
Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Functional, Control and Data Flow, and
Mutation Testing: Theory and Practice

Part II - More practice than theory

Auri M. R. Vincenzi1, Márcio E. Delamaro2,
Erika N. Höhn3 and José C. Maldonado3

1Mestrado em Informática
Universidade Católica de

Santos

2Faculdade de Informática
Centro Universitário Euŕıpides de

Maŕılia

3Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

PSSE’2007 – 3rd to 6th December 2007



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Definition

Properties

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (1)

Given a product P and a test set T , it is defined:

◮ Adequacy criterion of test case: predicate to
evaluate T when testing P;

◮ Selection method of test case: procedure to
choose test cases to test P.

Testing adequacy criterion is “a predicate that defines
what properties of a program must be exercised to
constitute a ‘thorough’ test” (Goodenough and Gerhart,
1975).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Definition

Properties

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (2)

defines

uses

has

derives

generationevaluation

Testing
Technique

Testing
Criteria

Testing
Requirements

Test
Cases

Source of
Information

**Infeasible requirements.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Definition

Properties

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Minimal properties

The minimal properties which a testing criterion C
should fulfill are (Maldonado, 1991):

1. To guarantee, from the control flow perspective, the
coverage of all conditional deviations;

2. To require, from the data flow perspective, at least
on use of all computational result; and

3. To require a finite test set.

The complexity of a testing criterion is defined as the
maximum number of test cases required to satisfy it in
the worst case.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Definition

Properties

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Subsume relation

Establish a partial order between testing criteria.
“A criterion C1 subsumes a criterion C2 if for every
program P and any test set T1 C1-adequate, T1 is also
C2-adequate and there is a program P and a test set T2

C2-adequate such that T2 is not C1-adequate”.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Definition

Properties

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Evaluation aspects

These aspects are evaluated from the theoretical and
experimental point of views.

Cost: the required effort to use the criterion.

Efficacy: the capacity of the criterion in detecting
faults.

Strength: the probability of satisfying a given criterion
C2 after to satisfy a criterion C1.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Overview

◮ The name functional or black-box testing is due to
the technique considers the product under test
(PUT) as a box of which are only known its inputs
and outputs.

◮ Unlike its complement, white box testing, black box
testing requires no knowledge of the internal paths,
structure, or implementation of the PUT.

◮ Black box testing criteria generate testing
requirements based on the product specification.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Functional Testing Process

◮ The basic steps of application are:

1. The requirements or specifications are analyzed.
2. Valid inputs are chosen based on the specification to

determine that the PUT processes them correctly.
Invalid inputs must also be chosen to verify that the
PUT detects them and handles them properly.

3. Expected outputs for those inputs are determined.
4. Tests are constructed with the selected inputs.
5. The tests are run.
6. Actual outputs are compared with the expected

outputs.
7. A determination is made as to the proper

functioning of the PUT.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Some Functional Testing Criteria

◮ Equivalence Partition.

◮ Boundary Value Analysis.

◮ Decision Table.

◮ Pairwise Testing.

◮ State-Transition Testing.

◮ Domain Analysis Testing.

◮ Use Case Testing.

◮ Systematic Functional Testing.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Functional Testing versus Testing Phases

◮ Since it is an implementation independent testing
technique, black box testing criteria can be applied
at any of the testing phases.

◮ As we move up in size from module to subsystem to
system the box gets larger, with more complex
inputs and more complex outputs, but the approach
remains the same.

◮ Also, as we move up in size, we are forced to the
black box approach; there are simply too many paths
through the PUT to perform white box testing.

Functional testing applicability.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Disadvantages of the Functional Testing

◮ It is dependent on very good software specification
(which, in general, it is not well elaborated).

◮ It is not possible with black box criteria to determine
whether essential parts of the software have been
executed.

◮ To find every defect using black box testing, every
possible combination of input data is required, both
valid and invalid. This exhaustive testing is almost
always impossible. What is the probability to select
a test case to execute this “feature”?

�
1 i f ( name==”Lee ” && employeeNumber==”1234 ” &&
2 employmentStatus==”Recent l yTe rminatedForCause ”) {
3 send Lee a check f o r $1 , 0 00 , 0 00 ;
4 }

� �

◮ A worse case: how to test a compiler program? Is it
possible to execute it with all possible inputs? How
many programs can be written for a given
compiler? (Myers, 1979).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Advantages of the Functional Testing

◮ It can be used at any testing phase.

◮ It is programming-paradigm independent.

◮ Systematic black box testing directs the tester to
choose subsets of tests that are both efficient and
effective in finding defects. Better than random
testing (Copeland, 2004).

