
Neural Network Hybrid Learning:

Genetic Algorithms & Levenberg-Marquardt

Ricardo B. C. Prudêncio and Teresa B. Ludermir

Center of Informatics, Federal University of Pernambuco
P.O.Box 7851, Cidade Universitaria, Recife-PE, Brazil, 50.732-970

Abstract. The success of an Artificial Neural Network (ANN) strongly depends
on its training process. Gradient-based techniques have been satisfactorily used in
the ANN training. However, in many cases, these algorithms are very slow and
susceptible to the local minimum problem. In our work, we implemented a hybrid
learning algorithm that integrates Genetic Algorithms(GAs) and the Levenberg-
Marquardt(LM) algorithm, a second order gradient-based technique. The GA-LM
algorithm was used to train a Time-Delay Neural Network for river flow prediction.
In our experiments, the GA-LM hybrid algorithm obtained low prediction errors
within a short execution time.

1 Introduction

Artificial Neural Networks (ANNs) have been deployed in a variety of real
world problems (Haykin (1994)). The success of ANNs for a particular prob-
lem depends on the adequacy of the training algorithm regarding the necessi-
ties of the problem. The existing gradient-based techniques (Battiti (1992)),
in particular the Backpropagation algorithm (Rumelhart et al.(1986)), have
been widely used in the training of ANNs. However, as these algorithms
perform local searches, they are susceptible to the local minimum problem
(Masters 1995). The use of stochastic algorithms, such as Genetic Algorithms
(GAs)(Goldberg (1989)), is an interesting alternative for ANN training, since
they are less sensitive to local minima. Nevertheless, they are generally slow
compared to the fastest versions of gradient-based-algorithms.

In this light, we implemented a new hybrid algorithm that integrates
Genetic Algorithms (GAs) and the Levenberg-Marquardt (LM) algorithm
(Levenberg (1944))(Marquardt (1963)). Our algorithm aims to combine the
capacity of GAs in avoiding local minima and the fast execution of the LM
algorithm. In our experiments, we trained a Time Delay Neural Network
(TDNN) (Lang and Hinton (1988)) for a river flow prediction problem. Our
experiments revealed the following: (1) the implemented algorithm gener-
ated networks with good training performance, regarding the error obtained
in the validation data, and good generalization performance, regarding the
test errors; and (2) the hybrid algorithm was very efficient in terms of the
execution time. Based on these results, we opted to integrate the GA-LM
algorithm in a ANN design system previously proposed in (Prudêncio and
Ludermir (2001a)) for river flow prediction problems.



2 Prudencio and Ludermir

In what follows, we present issues on training algorithms in section 2, and
an overview of the hybrid GA & LM training approach in section 3. Sec-
tion 4 presents the case-study of river flow prediction and section 5 presents
the experiments comparing the hybrid GA-LM approach to other training
procedures. Section 6 shows our final remarks.

2 Deterministic and stochastic algorithms

Neural Networks training algorithms can be classified as deterministic or
stochastic (Masters (1995)), according to the optimization algorithm used
to minimize the cost function. The former type, which includes the various
gradient-based algorithms, such as Backpropagation(BP) (Rumelhart et al.
(1986)) and Conjugate Gradient (Barnard and Cole (1989)), is characterized
by the use of deterministic search operators. In general, these algorithms
determine, from a starting point in the search space, a direction which min-
imizes the error in that given point and steps toward this direction. These
algorithms are very sensitive to fall in local minima, since they perform local
searches. This problem is crucial in the training of ANNs, since the error
surface usually contains multiple local minima and few global minima.

A usual way to minor this effect is by random restarting the initial weights
a number of times, and keeping the trained weigths with best results. How-
ever, some issues must be addressed regarding the number of restarts: (1)
when this number is small, the obtained results may be unsatisfactory. This
will depend on how affected is the algorithm by the weight initialization; (2)
when the number of restarts is high, the training results tend to be better,
however the execution time increases significantly, specially for Backprop-
agation. This process is probably more plausible if we consider more effi-
cient algorithms, such as those of second-order (Battiti (1992)), including
the Levenberg-Marquardt algorithm.

