
PSSE 2007

Automatic Test Case
GenerationGeneration

Patricia Machado
DSC/UFCG

patricia@dsc.ufcg.edu.br

Augusto Sampaio
Cin/UFPE

acas@cin.ufpe.br

Recife / December 3rd-7th, 2007

Agenda

1. Introduction

2. Model-Based Testing

3 Test Models and Test Generation3. Test Models and Test Generation

4. Test Model Generation from Use Case Specificationsp

5. The TARGET Tool

6. Concluding Remarks and References

Mobile Devices Software Group

Page 1

INTRODUCTION

Mobile Devices Software Group

Page 2

Testing Processes

Test
Planning

Test
Specification

Test
Construction

Test
Execution

Test
ResultPlanning Specification Construction Execution Result

Analysis

Mobile Devices Software Group

Page 3

The Role of Abstraction

• What needs to be tested?
H h t ti i d d?Test Planning • How much testing is needed?Test Planning

• What are the scenarios to be exercised?
• What are the behaviours to be observed?
• What coverage is needed?

Test Specification
and Construction • What coverage is needed?

• How to select relevant test cases?
and Construction

• How test execution is conducted?
• How test results are observed?Test Execution and

Analysis • What conclusions can be reached?Analysis

Mobile Devices Software Group

Page 4

The Use of Models for Testing

• Models can formalise the use of abstraction:
– High level models can represent general functionalities for

supporting Test Planning

– Test Cases can be automatically generated from behavioural models
of an application:of an application:

– Systematic coverage

I d d ti it d li bilit– Increased productivity and reliability

– Result analysis can be more effective and accurate

Mobile Devices Software Group

Page 5

Automatic Test Generation

• Test cases are derived from a specification model according
to a given coverage criteria and testing goal;

• The specification model is an abstract representation of the
behaviour we wish to test;behaviour we wish to test;

• Test cases are defined be exercised in a System Under
T t (SUT) th t i ft t i d t b d ll dTest (SUT) that is often constrained to be modelled as a
particular kind of concrete model (Test Hypothesis);

• Test results are evaluated and analysed according to
decision procedures often called oracles (automatic test

l i)evaluation);

Mobile Devices Software Group

Page 6

Automatic Test Generation

• Test cases can be generated either in a test description
language (TTCN, CNL) or in a target programming language
(t t ti f k)(test execution frameworks);

• Test execution infra-structure can also be generated fromTest execution infra structure can also be generated from
the overall development models of an application;

T t ti ft f ll tt f t t ti• Test generation often follows pattern of test execution
architecture and test documentation;

• Full code generation can be achieved (Model-driven
engineering).

Mobile Devices Software Group

Page 7

Automatic Test Case Generation in This Course

• In this course, we focus on:
– Test generation from transition systems and process g y p

algebra;

– Automatic test generation, selection and documentation,Automatic test generation, selection and documentation,
not including test code generation;

– Model-based testing;Model based testing;

– Test model generation from requirements documents;

M bil h li i d i– Mobile phone applications domain.

Mobile Devices Software Group

Page 8

MODEL BASED TESTINGMODEL BASED TESTING
•Test Models
•MBT in the Mobile Phone Applications Domain•MBT in the Mobile Phone Applications Domain

Mobile Devices Software Group

Page 9

Model-Based Testing (MBT)

• MBT is a testing approach that makes use of models,
usually named as test models, for representing the
b h i t t t t t t t i l t tibehaviour we want to test at a target implementation.

• From the test model, test cases are generated according to o t e test ode , test cases a e ge e ated acco d g to
a given coverage goal.

Wh f l d l f ti t t d• When formal models for generating test cases and
abstracting details from the SUT are considered, this
approach is commonly known as conformance testingapproach is commonly known as conformance testing.

Mobile Devices Software Group

Page 10

Model-Based Testing (MBT)

• The main promises of MBT are:

– Increased effectiveness in testing, by leading to focus and fairIncreased effectiveness in testing, by leading to focus and fair
coverage of what needs to be tested;

– Test costs reduction, by possible reuse of development artefacts and , y p p
automation of testing artefacts generation;

– Increased reliability in testing due to the fact that most of the test y g
artefacts are automatically generated in contrast with manually
coding them.

Mobile Devices Software Group

Page 11

MBT Process Model

Mobile Devices Software Group

Page 12

MBT and Test Case Generation

• Test case generation in an MBT process usually demands:

– A good understanding of the SUT;A good understanding of the SUT;

– An appropriate model for representing the requirements for the
system that suits the application domain and testing goals (can test y pp g g (
hypothesis be met?);

– A systematic procedure for building the model either by hand or y p g y
automatic generation;

– Test generation algorithms that can be automatically applied g g y pp
according to coverage and test selection criteria;

– A validation strategy from which the test cases generated can be
assessed regarding whether they are consistent and feasible w.r.t.
the SUT.

Mobile Devices Software Group

Page 13

MODEL BASED TESTINGMODEL BASED TESTING
•Test Models
•MBT in the Mobile Phone Applications Domain•MBT in the Mobile Phone Applications Domain

Mobile Devices Software Group

Page 14

Test Models

• Abstract representations that are developed for test case
generation;

• They can be built from scratch or derived from development
models;ode s;

• Test models must support both manual and automatic test
l tiselection;

• Test models must be testable;;

• Test models should be based on a well-found test theory.

Mobile Devices Software Group

Page 15

Test Model Requirements

• Be a complete and accurate representation of all features to
be tested, allowing valid coverage conclusions;

• Abstract detail that is not the focus of the test and would
make the cost of testing prohibitive;a e t e cost o test g p o b t e;

• Preserve detail that is key for revealing faults of interest and
l f tti t t ti d k t t lalso for setting up test execution and make test oracle

generation possible;

• Represent all stimulus and states that are visible externally.

Mobile Devices Software Group

Page 16

Models for Test Case Generation

Functional Testing

• State Machines;
• Markov Chains;
• UML models;
• Formal models in general.

Structural Testing

• Control graphs and data flow graphs
• Dependency graphs

Mobile Devices Software Group

Page 17GMF/UFCG

SBES 2007 17

What is a Test Case?

• A test case represents a particular situation we wish to
exercise in a SUT that is defined to suit a particular
bj ti hobjective such as:
– To exercise a particular program path;

– To check compliance with a requirement.

• Test cases are often represented by:Test cases are often represented by:
– A set of input values or stimuli (test points)

– A set of execution pre-conditions– A set of execution pre-conditions

– A set of expected results or observations

A set ot execution postconditions– A set ot execution postconditions

Mobile Devices Software Group

Page 18

How Test Cases are generated from Models?

• By choosing paths or sequences of events or symbols
according to coverage criteria metrics (all nodes, all arcs,
all paths and so on);all paths, and so on);

• By solving constraints, when test cases are to be derived
from logic properties;

• Test cases must be finite and are often limited to a given• Test cases must be finite and are often limited to a given
length;

• Test cases must be determinist and feasible;

• For test case execution test data selection may be• For test case execution, test data selection may be
required.

Mobile Devices Software Group

Page 19GMF/UFCG

SBES 2007 19

MODEL BASED TESTINGMODEL BASED TESTING
•Test Models
•MBT in the Mobile Phone Applications Domain•MBT in the Mobile Phone Applications Domain

Mobile Devices Software Group

Page 20

Feature

• A feature is a clustering of individual requirements that
describe a cohesive, identifiable unit of functionality;

• Mobile phone applications are composed of a number of
features that are usually highly interactive, having their flow eatu es t at a e usua y g y te act e, a g t e o
of execution guided mostly by external input;

M bil h li ti h t ifi t f t ti• Mobile phone applications have two specific types of testing:
–– Feature testing Feature testing is the process of validating feature

i t b t tirequirements by testing;
–– Feature interaction testing Feature interaction testing is the process of validating

interaction of features that compose an applicationinteraction of features that compose an application.

