
Machine Learning in Automated Text Categorisation

Fabrizio Sebastiani

Consiglio Nazionale delle Ricerche, Italy

The automated categorisation (or classification) of texts into topical categories has a long history,
dating back at least to the early ’60s. Until the late ’80s, the most effective approach to the
problem seemed to be that of manually building automatic classifiers by means of knowledge-
engineering techniques, i.e. manually defining a set of rules encoding expert knowledge on how
to classify documents under a given set of categories. In the ’90s, with the booming production
and availability of on-line documents, automated text categorisation has witnessed an increased
and renewed interest, prompted by which the machine learning paradigm to automatic classifier
construction has emerged and definitely superseded the knowledge-engineering approach. Within
the machine learning paradigm, a general inductive process (called the learner) automatically
builds a classifier (also called the rule, or the hypothesis) by “learning”, from a set of previously
classified documents, the characteristics of one or more categories. The advantages of this approach
are a very good effectiveness, a considerable savings in terms of expert manpower, and domain
independence. In this survey we look at the main approaches that have been taken towards
automatic text categorisation within the general machine learning paradigm. Issues pertaining to
document indexing, classifier construction, and classifier evaluation, will be discussed in detail. A
final section will be devoted to the techniques that have specifically been devised for an emerging
application such as the automatic classification of Web pages into “Yahoo!-like” hierarchically
structured sets of categories.

Categories and Subject Descriptors: H.3.1 [Information storage and retrieval]: Content anal-
ysis and indexing—Indexing methods; H.3.3 [Information storage and retrieval]: Informa-
tion search and retrieval—Information filtering; H.3.3 [Information storage and retrieval]:
Systems and software—Performance evaluation (efficiency and effectiveness); I.2.3 [Artificial
Intelligence]: Learning—Induction

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Machine learning, text categorisation, text classification

1. INTRODUCTION

In the last ten years automated content-based document management tasks have
gained a prominent status in the information systems field, largely due to the
widespread and continuously increasing availability of documents in digital form,
and the consequential need on the part of the users to access them in flexible ways.
Text categorisation (TC – also known as text classification, or topic spotting), the
activity of labelling natural language texts with thematic categories from a prede-
fined set, is one such task. TC has a long history, dating back at least to the early
’60s, but it was not until the early ’90s that, largely due to an increased applicative
interest and to the availability of more powerful hardware, the discipline became
a major field of investigation in the information systems discipline. Nowadays,

Address: Istituto di Elaborazione dell’Informazione, Consiglio Nazionale delle Ricerche, Via S.
Maria, 46 - 56126 Pisa (Italy). E-mail: fabrizio@iei.pi.cnr.it

2 · F. Sebastiani

TC is used in many applicative contexts, ranging from automatic document in-
dexing based on controlled vocabulary, to document filtering, automated metadata
generation, word sense disambiguation, population of “Yahoo!-like” hierarchical
catalogues of Web resources, and in general to any application requiring document
organisation or selective dispatching. Although commercial TC systems are not yet
as widespread as e.g. commercial information retrieval (IR) systems, experimental
TC systems have long gone past the prototype stage (see e.g. [Lewis et al. 1999]),
thanks to a by now consolidated body of literature rooted in a solid experimental
methodology. It is this body of literature that the present paper attempts to review.

Until the late ’80s, the most effective approach to TC seemed to be that of manu-
ally building automatic TC systems by means of knowledge-engineering techniques,
i.e. manually defining a set of logical rules that encode expert knowledge on how
to classify documents under the given set of categories. In the ’90s this perspec-
tive has been overturn, and the machine learning paradigm to automated TC has
emerged and definitely superseded the knowledge-engineering approach. Within
the machine learning paradigm, a general inductive process automatically builds
an automatic text classifier by “learning”, from a set of previously classified doc-
uments, the characteristics of the categories of interest. The advantages of this
approach are an accuracy comparable to human performance and a considerable
savings in terms of expert manpower, since no intervention from either knowledge
engineers or domain experts is needed. Current day TC may thus be seen as the
meeting point of machine learning and information retrieval (IR), the “mother” of
all disciplines concerned with automated content-based document management.

TC enjoys quite a rich literature now, but this is still fairly scattered. Two in-
ternational journals have devoted special issues to this topic [Carbonell et al. 2000;
Lewis and Hayes 1994]. There are no textbooks nor journals devoted to TC yet;
only one textbook on machine learning [Mitchell 1996, Section 6.10] devotes a brief
section to it. As a note, we should warn the reader that the term “automatic text
classification” has sometimes been used in the literature to mean quite different
things from the ones discussed in this paper. Aside from (i) the automatic assign-
ment of documents to a predefined set of categories, which is the main topic of
this paper, the term has also been used to mean (ii) the automatic definition of
such a set of categories (nowadays universally referred to as clustering), or (iii) the
automatic assignment of documents to a set of categories which is not predefined
(a task nowadays universally referred to as (free text) indexing). The reader should
keep this in mind especially when browsing through early literature, dating to a
period in which terminology had not yet settled down.

This paper is organised as follows. In Section 2 we formally define the TC task
and its various subcases. In Section 3 we review the most important applications
to which TC has been put to, including automatic indexing for Boolean IR sys-
tems, and document filtering. In Section 4 we go on to describe the main notions
of the machine learning approach to classification, including the notions of learner,
training set, test set and validation set. Our discussion of text classification starts
in Section 5 by introducing the issues related to indexing, i.e. the transformation of
textual documents into a form amenable to interpretation by a classifier-building
algorithm (and, successively, by the classifier built by it). These issues include term
weighting and, perhaps more importantly, dimensionality reduction. Section 6 tack-

Machine Learning in Automated Text Categorisation · 3

les what is probably the central issue of this paper, i.e. the inductive construction
of a text classifier from a training set of manually classified documents. Various
algorithms for the inductive construction of classifiers, from the tradition of either
IR or machine learning, are reviewed here, including probabilistic algorithms, neu-
ral networks, regression models, decision tree and DNF rule induction methods,
profile-construction methods, example-based classifiers, support vector machines,
and classifier committees. Most of the classifiers built by these algorithms output
a value of confidence in the correctness of a given classification decision, a value
usually comprised in the [0,1] interval. In order to arrive at a yes/no decision,
policies have to be devised for the individuation of thresholds that map the [0,1]
interval into the {0,1} set of Boolean values; this is the topic of Section 7. Sec-
tion 8 tackles a central issue in TC, namely that of evaluating (and comparing) the
classifiers induced by means of the methods of Sections 6 and 7. This is a fairly sen-
sitive issue, and it is widely believed that only a standardisation in the evaluation
protocols may yield reliable comparisons. We discuss the various measures that
have been proposed and used in the literature, the most important benchmarks
on which experimentation has been carried out, and some of the conclusions these
experiments have lead to. Section 9 takes a slight detour from the main path and
discusses a specific application of TC, namely that of Web page categorisation into
hierarchical catalogues, an application that has given rise to specific solutions to
the problems of indexing, classifier construction, and classifier evaluation. Finally,
Section 10 concludes, discussing some of the open issues and possible avenues of
further research for TC.

2. A DEFINITION OF THE TEXT CATEGORISATION TASK

Text categorisation may be defined as the task of determining an assignment of a
value from {0,1} to each entry aij of the decision matrix

d1 dj dn

c1 a11 a1j a1n

. .
ci ai1 aij ain
. .
cm am1 amj amn

where C = {c1, . . . , cm} is a set of pre-defined categories, and D = {d1, . . . , dn} is
a set of documents to be classified. A value of 1 for aij indicates a decision to file
dj under ci, while a value of 0 indicates a decision not to file dj under ci.

More formally, the task is to approximate the unknown total function f : D×C →
{0, 1} (that describes how documents ought to be classified) by means of a total
function f ′ : D × C → {0, 1} (called the classifier, or model, or hypothesis) such
that f and f ′ coincide as much as possible; how to define precisely and measure
this degree of coincidence (that we will call effectiveness) will be discussed in detail
in Section 8.1.

Fundamental to the understanding of this task are two observations:

—the categories are just symbolic labels. No additional knowledge (either of a
procedural or of a declarative nature) of their “meaning” is assumed available to

4 · F. Sebastiani

help in the process of building the classifier. In particular, this means that the
“text” constituting the category label (e.g. Sports in a news categorisation task)
is not to be used.

—the attribution of documents to categories should, in general, be realised on
the basis of the semantics of the documents, and not on the basis of metadata
(e.g. publication date, document type, publication source, etc.). That is, the
categorisation of a document should be based solely on endogenous knowledge
(i.e. knowledge that can be extracted from the document itself) rather than on
exogenous knowledge (i.e. data that might be provided for this purpose by an
external source).

Given that the semantics of a document is an inherently subjective notion, it follows
that the fundamental notion of TC, that of relevance of a document to a category,
cannot be decided deterministically. This is exemplified by the well-known phe-
nomenon of inter-indexer inconsistency [Cleverdon 1984; Hamill and Zamora 1980]:
when two different humans must take a decision on whether to classify document
dj under category ci, they may disagree, and this in fact happens with relatively
high frequency. A news article on the Clinton-Lewinsky case could be filed under
Politics, or under Gossip, or under both, or even under neither, depending on
the subjective judgment of the classifier. The above-mentioned notion of relevance
of a document to a category basically coincides with the notion of relevance of a
document to an information need, as from IR [Saracevic 1975].

2.1 Single-label and multi-label categorisation

Different constraints may be enforced on the categorisation task, depending on the
application.

For instance, we might want that for a given integer k, each element of C must
be assigned to exactly k (or ≤ k, or ≥ k) elements of D. For instance, this happens
when we want categories to be evenly populated, or when we want them to be
populated each to a certain degree (see also Section 7).

More importantly, we might want that for a given integer k, exactly k (or ≤ k,
or ≥ k) elements of C must be assigned to each element of D. The case k = 1 (as
e.g. in [Baker and McCallum 1998; Cohen and Hirsch 1998; Guthrie et al. 1994;
Koller and Sahami 1997; Joachims 1997; Larkey 1999; Li and Jain 1998; Moulinier
and Ganascia 1996; Schütze et al. 1995]) is often called the single-label case (or the
non-overlapping categories case), whereas the general case in which any number
of categories from 0 to m may be assigned to the same document is dubbed the
multi-label case.

From a theoretical point of view, the single-label case is more general than the
multi-label case, in the sense that an algorithm for single-label classification can also
be used for multi-label classification by simply transforming a problem of multi-
label classification with categories {c1, . . . , cm} into m independent problems of
single-label classification with categories {ci, ci}, for i = 1, . . . ,m. This requires,
however, that categories are stochastically independent of each other, i.e. f(dj , c′)
does not depend on f(dj , c′′) and viceversa, which is usually assumed to be the case
(exceptions to this rule will be dealt with in Section 9). The converse is not true in
general: if we have an algorithm for performing multi-label classification, it is not

Machine Learning in Automated Text Categorisation · 5

always the case that we can use it for single-label classification too. In fact (i) it
might not be obvious how to choose a single “best” category among the k categories
that the classifier has attached to the document, or (ii) for some documents k might
be equal to 0.

In general, the techniques we will consider in this paper are applicable irrespec-
tively of whether any of the constraints discussed in this section are enforced or not;
therefore, from now on we will assume that no constraint of this sort is enforced. In
particular, we will mostly be concerned with the single-label case, given its greater
generality. This means that we we will view the classification problem for the D×C
decision matrix as consisting of m independent problems of classifying the docu-
ments in D under a given category ci, for i = 1, . . . ,m. A classifier for ci is then a
function f ′

i : D → {0, 1} that approximates an unknown function fi : D → {0, 1}.

2.2 Category-pivoted and document-pivoted categorisation

An important distinction is whether we want to fill the decision matrix one row
at a time (category-pivoted categorisation – CPC), or fill it one column at a time
(document-pivoted categorisation – DPC). Quite obviously this distinction is more
pragmatic than conceptual, but is important in the sense that the sets C of cat-
egories and D of documents might not always be available in their entirety right
from the start. It is also of some relevance to the choice of the method for build-
ing the classifier, as some of these methods (e.g. the k-NN method of Section 6.8)
allow the construction of classifiers with a definite slant towards one or the other
classification style.

DPC is thus suitable when documents might become available one at a time over
a long span of time, e.g. in the case a user submits one document at a time for
categorisation rather than submitting a whole batch of them all at once. In this
case, sometimes the categorisation task takes the form of ranking the categories
in decreasing order of their estimated appropriateness for document dj ; because of
this, DPC is sometimes called category-ranking classification or on-line classifica-
tion [Yang 1999].

CPC is instead suitable if we consider the possibility that a new category cm+1 is
inserted into a previously existing set of categories C = {c1, . . . , cm} after a number
of documents have already been evaluated for categorisation under C, which means
that these documents need to be evaluated for cm+1 too (e.g. [Larkey 1999]). In this
case, the categorisation task might take the form of ranking the documents in de-
creasing order of their estimated appropriateness for category cm+1; symmetrically
to the previous case, CPC may also be called document-ranking classification.

DPC is more commonly used than CPC, as the case in which documents are
submitted one at a time is somehow more common than the case in which newer
categories dynamically crop up. However, although some specific techniques apply
to one and not to the other (e.g. the proportional thresholding method discussed
in Section 7, which applies only to CPC), this is more the exception than the
rule: most of the techniques we will discuss in this paper allow the construction of
classifiers capable of working in either mode.

6 · F. Sebastiani

3. APPLICATIONS OF DOCUMENT CATEGORISATION

Automatic TC goes back at least to the early ’60s and to Maron’s [1961] seminal
work. Since then, it has been used in a number of different applications. In the
following, we briefly review the most important ones. Other applications we do not
explicitly discuss for reasons of space are speech categorisation by means of a com-
bination of speech recognition and TC [Schapire and Singer 2000], multimedia doc-
ument categorisation through caption analysis [Sable and Hatzivassiloglou 1999],
author identification for literary texts of unknown or disputed authorship [Forsyth
1999], and (gasp!) automatic essay grading [Larkey 1998].

3.1 Automatic indexing for Boolean information retrieval systems

The first use to which automatic text classifiers were put at, and the application that
spawned most of the early research in the field [Borko and Bernick 1963; Fangmeyer
and Lustig 1968; Field 1975; Gray and Harley 1971; Hamill and Zamora 1978;
Hamill and Zamora 1980; Heaps 1973; Hoyle 1973; Klingbiel 1973a; Klingbiel 1973b;
Maron 1961], is that of automatic document indexing for use in information retrieval
(IR) systems relying on a controlled dictionary. The most prominent example of
such IR systems is, of course, that of Boolean systems. In these systems, each
document is assigned one or more keywords or keyphrases describing its content,
where these keywords and keyphrases belong to a finite set of words called controlled
dictionary and often consisting of a hierarchical thesaurus (e.g. the NASA thesaurus
for the aerospace discipline, or the MESH thesaurus covering the medical field).
Usually, this assignment is performed by trained human indexers, and is thus an
extremely costly activity.

If the entries in the thesaurus are viewed as categories, document indexing be-
comes an instance of the document categorisation task, and may thus be addressed
by the automatic techniques described in this paper. Recalling Section 2.1, note
that in this case a typical constraint may be that k1 ≤ x ≤ k2 keywords are assigned
to each document, for given k1, k2. Document-pivoted categorisation might typi-
cally be the best option, so that new documents may be classified as they become
available. Various automatic document classifiers explicitly addressed at document
indexing applications have been described in the literature; see e.g. [Fuhr and Knorz
1984; Fuhr 1985; Biebricher et al. 1988; Fuhr et al. 1991; Robertson and Harding
1984; Tzeras and Hartmann 1993].

The issue of automatic indexing with controlled dictionaries is closely related
to the topic of automated metadata generation. In digital libraries we are usually
interested to tag documents by metadata that describe them under a variety of
aspects (e.g. creation date, document type or format, availability, etc.). Usually,
some of these metadata are thematic, i.e. their role is to describe the semantics
of the document by means of bibliographic codes, keywords or keyphrases. The
generation of these metadata may thus be viewed as a problem of document indexing
with controlled dictionary, and thus tackled by means of automatic TC techniques.
An example system for automated metadata generation by TC techniques is the
Klarity system (http://www.topic.com.au/products/klarity.html).

Machine Learning in Automated Text Categorisation · 7

3.2 Document organisation

In general, all issues pertaining to document organisation and filing, be it for pur-
poses of personal organisation or document repository structuring, may be ad-
dressed by automatic categorisation techniques. For instance, at the offices of a
newspaper, incoming “classified” ads must be, prior to publication, categorised
under the categories used in the categorisation scheme adopted by the newspa-
per; typical categories might be e.g. Personals, Cars for Sale, Real Estate,
. . . . While most newspapers would handle this application manually, those dealing
with a high daily number of classified ads might prefer an automatic categorisation
system to choose the most suitable category for a given ad. In this case a typical
constraint might be that exactly one category is assigned to each document. A first-
come, first-served policy might look the aptest here, which would make one lean
for a document-pivoted categorisation style. Similar applications might be the au-
tomatic filing of newspaper articles under the appropriate sections (e.g. Politics,
Home News, Lifestyles, etc.), or the automatic grouping of conference papers into
sessions.

Document organisation, both in the cases of paper documents and electronic doc-
uments, often has the purpose of making document search easier. An interesting
example of this approach is the system for classifying and searching patents of the
U.S. Patent and Trademark Office, described by Larkey [1999]. In this system doc-
uments describing patents are classified according to a hierarchical set of categories.
Patent office personnel may thus search for existing patents related to a claimed
new invention with greater ease.

3.3 Document filtering

Document filtering refers to the activity of classifying a dynamic collection of doc-
uments, typically in the form of a stream of incoming documents dispatched in an
asynchronous way by an information producer to an information consumer [Belkin
and Croft 1992]. A typical case of this is a newsfeed, whereby the information
producer is a news agency (e.g. Reuters or Associated Press) and the information
consumer is a newspaper. In this case, the filtering system should block the delivery
to the consumer of the documents the consumer is not likely to be interested in (e.g.
all news not concerning sports, in the case of a sports newspaper). Filtering can be
seen as a case of single-label categorisation, i.e. the categorisation of incoming doc-
uments in two disjoint categories, the relevant and the irrelevant. Additionally, a
filtering system may also perform a further categorisation into topical categories of
the documents deemed relevant to the consumer; in the example above, all articles
about sports are deemed relevant, and should be further subcategorised according
e.g. to which sport they deal with, so as to allow individual journalists specialised
in individual sports to access only documents of high prospective interest for them.
Similarly, an e-mail filter might be trained to further classify previously filtered
e-mail into topical categories of interest to the user [Cohen 1996].

A document filtering system may be installed at the producer end, in which
case its role is to route the information to the interested consumers only, or at the
consumer end, in which case its role is to block the delivery of information deemed
uninteresting to the user. In the former case the system has to build and update a

8 · F. Sebastiani

“profile” for each consumer it serves [Liddy et al. 1994], whereas in the latter case
(which is the more common, and to which we will refer in the rest of this section)
a single profile is needed.

A profile may be initially specified by the user, thereby resembling a standing
IR query, and is usually updated by the system by using feedback information
provided by the user on the relevance or non-relevance of the delivered messages.
In the TREC community [Lewis 1995c; Hull 1998] this is called adaptive filtering,
while the case in which no user-specified profile is available is called either routing
or batch filtering, depending on whether documents have to be ranked in decreasing
order of estimated relevance or just accepted/rejected.

In information science document filtering has a tradition dating back to the ’60s,
when, addressed by systems of varying degrees of automation and dealing with the
multi-consumer case discussed above, it was variously called selective dissemination
of information or current awareness (see e.g. [Korfhage 1997, Chapter 6]). The
explosion in the availability of digital information, particularly on the Internet, has
boosted the importance of such systems. These are nowadays being used in many
different contexts, including the creation of personalised Web newspapers, “junk
e-mail” blocking, and the selection of Usenet news.

The construction of information filtering systems by means of machine learning
techniques is widely discussed in the literature: see e.g. [Amati and Crestani 1999;
Hull 1994; Hull et al. 1996; Lang 1995; Lewis et al. 1996; Schapire et al. 1998;
Schütze et al. 1995; Singhal et al. 1997; Weiss et al. 1999].

3.4 Word sense disambiguation

Word sense disambiguation (WSD) refers to the activity of finding, given the occur-
rence in a text of an ambiguous (i.e. polysemous or homonymous) word, the sense
this particular word occurrence has. For instance, the English word bank may have
(at least) two different senses, as in the Bank of England (a financial institution)
or the bank of river Thames (a hydraulic engineering artifact). It is thus a WSD
task to decide to which of the above senses the occurrence of bank in Last week
I borrowed some money from the bank refers to. WSD is very important for a
number of applications, including indexing documents by word senses rather than
by words for IR or other content-based document management applications.

WSD may be seen as a categorisation task once we view word occurrence contexts
as documents and word senses as categories. Quite obviously, this is a case in
which exactly one category needs to be assigned to each document, and one in
which document-pivoted categorisation is most likely to be the right choice. WSD
is viewed as a TC task in a number of different works in the literature; see e.g [Gale
et al. 1993; Hearst 1991].

WSD is just an example of the more general issue of resolving natural lan-
guage ambiguities, one of the most important problems in computational linguistics.
Other instances of this problem, which may all be tackled by means of TC tech-
niques along the lines discussed for WSD, are context-sensitive spelling correction,
prepositional phrase attachment, part of speech tagging, and word choice selection
in machine translation. See the excellent [Roth 1998] for an introduction to this
field.

Machine Learning in Automated Text Categorisation · 9

wheat & farm → Wheat
wheat & commodity → Wheat

bushels & export → Wheat
wheat & agriculture → Wheat

wheat & tonnes → Wheat
wheat & winter & ¬ soft → Wheat

Fig. 1. Classifier for the Wheat category in the Construe system; keywords occurring in doc-
uments are indicated in italic, categories are indicated in Small Caps (from [Apté et al. 1994]).

