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Universidade Federal do Rio Grande do Norte, Brazil
3 Bang & Olufsen, Denmark

4 School of Computing Science, University of Newcastle upon Tyne, UK

Abstract. In distributed computing, the leadership election has been
used to distributively designate a node as the central controller (leader)
of a network of nodes. The complexity of the algorithm arises due to the
unawareness of every node of who the current leader is. After running
the algorithm, however, a unique node in the network must be elected
as the leader and recognized as so by the remaining nodes. In this pa-
per, using CSP, we formalise the leadership election algorithm used by
our industrial partner. Its verification is feasible only due to the use of
a pattern based strategy that allows the verification to be carried out
in a fully local manner. The pattern used here is novel and a further
contribution of the paper. A refinement relation together with predicate
abstraction is used to describe pattern conformance. The mechanisation
of the behavioural conformance is carried out using FDR.

Keywords: Leadership Election, Local Analysis, Deadlock Freedom.

1 Introduction

The complexity inherent to most distributed algorithms (and systems) can turn
their development into a very laborious and error-prone task. The use of formal
methods like CSP [11] considerably simplifies this task and provides a better
understanding and means for verification of phenomena that are exclusive to
the concurrent world, like deadlock and livelock. For CSP, the model checker
FDR [5] provides an automatic check of finite state specifications for correctness
and properties like deadlock and divergence freedom.

Component-based or Systems of Systems (SoS) development are only feasible
in an industrial context of high-quality critical systems if trustworthy architec-
tures are obtained by carefully designing and systematically verifying the con-
stituents integration in a scalable fashion. A naive practice has been to verify
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and validate them after they have been built [7, 8, 3]. The major issue is the
high cost to fix a problem that is found in a late stage of development. Instead
of verifying the entire system, more promising approaches focus on iteratively
identifying problems in compositions. However, in most approaches the cost of
subsequent compositions is not alleviated by the results of the previous ones [1, 2,
4]. Every composition is taken as a monolithic system for verification, and prop-
erties of its constituting parts are not considered. Hence, these methods are not
compositional and have scalability problems by not considering local analysis.

In [10, 9], we proposed a systematic approach to build trustworthy component-
based systems underpinned by CSP [11]. In this approach, constituents may only
be composed using composition rules that impose the necessary constraints for
a safe interaction among components. Together, the composition rules system-
atise the approach preserving deadlock-freedom by construction. Although sys-
tematic, this approach is not local for cyclic communicating systems, potentially
presenting a state explosion in the verification of such systems. This drawback
can make our approach inapplicable to complex cyclic systems.

In [14], Roscoe proposed a solution based on architectural patterns that re-
duce the verification effort, by allowing a local analysis of deadlock, even for
cyclic communication topologies.

In this paper, we formalise and analyse the version of the leadership election
algorithm used at B&O5, which is an example of a class of cyclic networks.
This algorithm is used in B&O’s networks of Audio and Video (AV) systems
with up to 32 systems. There are other solutions to this problem [6, 14], whose
details are discussed in the conclusions. They make different assumptions on the
networks topology and faults. Like [14], we use CSP as our modelling language
as it is a well-established notation with industrial strength tools for verification
of communicating systems.

The use of standard approaches in the formal verification of our model pre-
sented scalability issues. This motivated the use of a local analysis strategy based
on architectural patterns. However, none of the existing architectural patterns
in the literature (including those in [14]) match directly the structure of our case
study. As a further contribution, we formalise a new pattern that allows local
deadlock analysis of our example. We use CSP to specify the pattern’s behaviour
and its stable failures refinement to formalise a conformance relation. We com-
pare the application of our local analysis with a standard global analysis using
FDR.

In Section 2, we introduce the CSP notation. Section 3 presents the under-
pinning model and theory used to analyse systems for deadlocks. In Section 4 we
formalise a verification approach that allows local analysis of systems that obey
a communication pattern suitable for our case study. The leadership algorithm,
its practical use at B&O, and its formalisation in CSP is presented in Section 5.
In Section 6, we apply the verification approach of Section 4 to our example.
We also present an empirical analysis of the approach and contrast its verifica-
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tion effort against the standard approach based on a global analysis. Finally, in
Section 7, we present our concluding remarks and future work.

2 CSP

CSP is a process algebra that can be used to describe systems as interacting
components, which are independent self-contained processes with interfaces that
are used to interact with the environment [11]. Most of the CSP tools, like FDR2
and ProBE, accept a machine-processable CSP, called CSPM , used in this paper.

The two basic CSP processes are STOP and SKIP; the former deadlocks, and
the latter does nothing and terminates. The prefixing a -> P is initially able
to perform only the event a; afterwards it behaves like process P. A boolean
guard may be associated with a process: g & P behaves like P if the predicate g

is true; it deadlocks otherwise. The alternation if b then P else Q is available
and has a standard behaviour. The operator P1;P2 combines P1 and P2 in se-
quence. The external choice P1[]P2 initially offers events of both processes; the
occurrence of the first event or termination resolves the choice in favour of the
process that performs either of them. The environment has no control over the
internal choice P1|~|P2, in which the choice is resolved internally. The synchro-
nised parallel composition P1[|cs|]P2 synchronises P1 and P2 on the events in
the set cs; events that are not listed occur independently. Processes composed
in interleaving P1|||P2 run independently. The event hiding P\cs encapsulates
the events that are in cs. The renamed process P[[a<-b]] behaves like P except
that all occurrences of a in P are replaced by b. The interrupt operator allows
a process Q to take over from another process P: P /\ a -> Q specifies a as the
signal for Q to start.

CSP also provides replicated versions for most of its compositional operators.
For instance, ||| x : S @ P(x) stands for the interleaving of all P(x), for x∈
S. Local processes are defined using the let Id = P within Q construct, which
behaves as Q and restricts the scope of process Id to Q.