Mobile Devices Software Group

Page 21

Feature Testing

• Features need to be thoroughly tested

• Manual testing• Manual testing

• Redundancy

• Domain requirements

• Time-to-market constraints

R i t ti• Regression testing

• MBT is a promising approachp g pp

Mobile Devices Software Group

Page 22

Feature Interaction Testing

• Interactions are defined here as:
– scenarios where a feature functionality depends on another feature

(static interactionstatic interaction);
– Scenarios where there are combinations of independent behaviours

(dynamic interactiondynamic interaction or interruptioninterruption)(dynamic interaction dynamic interaction or interruptioninterruption).

• Examples:
Static Interaction When we finish writing a message we can choose– Static Interaction - When we finish writing a message we can choose
a contact from the phonebook to send the message (static
interaction between the message feature and the phonebook
f t)feature)

– Dynamic Interaction - When a user is composing a text message and
suddenly a call arrives, characterising the interaction between the y , g
sending message and the incoming call features.

Mobile Devices Software Group

Page 23

Feature Interaction Testing

• An effective MBT solution demands:

– A test model where interruptions can be cost-effectively represented;A test model where interruptions can be cost effectively represented;

– The test model must make feature interruption composition possible
at different points of a flow of execution;p ;

– Selection strategies that can cope of the huge number of possible
combinations of features and interruptions.p

Mobile Devices Software Group

Page 24

TEST MODELS AND TEST
GENERATIONGENERATION

•Input-Output Labelled Transition Systems
•Annotated Labelled Transition Systems
•Process Algebra
•Markov Chains•Markov Chains

Mobile Devices Software Group

Page 25

TEST MODELS AND TEST
GENERATIONGENERATION

•Input-Output Labelled Transition Systems
•Annotated Labelled Transition Systems
•Process Algebra
•Markov Chains•Markov Chains

Mobile Devices Software Group

Page 26

Input-Output Labelled Transition System (IOLTS)

• An IOLTS is a quadruple M = (QM, AM, →M, q0
M), where:

• This is the model adopted by the TGV tool• This is the model adopted by the TGV tool

Mobile Devices Software Group

Page 27

IOLTS

7 4
τ6

7
9

τ6
?a

!y
?c

6
3

!x?b

5

8

?a

!x
τ3

!y!z

?b
?c

1
2

τ5
τ2

!y

0
τ4 τ1

Mobile Devices Software Group

Page 28

Test Generation with Verification technology (TGV)

• Automatic synthesis of conformance test cases for non-
deterministic reactive systems;

• Based on verification techniques such as synchronous
product, on-the-fly verification and traversal algorithms;p oduct, o t e y e cat o a d t a e sa a go t s;

• Based on the ioco theory (Tretmans)

Synchronous Suspension Selection Controllability
CTGSP SPvis TC

S

Synchronous
Product

Suspension
Determinization

Selection Controllability

TP

TG

Mobile Devices Software Group

Page 29

TGV Test Hypothesis

• Let S be a test model specification S = (QS = (QSS, A, ASS, , →→SS, q, q00
SS))

• (Test Hypothesis) We assume that SUT can be modelled• (Test Hypothesis) We assume that SUT can be modelled
by an IOLTS SUT = (QSUT = (QSUTSUT, A, ASUTSUT, , →→SUTSUT, q, q00

SUTSUT)), that is:

C tibl ith S A S A SUT d A S A SUT– Compatible with S: AI
S ⊆ AI

SUT and AO
S ⊆ AO

SUT

– SUT is input complete: all inputs are accepted, possibly p p p p p y
after internal actions.

Mobile Devices Software Group

Page 30

Conformance Relation

• Informally, SUT is iocoioco-correct w.r.t. S if:
– SUT can never produce an output which could not have U p p

been produced by S in the same situation;
– SUT may only be quiescent if S can do so.y y q

Mobile Devices Software Group

Page 31

Quiescence

• The tester needs to obtain control over occurrences of input
and output action in the SUT in order to conduct test

tiexecution;

• This requires the SUTs to be able to accept all input actions s equ es t e SU s to be ab e to accept a put act o s
in any state (input-enabled or input complete);

I thi t diti l d dl k t t t i t• In this case, traditional deadlock states cannot exist;

• A weaker notion is needed:
– states that cannot produce (further) output actions without the supply

of an input actions are called quiescent statesquiescent states
– Quiescence is treated as an observable event

Mobile Devices Software Group

Page 32

Quiescence

System cannot evolve

Infinite sequences of internal actions

Figure from [JJ05]

Waiting only for an input from the enviroment

Mobile Devices Software Group

Page 33

Suspension Automaton

7 4
τ6

!δ
!δ

!δ7
9

τ6
?a

!y
?c

!δ

6
3

!x?b

5

8

?a

!x
τ3

!y!z

?b
?c

1
2

τ5
τ2

!y

!δ

0
τ4 τ1

!δ

!δ

Mobile Devices Software Group

Page 34

TGV Conformance Relation

• Conformance Relation:

– SUT conforms to S if after each suspension trace of S– SUT conforms to S if after each suspension trace of S,
SUT exhibits only outputs and quiescences that are
possible in S.p

Mobile Devices Software Group

Page 35

Conformance Relation

conforms ?conforms ?

?b

!z

Mobile Devices Software Group

Page 36

Conformance Relation

conformsconforms

?b

!z

Mobile Devices Software Group

Page 37

Conformance Relation

conformsconforms conforms ?

?b

!z
!z

Mobile Devices Software Group

Page 38

Conformance Relation

conformsconforms No

?b

!z
!z

Mobile Devices Software Group

Page 39

Test Purposes

• Target test generation at particular behaviours of the S.

• Testing for conformance is different from testing from test g g
purposes (exhibition):
– Conformance aims to accept/reject a given implementation;p j g p

– Exhibition aims to observe a given behaviour;

– If a desired behaviour is observed, than confidence on conformanceIf a desired behaviour is observed, than confidence on conformance
may increase.

• Test suites for exhibition may be:y
– e-complete – can distinguish among all exhibiting and non-exhibiting

SUTs.

– e-exhaustive – can only detect non-exhibiting SUTs

– e-sound – can only detect exhibiting SUTs

Mobile Devices Software Group

Page 40

Test Purposes in TGV

• Modelled by IOLTSs that are deterministic and complete
(each state allows all actions);

• The IOLTS have two marked states:

AcceptTP – define sequences to be included in the test cases;– AcceptTP define sequences to be included in the test cases;

– RefuseTP – define sequences not be included in the test case.

Mobile Devices Software Group

Page 41

Test Purpose

2
Accept *

SPECIFICATION TEST PURPOSE

.*z
7 4

τ6

1
3

Refuse*
*

9
τ6

?a!y
?c

.*[z5] .*y
6

8

3
!x

τ3?b
?c

0
*

5

2

?a
!y!z

?c

1

0
τ4 τ1

τ5
τ2

Mobile Devices Software Group

Page 42

τ4

S

Synchronous Product

Synchronous
Product

Suspension
Determinization

Selection Controllability
CTGSP SPvis

TG

TC

S

TP

TG

• Identify the behaviours of S accepted or refused by TP

• Intersection of S and TP that contains only states thatIntersection of S and TP that contains only states that
are reachable from the initial states of S and TP

• All behaviours of S are preserved in SPAll behaviours of S are preserved in SP

• (q0
S,q0

TP) is the initial state;

• The transition relation is defined as:

Mobile Devices Software Group

Page 43

Synchronous Product
2

*
PARTIAL SYNC.

