
Early Aspects Refactoring

Ricardo A. Ramos
1
, Jaelson Castro

1
, João Araújo

2
, Ana Moreira

2
,

Fernanda Alencar
1
 and Rosangela Penteado

3

1 Centro de Informática - Universidade Federal de Pernambuco (UFPE)

{rar2, jbc}@cin.ufpe.br, frma@ufpe.br

2 Departamento de Informática, FCT, Universidade Nova de Lisboa (UNL)

{amm, ja}@di.fct.unl.pt

3 Universidade Federal de São Carlos (UFSCAR)

rosangel@dc.ufscar.br

Abstract. Typical problems of a requirements document, regarding its contents

and organization, involve deficient modularization where requirements artifacts

may deal with too much information, duplication of requirements, scattering

requirements, tangled problems, among other problems. In this paper we

describe how to improve requirements documents by removing duplication of

information using aspect-oriented refactoring.

Keywords: Refactorings and Early Aspects.

1 Introduction

Several approaches are used to express the requirements of a software system and are

extensively used in both academia and industry. These approaches describe the

functionalities to be provided and the interactions between the users and the system.

Requirements are structured and described using, for example, use cases, viewpoints,

textual descriptions, activity diagrams or sequence diagrams [2].

Over the past years, we have observed that a set of typical issues seems to plague

the requirements specifications, such as requirements that are abandoned and no

longer relevant, descriptions that are unnecessarily long and complex, and

information that is duplicated. Inspired in the code refactoring literature [9], we set off

to identify a bad smell related to duplicated requirements that could indicate potential

refactoring opportunities.

These bad smells decrease reuse, not only during implementation, but throughout

the development process [1] and can be minimized by the identification of their

symptoms and the removal of their causes. These symptoms may indicate potential

problems with the software [2] and can be removed using appropriate refactoring

transformations. The removal of these bad smells in the early stages of a software

development process reduces the costs associated with software changes. This cost

reductions could be three to six times bigger in later stages than during requirements

activities [10].

Opdyke, in [9], initially coined the term refactoring as the process of improving

the design of existing software using transformations, without changing its observable

behaviour. The term is also used to refer to program restructuring operations aiming

to support the design, evolution and reuse of object-oriented software. Refactorings

express ideas of good style, which can have a significant impact on the

maintainability and evolvability of code bases.

There are some tools for refactoring requirements documents [21] , [22], [16] but

they focus on specific techniques, such as use case models and do not directly address

textual descriptions or other mechanisms used to detail requirements. Moreover, these

approaches do not provide any guidelines about how to identify the problems. As

such, they say nothing about which refactoring can be used to address those issues.

In this paper we describe a generic approach to identify duplicated, tangled and

scattered requirements as a refactoring opportunity in requirements descriptions,

together with an associated early aspect refactoring. The approach can be instantiated

with any of the existing requirements description techniques (e.g., use cases,

viewpoints, goals). In this paper we will demonstrate our ideas using Multi-

Dimensional Separation of Concerns [8] and use cases approaches. In summary, the

main contributions of this paper are twofold:

i) The definition of the refactoring opportunity that helps to find duplicated,

tangled and scattered requirements in requirements document. We describe (a)

how to identify occurrences of these problems and (b) indicate how to use the

refactoring that can to minimize the effects of the problem.

ii) The definition of the Extract Early Aspect refactoring. This refactoring contains

the context that suggests the application of the refactoring, the type of solution

provided by the refactoring, a motivation for the transformations, its

mechanics (a set of well defined steps) and an example of a refactored

description.

We are using early aspects for having had demonstrated a good alternative to deal

with duplicated, tangled and scattered requirements. The Early Aspects [3] focuses on

managing crosscutting properties at the early development stages of requirements

engineering and architecture design using the aspect oriented paradigm [15].