The stochastic algorithms, on the other hand, are characterized by per-
forming global searches and by implementing probabilistic search operators.
Among them, we highlight the use of GAs (Montana (1989)) and the Sim-
ulated Annealing algorithm (Masters (1995)) in the ANN training. These
algorithms determine a new point in the search space by random operations
applied to the current weights, most commonly deploying the Gaussian or
the Cauchy perturbation (Yao (1995)). The following points in the search
space to be examined are selected also on the basis of probabilistic criteria.
Due to these characteristics, the stochastic algorithms are less vulnerable to
the local minima problem. Another advantage of these algorithms is that the
cost function does not need to be differentiable, since it does not use gradient
information.

Despite the above-cited advantages, the stochastic algorithms are slower
than the faster versions of gradient based techniques (Yao (1995)). Besides,
although they are efficient to run global searches, they are less efficient to



Neural Network Hybrid Learning 3

undergo more refined local searches. A very promising approach emerges in
this scenario: the hybrid training, which combines the advantages of both
deterministic and stochastic approaches. In the hybrid training, the ANN’s
weights are alternately modified by a deterministic and by a stochastic al-
gorithm. The stochastic algorithm defines the initial weights used by a local
deterministic algorithm to proceed a more fine-tuned local search. This is, in
fact, an alternative approach to the random restart of the local algorithm.
The ideal behavior of the hybrid algorithm should present the computational
efficiency of the gradient-based techniques with the capacity of the stochastic
techniques in avoiding local minima.

In (Belew et al. (1990)), the authors combined GAs to the BP algorithm
obtaining better results than the use of each algorithm in isolation. In (Mas-
ters (1995)), the authors combined the Simulated Annealing and Conjugate
Gradient. Other applications of hybrid training algorithms can be found in
(Kinnebrock (1994)) and (Castillo et al. (2000)).

3 Hybrid GA-LM algorithm

In this work, we adopted the hybrid learning approach described above us-
ing Genetic Algorithms to define the initial weights used as input by the
Levenberg-Marquardt algorithm. Hence, we use Genetic Algorithms as the
global search procedure and the LM algorithm as the local search procedure.
The choice for the LM algorithm is due to its better efficiency (in comparison
to other gradient-based algorithms) when dealing with small ANNs, which is
the case of the deployed TDNN. The choice of GA as the global procedure
is due to its capability of evaluating multiple points in the search space at
same time. Hence, they are less sensitive to fall in local minima (Goldberg
(1989)).

In our hybrid algorithm, each GA chromosome stores a weight configura-
tion that serves as a starting point for the LM algorithm. In each LM training,
the algorithm runs until one of these criteria is verified: maximum number of
500 iterations, generalization loss of 10% or stopping in the training progress
of 5%. Details of these stopping criteria can be found in (Prechelt (1994)).
The GA’s fitness function evaluates a chromosome through the MSE (Mean
Squared Error) on the validation data after the LM training. This measure
was chosen because it estimates the generalization performance of the trained
network (Bishop (1995)).

Regarding the weights’ representation, two main approaches must be con-
sidered: binary and real schemes. In the former, the value of each weight is
stored in a string of bits with a fixed length, and the chromosome is formed
by the concatenation of all strings. This scheme has problems of scalability
and the precision of the results may not be satisfactory since it is limited by
the number of bits in the initial string. The real scheme does not suffer from



4 Prudencio and Ludermir

this drawback since the weights are represented by real numbers. For this
reason, we opted to use the real representation in our algorithm.

Considering the genetic operators, it is possible to identify a problem when
defining the crossover operator. Two ANNs can be functionally equivalent but
bear considerably different genotypes, which makes it difficult the generation
of children with the same fitness. This is the case, for instance, of two ANNs
with the same weights however in different order. This problem is known as
the permutation problem (Hancock (1992)). Although some authors suggest
that this is not a difficult problem, there is still a lot to be investigated (Yao
(1995)). As we are not convinced that the permutation problem effects are
not severe, we opted to discard the crossover operator. Therefore, the only
operator adopted in our work was the Gaussian (or Normal) mutation, where
a small number obtained from a N(0, σ2) distribution is added to the current
value of the weight. The standard deviation σ is a parameter of the operator.

We observe here that, in each execution of the hybrid algorithm, if the GA
is set up to perform g generations with i chromosomes per generation, the
number of weight configurations generated by the GA, and consequently the
number of LM executions, is equal to i multiplied by g. The hybrid algorithm
returns the trained weights with the lowest validation error, among the i x g

configurations of trained weights.