Accept *

.*z

(1,3)
RefuseSPECIFICATION

TEST PURPOSE

PRODUCT

1
3

Refuse
*

*7 4
τ6

(5,0)

τ5

0

.*[z5] .*y
9

τ6
?a!y

?c
!x

0
*

6

8

3
!x

τ3?b
?c

(3,0)

?a

5

2

?a
!y!z

?c

(1,0)

1

0
τ4 τ1

τ5
τ2

(0,0)

τ1

Mobile Devices Software Group

Page 44

τ4

Synchronous Product

7
9

4

τ6

τ6

?c

6 3
!x

τ6
?a!y

5

8
?a

!xτ3

!y!z

?b
?c

1

0

2

τ4 τ1

τ5τ2

τ4

Mobile Devices Software Group

Page 45

Fig from {JJ05]

S

Suspension Determinization

Synchronous
Product

Suspension
Determinization

Selection Controllability
CTGSP SPvis

TG

TC

S

TP

TG

• SPVIS = detdet(Δ(SP))

• detdet returns a derministic automaton that:

does not include internal actions;does not include internal actions;

states are meta-states defined for each reachable trace
b t t t tbetween meta-states.

Mobile Devices Software Group

Page 46

Suspension Determinization

Figure from [JJ05]

Mobile Devices Software Group

Page 47

g []

S

Selection

Synchronous
Product

Suspension
Determinization

Selection Controllability
CTGSP SPvis

TG

TC

S

TP

TG

• Complete Test Graph (CTG) is built by:

• extracting accepted behaviours;

• inverting inputs and outputs;

• sequences that do lead to the accepted or refuse states
are removed;

• adding Pass, Fail and Inconclusive states.

• TG conflicts can be suppressed during selection

Mobile Devices Software Group

Page 48

• TG – conflicts can be suppressed during selection

Selection
10

Inconc11SPSPvisvis CTGCTG

9 8

Inconc
pass

?δ
?x

?z

SPSP CTGCTG

6
Inconc

?δ

?y

!b

?
y

!a

5Fail ?z
?y

?δ

?otherwise

2

?y

?δ

?δ
14

Inconc

!b
!

?x

?δ

0

!a

Mobile Devices Software Group

Page 49

?δ

S

Controllability

Synchronous
Product

Suspension
Determinization

Selection Controllability
CTGSP SPvis

TG

TC

S

TP

TG

• Controllability conflicts are represented by the presence
of choice in some states between:of choice in some states between:

• outputs
• between inputs and outputs• between inputs and outputs

• In a controlled CTG:
•Either one output is kept and inputs and outputsEither one output is kept and inputs and outputs

pruned
•or all inputs are kept and outputs are pruned

Mobile Devices Software Group

Page 50

Selection
10

I11 CTGCTG
11

9 8

Inconc11
pass

?δ
?x

?z

CTGCTG

9

pass

?δ
?z

TCTC

9 8

6
Inconc

?y

!b

?y !a
?y

!b

?otherwise

5

Inconc

Fail ?z
?y

?δ

?otherwise 5Fail

?otherwise

?otherwise

2

?y

?δ

?δ

?y

14
Inconc

!b

?x

?δ
14

Inconc
?x

0

!b
!a

0

!a

Mobile Devices Software Group

Page 51
?δ

0

Soundness and Exhaustiveness
11

9

pass

?δ
?z

TCTC

SPECIFICATIONSPECIFICATION

?y

!b

?otherwise7 4
τ6

5Fail

?otherwise

?otherwise
9

τ6
?a!y

?c

?y

6

8

3
!x

τ3?b
?c

14
Inconc

?x
5

2

?a
!y!z

?c

0

!a1

0
τ4 τ1

τ5
τ2

Mobile Devices Software Group

Page 52

0τ4

Final Remarks

• TGV test cases are sound and exhaustive;

Test models can be specified in SDL Lotos UML IF and• Test models can be specified in SDL, Lotos, UML, IF and
aldebaram;

• Test Purposes can be specified in aldebaran and UML
sequence diagrams;

• Abstract test cases are generated in albebaran and
TTCN;TTCN;

• CADP toolbox.

Mobile Devices Software Group

Page 53

TEST MODELS AND TEST
GENERATIONGENERATION

•Input-Output Labelled Transition Systems
•Annotated Labelled Transition Systems
•Process Algebra
•Markov Chains•Markov Chains

Mobile Devices Software Group

Page 54

Annotated Labelled Transition System (ALTS)

• Using LTSs for representing feature and interaction
behaviour;

• An ALTS is a 4-tuple M = <Q,R,T,q0>, where:
Q i t bl t t f t t– Q is a countable, non-empty set of states;

– R = A ∪ N is a countable set of labels, where A is a
countable set of actions and N is a countable set ofcountable set of actions and N is a countable set of
annotations;
T ⊆ Q × R × Q is a transition relation;– T ⊆ Q × R × Q is a transition relation;

– q0 ∈ Q is an initial state.

Mobile Devices Software Group

Page 55

Annotated Labelled Transition Systems (ALTS)

• Annotations are inserted into the LTS to:
– Guide the test case generation through specific g g p

interruptions;
– Make it easier for interruptions models to be composed p p

without interfering with the main model;
– Guide test case documentation;
– Make it possible for conditions to be associated with

actions;
– Indicate points where interruptions can be observed.

• ALTS models can be translated into IOLTS models forALTS models can be translated into IOLTS models for
test case generation using TGV.

Mobile Devices Software Group

Page 56

Feature ALTS Model

HOT MESSAGEHOT MESSAGE
FEATURE

Go to “Message Center”

steps Input Actions
conditions conditions associated with input actions
expectedResults Expected outputs

Mobile Devices Software Group

Page 57

expectedResults Expected outputs

Interruption Testing

• One feature can interrupt the flow of execution of another
feature that is running in foreground;

• As a result, features execution are intermingled
(combination of independent behaviours);(combination of independent behaviours);

• An ALTS model with interruption can be defined as follows:p

– The interruption model is plugged in the main feature by adding the
beginInterruption transition from a target state of an output (expected
result);

– Each leaf node of the interruption model is also plugged in the same
state by adding the endInterruption annotation;

– States are re-numbered.

Mobile Devices Software Group

Page 58

ALTS Model with Interruption

HOT MESSAGEHOT MESSAGE
FEATURE
interrupted by
INCOMING
MESSAGE
FEATURE

Why interruptions
should only beshould only be
modelled after
expected results?

Mobile Devices Software Group

Page 59

A Test Case Generation Algorithm (Depth First Search)

Decompose (vertex, path, interruptionModel) {
if (vertex.isLeaf OR (vertex.isRoot AND path <> ∅)) {

//End of a path
recordTestCase(path);

treturn;
}
for each descendent in vertex getAdjacencies {for each descendent in vertex.getAdjacencies {

edge ← getEdgeBetween(vertex, descendent);
if (edge not in path OR edge in interruptionModel.getEdges) {

path.add(edge);
Decompose(descendent, path, interruptionModel)

} else recordTestCase(path)} else recordTestCase(path);
return

}

Mobile Devices Software Group

Page 60

}

A Test Case Generation Algorithm (Depth First Search)

Decompose (vertex, path, interruptionModel) {
if (vertex.isLeaf OR (vertex.isRoot AND path <> ∅)) {

//End of a path
recordTestCase(path);

treturn;
}
for each descendent in vertex getAdjacencies {for each descendent in vertex.getAdjacencies {

edge ← getEdgeBetween(vertex, descendent);
if (edge not in path OR edge in interruptionModel.getEdges) {

path.add(edge);
Decompose(descendent, path, interruptionModel)

} else recordTestCase(path)} else recordTestCase(path);
return

}

Mobile Devices Software Group

Page 61

}

A Test Case Generation Algorithm (Depth First Search)

Decompose (vertex, path, interruptionModel) {
if (vertex.isLeaf OR (vertex.isRoot AND path <> ∅)) {