◮ It is effective to determine some kinds of faults:

◮ Missing functionalities, for instance.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Other Examples

◮ Others examples of the Equivalence Partition
criterion can be found elsewhere (Beizer, 1995;
Copeland, 2004; Myers et al., 2004).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Identifier Program (1)

Program specification (extracted from (Maldonado et al.,
2004)):

The program determines if a given identifier is valid or
not in a variant of Pascal language, called Silly Pascal. A
valid identifier must begin with a letter and contain only
letters or digits. Moreover, it has at least one and no
more than six character length.

Samples of identifiers:

abc12 (valid);
cont*1 (invalid); 1soma (invalid); a123456 (invalid)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Identifier Program (2)

Equivalence classes for the Identifier program:

Input conditions Valid Classes Invalid Classes
Identifier’s size t 1 ≤ t ≤ 6 t < 1 t > 6

(1) (2) (3)
First character c is a letter Yes No

(4) (5)
Only contains valid characters Yes No

(6) (7)

Test set example:
TEquivalence Partition = {(a1, Valid), ("", Invalid),

(A1b2C3d, Invalid), (2B3, Invalid), (Z#12, Invalid)}



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Identifier Program (3)

Go to practice:

◮ Testing Identifier without JUnit.

◮ Testing Identifier with JUnit.

L
et

’s
go to practice!!!

L
et’s go to prac

tic

e!
!!



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Overview

Most known criteria

Applicability

Disadvantages/Advantage

Example of Application

Automation Support

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Automation Support

◮ JUnit is not the only tool to support the
documentation and automatic execution of test
cases.

◮ Considering the most popular programming
languages, there are others similar tools, such as:

◮ TestNG (http://testng.org/) for Java.
◮ DUnit (http://dunit.sourceforge.net/) for

Delphi.
◮ cUnit

(http://sourceforge.net/projects/cut/) for
C.

◮ Jeté (http://jete.sourceforge.net/)
integration testing for Java.

◮ And others. An extensive list can be found
elsewhere http://www.testingfaqs.org/ and
http://www.opensourcetesting.org/.

http://testng.org/
http://dunit.sourceforge.net/
http://sourceforge.net/projects/cut/
http://jete.sourceforge.net/
http://www.testingfaqs.org/
http://www.opensourcetesting.org/


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Overview

◮ Structural or White Box Testing is the opposite of
Functional Testing.

◮ Testing is based on the internal paths, structure, and
implementation of the product under test (PUT).

◮ Structural testing generally requires detailed
programming skills.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Structural Testing Process

◮ The basic steps of application are:

1. The PUT’s implementation is analyzed.
2. Paths through the PUT are identified.
3. Inputs are chosen to cause the PUT to execute

selected paths. This is called path sensitization.
4. Expected results for those inputs are determined.
5. The tests are run.
6. Actual outputs are compared with the expected

outputs.
7. A determination is made as to the proper

functioning of the PUT.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Structural Testing Criteria

◮ Control Flow Based Testing Criteria.
◮ All-Nodes, All-Edges, All-Paths

◮ Data Flow Based Testing Criteria.
◮ All-Defs, All-P-Uses, All-C-Uses, All-Uses,

All-Du-Paths, All-Pot-Uses, All-Pot-Du-Paths,
All-Pot-Uses/Du.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Structural Testing versus Testing Phases (1)

◮ White box testing can be applied at all levels of
system development-unit, integration, and system.

◮ White box testing may involve:
◮ Paths that are tested are within a module (unit

testing).
◮ Paths between modules within subsystems.
◮ Paths between subsystems within systems.
◮ Paths between entire systems.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Structural Testing versus Testing Phases (2)

Different paths within the PUT.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Disadvantages of the Structural Testing

◮ The number of execution paths may be so large that
they cannot all be tested.

◮ The test cases chosen may not detect data
sensitivity errors. For instance:

y = x * 2; // should read y = x ** 2

will pass for test cases x = 0, y = 0 and x = 2,

y = 4.

◮ White box testing assumes the control flow is correct
(or very close to correct). Since the tests are based
on the existing paths; nonexistent paths cannot be
usually discovered through white box testing.

◮ In general, it is necessary to determine infeasible
paths. Impossible to be fully automated.

◮ The tester must have the programming skills to
understand and evaluate the software under test.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Advantages of the Structural Testing

◮ Efficacy on determine logical or programming faults
in the PUT, specially at the unit level.

◮ It is possible to determine whether critical or
essential paths were executed by the test set.

◮ Minimal testing requirement: to ensure that every
statement in the software was executed at least once
by the test set before the software to be released.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition (1)

◮ Control flow based testing is one of the approaches
within structural testing technique.

◮ Identifies the execution paths inside a module
(testing requirements) and then creates and executes
test cases to cover those paths.