3.5 Yahoo!-style search space categorisation

Automatic document categorisation has recently aroused a lot of interest also for
its possible Internet applications. One of these is automatically classifying Web
pages, or sites, into one or several of the categories that make up commercial hier-
archical catalogues such as those embodied in Yahoo!, Infoseek, etc. When Web
documents are catalogued in this way, rather than addressing a generic query to a
general-purpose Web search engine, a searcher may find it easier to first navigate
in the hierarchy of categories and then issue her search from (i.e. restrict her search
to) a particular category of interest.

Automatically classifying Web pages has obvious advantages, since the manual
categorisation of a large enough subset of the Web is problematic to say the least.
Unlike in the previous applications, this is a case in which one might typically want
each category to be populated by a set of k1 ≤ x ≤ k2 documents, and one in which
category-centered categorisation may be aptest so as to allow new categories to be
added and obsolete ones to be deleted.

The automatic categorisation of Web pages or sites into Yahoo!-like hierarchical
catalogues is discussed in several recent papers (see e.g. [Attardi et al. 1999; Baker
and McCallum 1998; Chakrabarti et al. 1998; McCallum et al. 1998; Mladenić
1998b]), and will be more extensively discussed in Section 9.

4. THE MACHINE LEARNING APPROACH TO TEXT CATEGORISATION

In the ’80s the main approach used to the realisation of automatic document clas-
sifiers consisted in their manual construction through knowledge-engineering tech-
niques, i.e. in manually building an expert system capable of taking categorisation
decisions. Such an expert system typically consisted of a set of manually defined
rules (one per category) of type if 〈DNF Boolean formula〉 then 〈category〉, to
the effect that if the document satisfied 〈DNF Boolean formula〉 (DNF standing
for “disjunctive normal form”), then it was classified under 〈category〉. The typi-
cal example of this approach is the Construe system [Hayes et al. 1990], built by
Carnegie Group for use at the Reuters news agency. A sample rule from Construe
is illustrated in Figure 1, and its effectiveness as measured on a benchmark selected
by the authors is reported in Figure 2. Other examples of this “manual” approach
to the construction of text classifiers are [Goodman 1990; Rau and Jacobs 1991].

The drawback of this “manual” approach to the construction of automatic classi-
fiers is the existence of a knowledge acquisition bottleneck, similarly to what happens
in expert systems. That is, rules must be manually defined by a knowledge engineer
with the aid of a domain expert (in this case, an expert in document relevance to the

10 · F. Sebastiani

expert judgments
Wheat ¬ Wheat

classifier Wheat 73 8
judgments ¬ Wheat 14 3577

Fig. 2. Effectiveness of the classifier of Figure 1 as measured on a subset of the Reuters collection
(from [Apté et al. 1994]).

chosen set of categories). If the set of categories is updated, then these two trained
professionals must intervene again, and if the classifier is ported to a completely
different domain (i.e. set of categories) the work has to be repeated anew.

On the other hand, it was suggested that this approach can give very good effec-
tiveness results: Hayes et al. [1990] report a .90 “breakeven” result (see Section 8)
on a subset of the Reuters test collection, a figure that outperforms even the best
classifiers built in the late ’90s by machine learning techniques. However, no other
classifier has been tested on the same dataset as Construe (see also Table 6), and
it is not clear how this dataset was selected from the Reuters collection (i.e. whether
it was a random or a favourable subset of the whole collection). All in all, as con-
vincingly argued in [Yang 1999], the results above do not allow us to confidently
say that these effectiveness results may be obtained in the general case.

Since the early ’90s, a new approach to the construction of automatic document
classifiers (the machine learning approach) has gained prominence and eventually
become the dominant one (see [Mitchell 1996] for a comprehensive introduction
to machine learning). In this approach a general inductive process (also called
the learner) automatically builds a classifier for a category ci by “observing” the
characteristics of a set of documents that have previously been classified manually
under ci by a domain expert; from these characteristics, the inductive process gleans
the characteristics that a novel document should have in order to be classified under
ci. In machine learning terminology, the classification problem is an activity of
supervised learning, since the learning process is driven, or “supervised”, by the
knowledge of the categories to which the training instances belong1.

The advantages of this approach over the previous one are evident: the engi-
neering effort goes towards the construction not of a classifier, but of an automatic
builder of classifiers. This means that if the original set of categories is updated,
or if the system is ported to a completely different domain, all that is needed is the
inductive, automatic construction of a new classifier from a different set of manually
classified documents, with no required intervention of either the domain expert or
the knowledge engineer.

In terms of effectiveness, classifiers built by means of machine learning techniques
nowadays achieve impressive levels of performance (see Section 8), making auto-
matic classification a qualitatively (and not only economically) viable alternative to
manual classification.

1Within the area of content-based document management tasks, an example of an unsupervised
learning activity is document clustering (see e.g. [Willett 1988b]).

Machine Learning in Automated Text Categorisation · 11

4.1 Training set and test set

As previously mentioned, the machine learning approach relies on the existence of
a an initial corpus Co = {d1, . . . , ds} of documents previously classified under the
same set of categories C = {c1, . . . , cm} with which the system will need to operate.
This means that the initial corpus comes with a correct decision matrix

Training set Test set

d1 dg dg+1 ds

c1 ca11 ca1g ca1(g+1) ca1s

. .
ci cai1 caig cai(g+1) cais
. .
cm cam1 camg cam(g+1) cams

A value of 1 for caij is interpreted as an indication from the expert to file dj under
ci, while a value of 0 is interpreted as an indication from the expert not to file dj
under ci. A document dj is called a positive example of ci if caij = 1, a negative
example of ci if caij = 0. TC may then be reformulated as the task of approximating
the function f : (D ∪ Co) × C → {0, 1}, unknown for all d ∈ D and known for all
d ∈ Co, by means of a function f ′ : (D ∪ Co) × C → {0, 1}.

For evaluation purposes, in the first stage of classifier construction the initial
corpus is typically divided into two sets, not necessarily of equal size:

—a training set Tr = {d1, . . . , dg}. This is the set of example documents observing
the characteristics of which the classifiers for the various categories are induced;

—a test set Te = {dg+1, . . . , ds}. This set will be used for the purpose of testing
the effectiveness of the induced classifiers. Each document in Te will be fed to
the classifiers, and the classifier decisions compared with the expert decisions; a
measure of classification effectiveness will be based on how often the values for
the aij ’s obtained by the classifiers match the values for the caij ’s provided by
the experts.

Note that in order to give a scientific character to the experiment the documents in
Te cannot participate in any way in the inductive construction of the classifiers; if
this condition were not satisfied, the experimental results obtained would probably
be unrealistically good [Mitchell 1996, page 129].

This approach is called the train-and-test approach. An alternative approach is
the k-fold cross-validation approach (see e.g. [Mitchell 1996, page 146]), whereby
t different classifiers are induced by partitioning the initial corpus into k disjoint
sets Te1, . . . , T ek, and then iteratively applying the train-and-test approach on
pairs 〈Tri = Co− Tei, T ei〉. The resulting t classifiers Φ1, . . . ,Φt, different among
each other because they have been generated from t different training sets, are
then averaged in some way to yield the final classifier. This approach (that is
clearly reminiscent of the “classifier committee” approach that will be discussed in
Section 6.10) is usually adopted when the initial corpus is small and the training
process cannot afford to lose the information present in the test documents. This is
hardly the case in TC applications, where initial corpora are usually large at will.

12 · F. Sebastiani

In the train-and-test approach, it is often the case that in order to optimise a
classifier, its internal parameters should be tuned by testing which values of the
parameters yield the best effectiveness. In order to make this optimisation possible
while at the same time safeguarding scientific standards, the set {d1, . . . , dg} may be
further split into a “true” training set Tr = {d1, . . . , df}, from which the classifier
is inductively constructed, and a validation set V a = {df+1, . . . , dg} (sometimes
called a hold-out set), on which the repeated tests of the induced classifier aimed
at parameter optimisation are performed2.

Given a corpus Co, one may define the generality gCo(ci) of a category ci as the
percentage of documents that belong to ci, i.e.:

gCo(ci) =
| {dj ∈ Co | caij = 1} |

| {dj ∈ Co} |
(1)

The training set generality gTr(ci), validation set generality gV a(ci), and test set
generality gTe(ci) of a category ci may be defined in the obvious way by substituting
Tr, V a, or Te, respectively, to Co in Equation 1.

4.2 Information retrieval techniques and text categorisation

The machine learning approach to classifier construction heavily relies on the basic
machinery of information retrieval. The reason is that both IR and TC are content-
based document management tasks, and therefore share many characteristics.

IR techniques are used in three phases of the text classifier life cycle:

(1) IR-style indexing is always performed on the documents of the initial corpus
and on those to be categorised during the operating phase of the classifier;

(2) IR-style techniques (such as document-request matching, query reformulation,
. . .) are often used in the inductive construction of the classifiers;

(3) IR-style evaluation of the effectiveness of the classifiers is performed.

The various approaches to classification differ mostly for how they tackle Step 2,
although in a few cases non-standard approaches to Steps 1 and 3 are also used.
Steps 1, 2 and 3 will be the main themes of Sections 5, 6-7 and 8, respectively.

5. INDEXING AND DIMENSIONALITY REDUCTION

Text documents, as they are, are not amenable to being interpreted by a classifier
or by a classifier-building algorithm. Because of this, an indexing procedure that
maps a text d into a succinct representation of its content needs to be invoked.
Although numerous indexing methods exist, it goes without saying that the same
indexing procedure should uniformly be applied to training, validation and test
documents alike.

The choice of a representation for text depends on what one regards as the mean-
ingful textual units (the problem of lexical semantics) and the meaningful natural
language rules for the combination of these units (the problem of compositional
semantics). In true IR style, each document is usually represented by a vector

2From now on, we will take the freedom to use the expression “test document” to denote any
document not in the training set and validation set. This includes thus any document submitted
to the classifier in its operating phase.

Machine Learning in Automated Text Categorisation · 13

of n weighted index terms (hereafter simply terms) that occur in the document;
differences among the various approaches are accounted for by

(1) different ways to understand what a term is;
(2) different ways to weight terms.

A typical choice for Issue 1 is to identify terms with all the words occurring in
the document. This is often referred to as the bag of words approach to docu-
ment representation. In a number of experiments [Apté et al. 1994; Dumais et al.
1998; Lewis 1992] it has been found that representations more sophisticated than
this yield worse categorisation effectiveness, thereby confirming similar results from
IR [Salton and Buckley 1988]. In particular, a number of authors have tried to use
noun phrases, rather than individual words, as indexing terms, but the experimen-
tal results found to date have not been encouraging, irrespectively of whether the
notion of “phrase” is motivated

—syntactically, i.e. the phrase is such according to a grammar of the language (see
e.g. [Fuhr et al. 1991; Lewis 1992; Tzeras and Hartmann 1993]);

—statistically, i.e. the phrase is not grammatically such, but is composed of a
set/sequence of words that occur contiguously with high frequency in the collec-
tion (see e.g. [Schütze et al. 1995]).

Quite convincingly, Lewis [1992] argues that the likely reason for the discouraging
results is that, although indexing languages based on phrases have superior semantic
qualities, they have inferior statistical qualities with respect to indexing languages
based on single words. Notwithstanding these discouraging results, investigations
on the effectiveness of phrase indexing are still being actively pursued. This is
true especially of statistically motivated phrases [Cohen and Singer 1999; Mladenić
1998b; Schapire et al. 1998], since in this case Lewis’ argument above applies to a
smaller degree.

As for Issue 2, weights usually range between 0 and 1, and with no loss of gener-
ality we will assume they always do. As a particular case, a few authors (e.g. [Apté
et al. 1994; Koller and Sahami 1997; Lewis and Ringuette 1994; Li and Jain 1998;
Moulinier et al. 1996; Moulinier and Ganascia 1996; Schapire and Singer 2000;
Schütze et al. 1995]) use binary weights, due to the symbolic, non-numeric nature
of the learning systems they employ; in this case, 1 denotes presence and 0 absence
of the term in the document. In the more frequent case of non-binary indexing,
for determining the weight wkj of term tk in document dj any IR-style indexing
technique that represents a document as a vector of weighted terms may be used.
Most of the times, the standard tfidf weighting function is used (see e.g. [Salton
and Buckley 1988]), defined as

tfidf(tk, dj) = #(tk, dj) · log
|Tr|

#Tr(tk)
(2)

where #(tk, dj) denotes the number of times tk occurs in dj , and #Tr(tk) denotes
the number of documents in Tr in which tk occurs at least once (also known as
the document frequency of term tk). This function encodes the intuitions that (i)
the more often a term occurs in a document, the more it is representative of the

14 · F. Sebastiani

content of the document, and (ii) the more documents the term occurs in, the less
discriminating it is3.

Note that this formula (as most other indexing formulae) weights the importance
of a term to a document in terms of occurrence considerations only, thereby deeming
of null importance the order in which the terms themselves occur in the document
and the syntactic role they play; in other words, the semantics of a document is
reduced to the lexical semantics of the terms that occur in it, thereby disregarding
the issue of compositional semantics (an exception to this are the representation
techniques used for the Foil system [Cohen 1995a] and for the Sleeping Experts
system [Cohen and Singer 1999]).

In order to make weights fall in the [0,1] interval and documents be represented
by vectors of equal length, the weights resulting from tfidf are often normalised by
cosine normalisation, given by:

wkj =
tfidf(tk, dj)√∑r
s=1(tfidf(ts, dj))2

(3)

where r is the set of all terms that occur at least once in Tr.
Although tfidf is by far the most popular one, other indexing functions have

also been used, including probabilistic indexing methods [Fuhr et al. 1998] or tech-
niques for indexing structured documents [Larkey and Croft 1996]. Functions dif-
ferent from tfidf are especially needed when the training set is not available in its
entirety from the start and document frequency data are thus unavailable, as e.g.
in adaptive filtering; in this case, more empirical substitutes of tfidf are usually
employed [Dagan et al. 1997, Section 4.3].

Before indexing, the removal of function words (i.e. topic-neutral words such as ar-
ticles, prepositions, conjunctions, etc.) is always performed. Concerning stemming
(i.e. collapsing words that share the same morphological root), it is controversial
whether it is a beneficial step for TC. Although, similarly to unsupervised term
clustering (see Section 5.3.1) of which it is an instance, stemming has sometimes
been reported to hurt effectiveness (e.g. [Baker and McCallum 1998]), the recent
tendency is to adopt it (e.g. [Larkey and Croft 1996; Ng et al. 1997; Schütze et al.
1995; Wiener et al. 1995; Yang 1999]), as it considerably reduces both the dimen-
sionality of the term space (see Section 5.1) and the level of stochastic dependence
between terms (see Section 6.1).

Depending on the application, either the full text of the document or selected
parts of it may be indexed. While the former option is the rule, exceptions do exist.
For instance, in a patent categorisation application Larkey [1999] considers only the
title, the abstract, the first twenty lines of the background summary, and the section
containing the claims of novelty of the described invention. This approach is made
possible by the fact that documents describing patents are structured. Similarly,
when a document title is available, it is possible to pay extra importance to the
words appearing therein [Apté et al. 1994; Cohen and Singer 1999; Weiss et al.

3Actually, tfidf is, rather than a function, a whole class of functions, which differ from each other
in terms of normalisation or other correction factors being applied or not. Formula 2 is then just
one of the possible instances of this class; see [Salton and Buckley 1988] for variations on this
theme.

Machine Learning in Automated Text Categorisation · 15

1999]. Instead, in those applications in which documents are flat the identification
of the most relevant part of a document is a non-obvious task.

5.1 Dimensionality reduction

Unlike in IR, in TC the high dimensionality of the term space (i.e. the fact that
the number r of terms that occur at least once in the corpus Co is high) may
be problematic. In fact, while the typical matching algorithms used in IR (such
as cosine matching) scale well to high values of r, the same cannot be said of
many among the sophisticated learning algorithms used for classifier induction (e.g.
the LLSF algorithm of [Yang and Chute 1994]). Because of this, techniques for
dimensionality reduction (DR) are often employed whose effect is to reduce the
dimensionality of the vector space from r to r′ � r.

Dimensionality reduction is also beneficial since it tends to reduce the problem
of overfitting, i.e. the phenomenon by which a classifier is tuned also to the contin-
gent, rather than just the necessary (or constitutive) characteristics of the training
data4. Classifiers which overfit the training data tend to be extremely good at clas-
sifying the data they have been trained on, but are remarkably worse at classifying
other data. For example, if a classifier for category Cars for sale were trained
on just three positive examples among which two concerned the sale of a yellow
car, the resulting classifier would deem “yellowness”, clearly a contingent property
of these particular training data, as a constitutive property of the category. Ex-
perimentation has shown that in order to avoid overfitting a number of training
examples roughly proportional to the number of terms used is needed; Fuhr and
Buckley [1991, page 235] have suggested that 50-100 training examples per term
may be needed in TC tasks. This means that, if DR is performed, overfitting may
be avoided even if a smaller amount of training examples is used.

Various DR functions, either from the information theory or from the linear
algebra literature, have been proposed, and their relative merits have been tested
by experimentally evaluating the variation in categorisation effectiveness that a
given classifier undergoes after application of the function to the term space it
operates on.

There are two quite distinct ways of viewing DR, depending on whether the task
is approached locally (i.e. for each individual category, in isolation of the others) or
globally5:

—local dimensionality reduction: for each category ci, r′i � r terms are chosen to
support the classification under category ci (see e.g. [Apté et al. 1994; Lewis and
Ringuette 1994; Li and Jain 1998; Ng et al. 1997; Sable and Hatzivassiloglou 1999;
Schütze et al. 1995; Wiener et al. 1995]). Conceptually, this would mean that
each document dj has a different representation for each category ci; in practice,
though, this means that different subsets of dj ’s original representation are used
when classifying under the different categories. Authors who have adopted this
approach tend to adopt values of 10 ≤ r′ ≤ 50.

4The overfitting problem is often referred to as “the curse of dimensionality”.
5A third way of viewing DR, and exemplified in [Koller and Sahami 1997], is briefly discussed in
Section 9.

16 · F. Sebastiani

—global dimensionality reduction: r′ � r terms are chosen to support the classi-
fication under all categories C = {c1, . . . , cm} (see e.g. [Mladenić 1998a; Yang
1999; Yang and Pedersen 1997]).

This distinction usually does not impact on the kind of technique chosen for DR,
since most DR techniques can be used (and have been used) for local and for global
DR alike.

A second, orthogonal distinction may be drawn in terms of the nature of the
resulting terms:

—dimensionality reduction by term selection: the r′ chosen terms are a subset of
the r original terms;

—dimensionality reduction by term extraction: the r′ terms are not a subset of the
original r terms. Usually, the former are not homogeneous with the latter (e.g.
if the original r terms are words, the r′ chosen terms may not be words at all),
but are obtained by combinations or transformations of the original ones.

Quite obviously, and unlike in the previous distinction, the two different ways of
doing DR are tackled by quite distinct techniques; we will tackle them separately
in the next two sections.

5.2 Dimensionality reduction by term selection

Given a fixed r′ � r, techniques for term selection (also called term space reduc-
tion – TSR) purport to select, from the original set of r terms, the r′ terms that,
when used for document indexing, yield the smallest reduction in effectiveness with
respect to the effectiveness that would be obtained by using full-blown represen-
tations. Results published in the literature [Yang and Pedersen 1997] have even
shown a moderate (≤ 5%) increase in effectiveness after term space reduction has
been performed, depending on the classifier, on the aggressivity r

r′ of the reduction,
and on the TSR technique used.

Moulinier et al. [1996] have experimented with a so-called wrapper term selection
method, i.e. one in which the term set is identified by means of the same learning
method which will be used for inducing the classifier [John et al. 1994]. Starting
from an initial term set, a new term set is generated by either adding or removing
a term. When a new term set is generated, a classifier based on it is induced and
then tested on a validation set. The term set that results in the best effectiveness
is chosen. This approach has the advantage that it is by definition tuned to the
learning algorithm being used, and that, if used for local dimensionality reduction,
different numbers of terms for different categories may be chosen, depending on
whether a category is or is not easily separable from the others. However, this
approach surely qualifies as a brute force method, and the number of possible
different term sets renders its cost prohibitive for standard TC applications.

A computationally easier alternative to the wrapper approach is the filtering ap-
proach [John et al. 1994], i.e. keeping the r′ � r terms that score highest according
to a predetermined numerical function that measures the “importance” of the term
for the categorisation task. We will explore this solution in the rest of this section.

5.2.1 Document frequency. A simple and surprisingly effective global TSR func-
tion is the document frequency #Tr(tk) of a term tk, first used in [Apté et al. 1994]

Machine Learning in Automated Text Categorisation · 17

and then systematically studied in [Yang and Pedersen 1997]. Note that in this
section we will interpret the event space as the set of all documents in the training
set; in probabilistic terms, document frequency may thus also be written as P (tk).
Yang and Pedersen [1997] have shown that, irrespectively of the adopted classifier
and of the initial corpus used, by using #Tr(tk) as a term selection technique it is
possible to reduce the dimensionality of the term space by a factor of 10 with no
loss in effectiveness (a reduction by a factor of 100 brings about just a small loss).

This result seems to state, basically, that the most valuable terms for categorisa-
tion are those that occur more frequently in the collection. As such, it would seem
at first to contradict a truism of IR, according to which the most informative terms
are those with low-to-medium document frequency [Salton and Buckley 1988]. But
these two results do not contradict each other, since it is well-known (see e.g. [Salton
et al. 1975]) that the overwhelming majority of the words that occur at least once
in a given corpus have an extremely low document frequency; this means that by
performing a TSR by a factor of 10 using document frequency, only such words
are removed, while the words from low-to-medium to high document frequency are
preserved. Of course, stop word removal needs to be performed before this form of
dimensionality reduction is attempted, lest only topic-neutral words remain after
the reduction [Mladenić 1998a].