//End of a path
recordTestCase(path);

treturn;
}
for each descendent in vertex getAdjacencies {for each descendent in vertex.getAdjacencies {

edge ← getEdgeBetween(vertex, descendent);
if (edge not in path OR edge in interruptionModel.getEdges) {

path.add(edge);
Decompose(descendent, path, interruptionModel)

} else recordTestCase(path)} else recordTestCase(path);
return

}

Mobile Devices Software Group

Page 62

}

A Test Case Generation Algorithm (Depth First Search)

Decompose (vertex, path, interruptionModel) {
if (vertex.isLeaf OR (vertex.isRoot AND path <> ∅)) {

//End of a path
recordTestCase(path);

treturn;
}
for each descendent in vertex getAdjacencies {for each descendent in vertex.getAdjacencies {

edge ← getEdgeBetween(vertex, descendent);
if (edge not in path OR edge in interruptionModel.getEdges) {

path.add(edge);
Decompose(descendent, path, interruptionModel)

} else recordTestCase(path)} else recordTestCase(path);
return

}

Mobile Devices Software Group

Page 63

}

Test Case Generation

Mobile Devices Software Group

Page 64

Test Case Generation

Mobile Devices Software Group

Page 65

Interruption Test Case

Mobile Devices Software Group

Page 66

Test Selection Based on Similarity

• Automatic test case selection from ìnfeasible test suites;
– The goal is to minimise redundancy of test cases that may g y y

be caused by “exhaustive” test case generation;
– Similar test cases are eliminated until the desired number of

test cases is achieved;
• Our Hypothesis:

– Similar test cases cover a common set of requirements and
features and have similar capability of revealing faults;

– Therefore, some of them can be eliminate to meet
resources constraints of a project;
Th i dditi l i t k th i th t– There is no additional gain to keep them since they are not
significantly affecting requirements/fault model coverage.

Mobile Devices Software Group

Page 67
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Strategy - Similarity-Based Test Case Selection

A li bl t LTS i l• Applicable to LTSs in general.

• The Main Steps are:
0

a

1. DFS

– Test Cases
1

a

b cTest Cases

2. Calculate degree of similarity between
each pair of test cases

2 3

TC2TC1
each pair of test cases

– number of identical transitions

“f ” d “ ” d i i l b l“from” and “to” states and transition label are
the same for two test cases.

3. Calculate the length of each test case

Mobile Devices Software Group

Page 68
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Calculating the Degree of Similarity

• The degree of similarity between each pair of test cases is
calculated and recorded in a similarity paths matrix.

• This matrix is:

h i th b f th d h–– n n ×× nn, where nn is the number of paths and each nn
represents one path;
Each element aa is defined b the similarit f nction– Each element aaijij is defined by the similarity function
applied to a pair of paths.

Similarity(i j) = nitnit / (/ (avgavg(|(|ii| || |jj|))|)) where:– Similarity(i,j) = nit nit / (/ (avgavg(|(|ii|, ||, |jj|))|)), where:
nit is the number of identical transitions between
path i and path jpath i and path j
avg(|i|, |j|) is the average between paths length

Mobile Devices Software Group

Page 69
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Selecting Test Cases

• By observing the similarity paths matrix, we can define
which are the test cases to be excluded:
– The test cases to be excluded are those that have the

highest similarity degree w.r.t. other test cases.
– The choice is made by observing the test case that

has the smallest size.
– If the size of test cases are same

– Apply random choice
– The process is iterative:

– A test case is removed;
– The matrix is updated;

Mobile Devices Software Group

Page 70
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy

|TC1| = 2

0
a c

|TC1| 2

|TC2| = 4

1
3

a

b

c

d

|TC3| = 4

|TC4| = 3
0.75 = 3/ avg(4+4)

TC1 TC2 TC3 TC4

2
4

e fTC1

TC1 0 0 0

TC2 0.75 0.57

5 6

78

g h
TC4

TC3 0.57

TC4

TC2 TC3

Mobile Devices Software Group

Page 71
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy
Path coverage: 50% exclude 2 test cases

|TC1| = 2

|TC2| = 4

g

0
a c

|TC3| = 4

|TC4| = 3

1
3

a

b

c

d

TC1 TC2 TC3 TC4

|TC4| = 3
2

4
e fTC1

TC1 0 0 0

TC2 0.75 0.57

5 6

78

g h
TC4

TC3 0.57

TC4

TC2 TC3

Mobile Devices Software Group

Page 72
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy
•TC2 or TC3?

•By size?

•|TC2| = |TC3| = 4

|TC1| = 2

|TC2| |TC3| 4

•NO

•Then |TC2| = 4

|TC3| = 4

•Then..

•Random (TC2,TC3) = TC2
0

1
3

a c

TC1 TC2 TC3 TC4
|TC4| = 3

2
4

b
d

e fTC1
TC1 0 0 0

TC2 0,75 0,57
5 6

e f

g h

TC1

TC4
TC3 0,57

TC4

78

TC2 TC3

TC4

Mobile Devices Software Group

Page 73
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy
•Random (TC2,TC3) = TC2

|TC1| = 2

|TC2| = 4

(,)

|TC3| = 4

|TC4| = 3
0

a c
|TC4| = 3

1

2

3
b

d

TC1 TC2 TC3 TC4

2
4

5 6

e fTC1

TC1 0 0 0

TC2 0,75 0,57

6

78

g h

TC2 TC3

TC4

TC3 0,57

TC4

TC2 TC3

Mobile Devices Software Group

Page 74
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy

|TC1| = 2

|TC3| = 4

|TC4| = 3

0

1
3

a c

TC1 TC3 TC4

TC1 0 0
2

4

b
d

e fTC1
TC3 0,57

TC4
5 6

e f

g h

TC1

TC4
78

TC3

TC4

Mobile Devices Software Group

Page 75
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy
•TC3 or TC4?

|TC1| = 2

|TC3| = 4
•|TC3| > |TC4|

|TC4| = 3
0

a c

1

2

3
b

d

TC1 TC3 TC4

TC1 0 0

4

5 6

e fTC1

TC3 0,57

TC478

g h

TC3

TC4

TC3

Mobile Devices Software Group

Page 76
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Applying the Strategy

0

1
3

a c

2
4

b
d

4

5 6

e fTC1

5 6

8

g h
TC4

78

TC2 TC3

Mobile Devices Software Group

Page 77
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

Evaluating the Similarity-Based Test Case Selection Strategy

• Our impression from the use of this strategy is that it selects
the most different test cases.
– To assess, we compared our strategy with a random strategy.

• Three different reactive applications were chosen. ee d e e t eact e app cat o s e e c ose

• The goal was to measure the percentage of transitions
i th t t t icoverage in the two strategies.

• Two criteria were considered
– 50% path coverage
– For each application, we applied 100 times our strategy and the

random strategy

Mobile Devices Software Group

Page 78
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

The Case Studies

• Reactive applications: two mobile phone applications and
the Target Tool, modelled according to our methodology
(t l t ALTS)(templates + ALTS)

• Case study 1 is a feature for adding contacts in a mobile Case study s a eatu e o add g co tacts a ob e
phone’s contact list;

C t d 2 i li ti th t d l ith• Case study 2 is a message application that deals with
embedded items. An embedded item can be a URL, phone
number or e-mail For each embedded item it is possible tonumber or e mail. For each embedded item, it is possible to
execute some tasks.

C t d 3 i th T t t l li ti th t• Case study 3 is the Target tool, an application that
generates test cases automatically from use case scenarios.