◮ Definition:
◮ Path: A sequence of statements that begins at an

entry and ends at an exit.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Drawbacks (1)

◮ Control flow paths has a number of significant
drawbacks:

◮ The number of paths could be huge and thus
untestable within a reasonable amount of time.
Every decision doubles the number of paths and
every loop multiplies the paths by the number of
iterations through the loop. For example:

�
1 f o r ( i =1; i <=1000; i++)
2 f o r ( j =1; j <=1000; j++)
3 f o r ( k=1; k<=1000; k++)
4 doSomethingWith ( i , j , k ) ;

� �

executes doSomethingWith() one billion times
(1000 x 1000 x 1000). Each unique path deserves to
be tested.

◮ Paths called for in the specification may simply be
missing in the module:

�
1 i f ( a>0) d o I sG r e a t e r ( ) ;
2 i f ( a==0) do l sEqua l ( ) ;
3 // m i s s i n g s ta tement − i f ( a<0) d o l s L e s s ( ) ;

� �



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Drawbacks (2)

◮ More problems...
◮ Defects may exist in processing statements within

the module even through the control flow itself is
correct.

�
1 // a c t u a l ( but i n c o r r e c t ) code
2 a=a+1;
3 // c o r r e c t code
4 // a=a−1;

� �

◮ The module may execute correctly for almost all
data values but fail for a few:

�
1 i n t b l e ch ( i n t a , i n t b ) {
2 r e t u rn a/b ;
3 }

� �

fails if b has the value 0 but executes correctly if b is
not 0.

◮ Even though control flow testing has a number of
drawbacks, it is still a vital tool in the tester’s
toolbox. And it is complementary to its counterpart
(Black Box Testing).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Control Flow Graph (1)

◮ Abstraction of a PUT, representing its control flow.

◮ Directed graph composed by nodes and edges.

◮ Each node represents one or more statements that
are all executed in sequence, i.e., once the first
statement within a node is executed all the others in
the same node are also executed. There is no
control flow deviation to any of this statements,
except to the first one.

◮ An edge represents the control flow existent
between nodes.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Control Flow Graph (2)
Example:

pub l i c boo lean v a l i d a t e I d e n t i f i e r ( S t r i n g s ) {
char achar ;

/∗01∗/ boolean v a l i d i d = f a l s e ;
/∗01∗/ i f ( s . l e n g t h ( ) > 0) {
/∗02∗/ achar = s . charAt ( 0 ) ;
/∗02∗/ v a l i d i d = v a l i d s ( acha r ) ;
/∗02∗/ i f ( s . l e n g t h ( ) > 1) {
/∗03∗/ achar = s . charAt ( 1 ) ;
/∗03∗/ i n t i = 1 ;
/∗04∗/ wh i l e ( i < s . l e n g t h ( ) − 1) {
/∗05∗/ achar = s . charAt ( i ) ;
/∗05∗/ i f ( ! v a l i d f ( acha r ) )
/∗06∗/ v a l i d i d = f a l s e ;
/∗07∗/ i ++;

}
}

}
/∗08∗/ /∗09∗/ /∗10∗/

i f ( v a l i d i d && ( s . l e n g t h ( ) >= 1) && ( s . l e n g t h ( ) < 6) )
/∗11∗/ r e t u rn t rue ;

e l s e

/∗12∗/ r e t u rn f a l s e ;
}

1

2

8

3

9

12

4

5

6

7 10

11



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Control Flow Graph (3)

1

2

8

3

9

12

4

5

6

7 10

11

◮ All-Nodes criterion
◮ (1#@, Invalid) – passes through nodes

(1,2,3,4,5,6,7,4,8,12)
◮ (i, Valid) – passes through nodes

(1,2,8,9,10,11)
◮ TAll-Nodes = {(1#@, Invalid),(i, Valid)} is

All-Nodes-adequate.
◮ But such a test set is not All-Edges-adequate:

edges (1, 8), (5, 7), (9, 12) and (10, 12) are
not executed by any test case in TAll-Nodes.

◮ Edge (9, 12) is infeasible.
◮ TAll-Edges = TAll-Nodes ∪ {(A1b2C3d,

Invalid))} is All-Edges-adequate.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Identifier Program

Go to practice: evaluating the coverage of
TEquivalence Partition with respect to All-Nodes and
All-Edges criteria.

◮ TEquivalence Partition = {(a1, Valid), ("", Invalid), (A1b2C3d, Invalid),

(2B3, Invalid), (Z#12, Invalid)}

◮ Testing Identifier with Emma.
◮ All-Nodes criterion.

◮ Testing Identifier with JaBUTi.
◮ All-Edges criterion (All-Edgesei criterion).

L
et

’s
go to practice!!!

L
et’s go to prac

tic

e!
!!



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Others Similar Tools

◮ Emma is not the only tool to support the application
of control flow based testing criteria.