Finally, note that a slightly more empirical form of term selection by document
frequency is adopted by many authors, who remove from consideration all terms
that occur in at most x training documents (popular values for x range from 1 to
3), either as the only form of dimensionality reduction [Ittner et al. 1995] or before
applying another more sophisticated form [Dumais et al. 1998; Li and Jain 1998;
Wiener et al. 1995]. A variant of this policy is removing from considerations all
terms that occur at most x times in the collection (e.g. [Dagan et al. 1997; Joachims
1997; Joachims 1998]), with popular values for x ranging from 1 (e.g. [Baker and
McCallum 1998]) to 5 (e.g. [Apté et al. 1994; Cohen 1995a]).

5.2.2 Other information-theoretic term selection functions. Other more sophis-
ticated information-theoretic functions have been used in the literature, among
which chi-square [Schütze et al. 1995; Yang and Pedersen 1997; Yang and Liu
1999], correlation coefficient [Ng et al. 1997; Ruiz and Srinivasan 1999], informa-
tion gain [Larkey 1998; Lewis 1992; Lewis and Ringuette 1994; Mladenić 1998a;
Moulinier and Ganascia 1996; Yang and Pedersen 1997; Yang and Liu 1999], mu-
tual information [Dumais et al. 1998; Lam et al. 1997; Larkey and Croft 1996;
Lewis and Ringuette 1994; Li and Jain 1998; Moulinier et al. 1996; Ruiz and Srini-
vasan 1999; Taira and Haruno 1999; Yang and Pedersen 1997], odds ratio [Mladenić
1998a; Ruiz and Srinivasan 1999], relevancy score [Wiener et al. 1995], and simpli-
fied chi-square [Fuhr et al. 1998]. The mathematical definitions of these measures
are summarised for convenience in Table 1. Probabilities are interpreted as usual
on an event space of documents (e.g. P (tk, ci) thus means the probability that,
for a random document x, term tk does not occur in x and x belongs to category
ci), and are estimated by counting occurrences in the training set. Most of these
functions try to capture the intuition according to which the most valuable terms
for categorisation under ci are those that are distributed most differently in the sets
of positive and negative examples of the category.

18 · F. Sebastiani

Function Denoted by Mathematical form

Document frequency #(tk, ci) P (tk|ci)

Information gain IG(tk, ci) P (tk, ci) · log
P (tk, ci)

P (ci) · P (tk)
+ P (tk, ci) · log

P (tk, ci)

P (ci) · P (tk)

Mutual information MI(tk, ci) log
P (tk, ci)

P (tk) · P (ci)

Chi-square χ2(tk, ci)
g · [P (tk, ci) · P (tk, ci) − P (tk, ci) · P (tk, ci)]

2

P (tk) · P (tk) · P (ci) · P (ci)

Correlation coefficient CC(tk, ci)

√
g · [P (tk, ci) · P (tk, ci) − P (tk, ci) · P (tk, ci)]√

P (tk) · P (tk) · P (ci) · P (ci)

Relevancy score RS(tk, ci) log
P (tk|ci) + d

P (tk|ci) + d

Odds Ratio OR(tk, ci)
P (tk|ci) · (1 − P (tk|ci))

(1 − P (tk|ci)) · P (tk|ci)

Simplified Chi-square sχ2(tk, ci) P (tk, ci) · P (tk, ci) − P (tk, ci) · P (tk, ci)

Table 1. Main functions proposed for term space reduction purposes. Information gain is also
known as expected mutual information; it is used under this name by Lewis [1992, page 44] and
Larkey [1998]. In the χ2 and CC formulae, g is (as usual) the cardinality of the training set. In
the RS(tk, ci) formula d is a constant damping factor.

These functions have given even better results than document frequency: Yang
and Pedersen [1997] have shown that, with different classifiers and different initial
corpora, sophisticated techniques such as IG or χ2 can reduce the dimensionality
of the term space by a factor of 100 with no loss (or even with a small increase) of
categorisation effectiveness.

Unfortunately, the complexity of some of these information-theoretic measures
does not always allow one to readily interpret why their results are so good; in other
words, the rationale of the use of these measures as TSR functions is not always
clear.

In this respect, Ng et al. [1997] have observed that the use of χ2(t) for TSR pur-
poses is counterintuitive, as squaring the numerator has the effect of equating those
factors that indicate a positive correlation between the term and the category (i.e.
P (t, ci) and P (t, ci)) with those that indicate a negative correlation (i.e. P (t, ci) and
P (t, ci)). The “correlation coefficient” CC(t) they propose, being the square root
of χ2(t), emphasises thus the former and de-emphasises the latter, thus respecting
intuitions. The experimental results by Ng et al. [1997] show a superiority of CC(t)
over χ2(t), but it has to be remarked that these results refer to a local, rather than
global, term space reduction application.

Fuhr et al. [1998] go a further step in this direction, by observing that in CC(tk, ci)
(and a fortiori in χ2(tk, ci))

—the
√
g factor at the numerator is ininfluent, since it is equal for all pairs (tk, ci);

—the presence of
√
P (tk) · P (tk) at the denominator emphasises extremely rare

terms, which Yang and Pedersen [1997] have clearly shown to be the least effective

Machine Learning in Automated Text Categorisation · 19

in TC.
—the presence of

√
P (ci) · P (ci)) at the denominator emphasises extremely rare

categories, which is extremely counterintuitive.

Eliminating these factors from CC(tk, ci) yields sχ2(tk, ci). The use of this function
for TSR purposes has been tested by Galavotti [1999] on the Reuters collection (see
Section 8) and on a variety of different classifiers, and its experimental results have
outperformed those obtained by means of both χ2(t) and CC(t).

As a final comment, it should be noted that the reported improvements in per-
formance that some TSR functions achieve over others cannot be taken as general
statements of the properties of these functions unless the experiments involved have
been carried out in thoroughly controlled conditions and on a variety of different
situations (e.g. different classifiers, different initial corpora, . . .). So far, only the
comparative evaluations reported in [Galavotti 1999; Yang and Pedersen 1997] seem
conclusive in this respect.

5.3 Dimensionality reduction by term extraction

Given a fixed r′ � r, term extraction (also known as reparameterisation) purports
to synthesize, from the original set of r terms, a set of r′ new terms that maximises
the obtained effectiveness. The rationale for using synthetic (rather than naturally
occurring) terms is that, due to the pervasive problems of polysemy, homonymy
and synonymy, terms may not be optimal dimensions for document content repre-
sentation. Methods for term extraction aim at solving these problems by creating
artificial terms that do not suffer from any of the above-mentioned problems. Two
approaches of this kind have been experimented in the TC literature, namely term
clustering and latent semantic indexing.

5.3.1 Term clustering. Term clustering aims at grouping words with a high de-
gree of pairwise semantic relatedness into clusters, so that the clusters (or their
centroids) may be used instead of the terms as dimensions of the vector space.
Term clustering is different from term selection, since the former tends to address
the problem of terms that are redundant because they are synonymous (or near-
synonymous) with other terms, while the latter targets non-informative terms. Any
term clustering method must specify (i) a method for grouping words into clusters,
and (ii) a method for converting the original representation of a document dj into
a new representation for it based on the newly synthesized dimensions.

Lewis [1992] has been the first to investigate the impact of term clustering on
TC. The method he employs, called reciprocal nearest neighbour clustering, consists
of creating clusters of two terms that are one the most similar to the other accord-
ing to some measure of similarity. The results were inferior to those obtained by
single-word indexing, possibly due to a disappointing performance by the clustering
method: as Lewis [1992, page 48] says, “The relationships captured in the clusters
are mostly accidental, rather than the systematic relationships that were hoped
for.”

Another example of this approach is the work of Li and Jain [1998], who view
semantic relatedness between words in terms of their co-occurrence and co-absence
within training documents. By using this technique in the context of a hierarchical
clustering algorithm they witnessed only a marginal effectiveness improvement;

20 · F. Sebastiani

however, the small size of their experiment (see Section 6.10) hardly allows any
hard conclusion to be reached.

Both [Lewis 1992; Li and Jain 1998] provide examples of unsupervised clustering,
since the clustering activity is not guided by the category labels attached to the
documents. Baker and McCallum [1998] provide instead an example of supervised
clustering, as the distributional clustering method they employ clusters together
those terms that tend to indicate the presence of the same category, or group of
categories. Their experiments, carried out in the context of a Näıve Bayes classifier,
showed only a 2% effectiveness loss with aggressivity r

r′ = 1000, and even showed
some effectiveness improvement with less aggressive levels of reduction.

5.3.2 Latent semantic indexing. Latent semantic indexing (LSI – [Deerwester
et al. 1990]) is a technique for dimensionality reduction originally developed in
the context of IR in order to address the problems deriving from the use of syn-
onymous, near-synonymous and polysemous words as dimensions of document and
query representations. This technique compresses vectors representing either doc-
uments or queries into vectors of a lower-dimensional space whose dimensions are
obtained as combinations of the original dimensions by looking at their patterns
of co-occurrence. In practice, LSI infers the dependence among the original terms
from a corpus and “wires” this dependence into the newly obtained, independent
dimensions. The function mapping original vectors into new vectors is obtained by
applying a singular value decomposition to the incidence matrix formed by the orig-
inal document vectors. In the context of TC, this technique is applied by deriving
the mapping function from the training set and applying it to each test document
so as to produce a representation for it in the lower-dimensional space.

One characteristic of LSI as a dimensionality reduction function is that the newly
obtained dimensions are not, unlike the cases of term selection and term clustering,
intuitively interpretable. However, they tend to work well in bringing out the “la-
tent” semantic structure of the vocabulary used in the corpus. For instance, Schütze
et al. [1995, page 235] discuss the case of classification under category Demographic
shifts in the U.S. with economic impact by a neural network classifier. In
the experiment they report, they discuss the case of a document that was indeed a
positive test instance for the category, and that contained, among others, the quite
revealing sentence “The nation grew to 249.6 million people in the 1980s
as more Americans left the industrial and agricultural heartlands for
the South and West”. The classifier decision was incorrect when local dimension-
ality reduction had been performed by χ2-based term selection retaining the top
original 200 terms, but was correct when the same task was tackled by means of
LSI. This well exemplifies how LSI works: the above sentence does not contain any
of the 200 terms most relevant to the category selected by χ2, but quite possibly the
words contained in it have concurred to produce one or more of the LSI higher-order
terms that generate the document space of the category. As Schütze et al. [1995,
page 230] put it, “if there is a great number of terms which all contribute a small
amount of critical information, then the combination of evidence is a major prob-
lem for a term-based classifier”. A drawback of LSI, though, is that if some original
term is particularly good in itself at discriminating a category, that discriminatory
power may be lost in the new vector space.

Machine Learning in Automated Text Categorisation · 21

Wiener et al. [1995] use LSI in two alternative ways: (i) for local dimensionality
reduction, thus creating several LSI representations specific to individual categories,
and (ii) for global dimensionality reduction, by creating a single LSI representation
for the entire category set. Their experimental results show the former approach
to perform better than the latter. Anyway, both LSI-based approaches are shown
to perform better than a simple term selection technique based on the Relevancy
Score measure (see Table 1).

Schütze et al. [1995] have experimentally compared LSI-based term extraction
with χ2-based term selection using three different classifier induction techniques
(namely, linear discriminant analysis, logistic regression and neural networks) in a
routing application. Their results showed LSI to be far more effective than χ2 for
the first two techniques, while both methods performed equally well in the case of
the neural network classifier.

Other works in TC that have made use of LSI or similar term extraction tech-
niques are [Hull 1994; Li and Jain 1998; Schütze 1998; Weigend et al. 1999; Yang
1995].

6. METHODS FOR THE INDUCTIVE CONSTRUCTION OF A CLASSIFIER

The problem of the inductive construction of a text classifier has been tackled in
a variety of different ways. Here we will describe in some detail only the methods
that have proven the most popular in the literature, but at the same time we will
also try to mention the existence of alternative, less standard approaches.

The inductive construction of a classifier for a category ci ∈ C usually consists
of two different phases:

(1) the definition of a function CSVi : D → [0, 1] that, given a document dj ,
returns a categorisation status value for it, i.e. a number between 0 and 1
that, roughly speaking, represents the evidence for the fact that dj should be
classified under ci. The CSVi function takes up different meanings according to
the different classifiers: for instance, in the “Näıve Bayes” approach discussed
in Section 6.1 CSVi(dj) is defined in terms of a probability, whereas in the
“Rocchio” approach discussed in Section 6.6 CSVi(dj) is a measure of vector
closeness in r-dimensional space;

(2) the definition of a threshold τi such that CSVi(dj) ≥ τi is interpreted as a
decision to classify dj under ci, while CSVi(dj) < τi is interpreted as a decision
not to classify dj under ci. A particular case occurs when the classifier already
provides a binary judgement (e.g. [Apté et al. 1994; Moulinier et al. 1996]), i.e.
is such that CSVi : D → {0, 1}. In this case, the threshold is trivially any value
in the (0,1) open interval.

Issue 2 will be the subject of Section 7. In this section we will instead concentrate
on Issue 1, discussing a number of approaches that have been proposed in the
TC literature. In this section the presentation of the algorithms will be mostly
qualitative rather than quantitative, i.e. will focus on the methods for classifier
induction rather than on the performance of the classifiers that can be induced by
means of them. This latter will instead be tackled in Section 8.

22 · F. Sebastiani

6.1 Probabilistic classifiers

We start our presentation of the methods for classifier induction with a discussion
of the probabilistic approach. This is a very apt start, since the very first text
classifier reported in the literature [Maron 1961] was a probabilistic one.

Probabilistic classifiers view CSVi(dj) in terms of the probability P (ci|dj) that
a document represented by a vector dj = 〈w1j , . . . , wrj〉 of (binary or weighted)
terms falls within a category ci, and attempt to compute this probability through
an application of Bayes’ theorem, given by

P (ci|dj) =
P (ci)P (dj |ci)

P (dj)
(4)

In this equation, probabilities are to be interpreted on the space of documents;
accordingly, P (dj) represents the probability that a randomly picked document has
vector dj as its representation, and P (ci) the probability that a randomly picked
document falls within category ci.

The estimation of P (dj |ci) in Equation 4 is problematic, since the number of
possible vectors dj is too high (the same holds for P (dj), but for reasons that will
be clear shortly this will not concern us). In order to alleviate this problem, it is
common to make the assumption that any two coordinates of the document vector
are, when viewed as random variables, statistically independent of each other; this
independence assumption is encoded by the equation

P (dj |ci) =
r∏

k=1

P (wkj |ci) (5)

Probabilistic classifiers that make use of this assumption are usually called Näıve
Bayes classifiers, and account for most of the probabilistic approaches to TC re-
ported in the literature6 (see e.g. [Joachims 1998; Koller and Sahami 1997; Larkey
and Croft 1996; Lewis 1992; Lewis and Gale 1994; Li and Jain 1998; Robertson and
Harding 1984]). The “näıve” character of the classifier is due to the fact that usually
this assumption is, quite obviously, not verified in naturally occurring document
corpora.

One of the best-known Näıve Bayes approaches is the binary independence clas-
sifier [Robertson and Sparck Jones 1976], which results from using binary-valued
vector representations for documents. In this case, if we write pki as short for
P (wkx = 1|ci), the P (wkj |ci) factors of Equation 5 may be written as

P (wkj |ci) = p
wkj

ki (1 − pki)1−wkj = (
pki

1 − pki
)wkj (1 − pki) (6)

We may further observe that in the TC application we are considering the document
space is partitioned into two categories, namely ci and its complement ci, which are
such that P (ci|dj) = 1−P (ci|dj). If we plug in Equations 5 and 6 into Equation 4
and take logs we obtain

logP (ci|dj) = logP (ci) + (7)

6Cooper [1995] has pointed out that the full independence assumption of Equation 5 is not actually
made in the Näıve Bayes classifier; the assumption wired into Näıve Bayes is instead the weaker

linked dependence assumption, which may be written as
P (dj |ci)

P (dj |ci)
=

∏r

k=1

P (wkj |ci)

P (wkj |ci)
.

Machine Learning in Automated Text Categorisation · 23

r∑
k=1

wkj log
pki

1 − pki
+

r∑
k=1

log(1 − pki) − logP (dj)

log(1 − P (ci|dj)) = log(1 − P (ci)) + (8)
r∑

k=1

wkj log
pki

1 − pki
+

r∑
k=1

log(1 − pki) − logP (dj)

where we write pki as short for P (wkx = 1|ci). We may convert Equations 7 and 8
into a single equation by subtracting componentwise Equation 8 from Equation 7,
thus obtaining

log
P (ci|dj)

1 − P (ci|dj)
= log

P (ci)
1 − P (ci)

+
r∑

k=1

wkj log
pki(1 − pki)
pki(1 − pki)

+
r∑

k=1

log
1 − pki
1 − pki

(9)

Note that P (ci|dj)
1−P (ci|dj)

is an increasing monotonic function of P (ci|dj), and may thus

be used directly as CSVi(dj). Note also that the factor log P (ci)
1−P (ci)

and the factor∑r
k=1 log 1−pki

1−p
ki

are constant for all documents, and may therefore be disregarded7.
Defining a classifier for category ci thus basically requires estimating the 2r pa-
rameters {p1i, p1i, . . . , pri, pri} from the training data, which may be done in the
obvious way. As a matter of fact, probabilistic classifiers are also called parametric
classifiers, exactly because their inductive construction consists in estimating prob-
abilistic parameters from the training data. Note that in general the classification
of a given document does not require to compute a sum of r factors, as the presence
of

∑r
k=1 wkj log pki(1−pki

)

p
ki

(1−pki)
would imply; in fact, all those factors for which wkj = 0

may be disregarded, and this usually accounts for the vast majority of them, since
document vectors are usually very sparse.

The binary independence classifier we have just illustrated is just one of the many
variants of the Näıve Bayes approach, the common denominator of which may be
taken to be Equation 5. A recent paper by Lewis [1998] is an excellent roadmap on
the various directions that research on Näıve Bayes classifiers has taken. Important
directions that Lewis highlights are the ones aiming

—to relax the constraint that term vectors representing documents should be binary-
valued. This looks quite natural, given that weighted indexing techniques (see
e.g. [Fuhr 1989; Fuhr and Buckley 1991; Salton and Buckley 1988]) that account
for the “importance” that a term tk has to a document dj play a key role in IR.

—to introduce document length normalisation in the model. In fact, it is clear from
Equation 9 that the value of log P (ci|dj)

1−P (ci|dj)
tends to be higher for long documents

(i.e. documents such that wkj = 1 for many values of k), irrespectively of their
semantic relatedness to ci. Taking document length into account is easy in non-
probabilistic approaches to classification (see e.g. Section 6.6), but is problematic
in probabilistic ones (see [Lewis 1998, Section 5]). One possible answer is the one

7This is not true, however, if the “fixed thresholding” method of Section 7 is adopted. In fact, in
this case the k aptest categories for document dj are chosen. This means that for a fixed document
dj the first and third factor in the formula above are different for different categories, and may
therefore influence the choice of the categories under which to file dj .

24 · F. Sebastiani

adopted by Baker and McCallum [1998], who switch from an interpretation of
Näıve Bayes in which documents are events, to one in which terms are events.
While in the former case we have multiple binomial random variables (stand-
ing for terms), in the latter case we have a single multinomial random variable
(standing for documents). This accounts for document length naturally but, as
noted in [Lewis 1998], has the drawback that different occurrences of the same
word within the same document are viewed as independent, an assumption even
more strikingly implausible that the standard word independence assumption. A
similar solution, and suffering from the same problem, had already been proposed
by Guthrie et al. [1994].

—to relax the independence assumption. This may be the hardest route to follow,
since this inevitably produces classifiers of higher computational cost and charac-
terised by harder parameter estimation problems. Earlier efforts in this direction
within the field of probabilistic IR (e.g. [van Rijsbergen 1977]) have not shown
the performance improvements that were hoped for. Recently, the fact that the
binary independence assumption seldom harms categorisation effectiveness has
also been given some theoretical justification [Domingos and Pazzani 1997].

The quotation of IR research in the last paragraph is not casual. Unlike other types
of classifiers, the literature on probabilistic classifiers is inextricably intertwined
with that on probabilistic IR (see [Crestani et al. 1998] for a review of this), since
this latter may be seen as the attempt to determine the probability that a document
falls in the category denoted by the query, and since it is the only approach to IR
that takes relevance feedback, a notion essentially involving supervised learning, as
central to its models.

A still controversial point in the application of Näıve Bayes to TC is whether term
selection can be applied without inducing a degradation in the performance of the
classifier. Li and Jain [1998] have reported a disastrous decrease in performance
when term space reduction based on mutual information was applied to a Näıve
Bayes classifier; in the same study, an application of the same reduction technique
did not degrade effectiveness when applied to k-NN or decision tree classifiers. In
another study, Joachims [1998] has shown that a Näıve Bayes classifier working with
a term space consisting of the terms ranked lowest by an information gain measure
still performed way better than a random classifier. Rather than showing that
even the most uninformative words are useful in text categorisation, as Joachims
concluded, this may well indicate that even the least informative terms are useful
to a Näıve Bayes classifier. The work of Baker and McCallum [1998] discussed in
Section 5.3.1 seems however to contradict this hypothesis, and the same may be
said of the work of Lewis and Ringuette [1994]. It seems safe to conclude that more
systematic experiments are needed to say something conclusive on this issue.

For a more thorough discussion on Näıve Bayes classifiers and their variations,
see the excellent [Lewis 1998].

6.2 Decision tree classifiers

Probabilistic induction methods are essentially quantitative (i.e. numeric) in nature,
and as such have sometimes been criticised since, effective as they may be, are not
readily interpretable by humans. A class of algorithms that do not suffer from this

wheat w h e a t

farm

commodity export

agriculture

bushels

tonnes

s o f t

e x p o r t

f a r m

c o m m o d i t y

a g r i c u l t u r e

t o n n e s

winterw i n t e r

soft

b u s h e l s

W H E A T

WHEAT

WHEAT

WHEAT

WHEAT

WHEAT

WHEATW H E A T

W H E A T

W H E A T

Machine Learning in Automated Text Categorisation · 25

Fig. 3. A decision tree equivalent to the DNF rule of Figure 1. Edges are labelled by terms and
leaves are labelled by categories (underlining denotes negation).

problem are symbolic (i.e. non-numeric) algorithms, among which inductive rule
learners (which we will discuss in Section 6.3) and decision tree inducers are the
most important examples.