4 Case study: river flow prediction

As case study, we trained a TDNN which was used to forecast the monthly
river flow of a hydrographic reservoir. The relevance of working with this
problem comes from the fact that the operation planning of a hydroelectric
power station can be improved based on its flow forecasting system, since
the latter reveals the reservoir’s energetic potential. Among other works that
applied ANNs to the problem of river flow prediction, we highlight (Kadowaki
et al. (1997)), (Valenca (1999)) and (Prudêncio and Ludermir (2001a)).

The input data used in our work was obtained from the Guarapiranga
reservoir, which is part of the Brazilian Electrical Sector. We have available
300 flow values from January 1963 to December 1986 (Valenca (1999)). This
series was equally divided into training, validation and test data sets. The
TDNN used in our experiments has a time-window of length 12, receiving the
last 12 months flow, and 5 units in the hidden layer. This network employs
the one-step prediction of the river flow based on the last 12 months.

The work presented here was developed in the context of a main work
which proposes the use of Case-Initialized Genetic Algorithms (Grefensttete
and Ramsey (1993)) to implement a system to design neural networks for time
series prediction (Prudêncio and Ludermir (2001b)). The case-initialization
of GAs consists of generating the first GA’s population from well-succeeded
solutions to problems which are similar to the one being tackled. The in-
spiration of this technique comes from the fact that similar problems have



Neural Network Hybrid Learning 5

Fig. 1. NN optimization model using Case-Initialized GAs.

similar search spaces and, therefore, good solutions to a particular problem
can provide information about the search space for similar problems.

Figure 1 shows the architecture of an implemented prototype. The CBM
module maintains a case base in which each case associates a time series to a
well-succeeded network architecture used to predict it. Given a new problem
(new time series), the Case-Base Manager (CBM) module retrieves a prede-
fined number of cases, selected on the basis of their similarity to the input
problem. The Genetic Algorithm (GA) module performs an optimization of
the ANN architecture, using as the initial population the architectures re-
trieved by the CBM module. The Training module (TR) is responsible for
training the weights of each architecture. The output network will be the best
architecture generated by the GA and trained by TR. Following, a new case
is created and inserted in the base, in order to suggest more adequate solu-
tions in the future. The preliminary results of this prototype for the river flow
prediction problem were very promising (Prudêncio and Ludermir (2001a)).

The TR module actually implements the randomly initialized Levenberg-
Marquardt algorithm. However, as the proposal of the optimization model
is to develop a general system which works well in situations with different
needs and constraints, we should experiment different training algorithms
and choose the more robust one. The proposal of GA-LM hybrid algorithm
is a tentative of developing such robust algorithm.

5 Experiments and results

In our experiments, four procedures were compared in the learning of the
TDNN described above: RAND-BP(n), RAND-LM(n), GA-BP(i,g) and GA-
LM(i,g). The former two procedures correspond to the usual training process
where the gradient-based algorithm is executed n times with random initial
weights and the configuration of trained weights with the lowest validation
error is returned. RAND-BP(n) and RAND-LM(n) used the BP and the LM
algorithms respectively. The procedure GA-BP(i,g) corresponds to a hybrid
algorithm in which the GAs are used as the global stochastic algorithm and
the BP is the local gradient-based algorithm. And finally, the procedure GA-



6 Prudencio and Ludermir

LM(i,g) corresponds to the proposed algorithm where the LM is combined
with GAs.

The random procedures were run for two different values of n (number of
weight restarts): 100 and 200. To proceed with a fair comparison, we setup the
parameters i and g in such a way that the procedures with GAs implement
the same number of restarts as the random procedures. Hence, for n = 100
restarts, we used i = 10 and g =10, and for n = 200, we used i = 10 and g =
20. The values for mutation rate and the standard deviation of the Gaussian
perturbation were set to 0.1 and 0.3 respectively. These values were chosen
in preliminary tests.

In order to compare the performance of these procedures, we ran each of
them 10 times, and calculated the average values of the MSE in the validation
and test sets, as well as, the average execution time.

Procedure

(100 restarts)

AVG MSE

Validation

Procedure

(200 restarts)

AVG MSE

Validation

GA-BP(10x10)

GA-LM(10x10)

RAND-BP(100)

RAND-LM(100)

34.45

34.68

35.01

35.41

GA-BP(10x20)

GA-LM(10x20)

RAND-BP(200)

RAND-LM(200)

32.96

34.04

34.82

35.51

Table 1. Ranking based on the Average MSE of the validation set.

