
Observations and Alphabets
Correctness

Programming Concepts
Designs

Mutation Testing in UTP
UTP

Bernhard K. Aichernig

Institute for Software Technology
Graz University of Technology

Graz, Austria

UNU-IIST: United Nations University
International Institute for Software Technology

Macau S.A.R. China

PSSE 2007

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Outline

Introduction

Unifying Theories of Programming (UTP)

Formalization: Faults and Test Cases

Mutation Testing for Pre-postcondition Contracts

Mutation Testing for Programs

Mutation Testing for Protocol Specifications

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Literature

C.A.R. Hoare and He Jifeng. Unifying Theories of
Programming. Prentice-Hall International, 1998.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Scientific Theories

A scientific theory takes the
form of a set of equations
and inequations

usually expressed in the
language of mathematics:
predicates

Purpose of predicates:
describe and predict all
possible (direct & indirect)
observations

Example (Einstein)

e = mc2

e ... energy of the system
m ... its mass
c ... speed of light

Different levels of abstractions:
e.g. interacting quarks,
elementary particles, atoms,
molecules or crystal structures.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Mathematical Theories in Engineering

Engineering project begins with specification

describing the observable properties and behaviour of desired
product.

design documents at various stages are indirect descriptions of
same behaviour.

restricted notation, level of abstraction to guide physical
implementation

Correctness: implementation correct if detailed description
logically implies its specification

Components:

concurrent behaviour as conjunction of individual predicate
descriptions

alternative modes of behaviour as disjunction

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Observations and Alphabets

Scientific descriptions:

1 Selection of relevant
properties, observable or
controllable, to understand
and predict system
behaviour

2 Choosing a name for each
property to denote a value

3 Instructions on

how and when that
property is to be observed
in what unit it is to be
measured, ...

Example

List of names comes usually with
type declarations:
x : integer, y : real, . . . , z : Bool

Definition (Alphabet)

The collection of names is known
as alphabet.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Alphabets and Predicates

Names in alphabet occur as
free variables in predicates

together with physical
constants, mathematical
symbols

called variables, because
values vary from experiment
to experiment

choice of alphabet
determines and delimits a
theory

Requirement: Every
predicate P has an
associated alphabet αP

P may contain all, some or
none variables of αP.

Example (Valuation)

Observation of particular example
of chosen class of system:
x = 4 ∧ y = 37.3 ∧· · ·∧ z = false

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Water Tank

a

x

v b

y

Alphabet:

t time since start
vt volume of liquid in tank
xt total amount poured into
yt total amount drained
at setting of input valve
bt setting of output valve

Physical variables are
functions over time.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Observations in Programs

Aim: simple theory for sequential programs

Observations: before start and after termination

Two names for each variable:
x ... initial value
x ′ ... final value

Example

x = 5 ∧ x ′ = 7 ∧ y = 2

may be an observation of a run of program x := x + y .

theory determines observables (Einstein)

too many observables: theory too complicated

too few observables: theory inaccurate

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Behaviour and Predicates

Consider an observation

x = 4 ∧ y = 37.3 ∧ · · · ∧ z = false

Predicate P(x , y , ..., z) correctly describes observation if
substitution of each variable by its observed value makes the
predicate true.

P(4, 37.3, ..., false)

Useful predicate: as strong as possible, subject to the
constraints of correctness:

false exactly when its variables take combinations of values
which in reality never occur together.

Useless predicates: true (or x = x ∧ y = y) and false

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Water Tank (cont.)

a

x

v b

y

Laws (predicates):

xt + v0 = yt + vt ± t · ε

for all t ≥ 0

ẋ = k · a
ẏ = k · b + δ · v

Physical constraints:

0 ≤ at ≤ amax , 0 ≤ bt ≤ bmax

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Program Behaviour

Assignment statement: x := x + y

x ′ = x + y

Multiple assignment: x , y := x + 3, y − x

x ′ = x + 3 ∧ y ′ = y − x

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Correctness

Systems and specifications are (conjunctions of) predicates:
easy concept of correctness

Definition (Correctness)

Let S be specification and P be a description of all possible
behaviours of a program (implementation).

Assume P and S have the same alphabet standing for the same
observations.