There are three major semantic models for CSP: traces, stable failures, and
the failures-divergences model. In this work we only use the stable failures one. In
this model processes are described by its traces, a set of finite sequences of events
it can perform given by traces(P), and by its set of stable failures, given by the
function failures(P). The stable failures set contains all pairs (s,X ) where s is a
finite trace of P and X is a set of events that P can refuse after performing s. All
states in which P may perform an internal action are considered unstable: they
are not taken into account. Finally, the function refusals(P , s) gives the set of
events the process P can refuse after the trace s. This model also possesses a
refinement relation ([F=) on processes. The relation P [F= Q holds if and only
if traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q) holds.
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3 Networks of processes

The concepts presented in this section are essentially drawn from [12, 13], which
present an approach to deadlock analysis of systems described as a network of
CSP processes. The most fundamental concept is the one of atomic tuples, which
represents the most fundamental components of a system. These are triples that
contain an identifier for the component, the process describing the behaviour
of this component and an alphabet that represents the set of events that this
component can perform. A network is a finite set of atomic tuples.

Definition 1 (Network) Let CSP Processes be the set of all possible CSP pro-
cesses, Σ the set of CSP events and IdType the set for identifiers of atomic
tuples. A network is a finite set V , such that:

V ⊂ Atomics

where: Atomics =̂ IdType × PΣ × CSP Processes.

The behaviour of a network is given as the alphabetised parallel composition
of the behaviour of each component, where processes and alphabets are extracted
from atomic tuples. We use an indexed version of the alphabetised parallel oper-
ator, which generalises the binary one with processes interacting in the alphabet
intersection. The functions A(id ,V ) and B(id ,V ) extract the alphabet and the
behaviour of an atomic process id from the network V .

Definition 2 (Behaviour of a network) Let V be a network.
B(V ) = || id : dom V @ [A(id,V)] B(id,V)

By way of illustration, let V = {(id1,B1,A1), (id2,B2,A2), (id3,B3,A3)}. The
behaviour of this network is given by B(V ) = B1 [A1||A2] B2 [A24||A3] B3.

A live network is a structure that satisfies three assumptions. The first one is
busyness. A busy network is a network whose atomic components are deadlock
free. The second assumption is atomic non-termination, i.e. no atomic compo-
nent can terminate. The last assumption concerns interactions. A network is
triple-disjoint if at most two processes share an event, i.e. if for any three differ-
ent atomic tuples their alphabet intersection is the empty set.

In a live network, a deadlock state can only arise from an improper interaction
between processes, since no process can individually deadlock. This particular
misinteraction is captured by the concept of ungranted requests. The states σ of
a network are pairs (s,R), such that s is a trace of the network and R is a vector
of refusal sets. The function R(id) returns the refusal set of the process id after
s � A(id). The projection t � s takes a trace t and a set of events s as arguments
and yields the trace t restricted to s. An ungranted request arises in a state σ
when an atom, say id1, is offering an event to communicate with another atom,
say id2, but id2 cannot offer any of the events expected by id1. In addition, both
processes must not be able to perform internal actions.

A proper cycle of ungranted requests is an important element of deadlock
analysis. It is represented as a sequence of different process identifiers, C , where
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each element at the position i , C (i), has an ungranted request to the element at
the position i ⊕ 1, C (i ⊕ 1), where ⊕ is addition modulo length of the sequence.
A conflict is a proper cycle of ungranted requests with length 2. After these
definitions two fundamental theorems extracted from [12] are introduced.

Theorem 1 Let V be a live network. Any deadlocked state has a cycle of un-
granted requests. If V is conflict-free then a deadlock state has a long cycle.

The next theorem requires the introduction of three important concepts. A
communication graph is a representation of the topology of the network where
vertexes represent atomic components of the network and edges represent the
alphabet intersection between components. A disconnecting edge is an edge that,
if removed, increases the number of connected components of the graph, i.e., an
edge that is not part of a cycle in the communication graph. The components left
after the removal of every disconnecting edge are called essential components.

Theorem 2 Let V be a live network with essential components V1, . . . ,Vk where
the pair of processes joined by each disconnecting edge are conflict-free. Then if
each Vi of the network is deadlock free, then so is V.

Theorem 1 allows one to reduce the problem of avoiding deadlock by pre-
venting cycles of ungranted requests. Theorem 2 allows the decomposition of a
network in subnetworks called essential components that can be independently
verified for deadlock freedom.

With these two results it is already possible to fully verify a tree topology
network in a local way, by checking only pairs of processes, due to the fact that
only proper cycles of length two can arise in tree networks. Nevertheless, cyclic
networks cannot be locally verified by these methods. Moreover, if one tries to
verify the freedom of long cycles of ungranted requests, based on Theorem 1, this
might be as complex as exploring the whole state space. Therefore, for networks
with cycles in their topology a complete and local method for checking deadlock
freedom is not generally available.

4 Pattern based approach to cyclic network verification

As a complementary approach to the decomposition strategy presented in the
previous section, we consider the adoption of communication patterns in order
to support local analysis of cyclic networks. Our approach is based on the design
rules described in [11], which proposes resource sharing and client/server design
rules, among others. As a novel contribution, we propose a pattern so as to
prevent deadlocks by avoiding the emerging of cycles of ungranted requests. The
pattern proposed in this section can be used to design and analyse networks that
are asynchronous and dynamic (in the sense that nodes might turn on and off)
and whose transport layer possesses a mechanism allowing to detect whether a
node is on or off.
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The pattern can be applied to networks with two different types of nodes:
the participants and the transport layer. The participants of the network do
not interact directly with each other, but exchange messages via the transport
layer. The participants recursively send messages to all its peer participants and
receives messages from them. Both, sending and receiving, must follow an order.
Furthermore, participants can turn on and off at any time. The transport layer,
composed of a set of transport entities, provides communication point-to-point
between participants of the network. It has also the ability to identify whether
participants are on or off.

The proposed pattern imposes behavioural and structural restrictions on a
network as a means to guarantee deadlock freedom. Our approach uses parametrised
CSP processes to capture pattern specifications and the stable failures refinement
relation to capture a notion of pattern conformance. Structural restrictions are
captured as predicates over the network structure and conformance through a
predicate satisfaction relation.

A transport entity connects two participants: a sender and a receiver. It is
entitled to receive data from its sender participant and to pass this data on to
its receiver participant. This communication is unidirectional from the sender to
the receiver. It also detects whether its sender is switched on or off.

