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UTP: Theory of Designs

Designs

Let p and Q be predicates not containing ok or ok ′

p ` Q =df (ok ∧ p) ⇒ (ok ′ ∧ Q)

A design is a relation whose predicate is (or could be) expressed in
this form (+ healthiness conditions).

Refinement

Correctness is defined via implication:

∀v , w , · · · ∈ A • P ⇒ S , for all P with alphabet A.

we write [P ⇒ S ] or S v P
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Test Case Semantics

Designs represent relations:

pre

v’v
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Test Case Semantics

Refinement 1: postcondition strengthening

pre

v’v
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Test Case Semantics

Refinement 2: precondition weakening

pre

v’v
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Test Case Semantics

Abstraction 1: precondition strengthening

pre

v’v
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Test Case Semantics

Abstraction 2: further precondition strengthening

pre

v’v
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Test Case Semantics

Abstraction 2: precondition strengthening to single input

v’v

pre

Notice! this represents a test case (input-output relation)
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Test Case Semantics

In our theory, test cases are interpreted as designs (specifications).

Test Case, deterministic

t(i , o) =df v = i ` v ′ = o

Test Case, non-deterministic

tu(i , c) =df v = i ` c(v ′)

The relation between a set of test cases T , a specification S and
its implementation I is defined by

T v S v I
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Order of Test Cases

Theorem

[tu(i , c)⇒ tu(i , d)] iff [c ⇒ d ]
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Border (Test) Cases

Definition (Explorative Test Case)

T?(i) =df tu(i , true)

Definition (Infeasible Test Case)

T∅(i) =df tu(i , false)

Infeasible test cases: an input i is not accepted,

since tu(i , false) = ¬(ok ∧ v = i)
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Order of Test Cases (cont.)

Theorem (Order of Test Cases)

For a given input vector i , output vector o and condition c

⊥ v T?(i) v tu(i , c) v t(i , o) v T∅(i) v >

provided c(o) holds.
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Test Suites

Definition (Test Suite)

Given a set s of test cases t1, . . . , tn

TS(s) =df t1 t . . . t tn

t =df ∧
Test suite is conjunction of all test cases

Contradicting test cases?: they are infeasible (equals magic).

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Building Test Suites

Adding test cases is refinement:

Theorem

Let T1, T2 be test cases of any type

Ti v T1 t T2 , i ∈ {1, 2}

follows immediately from Lattice Theory
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Exhaustive Test Suites

Definition (Exhaustive Test Suite)

Let D be a design, its set of exhaustive test suites is defined as

TSexhaustive =df {TS(s) | TS(s) = D}

Note: Exhaustive with respect to a design!

skips inputs outside the precondition.
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Exhaustive Test Suites (cont.)

Adding explorative test cases is useless:

Theorem

Given a design D = p ` Q and one of its exhaustive test suites
tsexhaustive ∈ TSexhaustive

tsexhaustive t T?(i) = tsexhaustive , provided p(i) holds.

Proof. via lattice theory

tsexhaustive t T?(i) = {by definition of exhaustive test suites}
D t T?(i) = D

= {by lattice theory}
T?(i) v D

= {by refinement laws}
[v = i ⇒ p] ∧ [(v = i ∧ Q)⇒ true]

= {since p(i) holds}
true
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Exhaustive Test Suites (cont.)

Adding more test cases for a design D is useless:

Theorem

Given a design D and an exhaustive test suite
tsexhaustive ∈ TSexhaustive . Furthermore, we have a test case t v D
expressing the fact that t has been derived from D. Then,

tsexhaustive t t = tsexhaustive

Proof. by lattice theory

tsexhaustive t t = {by definition of exhaustive test suites}
D t t

= {by lattice theory, since t v D}
D

=
tsexhaustive
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Conformance, Refinement, Abstraction

Definition

Let T be a test suite, S a specification, and I an implementation,
all being designs, and

T v S v I

we define

T as a correct test suite with respect to S ,

all test cases in T as correct test cases with respect to S ,

implementation I passes a test suite (test case) T ,

implementation I conforms to specification S .
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Conformance, Refinement, Abstraction (cont.)

Theorem

t(i , o) v D iff v := o v (v := i ; D)

tu(i , c) v D iff c(v ′) v (v := i ; D)
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Observable Faults in Design

Definition (Faulty Design)

Let D be a design, and Dm its mutated version, meaning that
Dm has been produced by slightly altering D.

Furthermore, let the mutation represent a fault model.

Then, the mutated design Dm is defined to be a faulty design
(or a faulty mutation) of D, if

D 6v Dm

(or ¬(D v Dm)).
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Equivalent Mutants

informal: cannot be killed by any test case

formal: D v Dm

Note: Does not mean mathematical equivalence,

but refining mutants:

mutation outside the precondition (additional observations)
mutation strengthening the postcondition
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Testing for Design Faults

Observable Faults and Test Cases

Theorem

Given a design D, and a faulty design Dm, then there exists a test
case t, with t v D, such that t 6v Dm.
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Testing for Design Faults

Observable Faults and Test Cases: Proof

Assume that such a test case does not exist and for all test
cases t v D also t v Dm holds.