◮ Considering the most popular programming
languages, there are others similar tools, such as:

◮ Cobertura
(http://cobertura.sourceforge.net/).

◮ EclEmma (http://www.eclemma.org/) Emma
plug-in for Eclipse.

◮ TCAT (http://www.soft.com/TestWorks) for
C/C++ and Java.

◮ JavaCov (http://www.alvicom.hu/) for Java.
◮ And others. An extensive list can be found

elsewhere http://www.testingfaqs.org/ and
http://www.opensourcetesting.org/.

http://cobertura.sourceforge.net/
http://www.eclemma.org/
http://www.soft.com/TestWorks
http://www.alvicom.hu/
http://www.testingfaqs.org/
http://www.opensourcetesting.org/


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition (1)

◮ Data flow testing is another approach within
structural testing technique.

◮ It complements the control flow testing criteria.

◮ Aims at to detecting faults related with the
definition and use of variables in a program, i.e., its
target is the flow of data instead of the flow of
control of a program.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition (2)

◮ Data flow testing is a powerful approach to detect
improper use of data values due to coding mistake.

◮ Rapps and Weyuker (1982) disseminated this
approach. They say:

“It is our belief that, just as one would not feel
confident about a program without executing every
statement in it as part of some test, one should not
feel confident about a program without having seen
the effect of using the value produced by each and
every computation.”



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition (3)

Principles of the Criteria Definition (Martins, 2003)

Program = sequence of actions on variables

⇓
Control Flow

+
Data Flow

(Information about statements defining and using
variables)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition (4)

Types of Uses:

◮ There are two kinds of variable use:

◮ Use in computations, called computational use

(c-use). For instance: a = b * 1.
◮ Use in conditions, called predicative use (p-use).

For instance: if (a >= b).

◮ In both uses it is equally important that the variable
has been assigned a value (defined) before it is
used.

◮ The definition of a variable occurs when a value is
assigned to it. For example: a = 10 and b = 5.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition-Use Graph (1)

◮ To represent the different status of a variable in a
program, a abstract representation, called
Definition-Use Graph (DUG) (Rapps and Weyuker,
1982), was developed.

◮ It is an extension of the Control Flow Graph.

◮ It includes information about variables definition,
uses and destructions on each node.

◮ Static and Dynamic Analysis of DUG:
◮ Static: examine the diagram (formally through

inspections or informally through look-sees).
◮ Dynamic: construct and execute test cases.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition-Use Graph (2)

pub l i c boo lean v a l i d a t e I d e n t i f i e r ( S t r i n g s ) {
char achar ;

/∗01∗/ boolean v a l i d i d = f a l s e ;
/∗01∗/ i f ( s . l e n g t h ( ) > 0) {
/∗02∗/ achar = s . charAt ( 0 ) ;
/∗02∗/ v a l i d i d = v a l i d s ( acha r ) ;
/∗02∗/ i f ( s . l e n g t h ( ) > 1) {
/∗03∗/ achar = s . charAt ( 1 ) ;
/∗03∗/ i n t i = 1 ;
/∗04∗/ wh i l e ( i < s . l e n g t h ( ) − 1) {
/∗05∗/ achar = s . charAt ( i ) ;
/∗05∗/ i f ( ! v a l i d f ( acha r ) )
/∗06∗/ v a l i d i d = f a l s e ;
/∗07∗/ i ++;

}
}

}
/∗08∗/ /∗09∗/ /∗10∗/

i f ( v a l i d i d && ( s . l e n g t h ( ) >= 1) && ( s . l e n g t h ( ) < 6) )
/∗11∗/ r e t u rn t rue ;

e l s e

/∗12∗/ r e t u rn f a l s e ;
}



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition-Use Graph (3)

◮ Example of DUG: 1

2

8

3

9

12

4

5

6

7 10

11

d = {s,valid_id}

s
s

d = {valid_id,achar}

achar

s

sd = {achar,i}

s

s,i s,i

d = {achar}

s,i

achar achar

d = {valid_id}

d = {i}

i

valid_id valid_id

s

s

ss
d = {setofdefinitions}
variableassignedtonode(c-use)

variableassignedtoedge(p-use)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition-Use Graph (4)

◮ Example of data flow associations:
◮ 〈s, 1, 3〉, 〈valid_id, 1, (8, 9,)〉, and

〈valid_id, 1, (8, 12,)〉.
◮ 〈valid_id, 1, (8, 9,)〉 is infeasible.

◮ Example of definition-clear path:
◮ Path (1,8,12) is a def-clear path with respect to

valid_id defined at node 1: covers
〈valid_id, 1, (8, 12,)〉.

