
A Refinement Based Strategy for Local Deadlock

Analysis of Networks of CSP Processes —

Extended version

Pedro Antonino, Augusto Sampaio
Universidade Federal de Pernambuco,
Centro de Informática, Recife, Brazil
{prga2,acas}@cin.ufpe.br

Jim Woodcock
University of York,

Department of Computer Science, York, UK
jim.woodcock@york.ac.uk

December 11, 2013

Abstract

Based on a characterisation of process networks in the CSP process al-
gebra, we formalise a set of behavioural restrictions used for local deadlock
analysis. Also, we formalise two patterns, originally proposed by Roscoe,
which avoid deadlocks in cyclic networks by performing only local anal-
yses on components of the network; our formalisation systematises the
behavioural and structural constraints imposed by the patterns. A dis-
tinguishing feature of our approach is the use of refinement expressions
for capturing notions of pattern conformance, which can be mechanically
checked by CSP tools like FDR. Moreover, three examples are introduced
to demonstrate the effectiveness of our strategy, including a performance
comparison between FDR default deadlock assertion and the verification
of local behavioural constraints induced by our approach, also using FDR.

1 Introduction

There are a number of ways to prove that a system is deadlock free. One
approach is to prove, using a proof system and semantic model, that a deadlock
state is not reachable [10]. Another approach is to model check a system in order
to verify that a deadlock state cannot be reached [9]. Both approaches have
substantial drawbacks. Concerning the first approach, it is not fully automatic
and requires one to have a vast knowledge of: the semantic model, the notation
employed in the model and the proof system used. In the second approach,

1

although automatic, deadlock verification can became unmanageable due to the
exponential growth with the number of components of the system. To illustrate
these problems, let us assume that one is trying to prove that the dinning
philosophers is deadlock free using the CSP notation [5, 9, 12]. In the first
approach, one must be familiar with the stable failures semantic model [3, 9, 12]
and with a proof system to carry the proof itself. In the second case, assuming
that we have philosopher and fork processes with 7 and 4 states, respectively, the
number of states can grow up to 7N×4N , where N is the number of philosophers
in the configuration. For instance, to verify that a system with 50 philosophers
and 50 forks is deadlock free one has to verify up to 750 × 450 states.

One alternative to these approaches is to adopt a hybrid technique, which
consists of proving, using semantic models and a proof system, that for a par-
ticular class of well-defined systems, a property can be verified by only checking
a small portion of the system. This principle, called local analysis, is the core
technique of some existing approaches to compositional analysis [1, 2]. Concern-
ing deadlock analysis, in particular, the strategy reported in [10, 4] introduces
a network model and behavioural constraints that support local analysis.

Nevertheless, despite the provided conceptual support for local deadlock
analysis, no automated strategy is available. Our approach provides a detailed
formalisation of the network model and behavioural constraints presented in
[10, 4], from which refinement assertions that can be checked using FDR are
derived. Also, we formalise two patterns for deadlock avoidance, together with
refinement assertions that automatically ensures adherence to the patterns.

Finally, three examples are introduced as a proof of concept of our refinement
based strategy, as well as a performance comparison between our strategy and
the FDR [13] deadlock freedom assertion.

In the next section we briefly introduce CSP. In Section 3 we present the
network model [10, 4] on which we base our approach. Our major contribu-
tions are presented in Section 4: the formalisation of a behavioural condition
that guarantees deadlock freedom for acyclic network, the formalisation of two
communication patterns that avoid deadlocks in acyclic networks, and a refine-
ment based technique for verifying behavioural constraints of the network model
and conformance to the patterns. Section 5 provides practical evaluation and
Section 6 gives our conclusions, as well as related and future work.

2 CSP

CSP is a process algebra that can be used to describe systems as interacting
components, which are independent self-contained processes with interfaces that
are used to interact with the environment [9]. Most of the CSP tools, like FDR,
accept a machine-processable CSP, called CSPM , used in this paper.

The two basic CSP processes are STOP and SKIP; the former deadlocks, and
the latter does nothing and terminates. The prefixing a -> P is initially able to
perform only the event a; afterwards it behaves like process P. The alternation
if b then P else Q is available and has a standard behaviour. The operator P1;P2

2

combines P1 and P2 in sequence. The external choice P1[]P2 initially offers events
of both processes; the occurrence of the first event or termination resolves the
choice in favour of the process that performs either of them. The environment
has no control over the internal choice P1|~|P2, in which the choice is resolved
internally. The alphabetised parallel composition P1[cs1||cs2]P2 allows P1 and P2

to communicate in the sets cs1 and cs2, respectively; however, they must agree
on events in cs1∩cs2. The event hiding operator P\cs encapsulates the events
that are in cs. The renamed process P[[a<-b]] behaves like P except that all
occurrences of a in P are replaced by b; the relational renaming, when there is
a relation of many new event to an old one, as in P[a <- b, a <- c], results in
the extension of the behaviour by allowing the process to offer deterministically
both b and c when it offered a.