A decision tree text classifier (see e.g. [Mitchell 1996, Section 3]) consists of a
tree in which internal nodes are labelled by terms, branches departing from them
are labelled by tests on the weight that the term has in the representation of the
test document, and leaf nodes are labelled by (not necessarily different) categories.
Such a classifier categorises a test document dj by recursively testing for the weights
that the terms labeling the internal nodes have in the representation of dj , until a
leaf node is reached; the label of this leaf node is then assigned to dj . Most such
text classifiers assume a binary document representation, and thus consist of binary
trees. An example of such a tree is illustrated in Figure 3.

There are a number of standard packages around for the induction of a decision
tree from a training set, and most decision tree approaches to TC have made use of
one such package. Among the most popular packages are ID3 (used in [Fuhr et al.
1991]), C4.5 (used in [Cohen and Hirsch 1998; Cohen and Singer 1999; Joachims
1998; Lewis and Catlett 1994]) and C5 (used in [Li and Jain 1998]). Other TC
endeavours based on experimental decision tree packages include [Dumais et al.
1998; Lewis and Ringuette 1994; Weiss et al. 1999].

A possible procedure for the induction of a decision tree for category ci from a
set of training examples consists in a “divide and conquer” strategy of recursively
(i) checking whether all the training examples have the same label (either ci or
ci); (ii) if not, selecting a term tk, partitioning the training examples into classes of
documents that have the same value for tk, and placing each such class in a separate
subtree. The process is recursively repeated on the subtrees until each leaf node of

26 · F. Sebastiani

the tree so generated contain training examples assigned to the same category ci,
which is then chosen as the label for the leaf node. The key step of this process is the
choice of the term tk on which to operate the partition, a choice which is generally
made according to an information gain or entropy criterion. However, such a “fully
grown” tree may be prone to overfitting, as some branches may be excessively
specific to the training data. Any decision tree induction method thus includes
a method for growing the tree and one for pruning it, i.e. for removing the overly
specific branches so as to minimise the probability of misclassifying test documents.
Variations on this basic schema for tree induction abound; the interested reader is
referred to [Mitchell 1996, Section 3].

Decision tree text classifiers have been used either as the main classification
tool [Fuhr et al. 1991; Lewis and Catlett 1994; Lewis and Ringuette 1994], or
as baseline classifiers [Cohen and Singer 1999; Joachims 1998], or as members of
classifier committees [Li and Jain 1998; Schapire et al. 1998; Schapire and Singer
2000; Weiss et al. 1999].

6.2.1 The AIR/X project. Within the decision trees TC literature, a special place
is occupied by the AIR/X system [Fuhr et al. 1991]. This system is important
since it constitutes the final result of the AIR project, one of the most important
endeavours in the history of TC. The AIR project, spanning a duration of more
than ten years [Fuhr and Knorz 1984; Fuhr 1985; Biebricher et al. 1988; Fuhr et al.
1991], has produced a system operatively employed in the classification of corpora
of scientific literature of more than a million documents, and has had important
theoretical spin-offs in the field of probabilistic indexing [Fuhr 1989; Fuhr and
Buckley 1991]8.

The approach to TC taken in AIR/X is known as the Darmstadt Indexing Ap-
proach (DIA). Here, “indexing’ is meant in the sense of Section 3.1, i.e. as using
terms from a controlled vocabulary, and is thus a synonym of TC (the DIA was
later extended to indexing with a non-controlled vocabulary [Fuhr and Buckley
1991]). The DIA is based on the preliminary computation of association factors
z(tk, ci) between free text terms tk and categories ci, where z(tk, ci) = P (tk,ci)

P (tk) is
the proportion of training documents containing tk that are classified under ci (as-
sociation factors are called adhesion coefficients in many early papers on TC – see
e.g. [Field 1975; Robertson and Harding 1984]). Once computed these association
factors, the DIA trains a decision tree in two steps. In the description step, for
every occurrence txkj of term tk in training document dj , a relevance description
rd(ci, dj) is updated by using z(tk, ci) and the characteristics of occurrence txkj (e.g.
the section of dj to which txkj belongs, etc.). In the decision step, the relevance
description rd(ci, dj) is transformed into a discrete-valued vector rd(ci, dj). At this
point, the ID3 decision tree algorithm is invoked, which, by selecting (based on a χ2

criterion) one attribute of the vector representation at a time, partitions training
vectors into equivalence classes of identical vectors.

8The AIR/X system, its applications (including the AIR/PHYS system [Biebricher et al. 1988],
an application of AIR/X to indexing physics literature), and its experiments, have also been richly
documented in a series of papers and doctoral theses written in German. The interested reader
may consult [Fuhr et al. 1991] for a detailed bibliography.

Machine Learning in Automated Text Categorisation · 27

For classifying a test document dl, the description and decision steps are applied
to dl. The probability of the correctness of attributing ci to dl is identified with
the percentage of training vectors rd(ci, dj) assigned to the equivalence class of
 rd(ci, dl) that correspond to correct categorisation decisions.

6.3 Decision rule classifiers

A classifier for category ci built by an inductive rule learning method consists of a
disjunctive normal form (DNF) rule, i.e. of a conjunction of conditional formulae
(“clauses”) of the type of those manually built into the Construe system and
illustrated in Figure 1. Clause premises denote the presence or absence of terms in
the test document, while the clause head denotes the decision whether to classify it
or not under ci. DNF induction methods are known to be of equal power to decision
tree methods from machine learning theory. However, one of their advantages is
that they tend to generate more compact classifiers than decision tree inducers.

Rule induction methods usually attempt to select from all the possible covering
rules (i.e. those rules that correctly classify all the training examples) the “best” one
according to some minimality criterion. While decision trees are typically induced
through a top-down, “divide-and-conquer” strategy, DNF rules are often induced
in a bottom-up fashion. At the start of the induction of the classifier for ci, every
training example is viewed as a clause τ1, . . . , τn → γi, where τ1, . . . , τn are the
terms contained in the document and γi equals ci or ci according to whether the
document is a positive or negative example of ci. This set of clauses is already a
DNF classifier for ci, but obviously scores tremendously high in terms of overfitting.
The induction algorithm employs then a process of generalisation whereby the rule
is simplified through a series of modifications (e.g. removing premises from clauses,
or merging clauses) that maximise its compactness while at the same time not
affecting the “covering” property of the classifier. At the end of this process, a
“pruning” phase similar in spirit to that employed in decision trees is applied,
where the ability to correctly classify all the training examples is traded for more
generality.

Individual DNF rule learners vary widely in terms of the methods, heuristics and
criteria employed for generalisation and for pruning. Among the inductive DNF
rule learners that have been applied to TC are Charade [Moulinier and Ganascia
1996], DL-ESC [Li and Yamanishi 1999], Ripper [Cohen 1995a; Cohen and Hirsch
1998; Cohen and Singer 1999], Scar [Moulinier et al. 1996], and Swap-1 [Apté
et al. 1994].

It should be mentioned that, while the DNF induction methods mentioned above
deal with rules at the propositional logic level, research has also been carried out
on using rules of first order logic, obtainable through the use of inductive logic
programming methods. Cohen [1995a] has extensively compared propositional and
first order induction in a TC application (for instance, comparing the propositional
learner Ripper with its first order version Flipper), and has concluded that the
additional representational power of first order logic brings about only modest ben-
efits.

28 · F. Sebastiani

6.4 Regression models

Various TC endeavours have made use of regression models (see e.g. [Ittner et al.
1995; Lewis and Gale 1994; Schütze et al. 1995]). In the statistical learning com-
munity, regression refers to the problem of approximating a real-valued function f
by means of a function f̂ that fits the training data [Mitchell 1996, page 236]. Here
we will describe one such model, the Linear Least Squares Fit (LLSF) proposed by
Yang and Chute [1994]. In LLSF, each document dj has two vectors associated
to it: an input vector I(dj), i.e. a standard vector of r weighted terms, and an
output vector O(dj), consisting of a vector of m weights, representing the categories
(the weights for this latter vector are binary in the case of training documents, are
standard non-binary CSVs in the case of test documents). Classification may thus
be seen as the task of determining an output vector O(dj) for test document dj ,
given its input vector I(dj); hence, building a classifier boils down to computing
an m × r matrix M̂ such that I(dj)M̂ = O(dj). LLSF computes the matrix from
the training data by computing a linear least-squares fit that minimizes the error
on the training set according to the formula

M̂ = arg min
M

‖MI −O‖F

where arg min
M

(x) stands as usual for the M for which the argument x is minimum,

‖V ‖F
def
=

∑m
i=1

∑n
j=1 vij represents the so-called Frobenius norm of an m × n

matrix, I is the r × g matrix whose columns are the input vectors of the training
documents, and O is the m×g matrix whose columns are the output vectors of the
training documents. The M̂ matrix is usually computed by performing a singular
value decomposition on the training set. In the resulting matrix M̂ the generic
entry m̂ik represents the degree of association between category ci and term tk.

Experimentation has shown that LLSF is one of the most effective text classifiers
known to date. One of its disadvantages, though, is that the computational cost of
computing the M̂ matrix is much higher than that of many other competitors in
the TC arena.

6.5 On-line linear classifiers

A linear classifier is a representation of the category of interest in terms of a vector
ci = 〈w1i, . . . , wri〉 belonging to the same r-dimensional space in which documents
are also represented, and such that CSVi(dj) corresponds to the inner product∑r

k=1 wki ·wkj of the document vector and the category vector. It is interesting to
notice that when both classifier and document weights are cosine-normalised (see
Equation 3), the inner product between the two vectors corresponds to their cosine
similarity, i.e.

S(ci, dj) = cos(α) =
∑r

k=1 wki · wjk√∑r
k=1 w

2
ki ·

√∑r
k=1 w

2
kj

which represents the cosine of the angle α that separates the two vectors. The inter-
est lies in the fact that this is the similarity measure between query and document
computed by standard vector-space IR engines, which means in turn that once a
linear classifier has been induced, classification can be performed by invoking such

Machine Learning in Automated Text Categorisation · 29

a standard IR engine.
Linear classifiers are also called profile-based classifiers, as they rely on the ex-

traction of an explicit profile (or prototypical document) of the category from the
training set. This has obvious advantages in terms of interpretability, as such a
profile is a representation more readily interpretable by a human than, say, a neu-
ral network classifier. Linear classifiers are often partitioned in two broad classes,
batch classifiers and on-line classifiers.

Batch induction methods build a classifier by analysing the training set all at
once. Within the TC literature, one example of a batch induction method is linear
discriminant analysis, a model of the stochastic dependence between terms that
relies on the covariance matrices of the various categories [Blosseville et al. 1992;
Hull 1994; Schütze et al. 1995]. However, the foremost example of a batch linear
classifier is the Rocchio classifier; because of its importance in the TC literature
this will be discussed separately in Section 6.6. In this section we will instead
concentrate on on-line classifiers.

On-line (aka incremental) induction methods build a classifier soon after exam-
ining the first training document, and incrementally refine it as they examine new
ones. This may be an advantage in those TC applications in which the training
set is not available in its entirety right from the start, or in which the “meaning”
of the category may change in time, as e.g. in adaptive filtering. This is also ex-
tremely apt to those applications in which we may expect the user of a classifier to
provide feedback on how test documents have been classified, as in this case further
training may be performed during the operating phase by exploiting user feedback.
Applications of this kind may be interactive classification ([Larkey and Croft 1996]
– see also Section 7) or, again, adaptive filtering.

A simple example of an on-line method is the perceptron algorithm, first proposed
for TC applications in [Schütze et al. 1995; Wiener et al. 1995] and subsequently
experimented with in [Dagan et al. 1997; Ng et al. 1997]. In this algorithm, the
classifier for ci is first initialised by setting all weights wki to the same positive
value. When a training example dj (represented by a vector of binary weights) is
examined, the classifier built so far attempts to classify it, and the result of the
classification is examined. If this is correct nothing is done, while if this is wrong
the weights of the classifier are modified: if dj was a positive example of ci then the
weights wki of “active terms” (i.e. those terms tk such that wkj = 1) are promoted,
by increasing them by a fixed quantity α > 0 (called learning rate), while if dj was
a negative example of ci then the same weights are demoted, by decreasing them
by α. Note that when at a certain stage of the training phase the classifier has
reached a reasonable level of effectiveness, the fact that a weight wki is very low
means that tk has negatively contributed to the classification behaviour so far, and
may thus be discarded from the representation. We may then see the perceptron
algorithm (as all other incremental induction methods, for that matter) as allowing
for a sort of “on-the-fly term space reduction” [Dagan et al. 1997, Section 4.4]. The
perceptron classifier has shown a good effectiveness in all the experiments quoted
above.

The perceptron algorithm is an additive weight-updating algorithm. A multi-
plicative variant of the perceptron is Positive Winnow [Dagan et al. 1997], which
differs from perceptron because two different constants α1 > 1 and 0 < α2 < 1 are

30 · F. Sebastiani

used for promoting and demoting weights, respectively, and because promotion and
demotion are achieved by multiplying, instead of adding, by α1 and α2. Balanced
Winnow [Dagan et al. 1997; Ragas and Koster 1998] is a further variant of Posi-
tive Winnow, in which the classifier consists of two weights w+

ki and w−
ki for each

term tk; the final weight wki used in computing the inner product is the difference
w+
ki − w−

ki. Following the misclassification of a positive instance, active terms have
their w+

ki weight promoted and their w−
ki weight demoted, whereas in the case of a

negative instance it is w+
ki that gets promoted while w−

ki gets demoted (for the rest,
promotions and demotions are as in Positive Winnow). Balanced Winnow
allows negative wki weights, while in the perceptron algorithm and in Positive
Winnow the wki weights are always positive.

In experiments conducted by Dagan et al. [1997], Positive Winnow showed a
better effectiveness than the perceptron algorithm but was in turn outperformed by
(Dagan et al.’s own version of) Balanced Winnow. These experimental results
confirm various analytical intuitions concerning these algorithms that are discussed
in the theoretical learning literature.

Other examples of on-line classifiers are the Widrow-Hoff classifier, a refine-
ment of it called the Exponentiated Gradient classifier (both applied for the
first time to TC in [Lewis et al. 1996]) and the Sleeping Experts algorithm [Co-
hen and Singer 1999; Ragas and Koster 1998], a version of Balanced Winnow.
While the first is an additive weight-updating algorithm, the second and third
are multiplicative. Key differences with the previously described algorithms are
that these three algorithms (i) update the classifier not only after misclassifying a
training example, but also after classifying it correctly, and (ii) update the weights
corresponding to all terms (instead of just active ones).

Linear classifiers lend themselves to both category-pivoted and document-pivoted
TC. In the former case, the classifier ci is used as a query against the set of test
documents {d1, . . . , dn}, while in the latter case the test document dj is used as a
query against the set of classifiers {c1, . . . , cm}.

Finally, it is worth noticing that the induction of a linear classifier may be typi-
cally preceded by local term space reduction, i.e. the r′ most important terms for
category ci are selected according to some measure. For this, the ci-variants of the
functions illustrated in Table 1 are usually employed, where by “ci-variant” of a
TSR measure we mean a measure computed on the positive training examples of
category ci rather than on the entire training set.

6.6 The Rocchio classifier

The Rocchio classifier relies on an adaptation to the TC case of Rocchio’s formula
for relevance feedback in the vector-space model, and it is perhaps the only TC
method whose roots lie exclusively in the IR tradition rather than in the machine
learning one. This adaptation was first proposed by Hull [1994]; since then, the
Rocchio classifier has been used by many authors, either as an object of research in
its own right [Ittner et al. 1995; Joachims 1997; Ragas and Koster 1998; Sable and
Hatzivassiloglou 1999; Schapire et al. 1998; Singhal et al. 1997], or as a baseline
classifier [Cohen and Singer 1999; Fuhr et al. 1998; Galavotti 1999; Joachims 1998;
Lewis et al. 1996; Schapire and Singer 2000; Schütze et al. 1995], or as a member
of a classifier committee [Larkey and Croft 1996] (see Section 6.10).

Machine Learning in Automated Text Categorisation · 31

Rocchio’s method computes a classifier 〈w1i, . . . , wri〉 for category ci by means
of the formula

wki =

 β

| {dj | caij = 1} |
·

∑
{dj | caij=1}

wkj

 −

 γ

| {dj | caij = 0} |
·

∑
{dj | caij=0}

wkj

where wkj is the weight that term tk has in document dj . In this formula, β and
γ are control parameters that allow setting the relative importance of positive and
negative examples. For instance, if β is set to 1 and γ to 0 (as e.g. in [Dumais
et al. 1998; Hull 1994; Joachims 1998; Schütze et al. 1995]), this corresponds to
viewing the profile of ci as the centroid of its positive training examples. In general,
the Rocchio classifier rewards the closeness of a test document to the centroid of
the positive training examples, and its distance from the centroid of the negative
training examples. Most of the times the role of negative examples is de-emphasised,
by setting β to a high value and γ to a low one (e.g. Cohen and Singer [1999], Ittner
et al. [1995], and Joachims [1997] use β = 16 and γ = 4).

This method is quite easy to implement, and the resulting classifiers tend to be
quite efficient [Schapire et al. 1998]. In terms of effectiveness, instead, one of its
drawbacks is that if the documents in the category tend to occur in disjoint clusters
(e.g. a set of newspaper articles falling under the Sports category and dealing with
either boxing or rock-climbing), the Rocchio classifier may miss most of them, as the
centroid of these documents may fall well outside all of these clusters (see Figure 4a).
More generally, the Rocchio classifier, as all linear classifiers, has the disadvantage
that it basically divides the space of documents in two subspaces; any document
falling within the former (in the case of Rocchio, an n-sphere) will be classified
under ci, while all documents falling within the latter will not. This situation is
graphically depicted in Figure 4a, where documents are classified within ci if and
only if they fall within the circle. Note that even most of the positive training
examples would not be classified correctly by the classifier. This is due to the fact
that what Rocchio basically does is taking the average (centroid) of all positive
examples, and as all averages this is only partly representative of the whole set.

6.6.1 Enhancements to the basic Rocchio framework. One issue in the application
of the Rocchio formula to profile extraction is whether the set of negative training
instances {dj ∈ Tr | caij = 0} should be considered in its entirety, or whether a
well-chosen sample of it, such as the set of near-positives (defined as “the most pos-
itive amongst the negative training examples”), should be selected. In this latter
case, the contribution of the γ

|{dj | caij=0}| ·
∑

{dj | caij=0} wkj factor tends to be
more significant, since near-positives are the most difficult documents to tell apart
from the relevant documents. Using near-positives corresponds to the query zoning
method proposed for IR by Singhal et al. [1997]. This method originates from the
observation that when the original Rocchio formula is used for relevance feedback in
IR, near-positives tend to be used rather than generic negatives, as the documents
on which user judgments are available tend to be the ones that had scored highest
in the previous ranking. Early applications of the Rocchio formula to TC (e.g. [It-
tner et al. 1995]) generally did not make a distinction between near-positives and
generic negatives. Schapire et al. [1998] individuate the near-positives by issuing a

o

+

o

oo

o
oo

o

o
o
o

o o
o

o

o
o

o

o

o
o

+
+

+

+
+

+ +

+

+

+

o
o

o

+

o

oo

o
oo

o

o
o
o

o o
o

o

o
o

o

o

o
o

+
+

+

+
+

+ +

+

+

+

o
o

(a) (b)

32 · F. Sebastiani

Fig. 4. A comparison between the categorisation behaviour of (a) the Rocchio classifier, and
(b) the k-NN classifier. Small crosses and circles denote positive and negative training instances,
respectively. The big circles denote the “influence area” of the classifier.

Rocchio query consisting of the centroid of the positive training examples against
a document base consisting of the negative training examples; the top-ranked ones
are the most similar to this centroid, and can then be used as near-positives. Fuhr
et al. [1998], instead, identify the near-positives of category ci with the positive
examples of the sibling categories of ci, as in the application they work on (Web
page categorisation into hierarchical catalogues – see also Section 9) the notion of
a “sibling category of ci” is well-defined. Similar policies are also adopted in [Ng
et al. 1997; Ruiz and Srinivasan 1999].

By using the query zoning method plus other enhancements (term selection,
statistical phrases, and a method called dynamic feedback optimisation), Schapire
et al. [1998] have experimentally shown that a Rocchio classifier can achieve levels
of effectiveness comparable to those of a state-of-the-art machine learning method
such as “boosting” (see Section 6.10.1) while being 60 times quicker to train. These
recent results will no doubt bring about a renewed interest for the Rocchio classifier,
previously a favourite punching bag of more sophisticated learning methods [Cohen
and Singer 1999; Joachims 1998; Lewis et al. 1996; Schütze et al. 1995; Yang 1999].

6.7 Neural networks

A neural network classifier is a network of units, where the input units usually
represent terms, the output unit(s) represent the category or categories of interest,
and the weights on the edges that connect units represent conditional dependence
relations. For classifying a test document dj , its term weights wkj are assigned to
the input units; the activation of these units is propagated forward through the
network, and the value that the output unit(s) take up as a consequence deter-
mines the categorisation decision(s). A typical way of training neural networks is
backpropagation, whereby the term weights of a training document are loaded into
the input units, and if a misclassification occurs the error is “backpropagated” so

Machine Learning in Automated Text Categorisation · 33

as to change the parameters of the network and eliminate or minimise the error.
The simplest type of neural network classifier is the perceptron [Dagan et al.

1997; Ng et al. 1997], which is a linear classifier and as such has been extensively
discussed in Section 6.5. Other types of linear neural network classifiers implement-
ing a form of logistic regression have also been proposed and experimented with
by Schütze et al. [1995] and Wiener et al. [1995], and they have usually given very
good effectiveness results.

A non-linear neural network [Ruiz and Srinivasan 1999; Schütze et al. 1995;
Weigend et al. 1999; Wiener et al. 1995; Yang and Liu 1999] is instead a network
with one or more additional “layers” of units, which in TC usually represent higher-
order interactions between terms that the network is able to learn. When compar-
ative experiments relating non-linear neural networks to their linear counterparts
have been performed, the former have yielded either no improvement [Schütze et al.
1995] or very small improvements [Wiener et al. 1995] over the latter.

