
Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Functional, Control and Data Flow, and
Mutation Testing: Theory and Practice

Part I - More theory than practice

Auri M. R. Vincenzi1, Márcio E. Delamaro2,
Erika N. Höhn3 and José C. Maldonado3

1Mestrado em Informática
Universidade Católica de

Santos

2Faculdade de Informática
Centro Universitário Euŕıpides de

Maŕılia

3Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

PSSE’2007 – 3rd to 6th December 2007

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Why to test? (1)

◮ Increasing interest and importance of software
testing, mainly due to the crescent demand for
higher software quality.

◮ Shull et al. (2002) alert that almost no modules are
defect-free during development, and after released
about 40% of the modules may be defect-free.

◮ Boehm and Basili (2001) also point out that it is
almost improbable to deliver a software product free
of defects.

◮ Moreover, later a fault is detected the greater the
cost for its correction.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Why to test? (2)

Cost-escalation factor of defect correction.

0.5-1 Requirement

2.5 Project

5 Coding

10 Unit Testing

25 Acceptance Tenting

100 Maintenance

Boehm (1987)

0.5-1 Requirement

1.5 Project

2.0 Coding

3.0 Unit Testing

4.0 Acceptance Tenting

5.0 Maintenance

Boehm and Basili (2001)

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Identifier Program

Test case set based on previous background.

◮ Program specification (extracted from (Maldonado
et al., 2004)):

The program determines if a given identifier is valid

or not in a variant of Pascal language, called Silly

Pascal. A valid identifier must begin with a letter

and contain only letters or digits. Moreover, it has

at least one and no more than six character length.

Samples of identifiers:

abc12 (valid);
cont*1 (invalid); 1soma (invalid); a123456 (invalid)

◮ We provided a Java and a C version of this
specification with a known set of faults for teaching
purpose.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

In focus

Discuss the theory and practice of software testing
focusing on the following testing criteria applied at unit
level:

◮ Functional testing technique

◮ Equivalence Partition.

◮ Structural testing technique

◮ Control-flow based criteria: All-Nodes
(All-Statements), and All-Edges
(Decision Coverage).

◮ Data-flow based criteria: All-Uses, and
All-Pot-Uses (Maldonado, 1991).

◮ Fault-Based testing technique

◮ Mutation Testing (DeMillo et al., 1978).

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

What is test? (1)

◮ According to the IEEE Standard Glossary
610.12-1990 (R2002) (IEEE, 2002):
“The process of operating a system or component
under specified conditions, observing or recording
the results, and making an evaluation of some
aspect of the system or component.”

◮ Craig and Jaskiel (2002) present another definition:
“Testing is a concurrent life cycle process of
engineering, using and maintaining testware in order
to measure and improve the quality of the software
being tested.”

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

What is test? (2)

◮ Different organizations and people have different
testing purposes.

◮ Software Process versus Testing Process.

◮ Testing Maturity Levels (Beizer, 1990):
◮ Level 0 - There’s no difference between testing and

debugging;
◮ Level 1 - The purpose of testing is to show that

software works;
◮ Level 2 - The purpose of testing is to show that the

software doesn’t work;
◮ Level 3 - The purpose of testing is not to prove

anything, but to reduce the perceived risk of not
working to an acceptable value;

◮ Level 4 - Testing is not an act. It is a mental
discipline that results in low-risk software without
much testing effort.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Terminology (1)
IEEE Standard Glossary 610.12-1990 (R2002) (IEEE,
2002) differentiates the terms:

1. Mistake – a human action that produces an
incorrect result. Example: an incorrect action took
by the programmer.

2. Fault – an incorrect step, process, or data definition
in a computer program. In common usage, the term
“error”, “bug”, and“defect”are used to express this
meaning. Example: an incorrect instruction or
statement.

3. Error – the difference between a computed, observed
or measured value or condition and the true,
specified or theoretically correct value or condition.

4. Failure – the inability of a system or component to
perform its required functions within specified
performance requirements.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Terminology (2)

Standard terminology relation.

