
Test Case Semantics
Test Case Generation

Mutation Testing in UTP
Test Cases, Faults, Mutation Testing for Designs

Bernhard K. Aichernig

Institute for Software Technology
Graz University of Technology

Graz, Austria

UNU-IIST: United Nations University
International Institute for Software Technology

Macau S.A.R. China

PSSE 2007

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Outline

Introduction

Unifying Theories of Programming (UTP)

Formalisation: Faults and Test Cases

Mutation Testing for Pre-postcondition Contracts

Mutation Testing for Programs

Mutation Testing for Protocol Specifications

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

UTP: Theory of Designs

Designs

Let p and Q be predicates not containing ok or ok ′

p ` Q =df (ok ∧ p) ⇒ (ok ′ ∧ Q)

A design is a relation whose predicate is (or could be) expressed in
this form (+ healthiness conditions).

Refinement

Correctness is defined via implication:

∀v , w , · · · ∈ A • P ⇒ S , for all P with alphabet A.

we write [P ⇒ S ] or S v P

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

UTP: Theory of Designs

Designs

Let p and Q be predicates not containing ok or ok ′

p ` Q =df (ok ∧ p) ⇒ (ok ′ ∧ Q)

A design is a relation whose predicate is (or could be) expressed in
this form (+ healthiness conditions).

Refinement

Correctness is defined via implication:

∀v , w , · · · ∈ A • P ⇒ S , for all P with alphabet A.

we write [P ⇒ S ] or S v P

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Designs represent relations:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Refinement 1: postcondition strengthening

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Refinement 2: precondition weakening

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Abstraction 1: precondition strengthening

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Abstraction 2: further precondition strengthening

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

Abstraction 2: precondition strengthening to single input

v’v

pre

Notice! this represents a test case (input-output relation)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

In our theory, test cases are interpreted as designs (specifications).

Test Case, deterministic

t(i , o) =df v = i ` v ′ = o

Test Case, non-deterministic

tu(i , c) =df v = i ` c(v ′)

The relation between a set of test cases T , a specification S and
its implementation I is defined by

T v S v I

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Case Semantics

In our theory, test cases are interpreted as designs (specifications).

Test Case, deterministic

t(i , o) =df v = i ` v ′ = o

Test Case, non-deterministic

tu(i , c) =df v = i ` c(v ′)

The relation between a set of test cases T , a specification S and
its implementation I is defined by

T v S v I

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Order of Test Cases

Theorem

[tu(i , c)⇒ tu(i , d)] iff [c ⇒ d ]

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Border (Test) Cases

Definition (Explorative Test Case)

T?(i) =df tu(i , true)

Definition (Infeasible Test Case)

T∅(i) =df tu(i , false)

Infeasible test cases: an input i is not accepted,

since tu(i , false) = ¬(ok ∧ v = i)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Order of Test Cases (cont.)

Theorem (Order of Test Cases)

For a given input vector i , output vector o and condition c

⊥ v T?(i) v tu(i , c) v t(i , o) v T∅(i) v >

provided c(o) holds.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Test Suites

Definition (Test Suite)

Given a set s of test cases t1, . . . , tn

TS(s) =df t1 t . . . t tn

t =df ∧
Test suite is conjunction of all test cases

Contradicting test cases?: they are infeasible (equals magic).

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Building Test Suites

Adding test cases is refinement:

Theorem

Let T1, T2 be test cases of any type

Ti v T1 t T2 , i ∈ {1, 2}

follows immediately from Lattice Theory

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Exhaustive Test Suites

Definition (Exhaustive Test Suite)

Let D be a design, its set of exhaustive test suites is defined as

TSexhaustive =df {TS(s) | TS(s) = D}

Note: Exhaustive with respect to a design!

skips inputs outside the precondition.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Exhaustive Test Suites (cont.)

Adding explorative test cases is useless:

Theorem

Given a design D = p ` Q and one of its exhaustive test suites
tsexhaustive ∈ TSexhaustive

tsexhaustive t T?(i) = tsexhaustive , provided p(i) holds.