Definition 3 (Transport entity specification) Let id be an identifier of a
transport entity, source(id) and target(id) the identifiers of the sender and re-
ceiver participants associated to the transport entity id, and offCh, sendCh,
receiveCh, onCh, timeoutCh functions that, given the identifiers of source and
target participants, yield the channels used for detecting that the sender is off,
receiving data, sending data, detecting that the sender is on, and signalling a
timeout, respectively. The transport entity CSP specification is:

TransportSpec(id) =
let

idS = source(id)
idT = target(id)
On = offCh(idS,idT) -> Off [] sendCh(idS,idT)?data -> OnF(data)
OnF(d) = offCh(idS,idT) -> Off

[] sendCh(idS,idT)?data -> OnF(data)
[] receiveCh(idS,idT)!d -> On

Off = onCh(idS,idT) -> On [] timeoutCh(idS,idT) -> Off
within Off

The processes On, OnF and Off specify the expected behaviour of a transport
entity in a sender detected as on and no data available state, in a sender detected
as off and data available state, and in a sender detected as off state, respectively.
The transport entity initially behaves as Off, in which case it offers two events to
its participants: a timeout that informs the receiver that the sender is switched
off, and a turn on that detects when the sender turns on, in which case it
behaves as the process On. In this state the transport entity is on and empty: it
can receive data from the sender participant or detect a switching off event
from it. In the case of the latter, the entity behaves as Off again. However,
if it receives data, the transport entity stores this data and starts behaving as
OnF. In the OnF state, the transport entity can receive new data from its sender
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participant, in which case the new data overwrites the data previously stored.
However, it can also transmit the data stored to its receiver participant, in which
case the transport entity behaves as On again. Finally, it can also detect whether
its sender participant has turned off, in which case it behaves as the process Off.

The participants of the network contain its business logic. They have a dy-
namic behavioural feature that allows them to turn on and off and a functional
behaviour that involves data exchange and any business related function. The
behavioural specification of a conform participant is given in the next definition.

Definition 4 (Participant specification) Let id be the identifier of the par-
ticipant and sequence(id) a function that yields a sequence of ids representing
the order in which this participant interacts with its neighbours. The participant
CSP specification is:

ParticipantSpec(id) =
let s = sequence(id)

SendReceive(id,s) = Send(id,s);Receive(id,s);SendReceive(id,s)
within OnDetect(id,s); (SendReceive(id,s) /\ (SKIP |~|STOP));

OffDetect(id,s); ParticipantSpec(id,s)

A participant first behaves as the process OnDetect, which sends a signal
to inform that it is on to each transport entity to which it acts as a sender.
This mechanism abstracts the ability of the transport layer to detect participant
status. The s parameter gives the order in which the participant interacts with
its transport entities. After turning on, it acts recursively, first behaving as a
sender (Send) and then as a receiver (Receive). When behaving as a sender,
it sends messages to all transport entities that have this participant as sender,
following the order recorded in s. When acting as a receiver, in the same way, it
interacts with the transport entities that have it as a receiver, also following the
order stated in s: it accepts both the incoming data and a timeout signal that
indicates the sender associated with the transport entity is off.

In order to check whether a concrete model of either a transport entity or
a participant conforms to the corresponding abstract behaviour, we use a re-
finement relation in the stable failures model of CSP. We restrict the behaviour
of the processes being tested for conformance to the events that are related in-
teractions, as these are the only events of interest for deadlock analysis. This
restriction is given by the Abs function. Hence, transport entity and participant
conformance is given by the following definition.

Definition 5 (Transport entity and Participant conformance) Let Spec
stand for the specification of either a transport entity or of a participant (as in
Definitions 3 and 4). Let id be the identifier of the candidate concrete model.
Then id conforms to Spec if, and only if, the following refinement holds:

Spec [F= Abs(id,V)

where:

– Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V))



8

– AVoc(id,V) = Union({inter(A(id,V),A_(a)) | a <- V, ID_(a) != id})

– a <- V states that a is an atomic tuple from V
– A_(a) and ID_(a) give the alphabet and identifier of a, respectively.

In addition to the behavioural restrictions, the pattern also imposes struc-
tural restrictions. The first one restricts the alphabet of any two participants or
transport entities to be disjoint. This restriction is encoded in the disjointAlpha
predicate. This ensures that two participants or two transport entities may in-
teract directly. The controlledAlpha predicate is satisfied if the alphabet of the
interaction between constituents is the set composed of the send, receive, on, off
and timeout events. This ensures that the behaviour related to the interaction
between constituents of the network is restricted to the controlled behaviour.
The sequence of ids used to guide the order of interaction for the participant’s
behavioural restriction must have only one occurrence of each neighbour of this
participant. This restriction is guaranteed by the validOrder predicate. Hence,
the conformance of a network to this pattern is given by the following predicate,
which is a conjunction of the restrictions presented.

Definition 6 (Async Dynamic network) Let V be a network, participants
a set of participants and transport entities a set of transport entities.

AsyncDynamic(V , participants, transport entities) =̂

disjointAlpha(participants) ∧ disjointAlpha(transport entities) ∧
partition(V , participants, transport entities) ∧
∀ id : participants • ParticipantBehaviouralRestriction(id) ∧
∀ id : transport entities • TransportEntityBehaviouralRestriction(id) ∧
∀ id : participants • validOrder(id) ∧
∀ id1 : participants, id2 : transport entities • controlledAlpha(id1, id2)

where:

– disjointAlpha(set) =̂ ∀ id1, id2 : set •A(id1) ∩A(id2) = ∅
– partition(v , s1, s2) =̂ s1 ∩ s2 = ∅ ∧ s1 ∪ s2 = dom v
– ParticipantBehaviouralRestriction(id ,V ) =̂ ParticipantSpec(id,V) [F= Abs(id,V)

– TransportEntityBehaviouralRestriction(id ,V ) =̂ TransportSpec(id,V) [F= Abs(id,V)

– validOrder(id) =̂ neighbours(id) = ran sequence(id) ∧ functional(sequence(id))
– controlledAlpha(id1, id2) =̂

A(id1) ∩A(id2) = {| sendCh(source(id2), target(id2)),

receiveCh(source(id2), target(id2)), onCh(source(id2), target(id2)),

offCh(source(id2), target(id2)), timeoutCh(source(id2), target(id2)) |}

The following theorem ensures the ability of our pattern to prevent deadlock.