6.8 Example-based classifiers

Example-based classifiers do not build an explicit, declarative representation of
the category of interest, but “parasite” on the categorisation judgments that the
experts have given on the training documents similar to the test document. These
methods have thus been called lazy learning systems, since “they defer the decision
on how to generalize beyond the training data until each new query instance is
encountered” [Mitchell 1996, pag 244].

The first introduction of example-based methods (sometimes also called memory-
based reasoning methods) in the TC literature is due to Creecy, Masand and their
colleagues [Creecy et al. 1992; Masand et al. 1992]; other TC endeavours in which
these methods have been employed include [Joachims 1998; Lam et al. 1999; Larkey
1998; Larkey 1999; Li and Jain 1998; Yang and Pedersen 1997; Yang and Liu 1999].
Our presentation of the example-based approach will be based on the k-NN (for “k
nearest neighbours”) algorithm implemented by Yang [1994] in the ExpNet system.
For deciding whether dj should be classified under ci, k-NN looks at whether the
k training documents most similar to dj have also been classified under ci; if the
answer is positive for a large enough proportion of them, a positive categorisation
decision is taken, and a negative decision is taken otherwise.

Actually, Yang’s is a distance-weighted version of k-NN (see e.g. [Mitchell 1996,
Section 8.2.1]), since the fact that a most similar document has been classified under
ci is weighted by its similarity with the test document. Mathematically, classifying
a document by means of k-NN comes down to computing

CSVi(dj) =
∑

dz∈ Trk(dj)

RSV (dj , dz) · caiz (10)

where Trk(dj) is the set of the k documents dz for which RSV (dj , dz) is maximum
and the caiz values are from the correct decision matrix of Section 4.1. In turn,
RSV (dj , dz) represents some measure or semantic relatedness between a test doc-
ument dj and a training document dz; any matching function, be it probabilistic
(as used in [Larkey and Croft 1996]) or vector-based (as used in [Yang 1994]), from
a ranked IR system may be used for this purpose.

The k-NN method may also be represented graphically as in Figure 5. From this

TRAINING

DOCUMENTS
CATEGORIESTERMS

t1

t2

t3

tr

d1

d2

d3

dg

c1

c2

cm

w11

w31

w22

w23

w1g

wr3

w3g

dj

REQUEST

w1j

wrj

w3j

w2j

REQUEST

WEIGHTS

TRAINING

DOCUMENTS

WEIGHTS

CATEGORY

ASSIGNMENTS

THE KNN CLASSIFIER

34 · F. Sebastiani

Fig. 5. A graphical representation of the k-NN method. Node dj has weight equal to 1. Weights
flow from left to right and get multiplied by the weights of the edges through which they flow;
weights incoming into the same node are summed together. The weight that node ci receives as
a result of the process is the value of CSVi(dj).

figure, it is quite evident that this approach is naturally geared towards document-
pivoted categorisation. In theory, for category-pivoted-categorisation one would
only need to “inhibit” the arcs from all training documents to categories c1, . . . ,
ci−1, ci+1, . . . , cm. The resulting network is a classifier for category ci only (the
original network can instead be seen as running the classifiers for all categories in
parallel). One would need to run all documents through this network, one at a
time. In practice, though, this would be unacceptably inefficient, since the entire
training set would have to be re-ranked m times, one for each category; DPC is
thus de facto the only reasonable way to use k-NN.

The construction of a k-NN classifier also involves determining a threshold k,
indicating how many top-ranked training documents have to be considered for
computing CSVi(dj). This threshold is usually determined experimentally on a
validation set. For instance, Larkey and Croft [1996] use k = 20, while Yang [1994,
1999] has found 30 ≤ k ≤ 45 to yield the best effectiveness. Anyhow, various ex-
periments have shown that increasing the value of k does not significantly degrade
the performance.

Note that k-NN, unlike linear classifiers, does not subdivide the document space
in just two subspaces, hence it does not suffer from the problem discussed at the end
of Section 6.6. This is graphically depicted in Figure 4b, where the more “local”
character of k-NN with respect to Rocchio can be appreciated.

Besides its remarkable effectiveness, which has been proven through a number
of different experiments (see Section 8.3), one of the advantages of k-NN is its
efficiency, as the classification of a document in the m categories of interest can

Machine Learning in Automated Text Categorisation · 35

be performed in time linear in the cardinality g of the training set [Yang 1999].
Nevertheless, it has to be remarked that “lazy” learning methods like k-NN are
less efficient than “eager” methods at classification time, since they do not have a
training phase and thus perform all the computation at classification time.

6.8.1 Other example-based techniques. Various nearest neighbour techniques have
been used in the TC literature.

Cohen and Hirsch [1998] implement an example-based classifier by extending
standard relational DBMS technology with “similarity-based soft joins”. In their
Whirl system they use the scoring function

CSVi(dj) = 1 −
∏

dz∈ Trk(dj)

(1 −RSV (dj , dz)) · caiz

as an alternative to Equation 10, obtaining a small but statistically significant
improvement over a version using Equation 10. Their experiments show that this
technique outperforms a number of other classifiers, such as the C4.5 decision tree
classifier and the Ripper DNF rule-based classifier.

An interesting variant of the basic k-NN approach is proposed by Galavotti [1999],
who reinterprets Equation 10 by redefining caiz as

caiz =
{

1 if dz is a positive example of ci
−1 if dz is a negative example of ci

The difference with the original k-NN approach is that if a training document
dz similar to the test document dj does not belong to ci, this information is not
discarded but considered as negative evidence, i.e. weights negatively in the decision
to classify dj under ci.

A combination of profile- and example-based methods is presented in [Lam and
Ho 1998]. In this work a k-NN system is fed, in place of training documents, what
the authors call generalised instances (GIs). This approach may be seen as the
result of

—clustering the training set, thus obtaining a set of clusters CLi = {cli1, . . . , cliki
};

—inducing a linear classifier lc(cliz) (“generalised instance”) from the documents
belonging to cluster cliz with any of the algorithms discussed in Section 6.5
and 6.6;

—applying k-NN with linear classifiers in place of training documents, i.e. comput-
ing

CSVi(dj)
def
=

∑
cliz∈CLi

RSV (dj , lc(cliz)) ·
| {dj ∈ cliz| caij = 1} |

| {dj ∈ cliz} |
· | {dj ∈ cliz} |

| Tr |

=
∑

cliz∈CLi

RSV (dj , lc(cliz)) ·
| {dj ∈ cliz| caij = 1} |

| Tr |

where |{dj∈cliz| caij=1}|
|{dj∈cliz}|

represents the “degree” to which the generalised instance

lc(cliz) is a positive instance of ci, and |{dj∈cliz}|
|Tr| represents its weight within the

whole process.

σi

+

o

+

+

+

+ +

+

+

+

+

o
o

oo

o

o
o

o

o

o o

o
o

o

o

o

+
+

+
+

36 · F. Sebastiani

Fig. 6. The induction of support vector classifiers. The small crosses and circles represent positive
and negative training examples, respectively, whereas lines represent decision surfaces. Decision
surface σi (indicated by the thicker line) is, among those shown, the best possible one, as it is the
middle element of the widest set of parallel decision surfaces (i.e. its minimum distance to any
training example is maximum). Small boxes indicate the support vectors.

This exploits the superior effectiveness (graphically illustrated in Figure 4) of k-
NN over linear classifiers while at the same time avoiding the sensitivity of k-NN
to the presence of “outliers” (i.e. positive instances of ci that “lie out” of the region
of document space where most other positive instances of ci are located) in the
training documents.

6.9 Building classifiers by support vector machines

The application of the support vector machine method to TC has been recently
proposed by Joachims [1998, 1999], and subsequently used in [Dumais et al. 1998;
Taira and Haruno 1999; Yang and Liu 1999]. In geometrical terms, this method may
be seen as the attempt to find, among all the surfaces σ1, σ2, . . . in r-dimensional
space that separate the positive from the negative training examples (decision sur-
faces), the surface σi that does it in the best possible way. “Best” here means
that σi separates the positives from the negatives by the widest possible margin,
i.e. the separation property is invariant with respect to the widest possible shift of
σi yielding a parallel surface σ′

i. This method is a practical application of the so-
called structural risk minimization principle, according to which the decision surface
should minimise true error, i.e. the probability of misclassification of a randomly
selected, yet unseen test example.

This concept is best understood in the case in which the positives and the
negatives are linearly separable, in which case the decision surfaces are (r − 1)-
hyperplanes. In the 2-dimensional case of Figure 6, various sets of parallel lines may
be chosen as decision surfaces. The support vector method chooses the “widest”
set of parallel lines (and from this its middle line), i.e. the one in which the max-

Machine Learning in Automated Text Categorisation · 37

imum distance between two elements in the set is highest9. It is noteworthy that
this “best” decision surface is determined by only a small set of training examples,
called the support vectors.

The method described is applicable also to the case in which the positive and the
negative examples are not linearly separable. Yang and Liu [1999] experimentally
compared the linear case (namely, when the assumption is made that the categories
are linearly separable) with the non-linear case on a standard benchmark, and
obtained slightly better results in the former case.

According to Joachims [1998], support vector machines offer two important ad-
vantages for TC:

—no term selection is needed, as support vector machines do not suffer from over-
fitting and can scale up to considerable dimensionalities;

—no human and machine effort in parameter tuning on a validation set is needed, as
there is a theoretically motivated, “default” choice of parameter settings, which
has also been shown to provide the best effectiveness.

Dumais et al. [1998] have recently tested a novel algorithm for training SVM text
classifiers and shown that this brings about training speeds comparable to compu-
tationally easy methods such as Rocchio.

6.10 Classifier committees

The method of classifier committees (or ensembles) is based on the idea that, given
a task that requires expert knowledge to be performed, k experts may be better
than one if their individual judgments are appropriately combined. In TC, the idea
is to apply k different classifiers Φ1, . . . ,Φk to the same task of deciding whether
document dj should be classified under category ci, and then combine their outcome
appropriately. Such a classifier committee is then characterised by (i) a choice of k
classifiers, and (ii) a choice of a combination function10.

Concerning the former issue, it is well-known from the machine learning literature
that, in order to guarantee good effectiveness, the classifiers forming the committee
should be as independent as possible, i.e. should be possibly based on radically
different intuitions on how classification is to be performed. The classifiers may be
different in terms of the indexing approach followed, or in terms of the inductive
method applied in order to induce them, or both. Within TC, the only avenue
which has been explored is, to our knowledge, the latter.

Different combination rules have been experimented with in the literature. The
simplest possible rule is majority voting (MV), whereby the binary classification
judgments obtained by the k classifiers are pooled together, and the classification
decision that reaches the majority of k+1

2 votes is taken (k obviously needs to be an
odd number) [Li and Jain 1998; Liere and Tadepalli 1997]. This method is partic-
ularly suited to the case in which the committee includes classifiers characterised

9An empirical attempt at implementing this principle is also present in the version of the Bal-
anced Winnow algorithm proposed in [Dagan et al. 1997].
10Some of the classifiers that we have already touched upon in previous sections actually fit into
this picture; among them, Sleeping Experts [Cohen and Singer 1999] and Widrow-Hoff [Lewis
et al. 1996], both discussed in Section 6.5.

38 · F. Sebastiani

by a binary decision function CSVi : D → {0, 1}. A second rule is weighted linear
combination (WLC), whereby a weighted sum of the CSVi’s individually produced
by the k classifiers yields the final CSVi. The weights wj are meant to reflect
the expected relative effectiveness of classifier Φj , and are such that

∑k
j=1 wj = 1.

Typically, these weights are optimised on a validation set [Larkey and Croft 1996].
Another possible policy is dynamic classifier selection (DCS), whereby among com-
mittee {Φ1, . . . , Φk} the classifier Φt that yields the best effectiveness on the l
validation examples most similar to dj is selected, and its judgment adopted by
the committee [Li and Jain 1998]. A still different policy, somehow intermediate
between WLC and DCS, is adaptive classifier combination (ACC), whereby the
judgments of all the classifiers in the committee are summed together, but their
individual contribution is weighted by the effectiveness that they have shown on
the l validation examples most similar to dj [Li and Jain 1998].

Classifier committees have had mixed results in TC so far. Larkey and Croft [1996]
have used combinations of Rocchio, Näıve Bayes and k-NN, all together or in pair-
wise combinations, using a WLC rule. In their experiments the combination of any
two classifiers has outperformed the best individual classifier (k-NN), and the com-
bination of the three classifiers has improved an all three pairwise combinations.
These results would seem to give strong support to the idea that classifier com-
mittees can somehow profit from the complementary strengths of their individual
members. However, the small size of the test set used (187 documents) suggests
that more experimentation is needed before conclusions can be reached.

Li and Jain [1998] have experimented with a committee formed of (various com-
binations of) a Näıve Bayes classifier, a nearest neighbour classifier, a decision tree
classifier, and a classifier induced by means of their own “subspace method”; the
combination rules they have worked with are MV, DCS and ACC. Only in the
case of a committee formed by Näıve Bayes and the subspace classifier combined
by means of ACC the committee has outperformed, and by a narrow margin, the
best individual classifier (for every attempted classifier combination, anyway, ACC
gave better results than MV and DCS). This seems discouraging, especially in the
light of the fact that the committee approach is computationally expensive (its cost
trivially amounts to the sum of the computational costs of the individual classifiers
plus the cost incurred for the computation of the combination rule). Again, it has
to be remarked that the small size of their experiment (two test sets of less than
700 documents each were used) does not allow to draw definitive conclusions on
the approaches adopted.

6.10.1 Boosting. The boosting method [Schapire et al. 1998; Schapire and Singer
2000] occupies a special place in the classifier committees literature, since the k
classifiers Φ1, . . . ,Φt forming the committee are obtained not by means of k dif-
ferent learning methods, but by the same learning method (here called the weak
learner). For instance, if a decision tree classifier is used as the weak learner, the re-
sulting committee will be formed by k decision tree classifiers. The key intuition of
boosting is that the k classifiers should be trained not in a conceptually parallel and
independent way, as in the classifier committees described above, but sequentially,
one after the other. In this way, the training of classifier Φi may take into account
how classifiers Φ1, . . . ,Φi−1 perform on the training examples, and concentrate on

Machine Learning in Automated Text Categorisation · 39

getting right those examples on which Φ1, . . . ,Φi−1 have performed worst.
Specifically, for the induction of classifier Φt each 〈dj , ci〉 pair is attributed an

“importance weight” htij (where h1
ij is set to be equal for all 〈dj , ci〉 pairs11), meant

to represent how hard to get a correct decision for this pair was for classifiers
Φ1, . . . ,Φt−1. These weights are exploited in the induction of classifier Φt, which
will be specially tuned to solve correctly the pairs with higher importance weight.
The induced classifier Φt is then applied to the training documents, and as a result
weights htij are updated to ht+1

ij ; in this update operation, pairs correctly classified
by Φt will have their importance weight decreased, while pairs misclassified by Φt

will have their weight increased. After all the k classifiers have been constructed, a
weighted linear combination rule is applied to yield the final committee, where the
weight attributed to the decision contributed by classifier Φt is a function of the
effectiveness that Φt has shown on the training set.

In the BoosTexter system [Schapire and Singer 2000], two different boost-
ing algorithms are provided and experimented with, using a one-level decision tree
weak learner. The former algorithm (AdaBoost.MH, simply called AdaBoost
in [Schapire et al. 1998]) is explicitly geared towards the maximization of microav-
eraged effectiveness, whereas the latter (AdaBoost.MR) is aimed at minimizing
ranking loss (i.e. at getting a correct category ranking for each individual docu-
ment). In experiments conducted over three different test collections, Schapire et
al. [1998] have shown AdaBoost to outperform Sleeping Experts, a classifier
that had proved quite effective in the experiments of [Cohen and Singer 1999]. Fur-
ther experiments by Schapire and Singer [2000] showed AdaBoost to outperform,
aside from Sleeping Experts, a Näıve Bayes classifier, a standard (non-enhanced)
Rocchio classifier, and Joachims’ [1997] PrTFIDF classifier. Boosting has also
been used in [Li and Jain 1998], with a decision tree classifier as the weak learner;
the authors reported a significant (13%) improvement in effectiveness over the pure
weak learner.

An approach similar to boosting is employed by Weiss et al. [1999]. In this
work the authors experiment with committees of decision trees each having an
average of 16 leaves (hence much more complex than the simple 2-leaves trees used
in the [Schapire and Singer 2000] experiment), eventually combined by using the
simple MV rule as a combination rule. Similarly to boosting, a mechanism for
emphasising documents that have been misclassified by previous decision trees is
enforced. The authors have experimentally determined that this approach yields
excellent effectiveness gains over the individual decision tree case (and excellent
effectiveness tout court), with gains rising briskly until the 10 trees case and reaching
a plateau at about 100 trees.

6.11 Other methods

Although in the previous sections we have tried to give an overview as complete as
possible of the approaches that have been proposed in the automated TC literature,
it would be hardly possible to be exhaustive in this respect. The recent explosion
of this discipline has brought about a fragmentation in terms of the learning ap-

11Schapire et al. [1998] also show that a simple modification of this policy allows an evaluation of
the classifier based on “utility” (see Section 8.1.3) rather than effectiveness.

40 · F. Sebastiani

proaches adopted, some of which either do not fall squarely under one or the other
class of algorithms, or have remained somehow isolated attempts. Although for
reasons of space we will not discuss them in detail, we at least want to mention the
existence of approaches based on Bayesian inference networks [Dumais et al. 1998;
Lam et al. 1997; Tzeras and Hartmann 1993] and genetic algorithms [Clack et al.
1997].

7. DETERMINING THRESHOLDS

There are various possible policies for determining the threshold τi discussed at the
beginning of Section 6, also depending on the constraints imposed by the applica-
tion.

One possible policy is CSV thresholding [Cohen and Singer 1999; Schapire et al.
1998; Wiener et al. 1995] (also called probability thresholding in the case of proba-
bilistic classifiers [Lewis 1992], or Scut [Yang 1999]). In this case the threshold τi
is a value of the CSVi function. Lewis [1992] considered using a fixed threshold τ
equal for all ci’s, but noted that this might result in assigning all the test documents
to a category ci while not even assigning a single test document to another category
cj . He then considered using different thresholds τi for different categories ci es-
tablished by normalising probability estimates (following a suggestion from [Maron
1961]). His experimental results did not show, however, a considerable difference in
effectiveness between the two variants. Yang [1999] uses different thresholds τi for
the different categories ci. Each threshold is optimised by testing different values
for it on the validation set and choosing the value which yields the best value of
the chosen effectiveness function.

A second, popular policy is proportional thresholding [Iwayama and Tokunaga
1995; Larkey 1998; Lewis 1992; Lewis and Ringuette 1994; Wiener et al. 1995] (also
called Pcut in [Yang 1999]). The aim of this policy is to set the threshold τi so that
the test set generality gTe(ci) of a category ci is as close as possible to its training
set generality gTr(ci). This idea encodes the quite sensible principle according to
which the same percentage of documents of both training and test set should be
classified under ci. One drawback of this thresholding policy is that, for obvious
reasons, it does not lend itself to document-pivoted categorisation. Yang [1999]
proposes a still more refined version of this policy, i.e. one in which a factor x
(equal for all ci’s) is multiplied to gTr(ci) to actually obtain gTe(ci). Yang claims
that this factor, whose value is to be empirically determined by experimentation
on a validation set, allows a smoother trade-off between recall and precision to be
obtained (see Section 8.1.1). For both k-NN and LLSF she found that optimal
values lie in the [1.2, 1.3] range.

Sometimes, depending on the application, a fixed thresholding policy (also known
as “k-per-doc” thresholding [Lewis 1992] or Rcut [Yang 1999]) is applied, whereby
it is stipulated that a fixed number k of categories, equal for all dj ’s, are to be
assigned to each document dj . This is often used, for instance, in applications
of TC to automated document indexing [Field 1975; Lam et al. 1999]. Strictly
speaking, however, this is not a thresholding policy in the sense defined at the
beginning of Section 6, as it might happen that d′ is classified under ci, d′′ is
not, and CSVi(d′) < CSVi(d′′). Quite clearly, this policy is mostly at home with
document-pivoted categorisation. It suffers, however, from a certain coarseness, as

Machine Learning in Automated Text Categorisation · 41

the fact that k is equal for all documents (nor could this be otherwise) does not
allow system fine-tuning.

In terms of experimental results, Lewis [1992] found the proportional policy
to be definitely superior to CSV thresholding when microaveraged effectiveness
was tested but slightly inferior when using macroaveraging (see Section 8.1.1).
Yang [1999] found instead CSV thresholding to be superior to proportional thresh-
olding (possibly due to her category-specific optimisation on a validation set), and
found fixed thresholding to be consistently inferior to the other two policies. Of
course, the fact that these results have been obtained across different classifiers no
doubt reinforce them.

In general, aside from the considerations above, the choice of the thresholding
policy may also be influenced by the application; for instance, in applying a text
classifier to document indexing for Boolean systems a fixed thresholding policy
might be chosen, while a proportional or CSV thresholding method might be chosen
for Web page classification under Yahoo!-like catalogues.

As a final note we recall that in some applications thresholding is not needed,
as it may be better to return the original non-binary value produced by the CSVi
function rather than a binary value obtained from it by means of thresholding. This
is typically the case of interactive classification systems [Larkey and Croft 1996].
Given a document dj to classify, such a system is meant to suggest a ranked list of
categories apt for classifying dj to an expert, who then takes the final categorisation
decision. In this case, the list of categories ci ranked by their CSVi(dj) value is
much more useful to the expert than the flat set of relevant categories produced
by thresholding. Interactive classification systems are useful especially when the
quality of the training data is low, or when the training data cannot be trusted
as being a representative sample of the unseen data that are to come, so that the
results of a completely automatic classifier could not be trusted completely.

