cL} be the domain of the class at-
tribute C, which has L possible class labels. In this way,
each meta-example mei ∈ ME is represented as the pair
(xi, C(ei)) storing: (1) the description xi of the problem
ei, where xi = (x1

i , . . . , x
p
i ) and xj

i = Xj(ei); and (2) the
class label associated to ei, i.e. C(ei) = cl, where cl ∈ D.

Given a new input problem described by the vector x =
(x1, . . . , xp), the k-NN meta-learner retrieves the k most
similar meta-examples from ME, according to the distance
between meta-attributes. The distance function (dist) im-
plemented in the prototype was the unweighted L1-Norm,
defined as:

dist(x, xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i ) − mini(x

j
i )

(1)

The prediction of the class label for the new problem is
performed according to the number of occurrences (votes)
of each cl ∈ D in the class labels associated to the retrieved
meta-examples.

4.2 Active Learning

The ML module acquires knowledge from a set of meta-
examples, which correspond to labeled problems. The AL
module receives a set of unlabeled problems, i.e. the prob-
lems in which the candidate algorithms were not yet evalu-
ated. The AL module incrementally selects unlabeled prob-
lems to be used for generating new meta-examples.

In the prototype, the AL module implements a certainty-
based method (see section 3) which selects the unlabeled
example for which the current learner has the highest un-
certainty in its prediction. The classification uncertainty of
the k-NN algorithm is defined in [14] as the ratio of: (1)
the distance between the unlabeled example and its nearest
labeled neighbor; and (2) the sum of the distances between
the unlabeled example and its nearest labeled neighbors of
different classes.

In the above definition, a high value of uncertainty in-
dicates that the unlabeled example has nearest neighbors
with similar distances but conflicting labeling. Hence, once
the unlabeled example is labeled, it is expected that the un-
certainty of classification in its neighborhood should be re-
duced.

In our context, let E be the set of labeled problems, and
let Ẽ be the set of unlabeled problems. Let El be the sub-
set of labeled problems associated to the class label cl, i.e.
El = {ei ∈ E|C(ei) = cl}. Given the set E, the classifica-
tion uncertainty of k-NN for each ẽ ∈ Ẽ is defined as:

S(ẽ|E) =
minei∈E dist(x̃, xi)∑L

l=1 minei∈El
dist(x̃, xi)

(2)

In the above equation, x̃ is the description of problem
ẽ. The AL module then selects, for generating a new meta-
example, the problem ẽ∗ ∈ Ẽ with highest uncertainty:

ẽ∗ = argmax
ẽ∈Ẽ

S(ẽ|E) (3)

Finally, the selected problem is labeled (i.e. the class
value C(ẽ∗) is defined), through the empirical evaluation
of the candidate algorithms using the avaliable data of the
problem.



5 Case Studies

In this section, we present the application of the imple-
mented prototype to two different case studies that corre-
spond to two meta-learning tasks originally presented in
previous work [16, 8]. Each case study provides a set of
meta-examples which was used in the current work to per-
form experiments to evaluate the implemented prototype.

5.1 Case Study I

In the first case study, the implemented prototype was
evaluated in a meta-learning task originally proposed in [15]
which consisted in selecting between two candidate algo-
rithms for time series forecasting problems: the Time-Delay
Neural Network (TDNN) [11] and the Simple Exponential
Smoothing model (SES) [4]. In [15], a set of meta-examples
was generated from the evaluation of TDNN and SES on 99
time series collected from the Time Series Data Library 1.
Hence, 99 meta-examples were generated.

Each meta-example was related to a single time series
and stored: (1) the values of p = 10 meta-attributes (fea-
tures describing the time series data) and (2) a class attribute
which indicated the best forecasting model (SES or TDNN)
for that series. The set of meta-attributes was composed by:

1. Length of the time series (X1);

2. Mean of the absolute values of the 5 first autocorrela-
tions (X2);

3. Test of significant autocorrelations (X3);

4. Significance of the first, second and third autocorrela-
tion (X4, X5 and X6);

5. Coefficient of variation (X7);

6. Absolute value of the skewness and kurtosis coefficient
(X8 and X9);

7. Test of Turning Points for randomness (X10).

In this case study, the labeling of a time series (i.e. def-
inition of the class attribute for training meta-examples) is
performed through the empirical evaluation of TDNN and
SES in forecasting the series. For this, a hold-out exper-
iment was performed, as described in [15]. Given a time
series, its data was divided into two parts: the fit period and
the test period. The test period consists on the last 30 points
of the time series and the fit period consists on the remain-
ing data. The fit data was used to calibrate the parameters of
both models TDNN and SES. Both calibrated models were
used to generate one-step-ahead forecasts for the test data.

1TSDL - http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL

Finally, the class attribute was assigned as the model which
obtained the lowest mean absolute forecasting error on the
test data.

5.1.1 Experiments

The prototype was evaluated for different configurations of
the k-NN meta-learner (with k = 1, 3, 5, 7, 9 and 11 near-
est neighbors). For each configuration, a leave-one-out ex-
periment was performed to evaluate the performance of the
meta-learner, also varying the number of meta-examples
provided by the Active Learning module. This experiment
is described just below.

At each step of leave-one-out, one problem is left out for
testing the ML module, and the remaining 98 problems are
considered as candidates to generate meta-examples. The
AL module progressively includes one meta-example in the
training set of the ML module, up to the total number of 98
training meta-examples. At each included meta-example,
the ML module is judged on the test problem left out, re-
ceiving either 1 or 0 for failure or success. Hence, a curve
with 98 binary judgments is produced for each test prob-
lem. Finally, the curve of error rates obtained by ML can be
computed by averaging the curves of judgments over the 99
steps of the leave-one-out experiment.