In Table 1, we presented the ranking of algorithms for 100 and 200 restarts
in terms of the MSE in the validation set, which measured the ANN train-
ing performance. As we can see, the performance of the algorithms were
very similar for both numbers of restarts. We could say that the procedures
are statistically equivalent with high confidence. Despite this similarity, the
proposed hybrid algorithm obtained good results in this measure for both
number of restarts (2nd place in the ranking of algorithms). Another obser-
vation is that, for both BP and LM algorithms, the use of GA initialization
improved the results, compared to the random procedures.

In Table 2, we presented the results in terms of the MSE in the test set. As
we can see, the proposed hybrid algorithm presented an intermediate ranking
in this measure (2nd place for n = 100 and 3rd place for n = 200). We observed
that the ranking of the GA procedures for the test set was, in general, worse
than the ranking obtained for the validation set, particularly for n = 200.
This effect is more drastic in the GA-BP procedure, which obtained the best
validation error, however, the worst test error. This observation may indicate
that the use of GA initialization led to an overfitting of the validation data,
however this conclusion must be better investigated. Other papers about
hybrid learning did not mention this effect.



Neural Network Hybrid Learning 7

Procedure

(100 restarts)

AVG MSE

Test

Procedure

(200 restarts)

AVG MSE

Test

RAND-LM(100)

GA-LM(10x10)

RAND-BP(100)

GA-BP(10x10)

34.41

36.17

36.24

36.73

RAND-LM(200)

RAND-BP(100)

GA-LM(10x20)

GA-BP(10x20)

35.63

36.07

36.80

37.53

Table 2. Ranking based on the Average MSE of the test set.

Procedure

(100 restarts)

AVG

Execution Time

Procedure

(200 restarts)

AVG

Execution Time

GA-LM(10x10)

GA-BP(10x10)

RAND-LM(100)

RAND-BP(100)

2.4 min

6.7 min

6.8 min

9.7 min

GA-LM(10x20)

RAND-LM(200)

GA-BP(10x20)

RAND-BP(200)

4.7 min

12.0 min

13.5 min

19.2 min

Table 3. Ranking based on the Average Execution Time (minutes).

The most significant result of these experiments appears when we exam-
ined the execution time obtained for each of the learning procedures (see
Table 3). As we can see, our proposed algorithm was the fastest algorithm,
reducing significantly the execution time compared to the other procedures.
This improvement was at least 64% for 100 restarts, and 60% for 200 restarts.
This characteristic is of main importance for applications with strong time
constraints. The good performance of our hybrid algorithm in this point can
be explained by the fact that, at each GA generation, the LM algorithm takes
advantage of the optimization performed in the previous generation. Hence,
it only refines the search that has already been hardly performed in the previ-
ous generations. Furthermore, the LM algorithm is a second-order algorithm,
which is, in general, faster than the Backpropagation (Masters (1995)).

6 Conclusion

This paper presents the implementation of a hybrid learning algorithm for
ANNs where the GAs were responsible for selecting the initial weights for the
Levenberg-Marquardt algorithm. This algorithm was compared to different
combinations of initialization strategies and gradient-based techniques on the
training of a TDNN for a river flow prediction problem.



8 Prudencio and Ludermir

Based on the undergone experiments, we concluded that the GA-LM al-
gorithm obtained good results in terms of quality of prediction and showed
excellent results in terms of time execution. Despite these good results, the
use of GA’s initialization may sometimes led to overfitting, although the
GA-LM algorithm was less sensitive to this problem. These results lead us to
perform more accurate experiments with GA-LM algorithm in order to use
it in our general system to design neural networks (as presented in section
4). Eventually, we will test other stochastic techniques.

Another point to investigate in the future is how to avoid the problem
of overfitting in hybrid algorithms, evaluating in which situations a hybrid
algorithm can be applied with a lower risk of affecting the generalization
performance. It is also necessary, to undergo a more detailed study about the
influence of the GA’s parameters on the performance of the NN training.

References

BARNARD, E. and COLE R.A. (1989): A Neural-Net Training Program based
on Conjugate-Gradient Optimization. Technical Report CSE-89-014, Oregon
Graduate Institute, Beaverton, OR.