This set of all possible test cases t v D defines an exhaustive
test suite tsexhaustive of D.

This is obvious, since the least upper bound of all such t is
the design D.

Hence, by definition of exhaustive test suites we have
tsexhaustive = D and by assumption tsexhaustive v Dm.

From this follows that D v Dm. This is a contradiction to our
assumption that Dm is a faulty design. Consequently, the
theorem holds.
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Testing for Design Faults

Fault-detecting Test Cases

Given a design (specification) D:

pre

v’v
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Testing for Design Faults

Fault-detecting Test Cases

and a faulty design Dm (created by mutating D) and D 6v Dm:

v’v

pre
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Testing for Design Faults

Fault-detecting Test Cases

a test case t shall be able to distinguish D and Dm:

v’v

pre

Test case property: t v D ∧ (t 6v Dm)
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Testing for Design Faults

Fault-detecting Test Cases: Definition

Definition (Fault-detecting Test Case)

Let t be either a deterministic or non-deterministic
input-output test case.

Furthermore, D is a design and Dm its faulty version.

Then, t is a fault-detecting test case when

(t v D) and (t 6v Dm)

Fault-detecting test case detects the fault in Dm.

Test case distinguishes D and Dm.

Context of mutation testing: t kills the mutant Dm.
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Testing for Design Faults

Fault-detecting Test Cases: Method

Given a specification D and a possible fault represented as a
mutant Dm.

Take a fault-detecting test case t.

Apply fault-detecting test case on an implementation I of D.

D v I

in order to prevent the fault from being implemented.

Note: D v I ∧ Dm v I possible.
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Testing for Design Faults

Implementing Original AND Mutant: Example

Given a design (specification) D:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Implementing Original AND Mutant: Example

Given a mutant Dm by abstracting from D:

pre

v’v
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Testing for Design Faults

Implementing Original AND Mutant: Example

Implementation I implements both Dm and D:

pre

v’v
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Testing for Design Faults

Test Equivalence Class

Definition (Assertion)

b⊥ =df true ` ((v = v ′) C b B⊥)

Definition (Test Equivalence Class)

Given a design D = (p ` Q), we define a test equivalence class T∼
for testing D as a design of form T∼ = d⊥; D such that

[d ⇒ p].

condition d represents an equivalence class with respect to
some test coverage goal.

The condition d is called the domain of the test equivalence class.

Our aim: equivalence class of inputs detecting a given fault.
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Testing for Design Faults

Finding Fault-detecting Test Cases

we are interested in the cases, where D 6v Dm

Refinement Theorem

(p ` Q) v (pm ` Qm) iff [p ⇒ pm] and [(p∧Qm) ⇒ Q]

negating this leads to

Fault-detecting Domain

p ∧ ¬pm or p ∧ ∃v ′ • (Qm ∧ ¬Q)
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Testing for Design Faults

Triangle Example

a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

`
r ′ = equilateral C a = b ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)
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Testing for Design Faults

Triangle Mutant

a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

`
r ′ = equilateral C a = a ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)
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Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧
∃r ′•
r ′ = equilateral C a = a ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)

∧
¬(r ′ = equilateral C a = b ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene))
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Testing for Design Faults

Fault-Detecting Domain
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Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧ ∃r ′•
((b = c ∧ r ′ = equilateral) ∨
(b 6= c ∧ a = b ∧ r ′ = isosceles) ∨
(b 6= c ∧ a = c ∧ r ′ = isosceles) ∨
(b 6= c ∧ a 6= b ∧ a 6= b ∧ r ′ = scalene))

∧
((a = b ∧ b = c ∧ r ′ 6= equilateral)∨
(a 6= b ∧ a = c ∧ r ′ 6= isosceles)∨
(a 6= b ∧ b = c ∧ r ′ 6= isosceles)∨
(b 6= c ∧ a = b ∧ r ′ 6= isosceles)∨
(a 6= b ∧ b 6= c ∧ c 6= a ∧ r ′ 6= scalene))
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Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧ ∃r ′•
(a 6= b ∧ b = c ∧ r ′ = equilateral ∧ r ′ 6= isosceles)
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Testing for Design Faults

Automated Test Case Generation

Automated using a Constraint Solver:

Aichernig and Pari Salas, Test Case Generation by OCL
Mutation and Constraint Solving, QSIC 2OO5.

Tool takes OCL pre-postcondition specifications

and generates for each mutation a test case t detecting the fault.

We could proof that

t v Spec ∧ t 6v Specm

Hence, our test cases are indeed fault adequate.
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