◮ Path (1,2,8,12) is not a def-clear path with respect
to valid_id defined at node 1, because valid_id

is redefined at node 2.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Rapps & Weyuker family criteria

◮ The most basic data flow based criteria is the
All-Defs criterion which is part of the Rapps &
Weyuker family criteria (Rapps and Weyuker, 1985).

◮ Among the others criteria of such a family the most
used and investigated criterion is the All-Uses
criterion.

◮ All-Defs: requires that a data flow association for
each variable definition to be exercised, at least
once, by a def-clear path with respect to a c-use or
p-use.

◮ All-Uses: requires that all data flow associations
between a variable definition and all its subsequence
uses (c-uses and p-uses) to be exercised by at least
one def-clear path.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Definition Graph (1)

◮ Example of DEG: 1

2

8

3

9

12

4

5

6

7 10

11

d = {s,valid_id}

d = {valid_id,achar}

d = {achar,i}

d = {achar}

d = {valid_id}

d = {i}

d = {setofdefinitions}



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Potential Uses Criteria (1)

◮ Based on the concept of potential-association:
◮ Associations are established without a explicit use.

◮ They requires only the Definition Graph
(Def-Graph): CFG + Definitions.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Potential Uses Criteria (2)

◮ The most basic Potential Uses criteria (Maldonado,
1991) is All-Pot-Uses.

◮ All-Pot-Uses: requires for each node i containing a
definition of a variable x that to all node and edge
that can be reached from i by a def-clear path with
respect to x to be exercised.

◮ Potential uses associations 〈s, 1, 6〉,
〈achar, 3, (8, 9) 〉, and 〈achar, 3, (8, 12) 〉, for
instance, are required by the All-Pot-Uses criterion
but are not required by the other data flow based
criterion.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Subsume Relation (1)

◮ Relation between control and data considering only
feasible paths. All-Paths

All-Pot-Du-Paths

All-Pot-Uses/Du

All-Du-Paths

All-Pot-Uses

All-Uses

All-C-Uses/Some-P-Use All-P-Uses/Some-C-Use

All-Defs

All-C-Uses All-P-Uses

All-Edges

All-Nodes



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Subsume Relation (2)

◮ Relation between control and data considering
infeasible paths.

All-Paths

All-Pot-Du-Paths

All-Pot-Uses/Du

All-Du-Paths

All-Pot-Uses

All-Uses

All-Edges

All-C-Uses/Some-P-Use All-P-Uses/Some-C-Use

All-Nodes

All-Defs

All-C-Uses All-P-Uses



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Identifier Program

Go to practice: evaluating the coverage of TAll-Nodes
and TAll-Edges with respect to All-Uses and
All-Pot-Usesei criteria.

◮ TAll-Nodesei
= TEquivalence Partition∪ {("", Invalid), (a1, Valid)}.

◮ TAll-Edgesei
= TAll-Nodesei

∪ {(c, Valid), (\{, Invalid), (a\{b, Invalid)}.

◮ Testing Identifier with JaBUTi.
◮ All-Usesei and All-Pot-Usesei criteria.

L
et

’s
go to practice!!!

L
et’s go to prac
tic

e!
!!



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Overview

Most Known Criteria

Applicability

Disadvantage/Advantage

Control Flow Based Testing Criteria

Control Flow Graph – CFG

Example of Application

Automation Support

Data Flow Based Testing Criteria

Definition Use Graph – DUG

Definition Graph – DEG

Potential Uses Criteria

Subsume Relation

Example of Application

Automation Support

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Others Similar Tools
◮ There are few tools which supports the automation

of data flow based testing criteria.
◮ Many of them are prototype.

◮ xSuds (http://xsuds.argreenhouse.com/) for C
and C++.

◮ JaBUTi
(http://incubadora.fapesp.br/projects/jabuti/)
for Java.

◮ Poke-Tool
(http://incubadora.fapesp.br/projects/poketoo
for C, Fortran, and Cobol.

◮ Coverlipse
(http://coverlipse.sourceforge.net/) for
Java.

◮ You may find others by searching elsewhere
http://www.testingfaqs.org/,
http://java-source.net/,
http://www.opensourcetesting.org/, and other
repositories.

http://xsuds.argreenhouse.com/
http://incubadora.fapesp.br/projects/jabuti/
http://incubadora.fapesp.br/projects/poketool/
http://coverlipse.sourceforge.net/
http://www.testingfaqs.org/
http://java-source.net/
http://www.opensourcetesting.org/


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Fault-based Testing Criteria

◮ Error Seeding (Budd, 1981)

◮ Mutation Analysis (DeMillo et al., 1978)

◮ Interface Mutation (Delamaro et al., 2001)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (1)

◮ The basic idea behind the technique is the
competent programmer hypothesis: a good
programmer writes correct or close-to-correct
programs.