Theorem 3 Let V be a network, and participants and transport entities two
partitions of the domain of this network, then:

AsyncDynamic(V , participants, transport entities)⇒ V is deadlock free
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Proof.

Pattern soundness. The soundness of this pattern can be guaranteed by the pre-
vention of cycles of ungranted requests. This can be argued as follows. Let the
network in question be conform to the pattern presented. First of all, there can-
not be an ungranted request between a pair of participants or a pair of transport
entities, since their alphabets are disjoint violating the request predicate.

There cannot be an ungranted request from a participant behaving as a
sender to any transport entity. There is a request from a sender participant to
one of its transport entity if this participant is offering an on, an off or an send
event. When the on event is offered, then the transport entity is mandatorily in
an off state, thus accepting the on event which violates the ungratedness clause.
In the same way, when the off event or the send event are offered, the transport
entity is mandatorily on, hence it accepts these two events, violating again the
ungrantedness predicate. Therefore, there cannot be a cycle C in which atom
C (i) is behaving as a sender participant to the transport entity atom C (i ⊕ 1).

Therefore, there can only be cycle of alternate participants behaving as re-
ceiver and transport entities. If a transport entity is off or full, then it must
offer either the timeout event or the transmit event, this two events are accepted
by a participant acting as a receiver, what violates the ungratedness condition.
Hence, the ungranted request from a C (i) participant acting as a receiver to
a C (i ⊕ 1) transport entity can only occur when the corresponding transport
entity is on and empty.

If the transport entity is on and empty, the receiving participant has acquired
some data from the bus cell, it has proceeded to its sending behaviour and it
finally behaves again as a receiver waiting for data from the bus cell. Mean-
while, the sender participant to this same transport entity has not progressed
in its behaviour, being stuck waiting for data from another bus cell, otherwise
it would have sent some data to the transport entity in question that would not
be empty, preventing the ungranted request. Therefore, in this case the receiver
participant has performed a complete sending behaviour more recently than the
sender participant.

In a more formal definition, if we consider an inequality predicate that com-
pares which process completed a behaviour more recently, i.e. given two pro-
cesses trace s1 and s2; s1 > s2 if and only if s1 has completed a behaviour after
the last shared behaviour and s2 has not. For instance, if we consider traces
s1 = 〈Send .0,Receive.0,Send .0〉 and s2 = 〈Send .1,Receive.0〉, where Send .0 rep-
resents the trace corresponding to a completed sending behaviour and Receive.0
the same for the receiving behaviour. Hence, s1 > s2 since after Receive.0, the
shared behaviour, s1 completed its send behaviour given by Send .0 and s2 did
not complete any behaviour. In this case, the ungranted request arises from a
process that has completed a behaviour more recently than the process target of
the ungranted request. For instance, if we consider the ungranted request shown
in Figure 1, between Participant 0 and Transport Entity, Participant 0 has com-
pleted a behaviour, the Send.0, after the Receive.0 behaviour, the last behaviour
completed by the Transport Entity, which is also the last occurence of a shared
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behaviour, since Participant 0 receives data from this bus cell. This means that,
in a cycle of ungranted request after trace s, if C (i) has an ungranted request
to C (i ⊕ 1) and the inequality operator described given by >, then si > si⊕1

for any i . Hence, there cannot be a cycle of ungranted requests, since given that
our network is finite, if a cycle is present this would imply that si > si , as our
relation is transitive, a contradiction which proves our point. Hence, we argued
for each possible combination of ungranted requests, the conditions why a cycle
cannot occur. Therefore, by the Theorem 1 our pattern prevents a deadlock state
of occurring.

Fig. 1: Example of ungrated requests

5 Industrial Case Study: the leadership election at B&O

A critical concept in B&O product networks is that of the dynamic global sys-
tem configuration, which describes the current combined configuration of all the
products in the network. For example, the currently active user experiences (such
as current song, planned playlist, volume) are stored in the system configuration,
enabling the B&O system to allow the experiences to be reproduced as the user
moves around the home, thus giving the impression that the experiences follow
the user.

The requirements for availability and consistency of the system configura-
tion must be realised by the communications architecture, which is based on a
publisher-subscriber pattern. To enable this communication pattern the under-
lying network must always be able to identify a leader (the publisher). Concep-
tually the architecture of a B&O product network contains two global states:

– The publisher-subscriber state: a single publisher (the leader) is present and
the product network can guarantee availability and consistency of user expe-
rience. All other connected products are subscribers (followers), and newly
joined products are undecided, until they learn the identity of the leader.

– The election state: no publisher is present and the user experiences are in-
consistent or unavailable. In this state all connected products are undecided.
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In the election state a leadership protocol is executed by the products in the
network. During this state each product reacts to a set of local transition rules
that will guarantee the desired emergent property. A B&O network is inherently
asynchronous, and therefore the algorithm must tolerate the following cases:

– Products may join or leave the network at any point during or after an
election. Products may enter a power-saving state, restart because of defects,
or be turned on or off by their users. As a consequence, the algorithm must
handle the disappearance of leaders and the appearance of new contenders
for leadership.

– Communication is asynchronous, with some latency in the network. There
is, therefore, no coordination of when an election is started, and so any prod-
uct can initiate an election independently. The likelihood of simultaneously
initiated elections is increased by network latency.

One of the risks that such a fluid environment increases is that the protocol
might reach a deadlocked state. To mitigate this, we develop a formal model of
the B&O leadership election protocol and show that it is deadlock-free. B&O in-
vests in a formal analysis of this kind because of its desire to develop and analyse
models in the early design stages, before expensive implementation commitments
are made.

Our leadership election model is composed of distributed nodes that store
internal data in a set of memory cells; this data storage is managed by a memory
controller. A node communicates with another node through a bus cell, which
provides a point-to-point unidirectional communication. To illustrate these con-
nections, a 2-node configuration architecture is given in Figure 2(a).

The nodes are distinguished by their id parameter, which is drawn from the
set {0..N}. The processes prefixed with BroadCast specify the order in which
messages are sent and received by nodes: the process BroadCastData(id,data)
is used by node id to broadcast data to all other processes, while the process
BroadCastControl(id,..) distributes status messages throughout the network.