This paper is structured as follows: Section 2 introduces the concept of refactoring

opportunity. Section 3 presents the extract early aspect refactoring to manipulate

requirement descriptions. Section 4 discusses related work. In Section 5, conclusions

are discussed.

2. The Refactoring Opportunity

Fowler in [4] introduces bad smells as indications of deficiencies that can appear in

existing software artifacts. The use of refactoring techniques might address the causes

of these deficiencies. In this paper, we use the term refactoring opportunity to refer to

the types of bad smells that can appear in requirements artifacts.

Refactoring opportunities should not be seen as exact rules to the automatic

application of refactorings. The requirements engineer needs to decide about the

interest in changing the requirements and needs to choose which refactoring is more

adequate for each opportunity.

In this section, we describe the duplicated, tangled and scattered requirements

refactoring opportunity as well as associated refactoring. A brief textual description

and an explanation of “when” to use the refactoring that could help in the solution of

the identified problem are provided. The Extract Early Aspect refactoring is described

in more detail in section 3.

2.1. Duplicated Requirements

A duplicated requirement is a situation that occurs when (i) the same requirement is

duplicated in different places in a requirements document or (ii) the same

requirements or the same pre-post conditions appear in several requirements

structures.

A requirement that appears in more than one place offers an opportunity for

refactoring. In the simplest case, the requirement is duplicated in one requirements

structure. A possible solution is to use the Extract Early Aspect refactoring (Section

3.1), to remove the duplication and to create a new Early Aspect expressing this

specific set of requirements.

Another common duplication problem occurs when an individual requirement

appears in several requirements structures. This duplication could be removed using

Extract Early Aspect refactoring as mentioned above. If the requirements are similar

but not exactly the same, we may need to separate the duplicated piece from the rest

of the requirement.

2.2. Tangled Requirements

A tangled requirement is a situation that occurs when a requirements unit contains

descriptions of several properties or different functionalities [15].

A requirement unit that contains several different properties could be hard to

understand. Thus it offers an opportunity for refactoring. A possible solution is to use

the Extract Early Aspect refactoring (Section 3.1), to create a new Early Aspect that

expresses specific and separated set of requirements. This solution needs to be

analyzed with caution, because it may increase the number of the units.

Another possible solution is to use the Move Activity [14] (see more details in

Section 4). With this solution requirement units are not created, they are just grouped

in existing units that already express the same requirements. Thus, this second

solution could be an alternative when the first, with aspects, were so expansive.

An example of Move Activity refactoring is showed in Figure 1. In the Order

Processing System [19] described with use case, consider a Login use case that is

concerned with user authentication and also with the functionalities selected by the

user (two properties in the same unit). The shaded lines show the activities that could

be moved to another use case, responsible for the functionality selection flow.

Fig. 1. Login use case.

2.3. Scattered Requirements

A scattered requirement is a situation that occurs when the specification of one

property is not encapsulated in a single requirements unit [15].

When the requirements that treat of the same goal are disperse by the requirement

document the general localization is more difficult harder and in consequence difficult

they reuse and maintenance, this situation could be solved with the Refactoring

application. A possible solution is to use the Extract Early Aspect refactoring (Section

3.1) to create a new requirement unit that encapsulates a specific requirement that is

scattered and then use the Move Activity (see more details in Section 4) refactoring

[14] to put all scattered pieces in this new requirement unit.

3. Refactoring Requirements

In this section we define and describe the requirements refactoring Extract Early

Aspect. This refactoring was mentioned in the previous section to provide solutions

to: i) scattered requirements, ii) duplicated requirements and iii) tangled requirements.

For the refactoring we provide a context, a solution, the motivation for the

application of the refactoring, a set of mechanics to apply the refactoring and an

example illustrating the application of the refactoring. We use the format

recommended by Fowler in [4] and we add some figures and a description of the

solution for each mechanism steps.

The solutions described in this section are abstract, therefore we have the intention

of being able uses them in any situation that occurs "bad smells". Thus, to a

requirement engineer to uses them, first he already must have chosen the early aspect

oriented technique to later applying the solutions.