None of the possible observations of the implementation shall
violate the specification:

∀v ,w , ... • P ⇒ S

where v ,w , ... are all the variables in the alphabet. Short [P ⇒ S ]

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Correctness (cont.)

Example

[(x , y := x + 1, y)⇒ x ′ > x ∧ y ′ = y ]

Note the mixing of programming notations with mathematical
notations.

Possible: identification of each program with a predicate

Implication between two specifications: one is more general or
abstract

Given [D ⇒ S ], by transitivity of implication any correct
implementation of D will also implement S .

Hence, weaker specifications (S) are easier to implement.

Easiest to implement: true can be implemented by anything.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Nondeterminism

Let P and Q be product descriptions with the same alphabet.

P ∨ Q may behave like P or Q.

Both P and Q must be correct:

[P ∨ Q ⇒ S ] iff [P ⇒ S ] and [Q ⇒ S ]

Justified by disjunction being least upper bound of the
implication ordering.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Stepwise Design

Complex engineering project split into number of design
stages.

Transition by signing off a document D

Before continuing towards a final implementation P, make
sure that D is correct:

[D ⇒ S ]

Now, implementation reduces to a simpler task:

[I ⇒ D]

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Separate development

Even more effective when combining stepwise design and
decomposition into subtasks.

Let D and E be designs of components that will be assembled
to meet specification S .

Correctness of the designs can be checked before their
implementation:

[D ∧ E ⇒ S ]

Then, separate development of D and E as products P and Q:

[P ⇒ D] and [Q ⇒ E ]

Their assembly will necessary satisfy the original specification:

[P ∧ Q ⇒ S ]

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Conditional

P C b B Q =df (b ∧ P) ∨ (¬b ∧ Q), if αb ⊆ αP = αQ

α(P C b B Q) =df αP

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Conditional

L1 P C b B P = P (cond idemp)

L2 P C b B Q = Q C ¬b B P (cond symm)

L3 (P C b B Q) C c B R = P C b ∧ c B (Q C c B R) (cond assoc)

L4 P C b B (Q C c B R) = (P C b B Q) C c B (P C b B R)
(cond distr)

L5 P C true B Q = P = Q C false B P (cond unit)

Proofs in propositional calculus, via cases b = true and b = false.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Conditional (cont.)

L6 P C b B (Q C b B R) = P C b B R

Proof. LHS {L2 }
= (Q C b B R) C ¬b B P {L3 }
= Q C false B (R C ¬b B P) {L2 and L5 }
= RHS

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Conditional (cont.)

L7 P C b B (P C c B Q) = P C b ∨ c B Q

Proof. LHS {L2 }
= (Q C ¬c B P) C ¬b B P {L3 and L1 }
= Q C ¬c ∧ ¬b B P {L2 }
= RHS

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Sequential Composition

P(v ′); Q(v) =df ∃v0 • P(v0) ∧ Q(v0) , if outαP = inα′Q = {v ′}
inα(P(v ′); Q(v)) =df inαP

outα(P(v ′); Q(v)) =df outαQ

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Composition

L1 P; (Q; R) = (P; Q); R (; assoc)

L2 (P C b B Q); R = (P; R) C b B (Q; R) (; left distr)

Proof Hint: Move the existential quantifier outward over predicates that

do not contain the quantified variable.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Assignment

Let A = {x , y , . . . , z , x ′, y ′, . . . , z ′}, and given expression e with αe ⊆ A.

x :=A e =df (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

α(x :=A e) =df A

Usually, we will not subscript an assignment.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Assignment

L1 (x := e) = (x , y := e, y)

L2 (x , y , z := e, f , g) = (y , x , z := f , e, g)

L3 (x := e; x := f (x)) = (x := f (e))

L4 x := e; (P C b(x) B Q) = (x := e; P) C b(e) B (x := e; Q)

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Skip

Has no effect, mainly useful for program reasoning. Let A be its
alphabet:

skipA =df (v = v ′)

α(skipA) =df A

v is the list of all (undashed) variables in A.

L1 P; skipαP = P = skipαP ; P (; unit)

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Non-deterministic Choice

P u Q =df P ∨ Q, providedαP = αQ

α(P u Q) =df αP

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Non-deterministic Choice

L1 P u Q = Q u P (u symm)

L2 P u (Q u R) = (P u Q) u R (u assoc)

L3 P u P = P (u idemp)

Proof from symmetry, associativity and idempotency of disjunction.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Non-deterministic Choice (cont.)