A node that is off is modelled by the process OffNode:

OffNode(id, priority) = switchOn.id ->
BroadCastControl(id,onSource,OnNode(id, max(LOWER_LIMIT_PET,priority-1)))

When a node is turned on it broadcasts that fact, then behaves as a switched
on node. The priority is decremented as a heuristic strategy to elect a stable
leader, i.e. the one that has the least occurrences of leaving the network. Fol-
lowing an initialisation, the process Node repeatedly checks for updates in the
network configuration. Using the CSP interruption (/\), we specify that this be-
haviour can be interrupted at any time via a switchOff event. When switched
off, the node first informs all other nodes that it has been turned off (by broad-
casting the message offSource). This behaviour, of broadcasting messages after
having been turned off, abstracts the behaviour of the B&O protocol, in which
any node can always detect when another node is off.

OnNode(id, priority) = Node(id, <id..N>, priority, undecided)
/\ ((switchOff.id -> BroadCastControl(id,offSource,OffNode(id, priority))) |~| STOP)
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The main behaviour of a node, given by process Node, regulates the status
exchange cycle between nodes, controlled by the list <id..N>, as well as the elec-
tion process. The process Node either broadcasts its local state or receives status
updates from other nodes. The list of nodes is re-initialised to <id..N> when
it is empty. The local state is given by the priority of a node and its claim: its
current state in the election process – undecided, leader or follower. After
this initial broadcast it waits for the local state of each of its neighbours in turn.
The node receives either the current state of the neighbour (through channel
cp_pack.in.a.id) or a timeout event (through channel timeout.in.a.id) if
the corresponding neighbour is turned off.

Node(id, <a>^list, mypriority, myclaim) =
if a == id then BroadCastData(id, myclaim.mypriority);

Node(id, list, mypriority, myclaim)
else ((cp_pack.in.a.id?valC?valP -> setPack.id.a!valC!valP -> SKIP)

[]
(commTimeout.in.id.a -> setPack.id.a!off!0 -> SKIP));
Choice(id, <a>^list, mypriority, myclaim)

Each incoming message is stored, and the node reassesses its own local state
in Choice.

Choice(id, <a>^list, mypriority, myclaim) =
if myclaim == undecided then Undecided(id, <a>^list, mypriority)
else if myclaim == leader then Leader(id, <a>^list, mypriority)

else Follower(id, list, mypriority)

A Leader begins by retrieving the number of other nodes that are also claim-
ing to be leaders. If this is not zero, the node becomes undecided; otherwise it
remains a leader. The priority of a leader node is incremented (up to an upper
limit) when it has completed a full cycle of status exchanges. This ensures that
stable nodes are more likely to become leaders.

Leader(id, <a>^list, mypriority) =
nleaders.id?valLeaders ->

if valLeaders > 0 then Node(id, list, mypriority, undecided)
else if id == next(a) then Node(id, list, min(UP_LMT,mypriority+1),
leader) else Node(id, list, mypriority, leader)

A Follower remains so if there exists a leader; it becomes undecided, other-
wise.

Follower(id, list, mypriority) =
nleaders.id?valLeaders ->

if valLeaders == 0 then Node(id, list, mypriority, undecided)
else Node(id, list, mypriority, follower)

An Undecided node decides to lead or follow by first retrieving the number
of competing leaders, the value of the highest priority among these, and the
value of the largest identity among the highest priority nodes. The node follows
a leader if it finds one. Otherwise, it remains undecided until the end of the
status exchange cycle (id = next(a)). It then becomes a leader if its priority is
higher than all other nodes. If multiple nodes have the same priority, the node
becomes a leader if it has the highest id.
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Undecided(id, <a>^list, mypriority) =
nleaders.id?valLeaders -> hpetition.id?highest -> hpetitionid.id?highestid ->
(let myclaim =

if valLeaders > 0 then follower
else if id == next(a) then

if highest == mypriority and highestid < id
or highest < mypriority then leader

else follower
else undecided

within Node(id, list, mypriority, myclaim))

Communication between nodes takes place over a Bus that provides bidi-
rectional communication between every pair of nodes. The Bus is composed of
various BusCells, each of which provides an unidirectional channel between a
source and a target node.

BusCell(idSource,idTarget) =
let On(data) = cp_pack.out.idSource.idTarget?val -> On(val)

[] data != -1 & cp_pack.in.idSource.idTarget!data -> On(-1)
[] offSource.idSource.idTarget -> Idle

Idle = timeout.idSource.idTarget -> Idle
[] onSource.idSource.idTarget -> On(-1)

within Idle

We create our fully connected model using the alphabetised parallel operator
to connect bus cells and nodes.

(a) Communication graph of a
2-node configuration.

(b) Essential components after decomposition.

Fig. 2: Views of the system.

6 A local strategy for deadlock analysis of the leadership
election and experimental results

Although, in principle, our CSP model can be fully analysed by tools like FDR,
this approach to analyse the complete model for deadlock freedom is not local
and incurs in an exponential growth in the number of states to be analysed,
becoming infeasible at early stages. Our alternative to this problem is to use a
strategy that combines the theory for deadlock analysis presented in Section 3
together with the pattern based approach that we proposed in Section 4.
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The model presented for the leadership election can be decomposed based
on Theorem 2. This decomposition gives the memory cells, the memory con-
trollers, and the subnetwork as essential components. The latter is composed of
interconnected nodes and bus cells as depicted in Figure 2(b).

This decomposition alone enables the local verification for deadlock freedom
of both memory cells and memory controllers. Nevertheless, based on the results
of [13, 12] summarised in Section 3, the verification of the subnetwork of bus cells
and nodes is still left to be verified as a single component, which also leads to an
exponential analysis in the number of nodes, as shown later in this section. As
a major contribution of this paper, we show that, using the pattern proposed in
Section 4, we need to verify only local behavioural conditions for guaranteeing
deadlock freedom. As an example of how the conformance notions are encoded
as assertions that can be automatically verified by FDR, we present the fol-
lowing two assertions, which verify the conformance of atom BUS_CELL.0.1 to
the transport entity specification and the conformance of atom NODE.0 to the
participant specification, respectively.

assert TransportSpec(BUS_CELL.0.1,LENetwork) [F= Abs(BUS_CELL.0.1,LENetwork)
assert ParticipantSpec(NODE.0,LENetwork) [F= Abs(NODE.0,LENetwork)

As expected, by conducting a full local analysis using FDR, we verified that
all the restrictions imposed by the pattern are satisfied. This guarantees that
that our example is indeed deadlock free.