The example used is described using the Multi-Dimensional Separation of

Concerns approach [8]. The requirements are represented in XML format.

…

8. While the user does not select Exit loop

9. If the user selects Place Order then

Use Place Order.

10. else if the user selects Cancel

Order then

Use Cancel Order.

11. . . .

end if.

16. The user will select a function.

end loop.

17. The use case ends.

Main flow of events:

1. The use case starts when the user

starts the application.

2. The system will display the Login

Screen.

3. The user enters a username and

password.

. . .

6. The system will display the Main

Screen

7. The user will select a function

…

3.1 Extract Early Aspect

Context. A set of duplicated information is used in several places. This could be

better modularized in an early aspect. This refactoring is also used when a

requirement is too large or contains information related to a feature that is scattered

across several requirements and is tangled with other requirements.

Solution. Extract that information to a new requirement and name it according to the

context.

Motivation. This refactoring should be applied when there is duplicated information

that can be split into two or more new requirements. The duplicated information could

increase the costs of the requirements document maintenance and the potential for

errors insertion. Every time that a change is needed, it is necessary to modify all the

places where the duplicated requirements appear. [20].

The use of aspect-oriented requirements engineering [15] provides a good

mechanism to modularize these requirements that are scattered among several places

in a requirements document. The use of aspectual requirements [15], [5] promotes

better modularization of the requirements artifacts.

Mechanics. The following steps should be performed:

1. Create a new early aspect and name it.

Figure 2 shows in detail how to create a new early aspect. Also it is considered

when does not have to create a new early aspect.

Fig. 2. The detailing mechanism to create a new structure <Early Aspect>.

Verify IF exist a <Early Aspect> that encapsulate the

same segment of information that will be encapsulate in

the structure that desire to create.

IF Yes then

Verify IF exist the possibility of to use the

<Early Aspect> existent to encapsulate the new

information.

IF Yes then

The new structure <Early Aspect> isn’t created;

END_IF;

ELSE

The new structure <Early Aspect> is created;

END_ELSE;

END_IF;

ELSE

The new structure <Early Aspect> is created;

END_ELSE;

2. Select in the original requirement the information you want to extract. An Early

Aspect Mining Tool like the EA-Miner [17], [18] may be used in this step. Figure 3

illustrate an example with 10 requirements structures that only in 3 had been found

the information desired.

Fig. 3. Illustration of the requirements document and the selected segments.

Figure 4 shows in detail how to select in the original requirement the information you

want to extract.

Fig. 4. The detailing mechanism to select the information you want to extract.

3. Add the selected information to the new early aspect. Figure 5 illustrate the

situation of the 3 selected information (in the previous step) to being added to the new

early aspect.

WHILE not be the end of the requirements document do

To each structure of the requirement document:

Verify IF exist the information you want to

extract

IF Yes then

To select the segments that corresponds to the

information desired;

Go to the next structure;

END_IF

ELSE

Go to the next structure;

END_ELSE

END_WHILE.

Fig. 5. Illustration of the addition of the selected information in the new early aspect.

To add the information in the new structure it is important to analyze the existence

of a priority between the selected information. Figure 6 shows how to add the selected

information in the new early aspect.

Fig. 6. The detailing mechanism to add the selected information to the new early aspect.

new early aspect

<name>

To all structures of the requirement document that
exists the information selected do:

Verify IF exist a priority order:
IF Yes then

Order the selected information and do:
To each structure of the requirement document
that exists the information selected do:

Verify IF the selected information already
exists in the <new early aspect>
IF Yes then

Go to the next selected information;
END_IF;
ELSE

Add (copy) the selected information to the
new early aspect;
Go to the next selected information;

END_ELSE;
END_IF;
ELSE

To each structure of the requirement document that
exists the information selected do:

Verify IF the selected information already
exists in the <new early aspect>

IF Yes then
Go to the next selected information;

END_IF
ELSE

Add (copy) the selected information to the
new early aspect;
Go to the next selected information;

END_ELSE;
END_ELSE;

4. Remove the selected information from the original requirement and collect

information about the future composition. Figure 7 illustrate the selected information

being removed of the original requirement and the collect of composition

informations.