Mobile Devices Software Group

Page 79

Evaluating the Similarity-Based Test Case Selection Strategy

Addi t t i bil h ’ t t li t•Adding contacts in a mobile phone’s contact list

•Feature with similar test cases of similar length

70

80

D

50

60

SimilarityR
E

M
O

V
E

D

20

30

40
y

Random

SI
TI

O
N

S
 R

0

10

20

TR
A

N
S

0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

PATH COVERAGE

Mobile Devices Software Group

Page 80
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

PATH COVERAGE

Evaluating the Similarity-Based Test Case Selection Strategy

•Message application that deals with embedded items

•Different features compose this application. Groups of similar test cases

250

D

150

200

R dR
E

M
O

V
E

D

100

Random

Similarity

SI
TI

O
N

S
 R

50

TR
A

N
S

0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

PATH COVERAGE

Mobile Devices Software Group

Page 81
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

PATH COVERAGE

Evaluating the Similarity-Based Test Case Selection Strategy

Th T l•The Target tool

• GUI application with different features. Different length of test cases.

350

400

D

250

300

RandomR
E

M
O

V
E

D

150

200
Random

Similarity

SI
TI

O
N

S
 R

0

50

100

TR
A

N
S

0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

PATH COVERAGE

Mobile Devices Software Group

Page 82
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other
product or service names are the property of their respective owners.
© Motorola, Inc. 2006.

PATH COVERAGE

Final Considerations

• ALTS models are suitable for feature and interruption test
model and test case generation;

• These are abstract models that can be transformed into
formal models such as IOLTSs;

• Test generation algorithm generates sound and exhaustive
test cases for deterministic models;

• These models can be generated from use case templates
with different combinations of allowed interruptions at
different points of the execution flow of features;

• Automatic test case selection can be applied to focus test
generation and minimize the size of test suites.

Mobile Devices Software Group

Page 83

TEST MODELS AND TEST
GENERATIONGENERATION

•Input-Output Labelled Transition Systems
•Annotated Labelled Transition Systems
•Process Algebra
•Markov Chains•Markov Chains

Mobile Devices Software Group

Page 84

Process algebras

• Abstract and formal treatment of concurrency

Rich repertoire of process composition operators• Rich repertoire of process composition operators

• Some examples: CSS, CSP, LOTOSp , ,

• A variety of semantic models
Operational
Denotational
Algebraic

Mobile Devices Software Group

Page 85

Test model and test generation

• Abstract test models with rich structure

Test generation via model checking• Test generation via model checking
No explicit algorithm

• Test selection via process composition (possibly based
on the application architecture)pp)

• Composition of test models, test purposes, test cases …

• Solid framework for formalisation and reasoning

Mobile Devices Software Group

Page 86

Test model: Communicating Sequential Processes (CSP)

S ifi i f d di ib d• Specification of concurrent and distributed systems

• Primitive processes: SKIP, STOPp

• Prefix: a -> P

S i l C i i• Sequential Composition: P ; Q

• Choice: P [] Q and P |~| Q

• Alphabetized parallel: P |[C]| Q

I l i• Interleaving: P ||| Q

• Hiding: P \ Cg

Mobile Devices Software Group

Page 87

How to describe this ALTS Model in CSP?

HOT MESSAGEHOT MESSAGE
FEATURE

Go to “Message Center”

steps Input Actions
conditions conditions associated with input actions
expectedResults Expected outputs

Mobile Devices Software Group

Page 88

expectedResults Expected outputs

Example: Moving a Message from Inbox to the Hot Message Folder

UC1 =UC1

goToMessageCenter ->

hotMessageFolderIsDisplayed ->

goToInbox ->

allInboxMessagesAreDisplayed ->

scrollToAMessage ->scrollToAMessage >

messageIsHighlighted ->

i igoToContextSensitiveMessage ->

moveToHotMessagesOptionIsDisplayed ->

selectMoveToHotMessagesOption -> (UC11 [] UC12)

Mobile Devices Software Group

Page 89

Example: Moving a Message from Inbox to the Hot Message Folder

UC11 =UC11

messageStorageIsNotFull ->

messageMovedToHotMessageFolderDisplayed ->

SKIP

UC12 =

messageStorageIsFull ->

memoryRequiredDialogIsDisplayed -> y q g p y

confirmMemoryInformationDialog ->

C t tI Di l d >messageContentIsDisplayed ->

SKIP

Mobile Devices Software Group

Page 90

ALTS Model with Interruption

HOT MESSAGEHOT MESSAGE
FEATURE
interrupted by
INCOMING
MESSAGE
FEATURE

Mobile Devices Software Group

Page 91

Capturing interruptions

UCI = UC1 []UCI = UC1 []

(UC1I |[beginI,endI]| INTERRUPTION)\{beginI,endI}

1UC1I =

goToMessageCenter ->

HotMessageFolderIsDisplayed ->

beginI -> endI ->

...

INTERRUPTION =

beginI ->

...

endI -> SKIP

Mobile Devices Software Group

Page 92

Distinguishing input and output
channel a,b,c,y,z,t

AlfaSi = {a,b,c}

AlfaSo = {y,z}{y, }

AlfaS = AlfaSi U AlfaSo
S0 = t -> S9 [] t -> S2
S2 = t -> S0 [] (c -> S6

[] b -> S4)
S4 > S2 [] t > S4S4 = z -> S2 [] t -> S4

[] t -> S8
S6 = y -> S7y
S7 = c -> S6
S8 = y -> S0
S9 = a -> S8
SYSTEM = S0\{t}

Mobile Devices Software Group

Page 93

Traces semantics

traces(STOP) = {<>}
√traces(SKIP) = {<>, <√>}

traces(a -> P) = {<>} ∪
{<a>^t | t ∈ traces(P)}{<a> t | t ∈ traces(P)}

traces(P [] Q) = traces(P |~| Q) =
= traces(P) ∪ traces(Q)

traces(P;Q)= {s | s ∈ traces(P) ∧ ¬ <√> in s} ∪
{s^t | s^<√> ∈ traces(P) ∧ t ∈ traces(Q)}

...

Example: P = (a -> b -> STOP) [] (c -> SKIP)Example: P = (a > b > STOP) [] (c > SKIP)
traces(P) = {<>,<a>,<a,b>,<c>,<c,√>}

Mobile Devices Software Group

Page 94

Traces refinement

P [T= Q iff traces(Q) ⊆ traces(P)[Q (Q) ⊆ ()

Example: (P [] Q) [T P• Example: (P [] Q) [T= P

• Other semantic models consider failures and divergenciesOther semantic models consider failures and divergencies
of a process

Mobile Devices Software Group

Page 95

Test generation from CSP models

U lik LTS b d h li it•Unlike LTS based approaches, no explicit
algorithm is defined

•Generation via (traces) refinement checking

•Test model must be annotated with marking
tevents

accept, refuseaccept, refuse

Mobile Devices Software Group

Page 96

Test generation from CSP models

E l ki th C1 d l•Example: marking the UC1 model
UC1T = UC1 ; accept -> STOPUC1T UC1 ; accept > STOP

•Exercise: expand UC1T

•Exercise: relate the traces of UC1 and UC1T

•Exercise: does the refinement
UC1 [T= UC1T
h ld?hold?