Mistake Fault Error Error

Failure

introduces produces propagates

Cause Consequence

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Terminology (3)

One considers the following statement: (z = y + x)

1. Mistake – statement is changed by (z = y − x),
characterizing a fault.

2. Fault – if activated (executed) by an x = 0, no
incorrect output is produced. For x 6= 0, the fault
activation cause an error on variable z .

3. Error – the erroneous program state, when
propagated to the output, will cause a Failure.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Challenges

◮ Who have already tested a software product?

◮ What were the biggest challenges?

◮ Some common problems are:
◮ There is not enough time to test properly;
◮ There are too many combinations of inputs to test;
◮ There is difficulty in determining the expected

results of each test;
◮ Nonexistent or rapidly changing requirements;
◮ There is no training in testing processes;
◮ There is no tool support;
◮ Management that either does not understand testing

or (apparently) does not take care about quality;

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Undecidable Problems (1)

Correctness: There is no general purpose algorithm to
prove the correctness of a product;

Equivalence: Given two programs, whether they are
equivalent; or given two paths (sequence of
statements) whether they compute the
same function;

Executability: Given a path (sequence of statements)
whether there exist an input data that can
execute such a path.

Coincident Correction: A product can present,
coincidently, a correct result for a given
input data d ∈ D because one fault masks
the error of another one.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Undecidable Problems (1)

Correctness: There is no general purpose algorithm to
prove the correctness of a product;

Equivalence: Given two programs, whether they are
equivalent; or given two paths (sequence of
statements) whether they compute the
same function;

Executability: Given a path (sequence of statements)
whether there exist an input data that can
execute such a path.

Coincident Correction: A product can present,
coincidently, a correct result for a given
input data d ∈ D because one fault masks
the error of another one.

These limitations bring important considerations in the context of

software testing, mainly the impossibility of providing a full

automation of all necessary testing activities.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Undecidable Problems (2)

Example of Equivalence:
�

1 pub l i c c l a s s F a c t o r i a l {
2 pub l i c s t a t i c long compute (i n t x)
3 throws Negat iveNumberExcept ion {
4 i f (x >= 0) {
5 l ong r = 1 ;

6 f o r (int k = 2 ; k <= x ; k++) {
7 r ∗= k ;
8 }
9 r e t u rn r ;

10 } e l s e {
11 throw new Negat iveNumberExcept ion () ;
12 }
13 }
14 }

� �

�
1 pub l i c c l a s s F a c t o r i a l {
2 pub l i c s t a t i c long compute (i n t x)
3 throws Negat iveNumberExcept ion {
4 i f (x >= 0) {
5 l ong r = 1 ;

6 f o r (int k = 1 ; k <= x ; k++) { // i n t k = 2 ;
7 r ∗= k ;
8 }
9 r e t u rn r ;

10 } e l s e {
11 throw new Negat iveNumberExcept ion () ;
12 }
13 }
14 }

� �

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Undecidable Problems (3)

Example of Infeasiability:
�

4 pub l i c boo lean v a l i d a t e I d e n t i f i e r (S t r i n g s) {
5 char achar ;
6 boolean v a l i d i d = f a l s e ;
7 acha r = s . charAt (0) ;
8 v a l i d i d = v a l i d s (acha r) ;
9 i f (s . l e n g t h () > 1) {

10 achar = s . charAt (1) ;
11 i n t i = 1 ;
12 wh i l e (i < s . l e n g t h () − 1) {
13 achar = s . charAt (i) ;
14 i f (! v a l i d f (acha r))

15 valid id = false;

16 i ++;
17 }
18 }
19
20 i f (v a l i d i d && (s . l e n g t h () >= 1) && (s . l e n g t h () < 6))

21 return true;

22 e l s e
23 r e t u rn f a l s e ;
24 }

� �

◮ There is no executable paths that includes the
statements in lines 15 and 21.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (1)

Why do we not perform an exhaustive test?

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (1)

Why do we not perform an exhaustive test?

Input Domain∗

∗May be infinite (∞)

Product Product

Output Domain∗

b

b b
b

b

b

b

b

b

b

b

b

b

b

b r

r

r
r

r

r

r

r

r

r
r

r
r

r

r

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (2)

Observe the example below, adapted from Binder (1999):
�

1 i n t b l e ch (i n t j) {
2 j = j − 1 ; // shou ld be j = j + 1
3 j = j / 30000 ;
4 r e t u rn j ;
5 }

� �

◮ Considering an integer type of 16 bits (2 bytes) –
the lowest possible input value is -32,768 and the
highest is 32,767. Thus there are 65,536 possible
inputs into this small program.