Fig. 7. Illustration of the removal of the selected information and the collects of composition

guides.

All the information that need be collected is showed detailed in the Figure 8.

Fig. 8. The detailing mechanism to removal the selected information of the original

requirement.

5. Create the composition mechanism from the new early aspect to the original

requirement(s). Using the collected information in the previous step is the

composition mechanism is create. Figure 9 illustrate a situation in that the new early

aspect has relationships with others 3 requirements structures.

To each structures of the requirement document that

have information that was added to the new early aspect

do:

To each selected information that was added to the

new early aspect do:

To make note of:

- The name and/or the identification of the

source structure (original requirement);

- The localization inside of the structure (what

it comes before and after);

- The name of the destination structure (Early

Aspect);

Remove the select information;

composition
mechanism

Add composition information

Fig. 9. Illustration of the creation of the composition mechanism.

Fig. 10. The detailing mechanism to create the composition mechanism.

6. Check if the original requirement is acceptable1 without the removed information.

7. Update the references in dependent requirements to original requirements.

Example. The two excerpt requirements, shown in Figures 11 and 12, deal with the

registration of a new employee and a new product, but we can see that the two initial

requirements (1.1, 1.2 and 2.1, 2.2) in both figures are duplicated.

Fig. 11. Register new employee.

1 Adequate for the original purpose.

…

<Requirement id="1.1"> The employee provides the login

and password. </Requirement>

<Requirement id="1.2"> The system validates the typed

password. </Requirement>

<Requirement id="1.3"> The employee provides the

following information about the new employee: Name,

Login Password </Requirement>

<Requirement id="1.4"> The employee confirms the new

employee register. </Requirement>
…

In the composition mechanisms do:

Provide pointers and/or rule with the following

information:

- The name and/or the identification of the source

structure (original requirement);

- Where the information will be introduced in the

original requirement?

- When the information will be introduced in the

original requirement (before or after)?

new early aspect

<name>

composition

mechanism

Fig. 12. Register new product.

Applying the Extract Early Requirement to solve this duplicated requirements

problem, we have the new Early Aspect shown in Figure 13 and the composition rules

partially showed in the Figure 14.

Fig. 13. Login early aspect.

Applying the step 4 (described in the refactoring mechanics) the duplicated

information showed in the Figures 11 and 12 need to be removed. The composition

Mechanism was created in agreement with the used approach MDSOC (Multi-

Dimensional Separation Of Concerns [8]). Figure 14 shows the composition rules that

maintain the original functionality to the Register New Employee and to Register

New Product.

…

<Requirement id="2.1"> The employee provides the login

and password. </Requirement>

<Requirement id="2.2"> The system validates the typed

password. </Requirement>

<Requirement id="2.3"> The employee provides the

following information about the new product:

Description, Size, Color, Location and Price.

</Requirement>

<Requirement id="2.4"> The employee confirms the new

product register. </Requirement>

…

…

<Requirement id="3.1"> The employee provides the login

and password. </Requirement>

<Requirement id="3.2"> The system validates the typed

password. </Requirement>
…

Fig. 14. Composition rules (partial).

4. Related Work

Rui, Ren and Butler in [16] describe a meta-model for use case modelling and

categorize a list of use case refactorings. Instead of simply listing the refactorings, we

present a refactoring opportunity and a requirements refactoring definition, providing

the context for the application of a given refactoring, a possible solution, motivation

to perform the transformations and an example of the practical use of the described

refactoring.