Mobile Devices Software Group

Page 97

Test generation from CSP models

• The counter examples of the refinement
UC1 [T= UC1T
are precisely the relevant traces (test scenarios)

• But FDR yields only one counter example• But FDR yields only one counter example

• For our example:
ts1 = <goToMessageCenter,
hotMessageFolderIsDisplayed, ...,
messageStorageIsNotFullmessageStorageIsNotFull,
messageMovedToHotMessageFolderDisplayed>

Mobile Devices Software Group

Page 98

Test generation from CSP models

A d t t i b bt i d ith• A second test scenario can be obtained with

(UC1 [] P(ts1)) [T= UC1T ([] ()) [

where P(t) generates a process whose
maximum trace is t itselfmaximum trace is t itself

• Example: P(ts1) = goToMessageCenter ->
hotMessageFolderIsDisplayed -> ... -> STOPhotMessageFolderIsDisplayed > ... > STOP

• The second test scenario is:
ts2 = <goToMessageCenter,
hotMessageFolderIsDisplayed, ...
messageStorageIsFull, ...>g g ,

Mobile Devices Software Group

Page 99

Test generation from CSP models

• In general ...
(S [] P(ts1) [] ... P(tsn)) [T= ST

• In practice this can be automated by for instance• In practice this can be automated by, for instance,
iteratively invoking FDR in background

A t t i l t ti th ATG t l• A prototype implementation: the ATG tool

• Exercise: generate all the test scenarios that correspond e c se ge e a e a e es sce a os a co espo d
to successful termination of UC1I

Mobile Devices Software Group

Page 100

CSP Test Purpose

•A type of selection directive•A type of selection directive

•Partial specification of the desired testsPartial specification of the desired tests

•DeterministicDeterministic

•Complete (wrt the alphabet of the implementation)•Complete (wrt the alphabet of the implementation)

• Includes marking eventsg
accept, refuse

Mobile Devices Software Group

Page 101

Test selection with Test Purpose

Let S be a test model and TP a test purpose Then• Let S be a test model and TP a test purpose. Then

ST = S |[AlphaS]| TP|[p]|

• Test scenarios can then be obtained from ST as before,
as counter examples ofas counter examples of

S [T= STS [T ST

Mobile Devices Software Group

Page 102

Example: test selection with Test Purpose
Accept – selectAccept select
target behavior

*y*z

TP = UNTIL(AlfaS, {y},

UNTIL(AlfaS {z}UNTIL(AlfaS,{z},

ACCEPT

)

)

Mobile Devices Software Group

Page 103

Example: test selection with Test Purpose

PRODUCT = SYSTEM |[AlfaS]| TP

• Generation example

SYSTEM [T PRODUCTSYSTEM [T= PRODUCT

TS1 = <a,y,b,z,accept>,y, , , p

TS2 = <a,y,a,y,b,z,accept>

TS3 = ?

How many test cases?

Mobile Devices Software Group

Page 104

Soundness

• Addressing soundness involves
- Conformance notion
- Definition of sound test cases (suites)
- Generation of sound test cases from test scenariosGeneration of sound test cases from test scenarios

Mobile Devices Software Group

Page 105

CSP Input-Output Conformance

• Proposed implementation relation based on ioco

• Informally:y
- SUT conforms to S if after each trace of S, SUT exhibits

only outputs that are possible in Sonly outputs that are possible in S

BUT currently we do not consider quiescenceBUT ... currently we do not consider quiescence

Mobile Devices Software Group

Page 106

CSP Input-Output Conformance

• Definition. SUT cspioco S iff
∀ s ∈ traces(S) •()

Out(SUT,s) ⊆ Out(S,s)

• Theorem SUT cspioco S iff• Theorem. SUT cspioco S iff
S [T= (S ||| RUN(AlfaIUTo)) [|AlfaIUT|] SUT

Mobile Devices Software Group

Page 107

CSP Input-Output Conformance
extra input extra output for

S0 = t -> S2 S0 = S2 S0 = S9 [] S2

existing input

S2 = t -> S0 [] (c ->
S6 [] b -> S4)

[] S10

S2 = c -> S6

[] b -> S4

S2 = c -> S6

[] b -> S4

S4 = z -> S2

[] t -> S4 [] t -> S8

[] b -> S4

S4 = z -> S2

[] S8

[] b -> S4

S4 = z -> S2

[] S8

S6 = y -> S7

S7 = c -> S6

S6 = y -> S7

S7 = c -> S6

S6 = y -> S7

S7 = c -> S6

S8 = y -> S0

S9 = a -> S8

S8 = y -> S0

S9 = a -> S8

S8 = y ->S0 [] x -> S0

S9 = a -> S8

S9 = a > S8

SYSTEM = S0\{t}

S10 = d -> y -> S4

IUT1 = S0 IUT2 = S0

Mobile Devices Software Group

Page 108

SYSTEM S0\{t}

SUT1 cspioco SYSTEM ¬(SUT2 cspioco SYSTEM)SUTAlphai = {a,b,c,d}
SUTAlphao = {x,y,z}

Sound Test Case

• Specified as a CSP process, say TC
- interacts with any implementation that can be modeled y p

as a CSP process (hypothesis)
- is input complete wrt the SUT alphabetp p p

• Test outputs are implementation inputs (and the other• Test outputs are implementation inputs (and the other
away round)

C t t d f t l t d f S (t t i• Constructed from a trace selected from S (test scenario
ts)

Mobile Devices Software Group

Page 109

Sound Test Case

• Sample of a sound CSP test case from test scenario
<a,y,b,z> Input = {a,b,c,d} Output = {x,y,z}

TC = a > TC1TC = a -> TC1
TC1 = y -> TC2

[] e O tp t { } @ e > FAIL[] e : Output - {y} @ e -> FAIL
TC2 = b -> TC3
TC3 > PASSTC3 = z -> PASS

[] y -> INCONCLUSIVE
[] O t { } @ FAIL[] e : Ouput - {z,y} @ e -> FAIL

Mobile Devices Software Group

Page 110

Verdicts

PASS = pass -> STOP

INC = inc -> STOP

FAIL = fail -> STOP

Mobile Devices Software Group

Page 111

Test execution

• Test execution in CSP
EXEC = SUT |[AlphaSUT]| TCp

• The execution leads to a fail verdict in at least one trace, if
the following holds

(EXEC \ AlphaSUT) [T= FAIL

• Soundness in terms of process refinement
¬∃SUT • SUT cspioco S ∧

(EXEC \ AlphaSUT) [T= FAIL

Mobile Devices Software Group

Page 112

(\ p) [

The ATG tool

S
Test Model

TP
(Test Purpose)

ATG

S [|alphaS|] TP

ATG + FDR ATG + FDR

TP
Consistency Analysis

Test cases
(CSP processes)

Controlled Natural
L

Automation Scripts

CINBTC-RD Tools

Mobile Devices Software Group

Page 113

Language
Test Cases

p
(JAVA)

Summary

• Process algebraic characterisation of a guided testProcess algebraic characterisation of a guided test
generation approach

Formalisation and tool support• Formalisation and tool support

• Advantages
- Uniformity: a single formalism
- Modularity: model, TP and TC (de)composition
- Generation via model (refinement) checking

In principle, productivity …

• Disadvantages
- State space explosion
- No syntactic control over the generation process
- Portability (FDR-Unix/Linux)

Mobile Devices Software Group

Page 114

Related Work

• Tretmans (IOCO)

• Jard and Jéron (TGV)• Jard and Jéron (TGV)

• Peleska and Siegel

• Schneider

• Cavalcanti and Gaudel

Mobile Devices Software Group

Page 115

Future work

• Data abstraction to deal with state space explosion

Explore more elaborate CSP semantic models and• Explore more elaborate CSP semantic models and
consider quiescence

• Selection approaches for component testing based on
system architecture

Mobile Devices Software Group

Page 116

TEST MODELS AND TEST
GENERATIONGENERATION

•Input-Output Labelled Transition Systems
•Annotated Labelled Transition Systems
•Process Algebra
•Markov Chains•Markov Chains

Mobile Devices Software Group

Page 117

Statistical Testing

STATISTICAL EXPERIMENT
STATISTICAL SOFTWARE

TESTING

Population
Operational Uses

(Usage Model of all possible
uses and their probability of

occurrence)

Statistically

)

Scientifically Random Generalisation
correct

selection
valid
generalization

generation of
test cases

of conclusions
from testing to
field

Sample Test Cases

Mobile Devices Software Group

Page 118

Combinatorial Explosion in Possible Usage Scenarios

Mobile Devices Software Group

Page 119

Figure from [Tra95]

The Model

• A usage chain consists of:
– Nodes that represent usage states, i.e., the system visible modes of

operation;