◮ Assuming this hypothesis is valid: errors are
introduced in a program through small syntactic
deviations (faults) that lead its execution to an
incorrect behavior.

◮ Mutation Testing applying small changes to the
PUT.

◮ The tester to construct test cases that show that
such modifications create incorrect
products (Agrawal et al., 1989).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (2)

◮ A second hypothesis explored by the
Mutation Testing is the coupling effect (DeMillo
et al., 1978).

◮ Complex errors are composition of simple ones.
◮ Test sets which reveal simples faults are also able to

reveal complex faults (Budd, 1980).
◮ A single mutation is applied in the program P under

test, i.e., each mutant has a single syntactic
transformation, relative to the original program.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (3)

Given a product under testing P and a test set T to be
evaluated. Steps of application:

1. Original product execution
◮ P is executed against T .
◮ If a failure occurs, the test is over.
◮ If no failure occurs, P still can have hidden faults

that T is not able to reveal.

2. Mutant generation
◮ P is submitted to a set of mutation operators

which transform P into P1,P2, . . . ,Pn called
mutants of P.

Mutation operators are rules that model the most frequent faults or

syntactic deviation related to a given programming language.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (4)

4. Mutant execution
◮ The mutants are executed against the same test set

T .
◮ Dead mutants - results are different from P.
◮ Live mutants - results are the same as P.
◮ The ideal situation would be all the mutants dead:

T is adequate for testing P.

5. Live mutant analysis
◮ Live mutants are analyzed for identifying possible

equivalence with P or a weakness of the test set T .



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (5)

Live mutant analysis

◮ Equivalent mutant
◮ A mutant M is said equivalent to a product P if for

all input data d ∈ D we observe that M(d) = P(d).

◮ Fault-reveling mutant
◮ A mutant is said fault-revealing if for any test case t

such that P(t) 6= M(t) we can conclude that P(t) is
not according to the expected result, i.e., the
presence of a fault is revealed.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Definition (6)

◮ Mutation score
◮ Objective measure to evaluate the test set adequacy

against Mutation Testing.

ms(P, T ) =
DM(P, T )

M(P) − EM(P)

where

DM(P, T ): number of mutants killed by the test set
T ;

M(P): total number of mutants;

EM(P): number of mutants equivalent to P.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Disadvantage

◮ The main problem with this criterion is the high
number of generated mutants.

◮ Mutants have to be compiled and executed.
◮ Live mutants have to be analyzed for possible

equivalence.

◮ Requires good knowledge about the product
implementation to ease the task of analyzing live
mutants.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Advantage

◮ It is easier to be extended to any“executable”
product at specification or implementation level.

◮ It is one of the most effective testing criteria in
detecting faults.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Identifier Program

Go to practice: evaluating the coverage of
TAll-Pot-Usesei .

◮ TAll-Pot-Usesei
= TAll-Edgesei

∪ {(%%,Invalid), (%%%a,Invalid)}.

◮ Testing Identifier (C version) with
PROTEUM/IM 2.0.

◮ Using a subset of the Unit Mutation Operators
(Sufficient Set).

Operator Description

u-SSDL Removes a statement from the program.
u-ORRN Replaces a relational operator.
u-VTWD Replaces the reference to a scalar by its predecessor and successor.
u-Ccsr Replaces the reference to a scalar by a constant.
u-SWDD Replaces a while by a do-while.
u-SMTC Breaks a loop execution after two executions.
u-OLBN replaces a logical operator by a bitwise operator.
u-Cccr Replace a constant by another.
u-VDTR Forces each reference to a scalar to be: negative, positive and zero.

L
et

’s
go to practice!!!

L
et’s go to prac

tic

e!
!!



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Most Known Criteria

Overview of Mutation Testing

Applicability

Disadvantage/Advantage

Example of Application

Automation Support

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Others Similar Tools

◮ There are some tools which supports the automation
of Mutation Testing criteria.

◮ PROTEUM/IM 2.0 (Delamaro et al., 2000) for C (unit and
integration level).

