
Introduction

Mutation Testing in UTP
Introduction

Bernhard K. Aichernig

Institute for Software Technology
Graz University of Technology

Graz, Austria

UNU-IIST: United Nations University
International Institute for Software Technology

Macau S.A.R. China

PSSE 2007

Bernhard K. Aichernig Mutation Testing in UTP



Introduction

Outline

Introduction

Unifying Theories of Programming (UTP)

Formalization: Faults and Test Cases

Mutation Testing for Pre-postcondition Contracts

Mutation Testing for Programs

Mutation Testing for Protocol Specifications

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Mutation Testing

Mutation Testing focuses on faults

not on structural coverage (e.g. cover all statements)

Basic idea:
1 anticipate faults
2 design test cases that would detect such faults
3 run these tests to detect such faults

we model faults on the specification level

by mutating the specification text

Aim

generate test cases preventing programs from implementing
mutated (faulty) specifications

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Triangle Example: Original in OCL

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = b) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Test case

a = 2, b = 2, c = 1, (expected) result = “isosceles ′′

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Triangle Example: Mutant

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = a) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Test case :(

a = 2, b = 2, c = 1, (expected) result = “isosceles ′′

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Triangle Example: Mutant

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = a) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Fault-detecting test case :)

a = 1, b = 2, c = 2, (expected) result = “isosceles ′′

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Mutations

Error guessing is a common strategy of testers who are
domain experts.

Claim: with a model more systematic way of error guessing

Kinds of fault injection (mutation):

automatically by a set of mutation operators,
manually by interactively altering the specification.

one fault per mutant

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Test Hypothesis

Assumption

We can anticipate the errors possibly made during
implementation and

are able to represent the faults in a given model

Dijkstra

Testing can never show the absence of faults but only their
presence.

Our Reply

Testing can show the absence of faults, if we have a knowledge of
what can go wrong.

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Test Hypothesis

Assumption

We can anticipate the errors possibly made during
implementation and

are able to represent the faults in a given model

Dijkstra

Testing can never show the absence of faults but only their
presence.

Our Reply

Testing can show the absence of faults, if we have a knowledge of
what can go wrong.

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Naming the Incorrect

IEEE1 classified in 1990 as follows in order to name the incorrect:

error: mistake made by a developer; located in people’s
head; may lead to one or more

fault, defect: flaw in the software with the potential to cause a

failure: manifestation of one or more faults, detected by
comparing expected vs. actual observations.

Many call it simply “bug”.

1Institute of Electronics and Electrical Engineering
Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Questions

Interesting questions when focusing on faults:

Does an error made by a designer or programmer lead to an
observable fault?

Do my test cases detect such faults?

How do I find a test case that uncovers a certain fault?

What are the equivalent test cases that would uncover such a
fault?

How to automatically generate test cases that will reveal
certain faults?

A theory will help answering them: UTP

Bernhard K. Aichernig Mutation Testing in UTP


	Introduction
	Mutation Testing