Yu, Li and Butler in [22] explain how refactoring can be applied in order to

improve the organization of use case models. They focus on the decomposition of a

use case and the reorganization of relationships between use cases. They also describe

ten refactorings that could be used to improve the overall organization of use case

models, such as inclusion or extension mechanisms introduction, use case deletion or

refactorings that manipulate the inheritance tree. While Yu et al. focus on refactoring

the use case models, we focus on refactoring requirements descriptions. As a

consequence, our refactorings are finer grained than theirs. We also discuss in details

the mechanics of the refactoring and possible refactoring opportunities in the context

of requirements descriptions.

Xu, Yu, Rui and Butler in [21] present a tool that helps in refactoring of use case

models and use it to conduct a case study using an ATM application. While they

focus on the automation side of the use case refactoring process, we concentrate on

providing definitions for deficiencies in requirements descriptions and refactorings in

this context. Further research is needed to attain automatic identification of problems

as proposed in this paper.

Ramos et al in [14] describes a collection of refactoring opportunities that might

occur in requirements and provides a collection of refactorings that can be used to

improve the quality of requirements where these opportunities appear. A collection of

…

<Req.= "Register_New_Employee" id="1" children="include">

<Constraint action="provide" operator="on">

<Requirement concern="Login" id="3" children="include"/>

</Constraint>

<Outcome action="fulfilled"/>

</Requirement>

…

<Req.= "Register_New_Product" id="2" children="include">

<Constraint action="provide" operator="on">

<Requirement concern="Login" id="3" children="include"/>

</Constraint>

<Outcome action="fulfilled"/>

</Requirement>

…

examples for practical use for both refactorings and the identification of refactoring

opportunities are described. In this work we are describing a refactoring in the early

aspects context. Below (Figure 15) we are showing the Move Activity refactoring that

it is cited in this article. Is important to note that the example of the application to this

refactoring appears in the section 2.2, Figure 1.

Fig. 15. The move activity refactoring [14].

5. Conclusions

This paper describes the refactoring opportunities that might occur in requirements

and provides an Extract Early Aspect refactoring that can be used to improve the

requirements where these opportunities appear. We describe an example for practical

use for both refactoring and the identification of refactoring opportunity.

It is important to note that refactorings are usually described as two-way

transformations and depending on a given situation one direction is more convenient

than the other.

This work is part of a project whose objective is to evaluate the requirements

document quality, finding pieces that can be improved with the application of

requirements patterns and refactorings [11], [12], [13] and [14].

The refactoring opportunities that we have identified have the goal of making the

requirements more understandable and to improve overall organization of the project.

But depending on the system quality attributes considered (for example: reusability,

maintainability, etc) the requirements engineer might take actions that slightly differ

from the guidelines proposed here. Also, the expected granularity of the requirements

descriptions might influence the use of the refactoring opportunity. The requirements

engineer should take these issues into consideration.

Move Activity
Context. A set of activities is better accommodated in another requirement

description.

Solution. Move the activity to the desired requirement. If the requirement does

not exist yet, create a new requirement with the selected activities using the

Extract Requirement refactoring.

Motivation. This refactoring is done to improve modularity and to ameliorate

the balance of activities among the requirements. Activities are moved from

one requirement to another also when a new requirement is created, either

manually or by an Extract Requirement refactoring. This improvement in

modularity could lead to a better understanding of the system in the long

term [20].

Mechanics. The following activities should be performed:

1. Select the activities you want to move.

2. Move them to the desired requirement.

3. Update references to these activities if needed.

References

1. Boehm, B.W., Sullivan, K.J.: Software economics: a roadmap. In: ICSE - Future of

SE Track. 319-343 (2000)

2. Elssamadisy, A., Schalliol, G.: Recognizing and responding to bad smells in extreme

programming. In: Proceedings of the 24th International conference on Software

Engineering (2002)

3. Early-Aspects.net. Early Aspects: Aspect-Oriented Requirements Engineering and

Architecture Design. http://www.early-aspects.net/

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving the

design of existing code. Object Technology Series. Addison-Wesley (2000)

5. Jacobson, I.: Use cases and aspects-Working seamlessly together. Journal of Object

Technology 2(4) (2003)

6. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.