◮ Will you have the time to create 65,536 test cases?
And for larger programs: How many test cases will
be necessary?

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (2)

�
1 i n t b l e ch (i n t j) {
2 j = j − 1 ; // shou ld be j = j + 1
3 j = j / 30000 ;
4 r e t u rn j ;
5 }

� �

So which input values do we choose?

Input(j) Expected Output Actual Result
1 0 0
42 0 0

40000 1 1
-64000 -2 -2

◮ Note that none of the test cases chosen have
detected this defect.

◮ Which input values will detect the defect?

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (3)

◮ Only four of the possible 65,536 input values will
find this fault:

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (3)

◮ Only four of the possible 65,536 input values will
find this fault:

◮ These are the input values:
Input(j) Expected Output Actual Result
-30000 0 -1
-29999 0 -1
30000 1 0
29999 1 0

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Current Challenges

Test Limitations

Impossibility

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

The Impossibility of Testing Everything (3)

◮ Only four of the possible 65,536 input values will
find this fault:

◮ These are the input values:
Input(j) Expected Output Actual Result
-30000 0 -1
-29999 0 -1
30000 1 0
29999 1 0

◮ What is the chance you will choose one of the
four???

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Design of Test Case

◮ To be most effective and efficient, test cases must
be designed, not just slapped together;

◮ According to Pressman (2005):
“The design of tests for software and other
engineering products can be as challenging as the
initial design of the product itself. Yet ... software
engineers often treat testing as an afterthought,
developing test cases that ‘feel right’ but have little
assurance of being complete. Recalling the
objectives of testing, we must design tests that have
the highest likelihood of finding the most errors with
a minimum amount of time and effort.”

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case

◮ Well designed test cases are composed by two
mandatory parts and others optional:

◮ Pre-conditions;
◮ Inputs;
◮ Outputs;
◮ Order of execution.

◮ (d , S(d)) is a test case, where d ∈ D is the input
and S(d) represents the expected output of d

according to the specification S .

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Inputs

◮ Inputs are commonly thought of as data entered at a
keyboard.

◮ Although, data can come from other sources-data,
such as:

◮ Data from interfacing systems;
◮ Data from interfacing devices;
◮ Data read from files or databases;
◮ The state the system is in when the data arrives; and
◮ The environment within which the system executes.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Outputs

◮ Outputs have similar variety as inputs.

◮ Often outputs are thought of as just the data
displayed on a computer screen.

◮ In addition:

◮ Data can be sent to interfacing systems and to
external devices;

◮ Data can be written to files or databases; and
◮ The state or the environment may be modified by

the system’s execution.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Oracle (1)

◮ All of these relevant inputs and outputs are
important components of a test case.

◮ In test case design, determining the expected
outputs is the function of an“oracle”.

◮ An oracle is any program, process, or data that
provides the test designer with the expected result of
a test.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Oracle (2)

◮ Beizer (1990) lists five types of oracles:

◮ Kiddie Oracles – Just run the program and see
what comes out. If it looks about right, it must be
right.

◮ Regression Test Suites – Run the program and
compare the output to the results of the same tests
run against a previous version of the program.

◮ Validated Data – Run the program and compare
the results against a standard such as a table,
formula, or other accepted definition of valid output.

◮ Purchased Test Suites – Run the program against
a standardized test suite that has been previously
created and validated. Programs like compilers, Web
browsers, and SQL (Structured Query Language)
processors are often tested against such suites.

◮ Existing Program – Run the program and compare
the output to another version of the program.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Order of Execution (1)

◮ There are two styles of test case design regarding
order of test execution:

◮ Cascading test cases; or
◮ Independent test cases.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Order of Execution (2)

◮ Cascading test cases - Test cases may build on
each other.

◮ For example, the first test case exercises a particular
feature of the software and then leaves the system in
a state such that the second test case can be
executed.