In order to demonstrate that our local analysis avoids combinatorial explo-
sion, we conducted a comparative analysis of three verification approaches, all
using FDR: (i) analysis of the complete model; (ii) local analysis based on the de-
composition supported by [13, 12], as presented in Section 3 and Figure 1b; (iii)
the decomposition considered in (ii) in addition to the pattern based approach
proposed in Section 4. For the analysis of our strategy (iii), we only evaluate
state, transitions and time for behavioural restriction as this is the most com-
plex task in checking pattern adherence, the predicate satisfaction time being
insignificant in comparison to that time.

Our goal was to analyse a model with 32 nodes, which is the maximal number
of nodes of a B&O network of devices. For this reason, we conducted the analysis
for 2, 3, 4, 5, 10, 20 and 32 node instances of this model. The results are presented
in Table 1, in which we provide the number of states analysed, the number of
transitions, the number of processes in the network and the amount of time
spent in the verification. The number of states and transitions are the ones of
the Labelled Transitions System generated and analysed by FDR. The time
is measured in seconds, and transitions and states in thousands. We used a
dedicated server with an 8 core Intel(R) Xeon(R) 2.67GHz and 16 GB of RAM
in an Ubuntu 4.4.3 system.

As expected, the exponential explosion quickly makes the leadership election
model intractable by the strategy (i). The verification time for deadlock freedom
for a 2-node configuration is 11 seconds, but the 3-node instance needs more than
16 GB of memory, which is beyond the configuration of the server used. Even if
the decomposition strategy is applied, as described in (ii), FDR is not capable of
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(iii) Proposed strategy (ii) Decomposed model (i) Complete model

Nodes #Procs States Trans Time States Trans Time States Trans Time

2 8 0.4 1.5 0.5 17.5 81.5 0.3 1,695 7,663 11.27
3 18 1.7 6.7 1.7 242,626 1,886,533 3,115 * * *
4 32 4.7 19.9 3.86 * * * * * *
5 50 10 47 7 * * * * * *
10 200 156 740 46 * * * * * *
20 800 2,490 12,149 659 * * * * * *
32 2,048 16,414 80,939 5,161 * * * * * *

* FDR exceeds the machine’s memory available

Table 1: Practical comparison

analysing further than the 3-node configuration. Also, the state space explosion
in this case is very clear as the number of states leaps from about 17,500 in the
2-node configuration to 242,626,600 in the 3-node configuration. Our strategy
(iii) is by far the only viable option, being able to analyse the 2,048 processes
of the 32-node configuration, in 1.43 hours. Note that, in addition to the state
explosion, the processes being analysed also grow in complexity as the number of
nodes in the configuration increases because every node needs to communicate
with more nodes, making the analysis of this example even more expensive.

7 Conclusion and Related work

In this paper, we proposed a pattern that prevents deadlocks and the formali-
sation of a notion of pattern conformance using first order logic and refinement
expressions. We also presented a formal specification of the leadership election
algorithm. This algorithm is used by one of our industrial partners, B&O, to
define the publisher of their publisher-subscriber protocol, in which one of the
products (the publisher) is the leader of the other products (the subscribers).
We applied the proposed pattern to this industrial case study and compared the
efficiency of our verification approach to a global approach.

As demonstrated by the analysis in Section 6, the verification of a complex
algorithm using a global approach rapidly becomes infeasible. Our pattern based
approach is a valid and promising alternative to verifying complex systems for
deadlock freedom. By verifying adherence to a pattern that requires only local
analysis, we were able to guarantee that a complex distributed algorithm used
in industry is deadlock free. In the case of B&O, we were able to guarantee the
deadlock freedom of their distributed algorithm with up to 32-nodes (the maxi-
mum number of nodes in a B&O network), involving 2,048 processes. Moreover,
during the development and verification of this model several issues were iden-
tified and the real C++ implementation was modified as a result.

A CSP specification of the leadership election “Bully algorithm” of [6] is given
in [14]. The assumptions on processes are similar to the ones we make: processes
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may fail and revive at any time, and contain some stable storage. Although both
models assume that messages will not be duplicated or lost, their network as-
sumptions differ. The Bully algorithm does not allow a failed communication
between two live processes. We model this possibility using a timeout. Further-
more, in the Bully algorithm, messages may not overtake each other: they must
be processed in the order in which they are sent. In our model, message may over-
take each other. Finally, in the Bully algorithm communication is synchronous,
whilst we model asynchronous communications.

In terms of algorithm design, a leadership competition in the Bully algorithm
is resolved by the node with the highest identifier “bullying” the other nodes into
accepting its claim. In the case of competing claims in the algorithm we present,
the primary decision mechanism is the value of priority, although the node id

may be used as a last resource.
In the future, we plan to increase the range of systems to which our approach

is applicable through the development and verification of new architectural pat-
terns. Furthermore, we also intend to extend the application of our approach to
other properties such as livelock-freedom. Finally, we plan to apply the pattern-
based strategy to a wide spectrum of real systems.