As a basis of comparison, the same above experiment
was applied to each configuration of k-NN, but using in the
AL module a Random method for selecting unlabeled prob-
lems. According to [14], despite its simplicity, the random
method has the advantage of performing a uniform explo-
ration of the example space.
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Figure 2. Case Study I - Average curves of
error rates for both the Classification Uncer-
tainty and the Random method.



5.1.2 Results

Figure 2 presents the curve of error rates obtained by the
k-NN meta-learner averaged across the different configura-
tions of the parameter k. The figure presents the average
curve obtained when both methods were used: the Classi-
fication Uncertainty (described in section 3.3) and the Ran-
dom method. As it is expected, for both methods, the error
rate obtained by the ML module decreased as the number of
meta-examples in the training set increased. However, the
error rates obtained by deploying the Classification Uncer-
tainty method were, in general, lower than the error rates
obtained by deploying the Random method. In fact, from 8
to 84 meta-examples included in the training set, the Clas-
sification Uncertainty method steadily achieved better per-
formance compared to the Random method.

Despite the performance gain obtained by Classifica-
tion Uncertainty in absolute terms, the statistical difference
compared to the Random method was not so significant. By
applying a t-test (95% of confidence) to the difference of
error rates, we observed that the Classification Uncertainty
obtained a statistical gain in 10 points of the curve of error
rates, which represents only about 10% of the 98 points.

5.2 Case Study II

In the second case study, the prototype was evaluated in
a meta-learning task proposed in [8] which consisted in pre-
dicting the performance pattern of Multi-Layer Perceptron
(MLP) networks for regression problems. Below, we pro-
vide a brief description of the meta-examples related to this
task. More details can be found in [8].

The set of meta-examples was generated from the appli-
cation of MLP to 50 different regression problems, available
in the WEKA project2. Each meta-example was related to
a regression problem and stored: (1) the values of p = 10
meta-attributes describing the problem; and (2) a class at-
tribute which indicated the performance pattern obtained by
the MLP network on the problem. The set of meta-attributes
was composed by:

1. Log of the number of training examples (X1);

2. Log of the ratio between number of training examples
and number of attributes (X2);

3. Min, max, mean and standard deviation of the absolute
values of correlation between predictor attributes and
the target attribute (X3, X4, X5 and X6);

4. Min, max, mean and standard deviation of the abso-
lute values of correlation between pairs of predictor
attributes (X7, X8, X9 and X10).

2These datasets are specifically the sets provided in
the files numeric and regression available to download in
http://www.cs.waikato.ac.nz/ml/weka/

In [8], each meta-example was assigned to one the class
labels: cluster1, corresponding to problems in which the
MLP obtained good test error rates; and cluster2, corre-
sponding to tasks in which the MLP obtained from low to
medium test error rates. These class labels were defined af-
ter an empirical evaluation (using a cross validation experi-
ment) of the MLP on the 50 regression tasks, and a cluster
analysis of the obtained results.

5.2.1 Experiments

The experiments performed on this case study followed the
same methodology applied in the first case study. The ML
module was evaluated for different values of the parame-
ter k (1, 3, 5, 7, 9 and 11). As in the first case study, the
ML module was evaluated by progressively including meta-
examples in its training set. The methodology of experi-
ments was applied for both the Classification Uncertainty
and the Random procedures used in the AL module and the
average curves of error rates were computed.
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Figure 3. Case Study II - Average curves of
error rates for both the Classification Uncer-
tainty and the Random method.

5.2.2 Results

As in the first case study, the error rates decreased as the
number of meta-examples in the training set increased, con-
sidering both the Classification Uncertainty and the Ran-
dom method. However the curves of error rates in the sec-
ond case study were more regular, showing a lower degree
of oscillation in the error rates (see figure 3). In absolute
terms, the results obtained by the Classification Uncertainty
were better than the Random method in the most part of the



curve of error rates, more specifically from 5 to 48 meta-
examples in the training set.

The good results of the classification uncertainty were
also observed to be statistically significant. A t-test (95% of
confidence) applied to the difference of error rates indicated
that the classification uncertainty obtaining a gain in perfor-
mance in 30 points in the curve of error rates (about 61% of
the points).

6 Conclusion

In this paper, we presented the use of Active Learning
to support the selection on informative examples for Meta-
Learning. A prototype was implemented using the k-NN
algorithm as meta-learner and a certainty-based method for
Active Learning. The prototype was evaluated in two dif-
ferent case studies, and the results obtained by the Active
Learning method were in general better than a Random
method for selecting meta-examples.

We can point out contributions of our work to two dif-
ferent fields: (1) in the Meta-Learning field, we proposed
a solution to speed up the construction of a good set of ex-
amples for Meta-Learning; and (2) in the Active Learning
field, we applied its concepts and techniques in a context
which had not yet been investigated.

The current work still have limitations which will be
dealt with in future work. First, we only deploy a spe-
cific certainty-based method for Active Learning. In future
work, we intend to evaluate the performance of other Active
Learning methods (e.g. committee-based methods) in the
context of Meta-Learning. We also intend to investigate the
use of Active Learning for other Meta-Learning techniques
(as those cited in section 2).
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[15] R. B. C. Prudêncio and T. B. Ludermir. Selection of models
for time series prediction via meta-learning. In Proceedings
of the Second International Conference on Hybrid Systems,
pages 74–83. IOS Press, 2002.

[16] R. B. C. Prudêncio and T. B. Ludermir. Meta-learning ap-
proaches to selecting time series models. Neurocomputing,
61:121–137, 2004.
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