– Arcs that represent transitions between states;

– Probability distribution to transitions that usually indicates the best
estimate of real usage

T i l t t dd d t t d t i ti t t– Two special states are added: a start and a termination state

• The process of constructing this chain usually involves three
steps:
1. Identify and represent states and transitions in a diagram;

2. Assign probabilities to the transitions;

3. Validate the model by transition coverage analysis.

Mobile Devices Software Group

Page 120

A Usage Model

Invocation

1.0

1 0 0 1 Termination

Main Menu

1.0 0.1

1.0

0.1
0 8

1.0

Display 1:
Time

Display 2:
Date

0.8

Mobile Devices Software Group

Page 121

Test Case Generation

• Test cases are selected by traversing the chain from the
start to the termination node;

• The next transition is chosen by a probability distribution
function;u ct o ;

Invocation

1.0

1 0 0 1 Termination

Main Menu

1.0 0.1

1.0

0.1
0 8

1.0

Display 1:
Time

Display 2:
Date

0.8

Mobile Devices Software Group

Page 122

Benefits from Statistics

• Statistical methods can be applied to help test planning and
reliability assessment by providing measurements such as:

– Probability of a transition appearing in a test sequence;

– Expected number of sequences to cover a state or transition;p q ;

– Expectation and variance of state or transition first passage;

– Number of sequences needed to cover all states and transitions;Number of sequences needed to cover all states and transitions;

– Number of statistically typical usage paths through the software;

And so on– And so on.

Mobile Devices Software Group

Page 123

Benefits from Statistics

• This information can help to define:

– Optimal test allocation;Optimal test allocation;

– Estimate variance of overall failure rate;

– Probability of finding a failure;– Probability of finding a failure;

– Expected number of failures;

And so on– And so on.

Mobile Devices Software Group

Page 124

Assumptions that Underlie the Validity of Inferences

• Each trial is performed under the same conditions
– Software, Input Values, Environment, Basis for Evaluation, Tester.

• There is one outcome per trial
Success or Failure– Success or Failure

• All outcomes are possible in each trial
– All possible scenarios are candidate for selection
– Testing should not proceed in the presence of blocking failures

• Trials are independent
– The inputs and outputs of a test case have no bearing on the inputs

and outcomes of any subsequent test case.

Mobile Devices Software Group

Page 125

Final Remarks

• Statistical testing can be a very valuable tool for testers;

• Markov chains and probability distributions are difficult to• Markov chains and probability distributions are difficult to
construct;

• Automatic generation of usage chains and probability
distribution from UML sequence diagrams and usage

fil (SPACES t l)profiles (SPACES tool).

• An even distribution can be a start point and can be still p
more effective than deterministic choice.

Mobile Devices Software Group

Page 126

TEST MODEL GENERATION
FROM USE CASEFROM USE CASE
SPECIFICATIONSSPECIFICATIONS

•Use Case Templates
•Generating ALTS Models•Generating ALTS Models

Mobile Devices Software Group

Page 127

Use Case Specifications as Test Models

• Test designers tend to adopt informal specifications

Potential ambiguities and inconsistencies• Potential ambiguities and inconsistencies

• Formal models are not usually an acceptable solutiony p

• Use case specifications as an alternative
– templates (“control flow”)
– Controlled Natural Language – CNL (text processing)

Mobile Devices Software Group

Page 128

Use Case Specifications as Test Models

• Several levels of abstraction
– User view
– Component View, …

T th ith th CNL th t l t ll t ti t t• Together with the CNL, the templates allow automatic test
model generation
– ALTS
– CSP, …

• Focus on User View and ALTS generation

Mobile Devices Software Group

Page 129

TEST MODEL GENERATION
FROM USE CASEFROM USE CASE
SPECIFICATIONSSPECIFICATIONS

•Use Case Templates
•Generating ALTS Models•Generating ALTS Models

Mobile Devices Software Group

Page 130

Use Case Template

Feature Id and NameFeature Id and Name

One or more Use Cases

Mobile Devices Software Group

Page 131

Use Case Template

Use case Id and Name

A brief description

Mobile Devices Software Group

Page 132

Use Case Template

M i FlMain Flow

Exception Flow

Mobile Devices Software Group

Page 133

Use Case Template

A sequence of steps

Mobile Devices Software Group

Page 134

Use Case Template

A brief description

The list of From and To steps

Related requirements

Mobile Devices Software Group

Page 135

TEST MODEL GENERATION
FROM USE CASEFROM USE CASE
SPECIFICATIONSSPECIFICATIONS

•Use Case Templates
•Generating ALTS Models•Generating ALTS Models

Mobile Devices Software Group

Page 136

Overview of the Algorithm

• Use case flows processed sequentially
– Main flow is the starting point g p
– Each step gives rise to states and transitions
– Order of steps is preservedp p

• The current state is:
– the last state created in case the From Step field isthe last state created in case the From Step field is

defined as START or this is the first state; or
– the last state of a given step (defined in the From Stepg p (p

field) of another template
• From step and To Step guide the connection of each trace

created by each of the templates.

Mobile Devices Software Group

Page 137

Overview of the Algorithm

U A ti S t St t d S t R• User Action, System State and System Response
become transitions

d d b t diti d t dR lt– preceded by steps, conditions and expectedResults
annotations, respectively

• States are created as new transitions need to be added• States are created as new transitions need to be added

• States already created can be reused when:
– To Step is different from END;
– From Step is different from START;
– A new condition is considered based on a user action

already added
D li t d t t d t iti l id d• Duplicated annotated transitions are also avoided

Mobile Devices Software Group

Page 138

Generating ALTS Models
0

steps

Start My Phonebook
Application

t dR lt

1

2

expectedResults

My Phonebook application
menu is displayed

t
4

3

expectedResults

steps

Select the New contact
option

6

5

steps

expectedResults

The New Contact form
is displayed

7

8

17

18 The next message
is highlighted

steps

Type the contact name
and the phone number

expectedResults

9

10

15

16

17

There is enough phone
memory to insert ...

expectedResults

expectedResults
11

12

The new contact form
is filled
steps

14

15

Confirm the contact
creation

conditions

Mobile Devices Software Group

Page 139

steps 13

Generating ALTS Models
0

steps

Start My Phonebook
Application

t dR lt

1

2

expectedResults

My Phonebook application
menu is displayed

t
4

3

3 A dialog is displayednforming that

expectedResults

steps

Select the New contact
option

6

5

30

There is not enough phone

expectedResults

3
2

A dialog is displayednforming that ...

steps

expectedResults

The New Contact form
is displayed

7

8
17

18 The next message
is highlighted

g p
memory

steps

Type the contact name
and the phone number

expectedResults

9

10

15

16

17

There is enough phone
memory to insert ...

expectedResults

15expectedResults
11

12

The new contact form
is filled
steps

14

15

Confirm the contact
creation

conditions
15

Mobile Devices Software Group

Page 140

steps 1313

Generating ALTS Models
0 36

The phone goes back tosteps

Start My Phonebook
Application

t dR lt
34

1

2

35

expectedResults

Select the Ok

The phone goes back to
My Phonebook application

29

expectedResults

My Phonebook application
menu is displayed

t
4

3

32

33

steps

A dialog is displayed

softkey

27
Press the Ok softkey

expectedResults
28

expectedResults

steps

Select the New contact
option

6

5

30

31

There is not enough phone

expectedResults

g p y
Informing that ...

24

25

26

Some of the extended
information form is filled

steps

steps

expectedResults

The New Contact form
is displayed

7

8
17

18 The next message
is highlighted

There is not enough phone
memory

22

Fill some of the extended
information fields.