A CSPM models

A.1 Auxiliary network definitions

Auxiliary file containing some network definitions.

include "../LeaderElection.csp"

-- Network model

----------------------

-- Abstract type for the atoms of the network

----------------------

datatype atomIds = NODE.NODES_IDS | MEMORY_CELL.NODES_IDS.NODES_IDS |

MEMORY_CONTROLLER.NODES_IDS | BUS_CELL.NODES_IDS.NODES_IDS

-----------------

-- Subnetworks of the different components of the systems

-----------------

NodesNetwork =

{ (NODE.id,OffNode(id, LOWER_LIMIT_PET),alphaNode(NODE.id))| id<-NODES_IDS}

BusCellsNetwork =

{ (BUS_CELL.idS.idR,BusCell(idS,idR),alphaBusCell(BUS_CELL.idS.idR))

| idS<-NODES_IDS, idR <- NODES_IDS, idS != idR}

MemoryCellsNetwork =

{ (MEMORY_CELL.id.idN,CellPack(id,idN, off.0),alphaMemoryCell(MEMORY_CELL.id.idN))

| id <- NODES_IDS, idN <- NODES_IDS, idN != id}
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MemoryControllersNetwork =

{ (MEMORY_CONTROLLER.id, ControllerPack(id, 0, 0, 0),

alphaMemoryController(MEMORY_CONTROLLER.id)) | id <- NODES_IDS}

------------------

-- Leader Election network

------------------

LeaderElectionNetwork =

Union({NodesNetwork,BusCellsNetwork,

MemoryCellsNetwork,MemoryControllersNetwork})

------------------

-- Subnetwork Bus cell + Nodes

------------------

SubnetworkNodesBusNetwork = Union({NodesNetwork,BusCellsNetwork})

-----------------

-- Auxiliary definition for the network model

-----------------

-- Functions to recover the ID, Behavior and Alphabet given a atomic tuple.

ID_((x,y,z)) = x

B_((x,y,z)) = y

A_((x,y,z)) = z

-- Functions to recover the Alphabet and Behaviour of an atom

-- given an Id and a Network containing this id

A(id,V) = A_(getElement(id,V))

B(id,V) = B_(getElement(id,V))

-- Specific functions to find the alphabet and behaviour of tuple identified by its id

-- in the leader election network.

A_LE(id) = A(id,LeaderElectionNetwork)

B_LE(id) = B(id,LeaderElectionNetwork)

-- Auxiliary functional definitions

pick({x}) = x

getElement(id,V) = pick({ a | a <- V, ID_(a) == id})

-- Function to recover the vocabulary of the network V

Voc(V) = Union({ inter(A_(a1),A_(a2)) | a1 <- V, a2 <- V, NEQ(a1,a2)})

-- Function to recover the alphabet of the network V

AlphaNetwork(V) = Union({ A_(a)| a <- V})
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-- Function to recover the union of every alphabetical triple joint

-- Alphabetical triple joint is given by Inter({A_(a1),A_(a2),A_(a3)}) where

-- a1,a2 and a3 are three different triples

UnionTripleJoints(V) =

Union({ Inter({A_(a1),A_(a2),A_(a3)}) |

a1 <- V, a2 <- V, a3 <- V,NEQ(a1,a2),NEQ(a3,a2),NEQ(a1,a3)})

-- Function that gives the behaviour of a network V

Behaviour(V) = || a : V @ [A_(a)] B_(a)

-- Constant that yields the behaviour of the leader election network

BehaviourLeaderElectionNetwork = Behaviour(LeaderElectionNetwork)

-- Constant that yields the behaviour of the leader election network

BehaviourNodesBusSubNetwork = Behaviour(SubnetworkNodesBusNetwork)

-- Auxiliary definition of not equal tuples

NEQ(A1,A2) = ID_(A1) != ID_(A2)

-- The definition of commA given to the nodes and bus cells of the network

commA(NODE.id) = {|sendCh(id,n),receiveCh(n,id),onCh(id,n),

offCh(id,n),timeoutCh(n,id)| n <- NODES_IDS|}

commA(BUS_CELL.idS.idR) = {|sendCh(idS,idR),receiveCh(idS,idR),

onCh(idS,idR),offCh(idS,idR),timeoutCh(idS,idR)|}

print commA(BUS_CELL.0.1)

----------------------------

-- Function giving the alphabets of the atoms

----------------------------

alphaNode(NODE.id) =

{| cp_pack.in.a.id, cp_pack.out.id.a, timeout.a.id, offSource.id.a,

onSource.id.a, switchOn.id, switchOff.id, setPack.id.a, nleaders.id,

hpetition.id, hpetitionid.id | a <- NODES_IDS, a != id |}

alphaBusCell(BUS_CELL.idS.idR) =

{|cp_pack.in.idS.idR, cp_pack.out.idS.idR,

timeout.idS.idR, offSource.idS.idR, onSource.idS.idR|}

alphaMemoryCell(MEMORY_CELL.id.idN) =

{| setCellPack.id.idN, getCellPack.id.idN |}

alphaMemoryController(MEMORY_CONTROLLER.id) =
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{| setCellPack.id.a, getCellPack.id.a, setPack.id.a,

nleaders.id, hpetition.id, hpetitionid.id | a <- NODES_IDS, a != id |}

A.2 Bus model

CSPM file modelling the bus.

-- Bus

include "../RAM.csp"

datatype IO = in | out

channel cp_pack : IO.NODES_IDS.NODES_IDS.CLAIM.DIST

channel cp_pack_bus : IO.NODES_IDS.NODES_IDS.CLAIM.DIST

channel timeout : NODES_IDS.NODES_IDS

channel onSource , offSource : NODES_IDS.NODES_IDS

-- Unitary bus cell

BusCell(idSource,idTarget) =

let

On(data) =

cp_pack.out.idSource.idTarget?val -> On(val)

[] data != -1 & cp_pack.in.idSource.idTarget!data -> On(-1)

[] offSource.idSource.idTarget -> Idle

Idle =

timeout.idSource.idTarget -> Idle

[] onSource.idSource.idTarget -> On(-1)

within

Idle

A.3 Memory model

CSPM file modeling the memory.