◮ MuJava (http://ise.gmu.edu/~ofut/mujava/) for Java.
◮ Jester (http://jester.sourceforge.net/) for Java.
◮ Pester (http://jester.sourceforge.net/) for Python.
◮ Nester (http://nester.sourceforge.net/) for C#
◮ Mothra (http://www.ise.gmu.edu/~ofut/rsrch/mut.html)

for Fortran.
◮ Insure++ (http://www.parasoft.com/) for C and C++.
◮ Other mutation tools can be found elsewhere

http://www.mutationtest.net/.

http://ise.gmu.edu/~ofut/mujava/
http://jester.sourceforge.net/
http://jester.sourceforge.net/
http://nester.sourceforge.net/
http://www.ise.gmu.edu/~ofut/rsrch/mut.html
http://www.parasoft.com/
http://www.mutationtest.net/


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Experimental Software Engineering

◮ World-wide View

◮ CeBase - NSF Center for Empirically Based Software

Engineering

http://www.cebase.org/

◮ ISERN - International Software Engineering Research

Network

http://www.iese.fhg.de/ISERN/

◮ ESELAN - Experimental Software Engineering

Latin-American Network

http://listas.cos.ufrj.br/mailman/listinfo/eselan-

http://www.cebase.org/
http://www.iese.fhg.de/ISERN/
http://listas.cos.ufrj.br/mailman/listinfo/eselan-l


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Experimental studies

◮ Primary studies
◮ Survey

◮ Obtaining qualitative and quantitative data: interviews
or questionnaires.

◮ Do not have control of the running or of the measures.

◮ Study Case
◮ Detailed information is collected during a continuous

period of time.
◮ As a study observational, the control’s level is less than

a controlled experiment.

◮ Controlled Experiment
◮ High level of control.
◮ Performed when a control of the situation is necessary,

manipulating the behavior of study directly and
systematically.

◮ Secondary studies
◮ Systematic Reviews.

◮ Collect, summarize and analyze data obtained in
primary studies.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

An Experimental Methodology for Software
Processes Validation

Incremental evaluation of a new process

◮ Approach for evolving processes, from the
early concept phase to the tailoring and
use of the process on an industrial project;

◮ Building-up of a body of evidence
concerning process effectiveness using
different types of studies to address
different questions of interest;

◮ Approach can be helpful for a responsible

interaction with industry.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Experimental Studies in Software Engineering:
Lessons Learned

◮ Software engineering experimentation is hard and
experimenters work better when supported by peers;

◮ Cooperation is key to tackle the complexity of the
problems;

◮ Many replications are needed to truly understand the
variables involved in any software engineering
experiment;

◮ Know-how transfer and support is highly desirable
when someone is starting with experimentation. In
our case, Prof. Victor R. Basili was key to provide us
with an“experimentation culture”;

◮ Full cooperation requires trust among the partners;

◮ Close cooperation and knowledge sharing has a key
role to play in software engineering experimentation.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Knowledge Sharing in Experimental Software
Engineering

Experimentation Knowledge Sharing Model (Shull et al., 2004)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Framework for Improving the Replication of
Experiments

FIRE - Framework for Improving the Replication of

Experiments (Mendonça et al., 2007)



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Human Resource

◮ Academy have not correspond to the industry
expectations. Some initiatives are:

◮ George Mason University.
◮ Kansas State University.
◮ Purdue University.
◮ ICMC-USP.
◮ UFPE/Motorola.
◮ · · ·

◮ In Brazil:
◮ More than 1,000 major courses:

◮ few of them provide regular subjects on software

testing.
◮ initiative of ICMC-USP is to integrate software

testing with basic programming concepts.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Contributions

◮ Experimental Studies.
◮ Potential-Uses criteria.
◮ Pair-Wise Data Flow.
◮ Interface Mutation criterion.
◮ Mutation testing × Reactive Systems.

◮ Testing Tools
◮ Proteum, PROTEUM/IM, Proteum/RS.
◮ PokeTool.
◮ MGASET.
◮ JaBUTi, JaBUTi/MA, JaBUTi/AJ, · · · .
◮ CATSDL

◮ Experimental Studies



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Increase the Cooperation with Industry

Experimental
Studies

Real
Projects

Experimental
Studies

Industry Academy

Knowledge Base
(ISERN, CeBASE, · · · )



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Summary (1)

◮ Functional, structural and fault-based testing criteria
are useful to:

◮ systematize the testing activity;
◮ generate test cases;
◮ evaluate the quality of test set; and
◮ help the tester do decide when to stop testing.

◮ They are complementary and should be used
together to maximize their benefits and the
fault-detection capability.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Summary (2)

◮ Experimental Software Engineering plays an
important role in this scenario by:

◮ providing a knowledge base about different aspects
of V&V techniques, including the testing criteria.

◮ establishing a relationship between different V&V
techniques.

◮ allowing the definition of incremental testing
strategies, combining different testing criteria.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Summary (3)

◮ The support automation for a testing criterion is
fundamental for:

◮ easing the adoption of the criterion;
◮ reducing the human intervention during the testing

activity;
◮ carrying out experimental studies.
◮ teaching and training purpose.
◮ technology transference from the academy to the

industry.



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

Recommended Reading

Interested readers can take a look at the first chapters of:

A Practitioner’s Guide to Software Test

Design

Lee Copeland
Artech House Publishers
Norwood, MA, 2004.