23

24

expectedResults

o at o o s ed

steps

Type the contact name
and the phone number

expectedResults

9

10
15

16

17

There is enough phone
memory to insert ...

expectedResults

20

21

22

The extended information
form is displayed

steps

expectedResults
11

12

The new contact form
is filled
steps 13

14

15

Confirm the contact
creation

conditions

19

20

Go to context menu and
select Extended Information

expectedResults

p y

13

Mobile Devices Software Group

Page 141

steps 1313

Generating ALTS Models

0

steps

Start My Phonebook
A li ti

1 35

expectedResults

36
The phone goes back to
My Phonebook application

29
Application
expectedResults

My Phonebook application
menu is displayed

342

4

3

32

33

expectedResults

steps

Select the Ok
softkey

27
Press the Ok softkey

expectedResults
28

menu is displayed

dR l

steps

Select the New contact
option6

5

4

30

31

32

expectedResults

A dialog is displayed
Informing that ...

25

26

Some of the extended
i f ti f i fill d

steps

Press the Ok softkey

steps

expectedResults

The New Contact form
is displayed

7

8
17

18
The next message
is highlighted

There is not enough phone
memory

22

Fill some of the extended
information fields

23

24

expectedResults

information form is filled

steps

Type the contact name
and the phone number
expectedResults

9

10
15

16

17

There is enough phone
memory to insert ...

expectedResults

g g

20

21

22

The extended information
form is displayed

steps

information fields.

p
11

12

The new contact form
is filled
steps 13

14
Confirm the contact
creation

conditions
19

Go to context menu and
select Extended Information

expectedResults

Mobile Devices Software Group

Page 142

THE TARGET TOOL

Mobile Devices Software Group

Page 143

TaRGeT Test Generation

• Input
– Use case documents

Use Case Document
a

b h

• Output
– Test cases according a

c

d

f

g

i

jl

template (manual testing)
– Traceability matrices

e

• Generation algorithm
– All scenarios
– Test selection

– Requirements
Test purposesa a a a ……

Test Suite

– Test purposes
– Similarity

b

c

d

b

f

g

h

i

j

h

i

…

…

…

…

…

…l

Mobile Devices Software Group

Page 144
e

…

TaRGeT Test Generation

Mobile Devices Software Group

Page 145

TaRGeT Test Generation

Mobile Devices Software Group

Page 146

Test case template

Mobile Devices Software Group

Page 147

TaRGeT Test Generation

Mobile Devices Software Group

Page 148

TaRGeT Test Generation

Mobile Devices Software Group

Page 149

TaRGeT Test Generation

Mobile Devices Software Group

Page 150

TaRGeT Test Generation

Mobile Devices Software Group

Page 151

TaRGeT Test Generation

Mobile Devices Software Group

Page 152

TaRGeT Test Generation

Mobile Devices Software Group

Page 153

TaRGeT Test Generation

Mobile Devices Software Group

Page 154

TaRGeT Test Generation

Use Case Document 3Use Case Document 2Use Case Document 1

…

…

Test Suite

…

…

Mobile Devices Software Group

Page 155

TaRGeT Test Generation

Use Case Document 3Use Case Document 2Use Case Document 1

…

…

Test Suite

…

…

Mobile Devices Software Group

Page 156

TaRGeT Demonstration

Mobile Devices Software Group

Page 157

CONCLUDING REMARKS

Mobile Devices Software Group

Page 158

Summary

• Focus on approaches to MBT
– test models
– test generation
– test selectiontest selection

• Our solution
– hidden formal methods
– Experiments

– For small features: around 50% increase in
productivity

– More expected for larger features

Mobile Devices Software Group

Page 159

Brazil Test Center Research Group

Structured
CNL Use CasesStructured

CNL Use CasesCNL Use Cases Model CNL Use CasesCNL Use Cases
Checking

UML Diagrams
Execution

Effort
E ti tiEstimation

Feature and Integration Tests
(scripts and drivers)Feature and Integration Tests

(i t d CNL)(scripts and drivers)(scripts and CNL)

Mobile Devices Software Group

Page 160

Claudete Kawata – Sponsor, Luiz Wetzel - SOM
Paulo Borba - Coordinator

Rafael MarquesRafael Marques

Paulo Borba/
Marcelo

Patricia
MachadoFlávia BarrosAugusto Sampaio/

Juliano Yioda
Alexandre

Mota

Testing Process
(estimation,
traceability)

Lucas Eduardo/
Rodrigo

Test Generation
and Selection

Sidney /
Flavia

Emanuela/ Laisa/
Wilkerson/

Makelli

Test
Automation Glaucia Joao Marcio

Rodrigo/Product Lines

Model
V ifi ti

Cristiano

Rodrigo/
Marcio

Verification

Artificial
Intelligence

Bertolini

Joao/
Leonardo

Mobile Devices Software Group

Page 161TaRGeT Dante Torres, Luiz Josue, Laisa Nascimento
All MSc and PhD students

REFERENCES

Mobile Devices Software Group

Page 162

References

• [AM07] Andrade, W.L., Neto, F.G.O., Machado, P.D.L.: Geração de casos de
teste de interrupção para aplicações de celulares. In: Proceedings of the VIII
Workshop de Teste e Tolerância a Falhas (WTF 2007). (2007) 129–142.

• [CS06] Cabral, G., Sampaio, A.: Formal specification generation from
requirement documents. In: Brazilian Symposium on Formal Methods (SBMF).
(2006) 217–232.()

• [COM07] Cartaxo, E.G., de Oliveira Neto, F.G., Machado, P.D.L.: Automated
test case selection based on a similarity function. In: Proceedings of MOTES07
– Model based Testing - Workshop in conjunction with the 37th Congress of theModel based Testing Workshop in conjunction with the 37th Congress of the
Gesellschaft fuer Informatik. Volume 110 of LNI (2007) 381–386.

• [Car08+] Cartaxo, E.G., Andrade, W.L., Neto, F.G.O., Machado, P.D.L.: Lts-bt: A
tool to generate and select functional test cases for embedded systems In: Totool to generate and select functional test cases for embedded systems. In: To
be published in Proceedings of the ACM/SAC 2008. (2008).

• [FAM06] de Figueiredo, A.L.L., Andrade, W.L., Machado, P.D.L.: Generating
interaction test cases for mobile phone systems from use case specifications In:interaction test cases for mobile phone systems from use case specifications. In:
A-MOST ’06: Proceedings of the Second Int. Work. on Advances in Model-
based Software Testing, New York, NY, USA, ACM Press (2006).

Mobile Devices Software Group

Page 163

References

• [JJ05] Jard, C., Jéron, T.: Tgv: theory, principles and algorithms: A tool for the
automatic synthesis of conformance test cases for non-deterministic reactive
systems. Int. J. Softw. Tools Technol. Transf. 7(4) (2005) 297–315

• [Nog07+] Nogueira, S., Cartaxo, E.G., Torres, D.G., Aranha, E.H.S., Marques,
R.: Model based test generation: An industrial experience. In: Proceedings of 1st
Brazilian Workshop on Systematic and Automated Software Testing, Sociedade p y g
Brasileira de Computação (SBC) (2007)

• [Nog06] Nogueira, S.: Geração automática de casos de teste CSP dirigida por
propósitos. Master’s thesis, Universidade Federal de Pernambuco (UFPE)propósitos. Master s thesis, Universidade Federal de Pernambuco (UFPE)
(2006)

• [Tra95] Trammell, C.: Quantifying the Reliability of Software: Statistical Testing
Based on Usage Model 2nd IEEE Software Engineering Standards SymposiumBased on Usage Model. 2nd IEEE Software Engineering Standards Symposium,
1995.

• [Tre96] Tretmans, G.J.: Test generation with inputs, outputs and repetitive
quiescence Software Concepts and Tools 3 (1996) 103 120quiescence. Software—Concepts and Tools 3 (1996) 103–120

Mobile Devices Software Group

Page 164