8. EVALUATION ISSUES FOR TEXT CATEGORISATION

As in the case of IR systems, the evaluation of document classifiers is typically
conducted experimentally, rather than analytically. The reason for this tendency
is that, in order to evaluate a system analytically (e.g. proving that the system is
correct and complete) we would need a formal specification of the problem that the
system is trying to solve (e.g. with respect to what correctness and completeness are
defined), and the central notion of TC (namely, that of relevance of a document to
a category) is, due to its subjective character, inherently non-formalisable.

The experimental evaluation of classifiers, rather than concentrating on issues of
efficiency, usually tries to evaluate the effectiveness of a classifier, i.e. its capability
of taking the right categorisation decisions.

8.1 Measures of categorisation effectiveness

8.1.1 Precision and recall. Classification effectiveness is most often measured in
terms of the classic IR notions of precision (Pr) and recall (Re), adapted to the
case of document categorisation. Precision wrt ci (Pri) is defined as the conditional
probability P (caix = 1 | aix = 1), i.e. as the probability that if a random document
dx is classified under ci, this decision is correct. Analogously, recall wrt ci (Rei) is
defined as the conditional probability P (aix = 1 | caix = 1), i.e. as the probability

42 · F. Sebastiani

Category expert judgments
ci YES NO

classifier YES TPi FPi

judgments NO FNi TNi

Table 2. The contingency table for category ci.

that, if a random document dx ought to be classified under ci, this decision is taken.
These category-relative values may be averaged, in a way to be discussed shortly,
to obtain Pr and Re, i.e. values global to the whole category set. Borrowing
terminology from logic, Pr may be viewed as the “degree of soundness” of the
classifier wrt the given category set C, while Re may be viewed as its “degree of
completeness” wrt C.

As they are defined here, Pri and Rei (and consequently Pr and Re) are to be
understood, in the line of [Wong and Yao 1995], as subjective probabilities, i.e. values
measuring the expectation of the user that the system will behave correctly when
classifying a random document under ci. These probabilities may be estimated in
terms of the contingency table for category ci on a given test set (see Table 2). Here,
FPi (false positives wrt ci, also known as errors of commission) is the number of
documents of the test set that have been incorrectly classified under ci; TNi (true
negatives wrt ci), TPi (true positives wrt ci) and FNi (false negatives wrt ci, also
known as errors of omission) are defined accordingly. Estimates (indicated by
carets) of precision wrt ci and recall wrt ci may thus be obtained as

P̂ ri =
TPi

TPi + FPi

R̂ei =
TPi

TPi + FNi

For obtaining estimates of precision and recall relative to the whole category set,
two different methods may be adopted:

—microaveraging: precision and recall are obtained by globally summing over all
individual decisions, i.e.:

P̂ r
µ

=
TP

TP + FP
=

∑m
i=1 TPi∑m

i=1(TPi + FPi)

R̂e
µ

=
TP

TP + FN
=

∑m
i=1 TPi∑m

i=1(TPi + FNi)

where the “µ” superscript stands for microaveraging. The “global” contingency
table shown in Table 3 is thus obtained by summing over all category-specific
contingency tables.

—macroaveraging : precision and recall are first evaluated “locally” for each cate-
gory, and then “globally” by averaging over the results of the different categories,
i.e.:

P̂ r
M

=
∑m

i=1 P̂ ri
m

Machine Learning in Automated Text Categorisation · 43

Category set expert judgments
C = {c1, . . . , cm} YES NO

classifier YES TP =

m∑
i=1

TPi FP =

m∑
i=1

FPi

judgments NO FN =

m∑
i=1

FNi TN =

m∑
i=1

TNi

Table 3. The global contingency table.

R̂e
M

=
∑m

i=1 R̂ei
m

where the “M” superscript stands for macroaveraging.

It is important to recognise that these two methods may give quite different re-
sults, especially if the different categories are unevenly populated: for instance,
if the classifier performs well just on categories with a large number of positive
test instances, its effectiveness will probably be better according to microaveraging
than to macroaveraging. There is no complete agreement among authors on which
is better. Some believe that “microaveraged performance is somewhat misleading
(. . .) because more frequent topics are weighted heavier in the average” [Wiener
et al. 1995, page 327] and thus favour macroaveraging, which indeed rewards those
classifiers that perform robustly also in the presence of skewed category distribu-
tions. Others (actually, the majority of researchers) believe that topics should
indeed count proportionally to their frequence, and thus lean towards microaver-
aging. From now on, we will assume that microaveraging is used, and will thus
drop the “i” subscript from Pr, Re and other symbols; it should be clear, however,
that everything we will say in the rest of Section 8 may be adapted to the case of
macroaveraging in the obvious way.

8.1.2 Other measures of categorisation effectiveness. Other measures alternative
to Pr and Re and commonly used in the machine learning literature, such as
accuracy (which can be estimated as Âc = TP+TN

TP+TN+FP+FN) and error (which can
be estimated as Êr = FP+FN

TP+TN+FP+FN = 1 − Âc) are not widely used in TC. The
reason for this is that, as Yang [1999] noted, the typically large value that their
denominator takes up in TC makes them much more insensitive to a variation in
the number of correct decisions (TP + TN) than Pr and Re are. Besides, [Yang
1999] shows how taking Ac as the evaluation measure, in the (frequent) case of a

low value for apc
def
= TP+FN

TP+TN+FP+FN =
∑m

i=1 gTe(ci) (which represents the average
percentage of categories per test document), the trivial rejector (i.e. the classifier
that sets aij = 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, thereby not classifying any document
under any category) tends to outperform all non-trivial classifiers (see also [Cohen
1995a, Section 2.3]). A consequence of adopting Ac is also that parameter tuning
for a non-trivial classifier on a validation set would result in parameter choices that
make the classifier behave very much like the trivial rejector.

A non-standard effectiveness measure is proposed by Sable and Hatzivassiloglou [1999,
Section 7], who suggest to base precision and recall not on “absolute” values of suc-

44 · F. Sebastiani

cess (aij = caij) and failure (aij �= caij), but on values of relative success, given
by

CSVi(dj) if caij = 1
1 − CSVi(dj) if caij = 0

In other words, in the case of a positive example dj for category ci, the classifier
score will not be the binary decision taken, but the degree of confidence CSVi(dj)
that the classifier has in the fact that dj should indeed be classified under ci:

“In this way, the system receives partial credit for each answer, more if
the system leans in the correct direction and directly increasing as the
system’s confidence in a correct decision increases. (. . .) we consider
this modified method as more revealing, as it offers a way to evaluate
the system’s confidence in its decisions.”. [Sable and Hatzivassiloglou
1999, page 33]

This proposed measure does not reward the choice of a good thresholding policy,
and is thus unfit for autonomous (fully automatic) classification systems. However,
it might be appropriate for interactive classifiers of the type used in [Larkey 1999],
where the confidence that the classifier has in its own decision influences category
ranking and, as a consequence, the overall usefulness of the system.

8.1.3 Measures alternative to effectiveness. In general, criteria different from ef-
fectiveness are seldom used in classifier evaluation. For instance, the efficiency
criterion, although important for applicative purposes, is seldom used as the sole
yardstick on which to evaluate or compare classifiers, due to the volatility of the
parameters on which the evaluation rests. However, efficiency may be a useful cri-
terion for choosing among classifiers with similar effectiveness. On this respect, an
interesting evaluation has been carried out by Dumais et al. [1998], who have com-
pared five different classifier induction methods along three different dimensions,
namely effectiveness, training efficiency (i.e. the average time it takes to build a
classifier for a category ci from a training set Tr with a given induction method),
and classification efficiency (i.e. the average time it takes to classify a new docu-
ment dj under category ci with a given classifier). We refer the interested reader
to [Dumais et al. 1998] for details.

One exception to the dominance of the effectiveness criterion in TC evaluation
is perhaps utility, a class of measures well-known in decision theory that extend
effectiveness by economic criteria such as gain or loss. Utility is based on defining a
utility matrix such as that of Table 4, where the numeric values uTP , uFP , uFN and
uTN represent the economic gain brought about by a true positive, false positive,
false negative and true negative, respectively; both uTP and uTN are greater than
both uFP and uFN . “Standard” effectiveness is a particular case of utility, i.e.
the one in which uTP = uTN > uFP = uFN . Less trivial cases of utility are
those in which uTP �= uTN and/or uFP �= uFN ; for instance, Schapire et al. [1998]
experiment with the three different utility matrices

Machine Learning in Automated Text Categorisation · 45

Category set expert judgments
C = {c1, . . . , cm} YES NO

classifier YES uTP uFP

judgments NO uFN uTN

Table 4. The utility matrix.

uTP uFP uFN uTN

Matrix 1 0 -1 -1 0
Matrix 2 3 -2 0 0
Matrix 3 3 -1 -1 0

among which the first corresponds to effectiveness.
The use of utility measures in TC is discussed in detail by Lewis [1995a]. Other

works where utility measures are employed are [Amati and Crestani 1999; Cohen
and Singer 1999; Hull et al. 1996; Lewis and Catlett 1994]. As a matter of fact,
utility is being more and more used within the text filtering community, as the
TREC “filtering track” evaluations have recently been using utility measures [Lewis
1995c; Hull 1998]. The problem with using utility instead of “pure” effectiveness is
that the values of the utility matrix are extremely application-dependent. Needless
to say, this evaluation measure adds a further element of difficulty in the cross-
comparison of classification systems (see Section 8.3), since for two classifiers to be
experimentally comparable the two utility matrices must be the same.

Finally, we should at least mention the fact that other effectiveness measures
different from the ones discussed in this section have occasionally been used in
the literature; these include adjacent score [Larkey 1998], coverage [Schapire and
Singer 2000], one-error [Schapire and Singer 2000], Pearson product-moment cor-
relation [Larkey 1998], recall at n [Larkey and Croft 1996], top candidate [Larkey
and Croft 1996], top n [Larkey and Croft 1996]. We will not attempt to discuss
in detail these other effectiveness measures and their relationships with the more
standard ones. This only points to the fact that, although the TC discipline is
making consistent efforts at standardising experimentation protocols, we are still
far from universal agreement on evaluation issues and, as a consequence, far from
understanding precisely the relative merits of the various methods.

8.1.4 Combined effectiveness measures. Neither precision nor recall make sense
in isolation of the other. In fact, in order to obtain a classifier with 100% recall,
one would only need to set every threshold τi to 0, thereby obtaining the trivial
acceptor (i.e. the classifier that sets aij = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e. that
classifies all documents under all categories). Quite obviously, in this case precision
would usually be very low (more precisely, equal to the average test set generality∑m

i=1
gT e(ci)

m)12. Conversely, it is well-known from everyday IR practice that higher

12From what we said about the trivial acceptor, one might be tempted to infer by symmetry that
the trivial rejector has 100% precision. This is not true, as precision is undefined (the denominator
is zero) in the case of the trivial rejector (see Table 5). In fact, it is also clear from its definition
(Pr = TP

TP+FP
) that precision depends only on how the positives (TP + FP) are split between

true positives TP and the false positives FP , and does not depend at all on the cardinality

46 · F. Sebastiani

Precision Recall C-Precision C-Recall

TP

TP + FP

TP

TP + FN

TN

FP + TN

TN

TN + FN

Trivial Rejector TP=FP=0 undefined
0

FN
= 0

TN

TN
= 1

TN

TN + FN

Trivial Acceptor FN=TN=0
TP

TP + FP

TP

TP
= 1

0

FP
= 0 undefined

Trivial “Yes” Collection FP=TN=0
TP

TP
= 1

TP

TP + FN
undefined

0

FN
= 0

Trivial “No” Collection TP=FN=0
0

FP
= 0 undefined

TN

FP + TN

TN

TN
= 1

Table 5. Trivial cases in text categorisation.

levels of precision may be obtained at the price of a low recall13.
In practice, by tuning thresholds τi a classification algorithm is tuned so as to

be, in the words of Riloff and Lehnert [1994], more liberal (i.e. improving Re to the
detriment of Pr) or more conservative (improving Pr to the detriment of Re). A
classifier should thus be measured by means of a “combined” effectiveness measure
which both Pr and Re concur to determine. Various such measures have been
proposed, among which the following are most frequent:

(1) effectiveness is computed as (interpolated) 11-point average precision. That is,
each threshold τi is successively set to the values for which recall takes up values
of 0.0, 0.1, . . . , 0.9, 1.0; for these 11 different thresholds precision is computed
and averaged over the 11 resulting values. This methodology is completely
analogous to the standard evaluation methodology for ranked retrieval systems,
and may be used
(a) with categories used in place of IR queries. This is most frequently used

for classifiers that rank test documents according to their appropriateness
to a category (see e.g [Schütze et al. 1995; Yang 1994; Yang 1999; Yang
and Pedersen 1997]);

(b) with test documents used in place of IR queries and categories in place of
documents. This is most frequently used for classifiers that rank categories
according to their appropriateness to a test document (see e.g. [Lam et al.
1999; Larkey and Croft 1996; Schapire and Singer 2000; Wiener et al.
1995]). Note that in this case if macroaveraging is used it needs to be

of the positives. There is a breakup of “symmetry” between precision and recall here because,
from the point of view of classifier judgment (positives vs. negatives; this is the dichotomy of
interest in trivial acceptor vs. trivial rejector) the “symmetric” of recall (TP

TP+FN
) is not precision

(TP
TP+FP

) but c-precision (TN
FP+TN

), the “contrapositive” of precision. In fact, while recall=1
and c-precision=0 for the trivial acceptor, c-precision=1 and recall=0 for the trivial rejector.
13Of course, the fact that we may arbitrarily set the threshold so as to increase recall at the
expense of precision and viceversa is true only for classifiers that employ thresholds. Decision
tree classifiers and DNF rule classifiers do not have thresholds, as they already produce binary
decisions. Hence, with them this tuning is not possible, or is anyway more difficult (see [Weiss
et al. 1999, page 66]).

Machine Learning in Automated Text Categorisation · 47

redefined on a per-document, rather than per-category, basis.
Note that this measure does not make much sense for classifiers that do not
perform any ranking, for which recall is an absolute number and thus may not
be varied at will.

(2) effectiveness is computed as the breakeven point, i.e. the value at which Pr
equals Re (e.g. [Apté et al. 1994; Cohen and Singer 1999; Dagan et al. 1997;
Joachims 1998; Joachims 1999; Lewis 1992; Lewis and Ringuette 1994; Moulin-
ier and Ganascia 1996; Ng et al. 1997; Yang 1999]). In all reasonable classifiers
a value for each τi for which Pr and Re are (almost) equal does exist, since
by increasing the τi’s from 0 to 1 Pr usually increases monotonically from
apc

def
=

∑m
i=1 gTe(ci) to a value near 1 and Re always decreases monotonically

from 1 to 0. If for no values of the τi’s Pr and Re are exactly equal, the τi’s are
set to the value for which Pr and Re are closest, and an interpolated breakeven
is computed as the average of the values of Pr and Re. As noted in [Yang 1999],
when for no value of τi Pr and Re are close enough, interpolated breakeven
may not be a reliable indicator of the effectiveness of the classifier;

(3) effectiveness is computed as the value of the Fβ function, for some 0 ≤ β ≤ +∞
(e.g. [Cohen 1995a; Cohen and Singer 1999; Lewis and Gale 1994; Lewis 1995a;
Moulinier et al. 1996; Ruiz and Srinivasan 1999]), where

Fβ =
(β2 + 1) · Pr ·Re

β2 · Pr + Re

In this formula β may be seen as the relative degree of importance attributed
to Pr and Re: if β = 0 then Fβ coincides with Pr, whereas if β = +∞ then
Fβ coincides with Re. Usually, a value β = 1 is used, which attributes equal
importance to Pr and Re. As shown in [Moulinier et al. 1996; Yang 1999], the
breakeven value of a classifier Φ is always less or equal than its F1 value.

Once an effectiveness measure is chosen, a classifier can be tuned (e.g. thresholds
and other internal parameters can be set) so that the resulting effectiveness is the
best achievable by that classifier. The tuning of a parameter p (be it a threshold
or other) is normally done experimentally. This means performing repeated experi-
ments on the validation set in the same experimental conditions, with the values of
the other parameters pk fixed (at a default value, in the case of a yet-to-be-tuned
parameter pk, or at the chosen value, if the parameter pk has already been tuned)
and with different values for parameter p. At the end of the process, the value that
has yielded the best effectiveness is chosen for p.

8.2 Benchmark collections

For experimentation purposes, standard benchmark collections that can be used as
initial corpora for TC are available in the public domain. The most widely used
is the Reuters collection, consisting of a set of newswire stories classified under
categories related to economics. The Reuters collection accounts for most of the
experimental work in TC accomplished so far. Unfortunately, this does not always
translate into reliable comparative results, in the sense that many of these experi-
ments have been carried out in subtly different experimental conditions. In order

48 · F. Sebastiani

for the experimental results on different classifiers to be directly comparable, the
experiments should be performed under the following conditions:

(1) All classifiers are experimented on the same collection (i.e. same documents
and same categories), and their effectiveness is measured on the complete set
of categories.

(2) The same choice (“split”) of training set and test set is made for all classifiers,
and their effectiveness is measured on the complete test set.

(3) The same effectiveness measure is used for all classifiers, and if it depends on
some parameters (e.g. utility, which depends on the utility matrix chosen) the
same parameter choice is made for all classifiers.

Unfortunately, a lot of experimentation, both on Reuters and on other collections,
has not been performed with these caveat in mind. By experimenting three dif-
ferent classifiers on five versions of Reuters, Yang [1999] has shown that a lack
of compliance with these three conditions may significantly influence the exper-
imental results. Table 6 lists the results of all experiments known to us that
were performed on five major versions of the Reuters benchmark: Reuters-22173
“ModLewis” (column #1), Reuters-22173 “ModApté” (column #2), Reuters-22173
“ModWiener” (column #3), Reuters-21578 “ModApté” (column #4) and Reuters-
21578[10] “ModApté” (column #5)14. Only experiments that have computed either
a breakeven or an F1 result have been listed, since other less popular effectiveness
measures do not readily compare with these.

Note that only results belonging to the same column are directly comparable.
In particular, Yang [1999] shows that experiments carried out on Reuters-22173
“ModLewis” (column #1) are not directly comparable with those using the other
three versions, since the former strangely includes a significant percentage (58%)
of “unlabelled” test documents which, being negative examples of all categories,
tend to depress effectiveness. Also, experiments performed on Reuters-21578[10]
“ModApté” (column #5) are not comparable with the others, since this collection
consists in the restriction of Reuters-21578 “ModApté” to its 10 most populated
categories , and is thus an obviously “easier” collection.

Other collections that have been frequently used for TC evaluation are

—the OHSUMED collection, set up by Hersh et al. [1994] and used in [Joachims
1998; Lam and Ho 1998; Lam et al. 1999; Lewis et al. 1996; Ruiz and Srini-
vasan 1999; Yang and Pedersen 1997]15. The documents are titles or title-plus-
abstract’s from medical journals (OHSUMED actually consists of a subset of the
Medline document base); the categories are the postable terms of the MESH
thesaurus.

14 The Reuters-21578 collection may be freely downloaded for experimentation purposes from
http://www.research.att.com/~lewis/reuters21578.html and is now considered the “standard”
variant of Reuters. We have decided not to cover experiments performed on variants of the
Reuters benchmark different from the five listed because the small number of authors that have
experimented on the same variant makes the reported results difficult to interpret. This includes
experiments performed on the original Reuters-22173 “ModHayes” [Hayes et al. 1990] and Reuters-
21578 “ModLewis” [Cohen and Singer 1999].
15The OHSUMED collection may be freely downloaded for experimentation purposes from
ftp://medir.ohsu.edu/pub/ohsumed

Machine Learning in Automated Text Categorisation · 49

#1 #2 #3 #4 #5

of documents 21,450 14,347 13,272 12,902 12,902
of training documents 14,704 10,667 9,610 9,603 9,603

of test documents 6,746 3,680 3,662 3,299 3,299
of categories 135 93 92 90 10

System Type Results reported by

Word (non-learning) [Yang 1999] .150 .310 .290
probabilistic [Dumais et al. 1998] .752 .815
probabilistic [Joachims 1998] .720
probabilistic [Lam et al. 1997] .443 (MF1)

PropBayes probabilistic [Lewis 1992] .650
Bim probabilistic [Li and Yamanishi 1999] .747

probabilistic [Li and Yamanishi 1999] .773
Nb probabilistic [Yang and Liu 1999] .795

decision trees [Dumais et al. 1998] .884
C4.5 decision trees [Joachims 1998] .794
Ind decision trees [Lewis and Ringuette 1994] .670

Swap-1 decision rules [Apté et al. 1994] .805
Ripper decision rules [Cohen and Singer 1999] .683 .811 .820

SleepingExperts decision rules [Cohen and Singer 1999] .753 .759 .827
Dl-Esc decision rules [Li and Yamanishi 1999] .820

Charade decision rules [Moulinier and Ganascia 1996] .738
Charade decision rules [Moulinier et al. 1996] .783 (F1)

Llsf regression [Yang 1999] .855 .810
Llsf regression [Yang and Liu 1999] .849

BalancedWinnow on-line linear [Dagan et al. 1997] .747 .833
Widrow-Hoff on-line linear [Lam and Ho 1998] .822

Rocchio batch linear [Cohen and Singer 1999] .660 .748 .776
FindSim batch linear [Dumais et al. 1998] .617 .646
Rocchio batch linear [Joachims 1998] .799
Rocchio batch linear [Lam and Ho 1998] .781
Rocchio batch linear [Li and Yamanishi 1999] .625
Classi neural network [Ng et al. 1997] .802
Nnet neural network [Yang and Liu 1999] .838

neural network [Wiener et al. 1995] .820

Gis-W example-based [Lam and Ho 1998] .860
k-NN example-based [Joachims 1998] .823
k-NN example-based [Lam and Ho 1998] .820
k-NN example-based [Yang 1999] .690 .852 .820
k-NN example-based [Yang and Liu 1999] .856

SVM [Dumais et al. 1998] .870 .920
SvmLight SVM [Joachims 1998] .864
SvmLight SVM [Li and Yamanishi 1999] .841
SvmLight SVM [Yang and Liu 1999] .859

AdaBoost.MH committee [Schapire and Singer 2000] .860
committee [Weiss et al. 1999] .878

Bayesian net [Dumais et al. 1998] .800 .850
Bayesian net [Lam et al. 1997] .542 (MF1)

Table 6. Comparative results among different classifiers obtained on five different version of the
Reuters collection. Unless otherwise noted, entries indicate the microaveraged breakeven point;
within parentheses, “M” indicates macroaveraging and “F1” indicates use of the F1 measure.
Boldface indicates the best performer on the collection.