◮ In testing a database consider these test cases:

1. Create a record;
2. Read the record;
3. Update the record;
4. Read the record;
5. Delete the record;
6. Read the deleted record.

◮ The advantage of this approach is that each test
case is typically small and simple.

◮ The disadvantage is that if one test fails, the
subsequent tests may be invalid.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Parts of a Test Case – Order of Execution (3)

◮ Independent test cases - Each test case is entirely
self contained.

◮ Tests do not build on each other or require that
other tests have been successfully execute.

◮ The advantage is that any number of tests can be
executed in any order.

◮ The disadvantage is that each test tends to be
larger and more complex and thus more difficult to
design, create, and maintain.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Test Case Design

Inputs/Outputs

Oracle

Order of Execution

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Set of test cases

◮ The term test set is used to define a set of test
cases.

◮ When a test set T satisfies all the requirements of a
given criterion C , T is said C -adequate.

◮ From a given T C -adequate it is possible to obtain,
in theory, infinite C -adequate test sets by including
more test cases in T .

◮ Test set minimization.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Techniques

Testing Phases

Summary

Recommended Reading

References

Types Of Testing (1)

◮ Different types of testing criteria can be used to
verify the behavior of a product against its
specification.

◮ Testing is often divided into functional (black box)
testing, structural (white box) testing and
fault-based testing.

◮ We refer to these types of testing as testing
techniques.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Techniques

Testing Phases

Summary

Recommended Reading

References

Types Of Testing (2)

◮ A testing technique is defined according to the
source of information used to carried out the test
activity.

◮ Functional or Black box testing is a technique in
which testing is based solely on the requirements
and specifications. It requires no knowledge of the
internal paths, structure, or implementation of the
software under test

◮ Structural or White box testing is a technique in
which testing is based on the internal paths,
structure, and implementation of the software under
test. It requires detailed programming skills.

◮ Fault-based testing is a technique in which testing
is based on historical information about common
faults detected during the software development life
cycle.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Techniques

Testing Phases

Summary

Recommended Reading

References

Types Of Testing (3)

◮ Each testing technique has a set of testing criteria.

◮ A testing criterion systematizes the way testing
requirements are generated from the source of
information (specification, source code, historical
fault database, etc.)

◮ Testing requirements are useful to:
◮ Test case generation; or
◮ Evaluate the quality of an existent test set.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Techniques

Testing Phases

Summary

Recommended Reading

References

Testing Techniques, Criteria, and
Requirements

defines

uses

has

derives

generationevaluation

Testing
Technique

Testing
Criteria

Testing
Requirements

Test
Cases

Source of
Information

**Infeasible requirements.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Testing Phases (1)

◮ In the same way as other Software Engineering
activities, the Testing Activity is also divided in
phases.

◮ The objective is to reduce its complexity.

◮ Concept of“divide and conquer”.

◮ One begins testing the minor executable unit and
ends testing the complete system.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Testing Phases (2)

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

���
���
���

���
���
���

������
������
������

������
������
������

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������

������
������
������
������

Procedural Testing Object Oriented Testing

Entire System Entire System

Subsystem
Two or more procedures Cluster

Class

Components
Subsystem

Procedure or Subroutine

Integration Testing

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Testing Phases

Unit Testing

System/Acceptance Testing

Method

Main testing phases (adapted from Binder (1999)).

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Unit Testing

◮ Aims at identifying programming and logical faults
in the program unit.

◮ Different languages have different units:

◮ Pascal and C have procedures and functions.
◮ Java and C++ have methods (or classes?).
◮ Basic and COBOL (what is considered an unit?).

◮ How to test an unit which depends on another one
to be executed?

◮ How to test an unit which requires input data
provided by another unit?

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Driver and Stub

◮ Drivers and stubs are useful to unit testing.

◮ The driver is responsible to provide the necessary
test data to the unit and, later, to present the
generated output to the tester.

◮ The stub simulates the behavior of another unit not
yet implemented but called by the unit under test.

input driver output

Unit Under

Testing (F)

stub1 stub2 · · · stubn

Drivers and Stubs.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Integration Testing (1)

◮ The main objective is to verify if the units tested
individually communicate accordingly when
integrated together.