BATTITI, R. (1992): First and Second-Order Methods for Learning Between Steep-
est Descentand Newton’s Method. Neural Computation, 4, 141–166.

BELEW, R.K., MCINERNEY, J. and SCHRAUDOLPH, N.N. (1990): Evolving
Networks: Using the Genetic Algorithm with Connectionist Learning. Technical
Report CSE-CS-90-174, University of California, San Diego, CA.

BISHOP, C. (1995): Neural Networks for Pattern Recognition. Oxford University
Press, UK.

CASTILLO, P.A., CARPIO, J., MERELO, J. J., RIVAS, V., ROBER, G. and PRI-
ETO, A. (2000): Evolving Multilayer Perceptrons. Neural Processing Letters,
12, 115–127.

GOLDBERG, D.E. (1989): Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, Reading, MA.

GREFENSTTETE, J. and RAMSEY, C. (1993): Case-based initialization of ge-
netic algorithms. Proceedings of the Fifth International Conference on Genetic
Algorithms, San Mateo, CA, 84–91.

HANCOCK, P.J.B. (1992): Genetic Algorithms and Permutation Problems: a Com-
parison of Recombination Operators for Neural Net Structure Specification.
Proceedings of the International Workshop on Combinations of Genetic Algo-
rithms, Baltimore, 108–122. IEEE Computer Society Press, CA.

HAYKIN, S. (1994): Neural Networks: A Comprehensive Foundation. IEEE
Press/Macmillan College Publishing Company, New York, NY.

KADOWAKI, M., SOARES, S. and ANDRADE, M. (1997): Montly River Flow
Prediction Using Multilayer Neural Networks with Backpropagation. Anais do
IV Simpsio Brasileiro de Redes Neurais (in portuguese), 32–35, Goiana, Brazil.

KINNEBROCK, W. (1994) Accelerating the Standard Backpropagation Method
Using a Genetic Approach. Neurocomputing, 6, 583–588.

LANG, K and HINTON, G. (1988): Time-Delay Neural Network Architecture for
Speech Recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon Uni-
versity, Pittsburgh, PA.



Neural Network Hybrid Learning 9

LEVENBERG, K. (1944): A Method for the Solution of Certain Non-Linear Prob-
lems in Least Squares. Quarterly Journal of Applied Mathematics, 2, 164–168.

MARQUARDT, D. (1963): An Algorithm for Least-Squares Estimation of Nonlin-
ear Parameters. SIAM J. Applied Mathematics, 11, 431–441.

MASTERS, T. (1995): Advanced Algorithms for Neural Networks: a C++ Source-
book. John Wiley & Sons, New York, NY.

MONTANA, D. J. and DAVIS, L. (1989): Training Feedforward Neural Networks
Using Genetic Algorithms. Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, MI, 762–767.

PRECHELT, L. (1994): Proben1 - A Set of Neural Network Benchmark Problems
and Benchmarking Rules. Technical Report 21/94, Fakultat fur Informatik,
Universitat Karlsruhe, Germany, September, 1994.

PRUDÊNCIO, R.B.C. and LUDERMIR, T.B. (2001a): Evolutionary Design of Neu-
ral Networks: Aplication to River Flow Prediction. Proceedings of the Inter-
national Conference on Artificial Inteligence and Aplications, AIA 2001, Mar-
bella, Spain, 56–61

PRUDÊNCIO, R.B.C. and LUDERMIR, T.B. (2001b): Design of Neural Networks
for Time Series Prediction Using Case-Initialized Genetic Algorithms. Proceed-
ings of the 8th International Conference on Neural Information Processing,
ICONIP’ 01, Shanghai, China, 990–995.

RUMELHART, D.E., HINTON, G.E. and WILLIAMS, R.J. (1986): Learning inter-
nal representations by error propagation. In: D.E. RUMELHART and J.L. MC-
CLELLAND (Eds.): Parallel Distributed Processing Vol.1. MIT Press, Cam-
bridge, 318–362.

VALENCA, M.J.S. (1999): Analysis and Design of the Constructive Neural Net-
works for Complex Systems Modeling. Ph.D Thesis (in portuguese), Federal
University of Pernambuco, Recife, Brazil.

YAO, X. (1995): Evolutionary Artificial Neural Networks. Encyclopedia of Com-
puter Science and Technology, 33, 137–170. Marcel Dekker, New York, NY.