50 · F. Sebastiani

—the 20 Newsgroups collection, set up by Lang [1995] and used in [Baker and
McCallum 1998; Joachims 1997; McCallum and Nigam 1998; McCallum et al.
1998; Nigam et al. 1998; Schapire and Singer 2000]. The documents are messages
posted to Usenet newsgroups, and the categories are the newsgroups themselves.

—the AP collection, used in [Cohen 1995a; Cohen 1995b; Cohen and Singer 1999;
Lewis and Catlett 1994; Lewis and Gale 1994; Lewis et al. 1996; Schapire and
Singer 2000; Schapire et al. 1998].

—the TREC-3 “Routing” collection, used in [Lewis et al. 1996; Schapire et al. 1998;
Schütze et al. 1995].

We will not cover the experiments performed on these collections for the same
reasons as those illustrated in Footnote 14, i.e. becauset in no case a significant
enough number of authors have experimented with the same collection and in the
same experimental conditions, thus making comparisons difficult.

8.3 Which classifier is best?

The published experimental results, and especially those listed in Table 6, allow us
to attempt some considerations on the comparative performance of the TC methods
discussed. However, in order to do this we have to bear in mind that comparisons
tend to be reliable only when they concern experiments performed by the same au-
thor under carefully controlled conditions. They are instead more problematic when
they involve different experiments performed by different people. In this case var-
ious “background conditions”, often extraneous to the learning algorithm proper,
may have influenced the experimental results. This may include, among others,
different choices in pre-processing (stemming, etc.), indexing, dimensionality re-
duction, classifier parameter values, etc., but also different standards of compliance
with safe scientific practice (such as tuning parameters on the test set rather than
on a separate validation set), which often are not discussed in the published papers.

As a result, there are two different methods that may be applied for the compar-
ison of classifiers [Yang 1999]:

—direct comparison: classifiers Φ′ and Φ′′ may be compared as they have been
tested on the same benchmark collection BC, typically by the same team of
researchers and under the same background conditions. This is the method that
yields the more reliable results.

—indirect comparison: classifiers Φ′ and Φ′′ may be compared as
(1) they have been tested on collections BC ′ and BC ′′, respectively, typically by

two different teams of researchers and hence under possibly different back-
ground conditions.

(2) one or more “baseline” classifiers Φ1, . . . ,Φm have been tested on both TC ′

and TC ′′ by the direct comparison method.
Test 2 gives an indication on the relative “hardness” of the two collections; using
this and the results from Test 1 we may obtain an indication on the relative
effectiveness of Φ′ and Φ′′. For the reasons discussed above, this is the method
that yields the less reliable results.

A number of interesting conclusions can be drawn from Table 6 by using these two
methods. Concerning the relative “hardness” of the five collections, if by BC ′ >

Machine Learning in Automated Text Categorisation · 51

BC ′′ we indicate that BC ′ is a harder collection that BC ′′, there seems to be enough
evidence that Reuters-22173 “ModLewis” � Reuters-22173 “ModWiener” > Reuters-
22173 “ModApté” ≈ Reuters-21578 “ModApté” > Reuters-21578[10] “ModApté”.
These facts are not unsurprising; in particular, the first and the last inequalities
are a direct consequence of the peculiar characteristics of Reuters-22173 “ModLewis”
and Reuters-21578[10] “ModApté” discussed in Section 8.2.

Concerning the relative performance of the classifiers, remembering the consid-
erations above we may attempt a few conclusions:

—Boosting-based classifier committees, support vector machines, example-based
methods, and regression methods deliver top-notch performance. There seems
to be no sufficient evidence to decidedly opt for either method, and it looks
that efficiency considerations or application-dependent issues might play a role
in breaking such a close tie.

—Neural networks and on-line linear classifiers work very well, although slightly
worse than the previously mentioned methods.

—Batch linear classifiers (Rocchio) and probabilistic Näıve Bayes classifiers def-
initely look the worst of learning-based classifiers. For Rocchio, these results
confirm other earlier results by Schütze et al. [1995], who had found three classi-
fiers based on linear discriminant analysis, linear regression, and neural networks,
to perform about 15% better than Rocchio. It should be mentioned, however,
that recent results by Schapire and Singer [2000] rank Rocchio along the best
performers once near-positives are used in training.

—The data in Table 6 seem hardly sufficient to say anything about decision tree
classifiers. However, it should be noted that the recent work by Dumais et
al. [1998] in which a version of decision tree classifiers was shown to perform
nearly as well as their top performing system (a support vector machine classi-
fier) will probably renew the interest in this type of text classifiers, an interest
that had dwindled after previous unimpressive results reported in earlier litera-
ture [Cohen and Singer 1999; Joachims 1998; Lewis and Catlett 1994; Lewis and
Ringuette 1994].

—By far the lowest performance is displayed by Word, a “mock” classifier im-
plemented by Yang [1999] and not including any learning component16. This
unequivocably shows that learning techniques are definitely the way to go for
automatic TC.

Concerning this last point, for completeness we should recall that one of the highest
performances reported in the literature for the Reuters collection (a .90 breakeven)
belongs to Construe, a manually constructed classifier. Unfortunately, this classi-
fier has never been tested on the standard variants of Reuters mentioned in Table 6,
and it is not clear [Yang 1999] whether the (small) test set of Reuters-22173 “Mod-
Hayes” on which the .90 breakeven value was obtained was chosen randomly, as

16Word is based on the comparison between documents and category names, each treated as a
vector of weighted terms in the vector space model. Word was implemented by Yang with the
only purpose of determining the difference in effectiveness that adding a learning component to
a classifier brings about. Word is actually called STR in [Yang 1994; Yang and Chute 1994].
Another non-learning classifier is proposed in [Wong et al. 1996].

52 · F. Sebastiani

safe scientific practice would demand. As a consequence, the fact that this figure
may be indicative of the performance of Construe, and of the manual approach
it represents, has been convincingly questioned [Yang 1999].

It is however important to bear in mind that the considerations above are not
absolute and final judgments (if there may be any) on the comparative effectiveness
of these TC methods. One of the reasons is that a particular applicative context
may exhibit very different characteristics from the ones to be found in Reuters, and
different classifiers may respond differently to these characteristics. An experimen-
tal study by Joachims [1998] involving support vector machines, k-NN, decision
trees, Rocchio and Näıve Bayes, showed all these classifiers to have a similar ef-
fectiveness on categories with ≥ 300 positive training examples per category. The
fact that this experiment involved the methods which have scored best (support
vector machines, k-NN) and worst (Rocchio and Näıve Bayes) according to Table 6
results is indicative of the fact that conditions different from those of Reuters may
very well invalidate conclusions drawn on this latter.

Finally, a note is worth about statistical significance testing. Very few authors
have gone to the trouble of validating their experimental results by means of such
tests. These tests are useful for verifying how strongly the experimental results
support the claim that a given system Φ′ is better than another system Φ′′, or
for verifying how much a difference in the experimental setup affects the measured
effectiveness of a system Φ. Hull [1994] and Schütze et al. [1995] have been among
the first to work in this direction, validating their results by means of the Anova
test and the Friedman test; the former is aimed at determining the significance of
the difference in effectiveness between two methods in terms of the ratio between
this difference and the effectiveness variability across categories, while the latter
conducts a similar test by using instead the rank positions of each method within
a category. Yang and Liu [1999] define a full suite of significance tests, some of
which apply to microaveraged and some to macroaveraged effectiveness. They
apply them systematically to the comparison between five different classifiers, and
are thus able to infer fine-grained conclusions about their relative effectiveness. For
other examples of significance testing in TC see [Cohen 1995a; Cohen 1995b; Cohen
and Hirsch 1998; Joachims 1997; Koller and Sahami 1997; Lewis et al. 1996; Wiener
et al. 1995].

9. AUTOMATIC CATEGORISATION OF WEB PAGES

One recent application of TC which has raised considerable interest is the cate-
gorisation of Web pages, or sites, into hierarchically organised sets of categories.
The reason why we discuss it separately from the rest of the paper is that it has
given rise to a whole set of techniques specific to it, tackling problems as diverse
as indexing, term selection, classifier induction and evaluation. One of the reasons
this application has given rise to specific techniques is that Web pages are special
kinds of documents, as they consist not only of a text but also of a set of incoming
and outgoing pointers.

9.1 Indexing and dimensionality reduction

Attardi et al. [1999] propose an indexing technique specific to Web documents which
is based on the notion of the blurb of a document (see Figure 7). Given a test doc-

blurb(d)

d

Machine Learning in Automated Text Categorisation · 53

Fig. 7. The blurb of document d.

ument dj , blurb(dj) is another “artificial” document formed of the juxtaposition
of the text windows w1, . . . , wn containing hypertextual pointers from other docu-
ments d1, . . . , dn to dj (j �∈ {1, . . . , n}), and is thus akin to a “compilation of short
reviews” that Web authors have written on dj . The authors claim that the blurb of
dj is a denser, and often more faithful representation of dj ’s content than dj itself.
Document dj is classified by means of a traditional learning method (Rocchio),
with the only difference that blurb(dj), instead of dj itself, is indexed, by means of
a traditional text indexing method (tfidf), in order to obtain a representation of
dj .

Fuhr et al. [1998] propose instead another variant on the traditional indexing
approach, as they obtain a representation of document dj from the combined (stan-
dard) indexing of both dj and the documents (directly) pointed by dj . This choice
is dictated by the fact that, rather than in Web page categorisation, we are often
interested in Web site categorisation. Many “root” pages of interesting Web sites
are actually just collections of entry points to children pages in a tree-shaped site.
By using a traditional indexing method a classifier might easily dismiss these root
pages as contentless, while by using this “radius ≤ 1” method their subordinate
pages contribute to define their meaning.

Koller and Sahami [1997] propose a new method for organising term selection
and classifier induction which is specifically addressed to the situation in which
the categories are hierarchically organised. According to their method, for each
internal node ci of the hierarchy (starting from the root) a different set of r′ terms
is selected based on the training documents belonging to ci. For category ci, the r′

54 · F. Sebastiani

terms are selected that are the best in discriminating among the children categories
ci1, . . . , cis of ci. Out of the r′ terms selected for ci a classifier Φi is then built that is
able to decide under which among categories ci1, . . . , cis a document classified under
ci can be further classified. Note that this is different from “local dimensionality
reduction” as discussed in Section 5. In fact, in that case the r′ terms selected for ci
were meant to support the decision whether to classify documents under ci or not,
while in this case these terms are meant to support the decision under which among
ci1, . . . , cis a document classified under ci can be further classified. In this way,
each document dj is classified under one and only one “leaf” category by being first
submitted to the classifier Φr associated to the root node cr, then to the classifier
associated to the first level internal node under which Φr has classified dj , and so
on; in general, the classification of each document involves then the invocation of
l classifiers, where l is the length of the path between the root node and the leaf
node. By means of this method, the authors are able to decompose the classification
task into a number of much simpler classification tasks, and radically reduce the
number r′ of terms on which each individual classifier must be based. This latter
factor means being able to avoid overfitting more easily and to afford using more
sophisticated classifiers (whose complexity usually depends on the number of terms
used) at each individual step.

9.2 Classifier induction

Chakrabarti et al. [1998] propose a novel method for the induction of a Web page
classifier. Their Arc system for automatic Web page categorisation is based on
the hypothesis that to each pair 〈dj , ci〉 two parameters may be associated: its
authority value a(dj , ci), which measures the “authoritativeness” of dj on ci in
terms of the number of ci-related pages pointing to it, and its hub value h(dj , ci),
which measures the “informativeness” of dj on ci in terms of the number of ci-
related pages it points to. The purpose of Arc is thus to identify, given a topic
ci, the k most authoritative and k most informative Web pages that deal with it;
this may thus be seen as a specialisation of category-pivoted categorisation, since
this latter just aims at finding the k Web pages most relevant to ci. Arc is “kick-
started” by issuing query ci to the AltaVista search engine, which provides an
initial set of documents presumably relevant to ci (the 200 top-ranked ones are
picked); an expansion phase follows, in which documents distant ≤ 2 steps from
dj in the forward citation graph are added to the set. An iterative algorithm is
then applied in which, at each iteration, for each page dj the a(dj , ci) value is
substituted by the sum of the h(dx, ci) values of the pages dx pointing to it, and
h(dj , ci) is substituted by the sum of the a(dy, ci) values of the pages dy to which it
points. This formalizes the intuition that the hub value of a page is high if the page
points to many ci-authoritative pages, and that the the authority value of a page
is high if the page is referred by many ci-informative pages. The authors report
that for k = 15 the algorithm usually near-converges (i.e. the identity of the top 15
authority and hub pages stabilizes) in approximately 5 iterations.

A novel method for the induction of classifiers for a hierarchically structured
category set is proposed by Ruiz and Srinivasan [1999]. Their system is composed
of a hierarchically structured set of gating networks and expert networks. A gating
network for category ci is a neural network that decides whether document dj might

Machine Learning in Automated Text Categorisation · 55

be a plausible candidate for categorisation under any children categories of ci; if
this decision is positive, dj is propagated to all the children nodes of ci, while if
the decision is negative the document is not propagated to any of them. An expert
network for category ci is instead a neural network that, quite traditionally, decides
whether document dj should be classified under cj . While a leaf node consists of
an expert network only, an internal node always includes a gating network, and
possibly includes an expert network too. When a document is received by a node
ci, it is processed by whichever of gating and/or expert network is present. This
allows a document dj to be classified, if desired, under internal nodes and leaf nodes
at the same time, which may desirable in the case in which internal nodes represent
meaningful higher level concepts. In experiments performed by the authors, this
system yielded a significant increase in effectiveness over a “flat” neural network
built with the same technology as the individual gating and expert networks.

9.3 Evaluation

Larkey and Croft [1996, Section 2.6], although not working in a Web context,
define an effectiveness measure explicitly geared towards the case of hierarchically
structured categories, hence apt to be used in the Web case. Their idea is to
redefine effectiveness by considering not only success (aij = caij , in the notation of
Section 4.1) and failure (aij �= caij) but also near success; this is defined as the case
in which a category ci attributed by the system to dj is not correct, but a category
ck sibling of ci would have been correct.

10. CONCLUSION

Automated TC has now established itself as one of the major areas in the informa-
tion systems discipline, because of a number of reasons:

—Its domains of application are numerous and important, and given the prolifer-
ation of documents in digital form they are bound to increase dramatically in
both number and importance.

—It is indispensable in many applications in which the sheer number of the doc-
uments to be classified and the short response time imposed by the application
make the manual alternative implausible.

—It can dramatically improve the productivity of human classifiers in those appli-
cations in which no classification decision can be taken without a final human
expert judgment [Larkey and Croft 1996], by providing tools that quickly “sug-
gest” plausible decisions.

—It has reached effectiveness levels comparable to those obtained in manual TC
with the involvement of trained professionals. The effectiveness of manual TC
is not 100% anyway [Cleverdon 1984] and, perhaps more importantly, it is not
going to be improved by the progress of research. On the contrary, the levels
of effectiveness of automated TC are growing at a steady pace, and even if it is
plausible to hypothesise that they will eventually reach a plateau well below the
100% level, this plateau will probably be higher that the effectiveness levels of
manual TC.

One of the reasons why from the early ’90s onwards the effectiveness levels of text
classifiers have dramatically improved, is the entrance in the TC arena of machine

56 · F. Sebastiani

learning methods that are backed by strong theoretical motivations. Examples of
these are multiplicative weight updating (e.g. the Winnow family, Widrow-Hoff,
etc.), adaptive resampling (e.g. boosting) and support vector machines, which pro-
vide a sharp contrast with relatively unsophisticated and theoretically weak meth-
ods such as Rocchio. In TC, the field of machine learning has found a challenging
application, since datasets consisting of hundreds of thousands of documents and
characterised by tens of thousands of terms are widely available. This means that
TC is a good benchmark for checking whether a given learning technique, rather
than just being applicable to fairly undemanding domains, can scale up to substan-
tial sizes. In turn, this probably means that the active involvement of the machine
learning community in the automated TC discipline is bound to grow.

The success story of automated TC is also going to encourage an extension of
its methods and techniques to neighbouring fields of applications. Techniques typ-
ical of automated TC have already been extended successfully to the automated
categorisation of documents expressed in slightly different media; for instance:

—the classification of very noisy text resulting from optical character recognition,
tackled by Ittner et al. [1995]. These authors have proven how, by employing
noisy texts also in the training phase (i.e. texts affected by the same source of
noise that is also at work in the test documents), effectiveness levels comparable
to those obtainable in the case of standard text can be achieved.

—the classification of speech transcripts, tackled by Schapire and Singer [2000]. In
this work, the authors classify answers given to a phone operator’s request “How
may I help you?”, so as to be able to route the call to a specialised operator
according to call type.

Concerning other more radically different media, the current situation is not as
bright. Current research on automatic document categorisation under thematic
categories mostly focuses on the text medium (however, see [Lim 1999] for an
interesting attempt at image categorisation based on a textual metaphor). The
reason for this is that capturing real semantic content in the automatic indexing of
non-textual media is still an open research problem. While there are systems that
attempt to detect content e.g. in images by recognising shapes, colour distributions
and texture, the general problem of image semantics is still unsolved. The main
reason for this fact is that natural language, the language of the text medium,
admits far fewer variations than the “languages” employed by the other media. For
instance, while the concept of a house can be “triggered” by relatively few natural
language expressions such as house, houses, home, housing, inhabiting, etc., it
can be triggered by far more images: the images of all the different houses that exist,
of all possible colours and shapes, viewed from all the possible perspectives, from
all the possible distances, etc. If we had solved the multimedia indexing problem in
a satisfactory way, the general methodology (i.e. classifier induction, experimental
evaluation, etc.) that we have discussed in this paper for text would also apply
to automated multimedia categorisation, and there are reasons to believe that the
effectiveness levels could be as high. This only adds to the common sentiment that
more research in automated content-based indexing for multimedia documents is
needed.

Machine Learning in Automated Text Categorisation · 57

Acknowledgements

Thanks to Umberto Straccia for many useful comments on an earlier draft.

REFERENCES

Amati, G. and Crestani, F. 1999. Probabilistic learning for selective dissemination of
information. Information Processing and Management 35, 5, 633–654.

Apté, C., Damerau, F. J., and Weiss, S. M. 1994. Automated learning of decision rules
for text categorization. ACM Transactions on Information Systems 12, 3, 233–251.

Attardi, G., Gulĺı, A., and Sebastiani, F. 1999. Automatic Web page categorization by
link and context analysis. In C. Hutchison and G. Lanzarone Eds., Proceedings of THAI-
99, European Symposium on Telematics, Hypermedia and Artificial Intelligence (Varese,
IT, 1999), pp. 105–119.

Baker, L. D. and McCallum, A. K. 1998. Distributional clustering of words for text cat-
egorisation. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval (Melbourne, AU, 1998), pp. 96–103.

Belkin, N. J. and Croft, W. B. 1992. Information filtering and information retrieval: two
sides of the same coin? Communications of the ACM 35, 12, 29–38.

Biebricher, P., Fuhr, N., Lustig, G., and Schwantner, M. 1988. The automatic index-
ing system AIR/PHYS. From research to application. In Proceedings of SIGIR-88, 11th
ACM International Conference on Research and Development in Information Retrieval
(Grenoble, FR, 1988), pp. 333–342. Also reprinted in [Sparck Jones and Willett 1997], pp.
513–517.

Blosseville, M., Hebrail, G., Montell, M., and Penot, N. 1992. Automatic document
classification: natural langage processing and expert system techniques used together. In
Proceedings of SIGIR-92, 15th ACM International Conference on Research and Develop-
ment in Information Retrieval (Kobenhavn, DK, 1992), pp. 51–57.

Borko, H. and Bernick, M. 1963. Automatic document classification. Journal of the
Association for Computing Machinery 10, 1, 151–161.

Carbonell, J., Cohen, W. W., and Yang, Y. 2000. Guest editorial for the special issue
on text categorization. Machine Learning. Forthcoming.

Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., and Kleinberg, J.
1998. Automatic resource compilation by analyzing hyperlink structure and associated
text. Computer Networks and ISDN Systems 30, 1-7, 65–74.

Clack, C., Farringdon, J., Lidwell, P., and Yu, T. 1997. Autonomous document clas-
sification for business. In Proceedings of the 1st International Conference on Autonomous
Agents (Marina del Rey, US, 1997), pp. 201–208.

Cleverdon, C. 1984. Optimizing convenient online access to bibliographic databases. In-
formation Services and Use 4, 1, 37–47. Also reprinted in [Willett 1988a], pp. 32–41.

Cohen, W. W. 1995a. Learning to classify English text with ILP methods. In L. De Raedt
Ed., Advances in inductive logic programming. Amsterdam, NL: IOS Press.

Cohen, W. W. 1995b. Text categorization and relational learning. In Proceedings of ICML-
95, 12th International Conference on Machine Learning (Lake Tahoe, US, 1995), pp. 124–
132.

Cohen, W. W. 1996. Learning rules that classify e-mail. In Proceedings of the AAAI Spring
Symposium on Machine Learning in Information Access (Palo Alto, US, 1996), pp. 18–25.

Cohen, W. W. and Hirsch, H. 1998. Joins that generalize: text classification using Whirl.
In Proceedings of KDD-98, 4th International Conference on Knowledge Discovery and Data
Mining (New York, US, 1998), pp. 169–173.

Cohen, W. W. and Singer, Y. 1999. Context-sensitive learning methods for text catego-
rization. ACM Transactions on Information Systems 17, 2, 141–173.