L4 P u (Q u R) = (P u Q) u (P u R) (u distr)

L5 P C b B (Q u R) = (P C b B Q) u (P C b B R) (cond-u distr)

L6 (P u Q); R = (P; R) u (Q; R) (;-u left distr)

L7 P; (Q u R) = (P; Q) u (P; R) (;-u right distr)

L8 P u (Q C b B R) = (P u Q) C b B (P u R) (u-cond distr)

Proofs in propositional and predicate calculus.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Abort

Increasing non-determinism by adding choices makes things worse:

[P ⇒ (P u Q)]

Taking this to an extreme is called Abort:

⊥A =df true

α⊥A =df A

Bottom (weakest) element of the implication ordering

[⊥A ⇐ P], for all P with alphabet A

Remember: Abort (true) stands for non-termination!

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Miracle

Non-determinism over an empty set is impossible:

l
{} = false

If it did exist, it would satisfy every specification

[false⇒ P], for all P

Important as a reasoning mechanism:

Definition (Miracle)

>A =df false

α>A =df A

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

A Problem with Our Theory

Example (Counter-Example)

true; (x := 3)

In any normal implementation, this would fail to terminate
and so be equal to true

Unfortunately, our theory gives the unexpected result x ′ = 3

Designs are specialised relations that repair this flaw.

Requirement: the following should hold

true; P =true

P; true =true

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Designs

Goal: Solving the paradox of non-termination!

Solution: adding two additional Boolean observations.

Definition (ok and ok ′)

ok records the observation that the program has been started.

ok ′ records the observation that the program has terminated.

Definition (Design)

Let P and Q be predicates not containing ok or ok ′.

p ` Q =df (ok ∧ p)⇒ (ok ′ ∧ Q)

A design is a relation whose predicate is (or could be) expressed in
this form (+ Healthiness Conditions).

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Design Example

Designs represent pre-postcondition specifications, like in the
specification languages VDM, B, OCL and JML.

Example (Square Root)

The following contract is a design of a square root algorithm using
a program variable x for input and output. A constant e specifies
the precision of the computation.

(x ≥ 0 ∧ e > 0) ` (−e ≤ x − x ′2 ≤ e)

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Refinement

Theorem (Refinement of Designs)

[(p1 ` Q1)⇒ (p2 ` Q2)] iff [p2 ⇒ p1] and [(p2∧Q1)⇒ Q2]

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Non-termination

L1 true; (P ` Q) = true

Proof: true; (P ` Q)

=∃ok0, · · · • true ∧ (ok0 ∧ P ⇒ ok ′ ∧ Q) {let ok0 = false}
=true

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Program Statements as Designs

Definition (Assignment)

Given a program variable x and an expression e

x := e =df (wf (e) ` x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

with wf being the predicate defining the well-formedness (e can be
evaluated) of expression e.

Definition (Conditional)

P C b B Q =df (wf (b) ` (b ∧ P ∨ ¬b ∧ Q))

with wf being the predicate defining the well-formedness of the
Boolean expression b.

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Bottom and Top of the Lattice of Designs

Definition (Abort)

⊥ =df true = false ` true = false ` false = false ` Q

Definition (Magic)

> =df (true ` false) = ¬ok

Bernhard K. Aichernig Mutation Testing in UTP



Observations and Alphabets
Correctness

Programming Concepts
Designs

Laws of Designs

Theorem

(p1 ` Q1) u (p2 ` Q2) = (p1 ∧ p2 ` Q1 ∨ Q2)

(p1 ` Q1) t (p2 ` Q2) = (p1 ∨ p2 ` ((p1 ⇒ Q1) ∧ (p2 ⇒ Q2)))

(p1 ` Q1) C b B (p2 ` Q2) = (p1 C b B p2 ` Q1 C b B Q2)

(p1 ` Q1); (p2 ` Q2) = (p1 ∧ ¬(Q1;¬p2) ` Q1; Q2)

¬(Q1;¬p2) = ¬∃v0 • Q1(v0) ∧ ¬p2(v0)

Bernhard K. Aichernig Mutation Testing in UTP


	Observations and Alphabets
	Correctness
	Programming Concepts
	Designs