Proof. via lattice theory

tsexhaustive t T?(i) = {by definition of exhaustive test suites}
D t T?(i) = D

= {by lattice theory}
T?(i) v D

= {by refinement laws}
[v = i ⇒ p] ∧ [(v = i ∧ Q)⇒ true]

= {since p(i) holds}
true

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Exhaustive Test Suites (cont.)

Adding more test cases for a design D is useless:

Theorem

Given a design D and an exhaustive test suite
tsexhaustive ∈ TSexhaustive . Furthermore, we have a test case t v D
expressing the fact that t has been derived from D. Then,

tsexhaustive t t = tsexhaustive

Proof. by lattice theory

tsexhaustive t t = {by definition of exhaustive test suites}
D t t

= {by lattice theory, since t v D}
D

=
tsexhaustive

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Conformance, Refinement, Abstraction

Definition

Let T be a test suite, S a specification, and I an implementation,
all being designs, and

T v S v I

we define

T as a correct test suite with respect to S ,

all test cases in T as correct test cases with respect to S ,

implementation I passes a test suite (test case) T ,

implementation I conforms to specification S .

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Conformance, Refinement, Abstraction (cont.)

Theorem

t(i , o) v D iff v := o v (v := i ; D)

tu(i , c) v D iff c(v ′) v (v := i ; D)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Observable Faults in Design

Definition (Faulty Design)

Let D be a design, and Dm its mutated version, meaning that
Dm has been produced by slightly altering D.

Furthermore, let the mutation represent a fault model.

Then, the mutated design Dm is defined to be a faulty design
(or a faulty mutation) of D, if

D 6v Dm

(or ¬(D v Dm)).

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Equivalent Mutants

informal: cannot be killed by any test case

formal: D v Dm

Note: Does not mean mathematical equivalence,

but refining mutants:

mutation outside the precondition (additional observations)
mutation strengthening the postcondition

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Outline

Introduction

Unifying Theories of Programming (UTP)

Formalisation: Faults and Test Cases

Mutation Testing for Pre-postcondition Contracts

Mutation Testing for Programs

Mutation Testing for Protocol Specifications

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Observable Faults and Test Cases

Theorem

Given a design D, and a faulty design Dm, then there exists a test
case t, with t v D, such that t 6v Dm.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Observable Faults and Test Cases: Proof

Assume that such a test case does not exist and for all test
cases t v D also t v Dm holds.

This set of all possible test cases t v D defines an exhaustive
test suite tsexhaustive of D.

This is obvious, since the least upper bound of all such t is
the design D.

Hence, by definition of exhaustive test suites we have
tsexhaustive = D and by assumption tsexhaustive v Dm.

From this follows that D v Dm. This is a contradiction to our
assumption that Dm is a faulty design. Consequently, the
theorem holds.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases

Given a design (specification) D:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases

and a faulty design Dm (created by mutating D) and D 6v Dm:

v’v

pre

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases

a test case t shall be able to distinguish D and Dm:

v’v

pre

Test case property: t v D ∧ (t 6v Dm)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases

a test case t shall be able to distinguish D and Dm:

v’v

pre

Test case property: t v D ∧ (t 6v Dm)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases: Definition

Definition (Fault-detecting Test Case)

Let t be either a deterministic or non-deterministic
input-output test case.

Furthermore, D is a design and Dm its faulty version.

Then, t is a fault-detecting test case when

(t v D) and (t 6v Dm)

Fault-detecting test case detects the fault in Dm.

Test case distinguishes D and Dm.

Context of mutation testing: t kills the mutant Dm.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases: Method

Given a specification D and a possible fault represented as a
mutant Dm.

Take a fault-detecting test case t.

Apply fault-detecting test case on an implementation I of D.

D v I

in order to prevent the fault from being implemented.

Note: D v I ∧ Dm v I possible.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-detecting Test Cases: Method

Given a specification D and a possible fault represented as a
mutant Dm.

Take a fault-detecting test case t.

