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Mutation Testing

Mutation Testing focuses on faults

not on structural coverage (e.g. cover all statements)

Basic idea:
1 anticipate faults
2 design test cases that would detect such faults
3 run these tests to detect such faults

we model faults on the specification level

by mutating the specification text

Aim

generate test cases preventing programs from implementing
mutated (faulty) specifications
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Triangle Example: Original in OCL

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = b) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Test case

a = 2, b = 2, c = 1, (expected) result = “isosceles ′′
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Triangle Example: Mutant

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = a) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Test case :(

a = 2, b = 2, c = 1, (expected) result = “isosceles ′′
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Triangle Example: Mutant

context Ttype(a: int, b: int, c: int): String
pre: a < (b+c) and b < (a+c) and c < (a+b)
post: if((a = a) and (b = c))

then result = "equilateral"
else

if ((a = b) or (a = c) or (b = c))
then result = "isosceles"
else result = "scalene"
endif

endif

Fault-detecting test case :)

a = 1, b = 2, c = 2, (expected) result = “isosceles ′′

Bernhard K. Aichernig Mutation Testing in UTP



Introduction Mutation Testing

Mutations

Error guessing is a common strategy of testers who are
domain experts.

Claim: with a model more systematic way of error guessing

Kinds of fault injection (mutation):

automatically by a set of mutation operators,
manually by interactively altering the specification.

one fault per mutant
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Test Hypothesis

Assumption

We can anticipate the errors possibly made during
implementation and

are able to represent the faults in a given model

Dijkstra

Testing can never show the absence of faults but only their
presence.

Our Reply

Testing can show the absence of faults, if we have a knowledge of
what can go wrong.
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Naming the Incorrect

IEEE1 classified in 1990 as follows in order to name the incorrect:

error: mistake made by a developer; located in people’s
head; may lead to one or more

fault, defect: flaw in the software with the potential to cause a

failure: manifestation of one or more faults, detected by
comparing expected vs. actual observations.

Many call it simply “bug”.

1Institute of Electronics and Electrical Engineering
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Questions

Interesting questions when focusing on faults:

Does an error made by a designer or programmer lead to an
observable fault?

Do my test cases detect such faults?

How do I find a test case that uncovers a certain fault?

What are the equivalent test cases that would uncover such a
fault?

How to automatically generate test cases that will reveal
certain faults?

A theory will help answering them: UTP
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