Introdução ao Teste de Software

Márcio Eduardo Delamaro
José Carlos Maldonado
Mario Jino
Campus Elsevier
Rio de Janeiro, RJ, 2007.

http://www.artechhouse.com/
http://www.campus.com.br/


Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

References I

H. Agrawal, R. A. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J.
Martin, A. P. Mathur, and E. H. Spafford. Design of mutant operators for the C
programming language. Technical Report SERC-TR41-P, Software Engineering
Research Center, Purdue University, West Lafayette, IN, March 1989.

B. Beizer. Black-Box Testing : Techniques for Functional Testing of Software and
Systems. John Wiley & Sons, New York, 1995.

T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University,
New Haven, CT, 1980.

T. A. Budd. Mutation Analysis: Ideas, Example, Problems and Prospects, chapter
Computer Program Testing, pages 129–148. North-Holand Publishing Company,
1981.

L. Copeland. A Practitioner’s Guide to Software Test Design. Artech House
Publishers, 2004.

M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An
integrated mutation testing environment. In Mutation 2000 Symposium, pages
91–101, San Jose, CA, October 2000. Kluwer Academic Publishers.

M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering, 27
(3):228–247, March 2001.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11(4):34–43, April 1978.

J. B. Goodenough and S. L. Gerhart. Towards a theory of test data selection. IEEE
Transactions on Software Engineering, 2(3):156–173, September 1975.

J. C. Maldonado. Potential-Uses Criteria: A Contribution to the Structural Testing
of Software. PhD thesis, DCA/FEE/UNICAMP, Campinas, SP, Brazil, July
1991. (in Portuguese).



Functional, Control and
Data Flow, and

Mutation Testing:
Theory and Practice

Auri M. R. Vincenzi,
Márcio E. Delamaro,

Erika N. Höhn and José
C. Maldonado

Testing Criteria

Functional Criteria

Structural Criteria

Fault-based Criteria

Experimental Software
Engineering

Perspectives

Summary

Recommended Reading

References

References II

J. C. Maldonado, E. F. Barbosa, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza,
and M. Jino. Introdução ao teste de software. Technical Report 65 – Version
2004-01, Instituto de Ciências Matemáticas e de Computação – ICMC-USP,
April 2004. Available at:
http://www.icmc.usp.br/~biblio/index.php?destino=notas_didaticas.
Accessed on: 02/19/2007 (in Portuguese).

E. Martins. Teste baseado na implementação (fluxo de dados). Slides de Aula, April
2003. Dispońıvel em:
http://www.ic.unicamp.br/~eliane/Cursos/Transparencias/VVTestes/testesc
Acesso em: 18/01/2005.

M. G. Mendonça, J. C. Maldonado, M. C. F. de Oliveira, J. Carver, S. C. P. F.
Fabbri, F. Shull, G. H. Travassos, E. N. Höhn, and V. R. Basili. A framework to
coordinate and evolve software engineering controlled experiments. 2007. (in
preparation).

G. J. Myers. The Art of Software Testing. Wiley, New York, 1979.

G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of Software
Testing. Wiley, New York, 2004.

S. Rapps and E. J. Weyuker. Data flow analysis techniques for program test data
selection. In 6th International Conference on Software Engineering, pages
272–278, Tokio, Japan, September 1982.

S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, 11(4):367–375, April
1985.

F. Shull, M. G. Mendonça, V. Basili, J. Carver, J. C. Maldonado, S. Fabbri, G. H.
Travassos, and M. C. Ferreira. Knowledge-sharing issues in experimental
software engineering. Empirical Software Engineering, 9(1-2):111–137, 2004.
ISSN 1382-3256. doi: 10.1023/B:EMSE.0000013516.80487.33.

http://www.icmc.usp.br/~biblio/index.php?destino=notas_didaticas
http://www.ic.unicamp.br/~eliane/Cursos/Transparencias/VVTestes/testescxbranca2.pdf

	
	Testing Criteria
	Definition
	Properties

	Functional Criteria
	Overview
	Most known criteria
	Applicability
	Disadvantages/Advantage
	Example of Application
	Automation Support

	Structural Criteria
	Overview
	Most Known Criteria
	Applicability
	Disadvantage/Advantage
	Control Flow Based Testing Criteria
	Control Flow Graph -- CFG
	Example of Application
	Automation Support
	Data Flow Based Testing Criteria
	Definition Use Graph -- DUG
	Definition Graph -- DEG
	Potential Uses Criteria
	Subsume Relation
	Example of Application
	Automation Support

	Fault-based Criteria
	Most Known Criteria
	Overview of Mutation Testing
	Applicability
	Disadvantage/Advantage
	Example of Application
	Automation Support

	Experimental Software Engineering
	Perspectives
	Summary
	Recommended Reading
	References