-- Global variables

N = NODES-1

UPPER_LIMIT_PET = 1

LOWER_LIMIT_PET = 1

datatype CLAIM = leader | follower | undecided | off

nametype NODES_IDS = {0..N}

nametype DIST = {0..UPPER_LIMIT_PET}

nametype DIST_VALID = {LOWER_LIMIT_PET..UPPER_LIMIT_PET}

channel setPack : NODES_IDS.NODES_IDS.CLAIM.DIST

channel setCellPack, getCellPack : NODES_IDS.NODES_IDS.CLAIM.DIST
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channel nleaders : NODES_IDS.{0..NODES}

channel hpetition : NODES_IDS.DIST

channel hpetitionid : NODES_IDS.NODES_IDS

--------------------------

-- Cell of memory

--------------------------

Cell(chSet, chGet, idd, vald) =

let

CellI(value) =

chSet.idd?val -> CellI(val)

[]

chGet.idd.value -> CellI(value)

within

CellI(vald)

--------------------------

-- Memory of Petitions and Claims

--------------------------

-- A memory cell

CellPack(id,idN, vald) =

Cell(setCellPack.id, getCellPack.id, idN, vald)

-- All Cell Memories

StatePack(id) =

||| idN : diff(NODES_IDS,{id}) @ CellPack(id,idN, off.0)

-- Controller

-- valOld == 0 means that the petititon has been reset

ControllerPack(id, highest_petition, highest_petition_id, leaders) =

let

InnerControllerPack(highest_petition, highest_petition_id, leaders) =

leaders < NODES and leaders >= 0 &

(

setPack.id?idN:diff(NODES_IDS,{id})?valNewClaim?valNewPet ->

getCellPack.id.idN?valOldClaim?valOldPet ->

setCellPack.id.idN.valNewClaim.valNewPet ->

(let

new_highest_petition =

if valNewPet > highest_petition then

valNewPet

else

highest_petition

new_highest_petition_id =
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if valNewPet > highest_petition then

idN

else

highest_petition_id

new_leaders =

if valNewClaim != valOldClaim and

valNewClaim == leader then

leaders+1

else if valNewClaim != valOldClaim and

valOldClaim == leader then

leaders-1

else

leaders

within

InnerControllerPack(new_highest_petition,

new_highest_petition_id, new_leaders)

))

[] leaders < NODES and leaders >= 0 &

nleaders.id!leaders ->

InnerControllerPack(highest_petition, highest_petition_id, leaders)

[]

hpetition.id!highest_petition ->

InnerControllerPack(highest_petition, highest_petition_id, leaders)

[]

hpetitionid.id!highest_petition_id ->

InnerControllerPack(highest_petition, highest_petition_id, leaders)

within

InnerControllerPack(highest_petition, highest_petition_id, leaders)

-- The overall Claims memory

MemePack(id) =

(ControllerPack(id, 0, 0, 0)

[|MemeCellSyncSet(id)|]

StatePack(id))

\ MemeCellSyncSet(id)

MemeCellSyncSet(id) = {|getCellPack.id, setCellPack.id|}

--------------------------

-- Overall Memory

--------------------------

RAM(id) = MemePack(id,diff(NODES_IDS, {id}))

A.4 Leadership election model

CSPM model of the leader election.
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include "../BUS.csp"

------------------------------------------------

-- A Turned Off Node Might Initialise

------------------------------------------------

channel switchOff, switchOn : NODES_IDS

min(x,y) = if x < y then x else y

max(x,y) = if x > y then x else y

SEQ_NEIGHBOURS = <0..N>

OffNode(id, prior) =

switchOn.id -> BroadCastControl(id,onSource,OnNode(id, max(LOWER_LIMIT_PET, prior-1)))

OnNode(id, prior) =

Node(id, <id..N>, prior, undecided)

/\

((switchOff.id -> BroadCastControl(id,offSource,OffNode(id, prior)))|~| STOP)

------------------------------------------------

-- Node Initial Behaviour After Initialisation

------------------------------------------------

Node(id, <>, mypetition, myclaim) =

Node(id, SEQ_NEIGHBOURS, mypetition, myclaim)

Node(id, <a>^list, mypetition, myclaim) =

if a == id then

BroadCastData(id, myclaim.mypetition);

Node(id, list, mypetition, myclaim)

else

(cp_pack.in.a.id?valC?valP ->

setPack.id.a!valC!valP ->

Choice(id, <a>^list, mypetition, myclaim))

[]

(timeout.a.id ->

setPack.id.a!off!0 ->

Choice(id, <a>^list, mypetition, myclaim))

------------------------------------------------

-- Broadcast

------------------------------------------------

-- Broadcast can either communicate, or if a timeout is reached
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-- it can only pass and try to send a message to the next peer.

BroadCastData(id, pack) =

let

BroadCast_Aux(<>) = SKIP

BroadCast_Aux(<a>^list) =

if a == id then

BroadCast_Aux(list)

else

cp_pack.out.id.a!pack -> BroadCast_Aux(list)

within

BroadCast_Aux(SEQ_NEIGHBOURS)

BroadCastControl(id, ch,P) =

let

BroadCast(<>) = P

BroadCast(<a>^list) =

if a == id then

BroadCast(list)

else

ch.id.a ->

BroadCast(list)

within

BroadCast(SEQ_NEIGHBOURS)

------------------------------------------------

-- Choice

------------------------------------------------

-- Choice and Undecided both have a new argument called timeout,

-- this argument is set to true if an election timeout occurs.

Choice(id, <a>^list, mypetition, myclaim) =

if myclaim == undecided then

Undecided(id, <a>^list, mypetition)

else

if myclaim == leader then

Leader(id, <a>^list, mypetition)

else

if myclaim == follower then

Follower(id, list, mypetition)

else

STOP

------------------------------------------------

-- Follower

------------------------------------------------
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Follower(id, list, mypetition) =

nleaders.id?valLeaders ->

if valLeaders == 0 then

Node(id, list, mypetition, undecided)

else

Node(id, list, mypetition, follower)

------------------------------------------------

-- Leader

------------------------------------------------

Leader(id, <a>^list, mypetition) =

nleaders.id?valLeaders ->

if valLeaders > 0 then

Node(id, list, mypetition, undecided)

else

if id == next(a) then

Node(id, list, min(UPPER_LIMIT_PET,mypetition+1), leader)

else

Node(id, list, mypetition, leader)

------------------------------------------------

-- Undecided

------------------------------------------------

Undecided(id, <a>^list, mypetition) =

nleaders.id?valLeaders ->

hpetition.id?highest ->

hpetitionid.id?highestid ->

(

let myclaim =

if valLeaders > 0 then

follower

else if id == next(a) then

if highest == mypetition and highestid < id

or highest < mypetition then

leader

else

follower

else undecided

within

Node(id, list,mypetition, myclaim)

)

next(a) = (a + 1) % NODES
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