Addison-Wesley (2005)

7. Li, L.: A semi-automatic approach to translating use cases to sequence diagrams. In:

TOOLS '99: Proceedings of the Technology of Object-Oriented Languages and

Systems, Washington, DC, USA, IEEE Computer Society, 184 pg (1999)

8. Moreira, A., Araújo, J., Rashid., A.. A Model for Multi-Dimensional Separation of

Concerns in Requirements Engineering. The 17th Conference on Advanced

Information Systems Engineering (CAiSE'05), 13-17 June 2005, Porto, Portugal.

Lecture Notes in Computer Science, Volume 3520 (2005)

9. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis, University of

Illinois at Urbana-Champaign (1992)

10. Pressman, R.: Software Engineering: A Practitioner's Approach. McGraw-Hill (2005)

11. Ramos, R.A., Araújo, J., Castro, J., Moreira, A., Alencar, F., Silva, C.: “Uma

abordagem de instanciação de métricas para medir documentos de requisitos

orientados a aspectos”, in: 3º Brazilian Workshop on Aspect Oriented Software

Development - WASP2006. Florianopolis, Brazil (2006)

12. Ramos, R. A.; Araújo, J. ; Moreira, A. ; Castro, J. ; Alencar, F. and Penteado, R.:

“Um Padrão para Requisitos Duplicados”, in: 6th Latin American Conference on

Pattern Languages of Programming (SugarLoafPlop’2007), Porto de Galinhas,

Recife, Pernambuco , Brazil (2007a)

13. Ramos, R. A. ; Alencar, F. ; Araújo, J. ; Moreira, A. ; Castro, J. and Penteado, R.: “i*

with Aspects: Evaluating Understandability”, in: Workshop on Requirements

Engineering, 2007, Toronto, Canada (2007b)

14. Ramos, R., Piveta, E., Castro, J., Araújo, J., Moreira, A., Guerreiro, P., Pimenta, M.,

and Tom Price, R.. Improving the Quality of Requirements with Refactoring. In: VI

Simpósio Brasileiro de Qualidade de Software – SBQS2007, Porto de Galinhas,

Recife, Pernambuco, Brasil, Junho 27 – 30 (2007c)

15. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual

requirements. In Aksit, M., ed.: Proc. 2nd Int' Conf. on Aspect-Oriented Software

Development (AOSD-2003), ACM Press 11-20 (2003)

16. Rui, K., Ren, S., Butler, G.: Refactoring use case models: A case study. In:

International Conference on Enterprise Information Systems (ICEIS) (2003)

17. Sampaio, A., Loughran, N., Rashid, A., Rayson, P.: Mining Aspects in Requirements.

In: Workshop on Early Aspects. Held with the 4th International Conf. on Aspect-

Oriented Software Development AOSD 2005 (2005)

18. Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P. EA-Miner: Towards

Automation in Aspect-Oriented Requirements Engineering. Transactions on Aspect-

Oriented Software Development: Special Issue on Early Aspects (Accepted to

Appear). Editor(s): J. Araujo, E. Baniasaad. Springer (2007)

19. Schneider, G., Winters, J.P.: “Applying Use Cases: A Practical Guide”, in: Addison

Wesley - Object Technology Series (1998)

20. Sommerville, I.: Software Engineering, 7th edition. Pearson Education (2004)

21. Xu, J., Yu, W., Rui, K., Butler, G.: Use case refactoring: a tool and a case study. In:

Software Engineering Conference, 2004. 11th Asia-Pacific. 484-491 (2004)

22. Yu, W., Li, J., Butler, G.: Refactoring use case models on episodes. In: Automated

Software Engineering, 2004. Proceedings. 19th International Conference on. 328-335

(2004)