Apply fault-detecting test case on an implementation I of D.

D v I

in order to prevent the fault from being implemented.

Note: D v I ∧ Dm v I possible.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Implementing Original AND Mutant: Example

Given a design (specification) D:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Implementing Original AND Mutant: Example

Given a mutant Dm by abstracting from D:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Implementing Original AND Mutant: Example

Implementation I implements both Dm and D:

pre

v’v

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Test Equivalence Class

Definition (Assertion)

b⊥ =df true ` ((v = v ′) C b B⊥)

Definition (Test Equivalence Class)

Given a design D = (p ` Q), we define a test equivalence class T∼
for testing D as a design of form T∼ = d⊥; D such that

[d ⇒ p].

condition d represents an equivalence class with respect to
some test coverage goal.

The condition d is called the domain of the test equivalence class.

Our aim: equivalence class of inputs detecting a given fault.

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Finding Fault-detecting Test Cases

we are interested in the cases, where D 6v Dm

Refinement Theorem

(p ` Q) v (pm ` Qm) iff [p ⇒ pm] and [(p∧Qm) ⇒ Q]

negating this leads to

Fault-detecting Domain

p ∧ ¬pm or p ∧ ∃v ′ • (Qm ∧ ¬Q)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Finding Fault-detecting Test Cases

we are interested in the cases, where D 6v Dm

Refinement Theorem

(p ` Q) v (pm ` Qm) iff [p ⇒ pm] and [(p∧Qm) ⇒ Q]

negating this leads to

Fault-detecting Domain

p ∧ ¬pm or p ∧ ∃v ′ • (Qm ∧ ¬Q)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Triangle Example

a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

`
r ′ = equilateral C a = b ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Triangle Mutant

a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

`
r ′ = equilateral C a = a ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧
∃r ′•
r ′ = equilateral C a = a ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)

∧
¬(r ′ = equilateral C a = b ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene))

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧
∃r ′•
r ′ = equilateral C a = a ∧ b = cB

(r ′ = isosceles C a = b ∨ a = c ∨ b = cB

r ′ = scalene)

∧
r ′ 6= equilateral C a = b ∧ b = cB

(r ′ 6= isosceles C a = b ∨ a = c ∨ b = cB

r ′ 6= scalene))

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧ ∃r ′•
((b = c ∧ r ′ = equilateral) ∨
(b 6= c ∧ a = b ∧ r ′ = isosceles) ∨
(b 6= c ∧ a = c ∧ r ′ = isosceles) ∨
(b 6= c ∧ a 6= b ∧ a 6= b ∧ r ′ = scalene))

∧
((a = b ∧ b = c ∧ r ′ 6= equilateral)∨
(a 6= b ∧ a = c ∧ r ′ 6= isosceles)∨
(a 6= b ∧ b = c ∧ r ′ 6= isosceles)∨
(b 6= c ∧ a = b ∧ r ′ 6= isosceles)∨
(a 6= b ∧ b 6= c ∧ c 6= a ∧ r ′ 6= scalene))

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Fault-Detecting Domain

p ∧ ∃v ′ • (Qm ∧ ¬Q)

= a < (b + c) ∧ b < (a + c) ∧ c < (a + b)

∧ ∃r ′•
(a 6= b ∧ b = c ∧ r ′ = equilateral ∧ r ′ 6= isosceles)

Bernhard K. Aichernig Mutation Testing in UTP



Test Case Semantics
Test Case Generation

Testing for Design Faults

Automated Test Case Generation

Automated using a Constraint Solver:

Aichernig and Pari Salas, Test Case Generation by OCL
Mutation and Constraint Solving, QSIC 2OO5.

Tool takes OCL pre-postcondition specifications

and generates for each mutation a test case t detecting the fault.

We could proof that

t v Spec ∧ t 6v Specm

Hence, our test cases are indeed fault adequate.

Bernhard K. Aichernig Mutation Testing in UTP


	Test Case Semantics
	Test Case Generation
	Testing for Design Faults