1. Why to perform integration testing if each unit, in
isolated, works correctly?

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Integration Testing (2)

◮ Data can be lost in the unit’s interface.

◮ Global variables can suffer undesirable interferences.

Unit X Integration Testing.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Integration Testing (3)

Types of Integration Errors.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

System Testing

◮ A system consists of all units of the software (and
possibly hardware, user manuals, training materials,
etc.) that make up the product delivered to the
customer.

◮ System testing focuses on defects that arise at this
highest level of integration.

◮ Typically system testing includes many types of
testing: functionality, usability, security and
localization, reliability and availability, capacity,
performance, backup and recovery, portability, and
many more. (ISO-IEC-9126 Standard for more
information (ISO/IEC, 1991))

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Summary

Recommended Reading

References

Acceptance Testing

◮ Acceptance testing is defined as that testing, which
when completed successfully, will result in the
customer accepting the software.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Summary

◮ The testing activity is a process executed in parallel
with the program development life cycle.

◮ The design of tests for software and other
engineering products can be as challenging as the
initial design of the product itself.

◮ The design of test case should consider the main
objective of testing: to expose the faults in the
program under test.

◮ The secret is to discover test cases with higher
probability to make the program to produce
incorrect outputs.

◮ The testing techniques and criteria provide support
to systematize the test case generation.

◮ Moreover, to reduce the complexity of the testing
activity it is divided in phases.

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

Recommended Reading

Interested readers can take a look at the first chapters of:

A Practitioner’s Guide to Software Test
Design
Lee Copeland
Artech House Publishers
Norwood, MA, 2004.

Introdução ao Teste de Software
Márcio Eduardo Delamaro
José Carlos Maldonado
Mario Jino
Campus Elsevier
Rio de Janeiro, RJ, 2007.

http://www.artechhouse.com/
http://www.campus.com.br/

Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Introduction

Test

Test Cases

Types Of Testing

Testing Phases

Summary

Recommended Reading

References

References I

B. Beizer. Software Testing Techniques. Van Nostrand Reinhold Company, New York, 2nd edition,
1990.

R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools, volume 1. Addison
Wesley Longman, Inc., 1999.

B. Boehm and V. R. Basili. Software defect reduction top 10 list. Computer, 34(1):135–137, 2001.
ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.962984.

B. W. Boehm. Industrial software metrics top 10 list. IEEE Software, 4(5):84–85, September 1987.

R. D. Craig and S. P. Jaskiel. Systematic Software Testing. Artech House Publishers, 2002.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34–43, April 1978.

IEEE. IEEE standard glossary of software engineering terminology. Standard 610.12-1990 (R2002),
IEEE Computer Society Press, 2002.

ISO/IEC. Quality characteristics and guidelines for their use. Padrão ISO/IEC 9126, ISO/IEC,
December 1991.

J. C. Maldonado. Potential-Uses Criteria: A Contribution to the Structural Testing of Software.
PhD thesis, DCA/FEE/UNICAMP, Campinas, SP, Brazil, July 1991. (in Portuguese).

J. C. Maldonado, E. F. Barbosa, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza, and M. Jino.
Introdução ao teste de software. Technical Report 65 – Version 2004-01, Instituto de Ciências
Matemáticas e de Computação – ICMC-USP, April 2004. Available at:
http://www.icmc.usp.br/~biblio/index.php?destino=notas_didaticas. Accessed on:
02/19/2007 (in Portuguese).

R. S. Pressman. Software Engineering – A Practitioner’s Approach. McGraw-Hill, 6 edition, 2005.

F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R.e Tesoriero,
and M. Zelkowitz. What we have learned about fighting defects. In VIII International
Symposium on Software Metrics - METRICS’02, pages 249–258, Washington, DC, USA,
June 2002. IEEE Computer Society. ISBN 0-7695-1339-5.

http://www.icmc.usp.br/~biblio/index.php?destino=notas_didaticas

	
	Introduction
	Test
	Current Challenges
	Test Limitations
	Impossibility

	Test Cases
	Test Case Design
	Inputs/Outputs
	Oracle
	Order of Execution

	Types Of Testing
	Testing Techniques

	Testing Phases
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	Summary
	Recommended Reading
	References