Cooper, W. S. 1995. Some inconsistencies and misnomers in probabilistic information re-
trieval. ACM Transactions on Information Systems 13, 1, 100–111.

58 · F. Sebastiani

Creecy, R. M., Masand, B. M., Smith, S. J., and Waltz, D. L. 1992. Trading MIPS and
memory for knowledge engineering: classifying census returns on the Connection Machine.
Communications of the ACM 35, 8, 48–63.

Crestani, F., Lalmas, M., van Rijsbergen, C. J., and Campbell, I. 1998. “Is this
document relevant? . . . probably”. A survey of probabilistic models in information retrieval.
ACM Computing Surveys 30, 4, 528–552.

Dagan, I., Karov, Y., and Roth, D. 1997. Mistake-driven learning in text categorization.
In Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing
(Providence, US, 1997), pp. 55–63.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.
1990. Indexing by latent semantic indexing. Journal of the American Society for Infor-
mation Science 41, 6, 391–407.

Domingos, P. and Pazzani, M. J. 1997. On the the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning 29, 2-3, 103–130.

Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M. 1998. Inductive learning
algorithms and representations for text categorization. In Proceedings of CIKM-98, 7th
ACM International Conference on Information and Knowledge Management (Washington,
US, 1998), pp. 148–155.

Fangmeyer, H. and Lustig, G. 1968. The EURATOM automatic indexing project. In
Proceedings of the IFIP Congress (Booklet J) (Edinburgh, UK, 1968), pp. 66–70.

Field, B. 1975. Towards automatic indexing: automatic assignment of controlled-language
indexing and classification from free indexing. Journal of Documentation 31, 4, 246–265.

Forsyth, R. S. 1999. New directions in text categorization. In A. Gammerman Ed., Causal
models and intelligent data management , pp. 151–185. Heidelberg, DE: Springer.

Fuhr, N. 1985. A probabilistic model of dictionary-based automatic indexing. In Proceed-
ings of RIAO-85, 1st International Conference “Recherche d’Information Assistee par Or-
dinateur” (Grenoble, FR, 1985), pp. 207–216.

Fuhr, N. 1989. Models for retrieval with probabilistic indexing. Information Processing
and Management 25, 1, 55–72.

Fuhr, N. and Buckley, C. 1991. A probabilistic learning approach for document indexing.
ACM Transactions on Information Systems 9, 3, 223–248.

Fuhr, N., Gövert, N., Lalmas, M., and Sebastiani, F. 1998. Categorisation tool: Fi-
nal prototype. Deliverable 4.3, Project LE4-8303 “EUROSEARCH”, Commission of the
European Communities, 1999.

Fuhr, N., Hartmann, S., Knorz, G., Lustig, G., Schwantner, M., and Tzeras, K. 1991.
AIR/X – a rule-based multistage indexing system for large subject fields. In Proceedings
of RIAO-91, 3rd International Conference “Recherche d’Information Assistee par Ordina-
teur” (Barcelona, ES, 1991), pp. 606–623.

Fuhr, N. and Knorz, G. 1984. Retrieval test evaluation of a rule-based automated indexing
(AIR/PHYS). In Proceedings of SIGIR-84, 7th ACM International Conference on Research
and Development in Information Retrieval (1984), pp. 391–408.

Galavotti, L. 1999. Un sistema modulare per la classificazione di testi basato
sull’apprendimento automatico. Master’s thesis, Dipartimento di Informatica, Università
di Pisa, Pisa, IT.

Gale, W. A., Church, K. W., and Yarowsky, D. 1993. A method for disambiguating
word senses in a large corpus. Computers and the Humanities 26, 5, 415–439.

Goodman, M. 1990. Prism: a case-based telex classifier. In Proceedings of IAAI-90, 2nd
Conference on Innovative Applications of Artificial Intelligence (1990), pp. 86–90.

Gray, W. A. and Harley, A. J. 1971. Computer-assisted indexing. Information Storage
and Retrieval 7, 4, 167–174.

Guthrie, L., Walker, E., and Guthrie, J. A. 1994. Document classification by ma-
chine: theory and practice. In Proceedings of COLING-94, 15th International Conference
on Computational Linguistics (Kyoto, JP, 1994), pp. 1059–1063.

Machine Learning in Automated Text Categorisation · 59

Hamill, K. A. and Zamora, A. 1978. An automatic document classification system using
pattern recognition techniques. In Proceedings of ASIS-78, 41st Annual Meeting of the
American Society for Information Science (New York, US, 1978), pp. 152–155.

Hamill, K. A. and Zamora, A. 1980. The use of titles for automatic document classifica-
tion. Journal of the American Society for Information Science 33, 6, 396–402.

Hayes, P. J., Andersen, P. M., Nirenburg, I. B., and Schmandt, L. M. 1990. Tcs: a
shell for content-based text categorization. In Proceedings of CAIA-90, 6th IEEE Confer-
ence on Artificial Intelligence Applications (Santa Barbara, US, 1990), pp. 320–326.

Heaps, H. 1973. A theory of relevance for automatic document classification. Information
and Control 22, 3, 268–278.

Hearst, M. A. 1991. Noun homograph disambiguation using local context in large corpora.
In Proceedings of the 7th Annual Conference of the University of Waterloo Centre for the
New Oxford English Dictionary (Oxford, UK, 1991), pp. 1–22.

Hersh, W., Buckley, C., Leone, T., and Hickman, D. 1994. Ohsumed: an interactive
retrieval evaluation and new large text collection for research. In Proceedings of SIGIR-
94, 17th ACM International Conference on Research and Development in Information
Retrieval (Dublin, IE, 1994), pp. 192–201.

Hoyle, W. G. 1973. Automatic indexing and generation of classification by algorithm.
Information Storage and Retrieval 9, 4, 233–242.

Hull, D. A. 1994. Improving text retrieval for the routing problem using latent semantic
indexing. In Proceedings of SIGIR-94, 17th ACM International Conference on Research
and Development in Information Retrieval (Dublin, IE, 1994), pp. 282–289.

Hull, D. A. 1998. The TREC-7 filtering track: description and analysis. In Proceedings of
TREC-7, 7th Text Retrieval Conference (Gaithersburg, US, 1998), pp. 33–56.

Hull, D. A., Pedersen, J. O., and Schütze, H. 1996. Method combination for document
filtering. In Proceedings of SIGIR-96, 19th ACM International Conference on Research
and Development in Information Retrieval (Zürich, CH, 1996), pp. 279–288.

Ittner, D. J., Lewis, D. D., and Ahn, D. D. 1995. Text categorization of low quality
images. In Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and
Information Retrieval (Las Vegas, US, 1995), pp. 301–315.

Iwayama, M. and Tokunaga, T. 1995. Cluster-based text categorization: a comparison
of category search strategies. In Proceedings of SIGIR-95, 18th ACM International Con-
ference on Research and Development in Information Retrieval (Seattle, US, 1995), pp.
273–281.

Joachims, T. 1997. A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning (Nashville, US, 1997), pp. 143–151.

Joachims, T. 1998. Text categorization with support vector machines: learning with many
relevant features. In Proceedings of ECML-98, 10th European Conference on Machine
Learning (Chemnitz, DE, 1998), pp. 137–142.

Joachims, T. 1999. Transductive inference for text classification using support vector ma-
chines. In Proceedings of ICML-99, 16th International Conference on Machine Learning
(Bled, SL, 1999).

John, G., Kohavi, R., and Pfleger, K. 1994. Irrelevant features and the subset selection
problem. In Proceedings of ICML-94, 11th International Conference on Machine Learning
(New Brunswick, US, 1994), pp. 121–129.

Klingbiel, P. H. 1973a. Machine-aided indexing of technical literature. Information Stor-
age and Retrieval 9, 2, 79–84.

Klingbiel, P. H. 1973b. A technique for machine-aided indexing. Information Storage and
Retrieval 9, 9, 477–494.

Koller, D. and Sahami, M. 1997. Hierarchically classifying documents using very few
words. In Proceedings of ICML-97, 14th International Conference on Machine Learning
(Nashville, US, 1997), pp. 170–178.

60 · F. Sebastiani

Korfhage, R. R. 1997. Information storage and retrieval. Wiley Computer Publishing,
New York, US.

Lam, W. and Ho, C. Y. 1998. Using a generalized instance set for automatic text cate-
gorization. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval (Melbourne, AU, 1998), pp. 81–89.

Lam, W., Low, K. F., and Ho, C. Y. 1997. Using a Bayesian network induction approach
for text categorization. In Proceedings of IJCAI-97, 15th International Joint Conference
on Artificial Intelligence (Nagoya, JP, 1997), pp. 745–750.

Lam, W., Ruiz, M. E., and Srinivasan, P. 1999. Automatic text categorization and its
applications to text retrieval. IEEE Transactions on Knowledge and Data Engineering.
Forthcoming.

Lang, K. 1995. NewsWeeder: learning to filter netnews. In Proceedings of ICML-95, 12th
International Conference on Machine Learning (Lake Tahoe, US, 1995), pp. 331–339.

Larkey, L. S. 1998. Automatic essay grading using text categorization techniques. In Pro-
ceedings of SIGIR-98, 21st ACM International Conference on Research and Development
in Information Retrieval (Melbourne, AU, 1998), pp. 90–95.

Larkey, L. S. 1999. A patent search and classification system. In Proceedings of DL-99,
4th ACM Conference on Digital Libraries (Berkeley, US, 1999), pp. 179–187.

Larkey, L. S. and Croft, W. B. 1996. Combining classifiers in text categorization. In Pro-
ceedings of SIGIR-96, 19th ACM International Conference on Research and Development
in Information Retrieval (Zürich, CH, 1996), pp. 289–297.

Lewis, D. D. 1992. An evaluation of phrasal and clustered representations on a text catego-
rization task. In Proceedings of SIGIR-92, 15th ACM International Conference on Research
and Development in Information Retrieval (Kobenhavn, DK, 1992), pp. 37–50.

Lewis, D. D. 1995a. Evaluating and optmizing autonomous text classification systems. In
Proceedings of SIGIR-95, 18th ACM International Conference on Research and Develop-
ment in Information Retrieval (Seattle, US, 1995), pp. 246–254.

Lewis, D. D. 1995b. A sequential algorithm for training text classifiers: corrigendum and
additional data. SIGIR Forum 29, 2, 13–19.

Lewis, D. D. 1995c. The TREC-4 filtering track: description and analysis. In Proceedings
of TREC-4, 4th Text Retrieval Conference (Gaithersburg, US, 1995), pp. 165–180.

Lewis, D. D. 1998. Naive (Bayes) at forty: The independence assumption in information
retrieval. In Proceedings of ECML-98, 10th European Conference on Machine Learning
(Chemnitz, DE, 1998), pp. 4–15.

Lewis, D. D. and Catlett, J. 1994. Heterogeneous uncertainty sampling for supervised
learning. In Proceedings of ICML-94, 11th International Conference on Machine Learning
(New Brunswick, US, 1994), pp. 148–156.

Lewis, D. D. and Gale, W. A. 1994. A sequential algorithm for training text classifiers.
In Proceedings of SIGIR-94, 17th ACM International Conference on Research and Devel-
opment in Information Retrieval (Dublin, IE, 1994), pp. 3–12. See also [Lewis 1995b].

Lewis, D. D. and Hayes, P. J. 1994. Guest editorial for the special issue on text catego-
rization. ACM Transactions on Information Systems 12, 3, 231.

Lewis, D. D. and Ringuette, M. 1994. A comparison of two learning algorithms for text
categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval (Las Vegas, US, 1994), pp. 81–93.

Lewis, D. D., Schapire, R. E., Callan, J. P., and Papka, R. 1996. Training algorithms
for linear text classifiers. In Proceedings of SIGIR-96, 19th ACM International Conference
on Research and Development in Information Retrieval (Zürich, CH, 1996), pp. 298–306.

Lewis, D. D., Stern, D. L., and Singhal, A. 1999. Attics: a software platform for on-
line text classification. In Proceedings of SIGIR-99, 22nd ACM International Conference
on Research and Development in Information Retrieval (Berkeley, US, 1999), pp. 267–268.

Li, H. and Yamanishi, K. 1999. Text classification using ESC-based stochastic decision
lists. In Proceedings of CIKM-99, 8th ACM International Conference on Information and
Knowledge Management (Kansas City, US, 1999), pp. 122–130.

Machine Learning in Automated Text Categorisation · 61

Li, Y. H. and Jain, A. K. 1998. Classification of text documents. The Computer Jour-
nal 41, 8, 537–546.

Liddy, E. D., Paik, W., and Yu, E. S. 1994. Text categorization for multiple users based on
semantic features from a machine-readable dictionary. ACM Transactions on Information
Systems 12, 3, 278–295.

Liere, R. and Tadepalli, P. 1997. Active learning with committees for text categorization.
In Proceedings of AAAI-97, 14th Conference of the American Association for Artificial
Intelligence (Providence, US, 1997), pp. 591–596.

Lim, J. H. 1999. Learnable visual keywords for image classification. In Proceedings of DL-
99, 4th ACM Conference on Digital Libraries (Berkeley, US, 1999), pp. 139–145.

Maron, M. 1961. Automatic indexing: an experimental inquiry. Journal of the Association
for Computing Machinery 8, 3, 404–417.

Masand, B., Linoff, G., and Waltz, D. 1992. Classifying news stories using memory-
based reasoning. In Proceedings of SIGIR-92, 15th ACM International Conference on Re-
search and Development in Information Retrieval (Kobenhavn, DK, 1992), pp. 59–65.

McCallum, A. K. and Nigam, K. 1998. Employing EM in pool-based active learning for
text classification. In Proceedings of ICML-98, 15th International Conference on Machine
Learning (Madison, US, 1998), pp. 350–358.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., and Ng, A. Y. 1998. Improving
text classification by shrinkage in a hierarchy of classes. In Proceedings of ICML-98, 15th
International Conference on Machine Learning (Madison, US, 1998), pp. 359–367.

Mitchell, T. M. 1996. Machine learning. McGraw Hill, New York, US.

Mladenić, D. 1998a. Feature subset selection in text learning. In Proceedings of ECML-98,
10th European Conference on Machine Learning (Chemnitz, DE, 1998), pp. 95–100.

Mladenić, D. 1998b. Turning Yahoo! into an automatic Web page classifier. In Proceedings
of ECAI-98, 13th European Conference on Artificial Intelligence (Brighton, UK, 1998), pp.
473–474.

Moulinier, I. and Ganascia, J.-G. 1996. Applying an existing machine learning algorithm
to text categorization. In S. Wermter, E. Riloff, and G. Scheler Eds., Connectionist,
statistical, and symbolic approaches to learning for natural language processing (Heidelberg,
DE, 1996), pp. 343–354. Springer Verlag. Published in the “Lecture Notes for Computer
Science” series, number 1040.

Moulinier, I., Ras̆kinis, G., and Ganascia, J.-G. 1996. Text categorization: a symbolic
approach. In Proceedings of SDAIR-96, 5th Annual Symposium on Document Analysis and
Information Retrieval (Las Vegas, US, 1996).

Ng, H. T., Goh, W. B., and Low, K. L. 1997. Feature selection, perceptron learning, and
a usability case study for text categorization. In Proceedings of SIGIR-97, 20th ACM Inter-
national Conference on Research and Development in Information Retrieval (Philadelphia,
US, 1997), pp. 67–73.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. M. 1998. Learning to classify
text from labeled and unlabeled documents. In Proceedings of AAAI-98, 15th Conference
of the American Association for Artificial Intelligence (Madison, US, 1998), pp. 792–799.
An extended version is forthcoming on Machine Learning.

Ragas, H. and Koster, C. H. 1998. Four text classification algorithms compared on a
Dutch corpus. In Proceedings of SIGIR-98, 21st ACM International Conference on Re-
search and Development in Information Retrieval (Melbourne, AU, 1998), pp. 369–370.

Rau, L. F. and Jacobs, P. S. 1991. Creating segmented databases from free text for text
retrieval. In Proceedings of SIGIR-91, 14th ACM International Conference on Research
and Development in Information Retrieval (Chicago, US, 1991), pp. 337–346.

Riloff, E. and Lehnert, W. 1994. Information extraction as a basis for high-precision
text classification. ACM Transactions on Information Systems 12, 3, 296–333.

Robertson, S. E. and Harding, P. 1984. Probabilistic automatic indexing by learning
from human indexers. Journal of Documentation 40, 4, 264–270.

62 · F. Sebastiani

Robertson, S. E. and Sparck Jones, K. 1976. Relevance weighting of search terms. Jour-
nal of the American Society for Information Science 27, 3, 129–146. Also reprinted in
[Willett 1988a], pp. 143–160.

Roth, D. 1998. Learning to resolve natural language ambiguities: a unified approach. In
Proceedings of AAAI-98, 15th Conference of the American Association for Artificial In-
telligence (Madison, US, 1998), pp. 806–813.

Ruiz, M. E. and Srinivasan, P. 1999. Hierarchical neural networks for text categoriza-
tion. In Proceedings of SIGIR-99, 22nd ACM International Conference on Research and
Development in Information Retrieval (Berkeley, US, 1999), pp. 281–282.

Sable, C. L. and Hatzivassiloglou, V. 1999. Text-based approaches for the categorization
of images. In Proceedings of ECDL-99, 3rd European Conference on Research and Advanced
Technology for Digital Libraries (Paris, FR, 1999), pp. 19–38.

Salton, G. and Buckley, C. 1988. Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24, 5, 513–523. Also reprinted in [Sparck Jones
and Willett 1997], pp. 323–328.

Salton, G., Wong, A., and Yang, C. 1975. A vector space model for automatic indexing.
Communications of the ACM 18, 11, 613–620. Also reprinted in [Sparck Jones and Willett
1997], pp. 273–280.

Saracevic, T. 1975. Relevance: a review of and a framework for the thinking on the notion
in information science. Journal of the American Society for Information Science 26, 6, 321–
343. Also reprinted in [Sparck Jones and Willett 1997], pp. 143–165.

Schapire, R. E. and Singer, Y. 2000. BoosTexter: a boosting-based system for text
categorization. Machine Learning. Forthcoming.

Schapire, R. E., Singer, Y., and Singhal, A. 1998. Boosting and Rocchio applied to text
filtering. In Proceedings of SIGIR-98, 21st ACM International Conference on Research and
Development in Information Retrieval (Melbourne, AU, 1998), pp. 215–223.

Schütze, H. 1998. Automatic word sense discrimination. Computational Linguistics 24, 1,
97–124.

Schütze, H., Hull, D. A., and Pedersen, J. O. 1995. A comparison of classifiers and
document representations for the routing problem. In Proceedings of SIGIR-95, 18th ACM
International Conference on Research and Development in Information Retrieval (Seattle,
US, 1995), pp. 229–237.

Singhal, A., Mitra, M., and Buckley, C. 1997. Learning routing queries in a query
zone. In Proceedings of SIGIR-97, 20th ACM International Conference on Research and
Development in Information Retrieval (Philadelphia, US, 1997), pp. 25–32.

Sparck Jones, K. and Willett, P. Eds. 1997. Readings in information retrieval. Morgan
Kaufmann, San Mateo, US.

Taira, H. and Haruno, M. 1999. Feature selection in SVM text categorization. In Proceed-
ings of AAAI-99, 16th Conference of the American Association for Artificial Intelligence
(Orlando, US, 1999), pp. 480–486.

Tzeras, K. and Hartmann, S. 1993. Automatic indexing based on Bayesian inference
networks. In Proceedings of SIGIR-93, 16th ACM International Conference on Research
and Development in Information Retrieval (Pittsburgh, US, 1993), pp. 22–34.

van Rijsbergen, C. J. 1977. A theoretical basis for the use of co-occurrence data in infor-
mation retrieval. Journal of Documentation 33, 2, 106–119.

Weigend, A. S., Wiener, E. D., and Pedersen, J. O. 1999. Exploiting hierarchy in text
categorization. Information Retrieval 1, 3, 193–216.

Weiss, S. M., Apte, C., Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., and
Hampp, T. 1999. Maximizing text-mining performance. IEEE Intelligent Systems 14, 4,
63–69.

Wiener, E., Pedersen, J. O., and Weigend, A. S. 1995. A neural network approach to
topic spotting. In Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis
and Information Retrieval (Las Vegas, US, 1995), pp. 317–332.

Willett, P. Ed. 1988a. Document retrieval systems. Taylor Graham, London, UK.

Machine Learning in Automated Text Categorisation · 63

Willett, P. 1988b. Recent trends in hierarchic document clustering: a critical review.
Information Processing and Management 24, 5, 577–597.

Wong, J. W., Kan, W., and Young, G. 1996. Action: automatic classification for full-
text documents. SIGIR Forum 30, 1, 26–41.

Wong, S. M. and Yao, Y. 1995. On modeling information retrieval with probabilistic
inference. ACM Transactions on Information Systems 13, 1, 38–68.

Yang, Y. 1994. Expert network: effective and efficient learning from human decisions in
text categorisation and retrieval. In Proceedings of SIGIR-94, 17th ACM International
Conference on Research and Development in Information Retrieval (Dublin, IE, 1994),
pp. 13–22.

Yang, Y. 1995. Noise reduction in a statistical approach to text categorization. In Proceed-
ings of SIGIR-95, 18th ACM International Conference on Research and Development in
Information Retrieval (Seattle, US, 1995), pp. 256–263.

Yang, Y. 1999. An evaluation of statistical approaches to text categorization. Information
Retrieval 1, 1-2, 69–90.

Yang, Y. and Chute, C. G. 1994. An example-based mapping method for text categoriza-
tion and retrieval. ACM Transactions on Information Systems 12, 3, 252–277.

Yang, Y. and Liu, X. 1999. A re-examination of text categorization methods. In Proceed-
ings of SIGIR-99, 22nd ACM International Conference on Research and Development in
Information Retrieval (Berkeley, US, 1999), pp. 42–49.

Yang, Y. and Pedersen, J. O. 1997. A comparative study on feature selection in text
categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning (Nashville, US, 1997), pp. 412–420.