CSP also provides replicated versions for most of its compositional operators.
For instance, PP = || x : S @ [A(x)] P(x) stands for the alphabetised parallel
composition of all P(x) using A(x) as its alphabet, for x∈ S. Local processes are
defined using the let Id1 = P1, ..., Idk = Pk within Q construct, which behaves
as Q and restricts the scope of the processes Id1, ..., Idk to Q.

Two CSP semantic models are used in this work: the stable failures, and the
stable-revivals models [12]. In the stable failures model, a process is represented
by its traces, which is a set of finite sequences of events it can perform, given
by traces(P), and by its stable failures. Stable failures are pairs (s,X) where s
is a finite trace and X is a set of events that the process can refuse to do after
performing the trace s. At the state where the process can refuse events in X,
the process must not be able to perform an internal action, otherwise this state
would be unstable and would not be taken into account in this model. The
function refusals(P, s) gives the set of X’s that a process P can refuse after s,
and failures(P) gives the set of stable failures of process P . The stable revivals
model has three components: traces, deadlocks and revivals. The traces com-
ponent is the same one as that described for the other models. The deadlocks
component gives the set of traces after which the process deadlocks. Finally,
the revivals component gives the set of triples (s,X, a) which is composed of a
trace s of the process, a set of refusals X after this trace, and an event that can
be performed after this refusal a, the revival event.

For each model, there is a refinement relation given by [M=. M can be T,F or
V for traces, stable failures and stable revivals, refinement relation respectively.
The refinement expression P [M= Q holds if and only if for each component of
model M, component(P) ⊇ component(Q). For instance, for the stable failures
model, P [V= Q ⇔ failures(P) ⊇ failures(Q) ∧ traces(P) ⊇ traces(Q).

The choice of a model involves considerations about the semantic domain
convenient to capture the relevant property. The properties that can only be
expressed in terms of maximal failures are more intuitively represented in the
stable revivals model, since this model carries partial information about the
maximal failure: the revival event. On the other hand, the restrictions that can
be expressed without being confined to maximal failures can be easily captured
by the stable failure model and its refinement relation.

3

3 Network model

The concepts presented in this section are essentially drawn from [4, 10], which
present an approach to deadlock analysis of systems described as a network
of CSP processes. The most fundamental concept is the one of atomic tuples,
which represents the basic components of a system. These are triples that
contain an identifier for the component, the process describing the behaviour
of this component and an alphabet that represents the set of events that this
component can perform. A network is a finite set of atomic tuples.

Definition 1 (Network). Let CSP Processes be the set of all possible CSP
processes, Σ the set of CSP events and IdType the set for identifiers of atomic
tuples. A network is a set V , such that:

V ⊂ Atomics

where: Atomics =̂ IdType× PΣ× CSP Processes and V is finite

The behaviour of a network is given as a composition of the behaviour of
each component using the CSP alphabetised parallel operator, where the be-
haviour and alphabet from the atomic tuple identified by id are extracted by
the functions B(id, V) and A(id, V) respectively. We use the indexed version of
the alphabetised parallel operator.

Definition 2 (Behaviour of a network). Let V be a network.
B(V) =̂ || id : dom V @ [A(id,V)] B(id,V)

A live network is a structure that satisfies three assumptions. The first one is
busyness. A busy network is a network whose atomic components are deadlock
free. The second assumption is atomic non-termination, i.e. no atomic com-
ponent can terminate. The last assumption concerns interactions. A network
is triple-disjoint if at most two processes share an event, i.e. if for any three
different atomic tuples their alphabet intersection is the empty set.

In a live network, a deadlock state can only arise from an improper in-
teraction between processes, since no process can individually deadlock. This
particular misinteraction is captured by the concept of ungranted requests. An
ungranted request occur in a particular state σ = (s,R) of the network. In this
state, s is a trace of the network and R is a vector of refusal sets, R(id) being the
refusal set of the process id after s |̀ A(id, V), where s |̀ A(id, V) corresponds to
trace s restricted to events in A(id, V). We introduce the notations σ.s and σ.R
to get the s and the R component of state σ, respectively. An ungranted request
arises in a state σ when an atom, say id1, is offering an event to communicate
with another atom, say id2, but id2 cannot offer any of the events expected by
id1. In addition, both processes must not be able to perform internal actions,
i.e. events that do not involve the synchronisation with another process.

Definition 3 (Ungranted request). Let id1 and id2 be identifiers of processes
in a network V , A1 = A(id1, V), A2 = A(id2, V) and V oc(V) the set of shared

4

events of network V . There is an ungranted request from id1 to id2 in state σ
if the following predicate holds:

ungranted request(V, σ, id1, id2) =̂

request(V, σ, id1, id2) ∧ ungrantedness(V, σ, id1, id2)

∧ in vocabulary(V, σ, id1, id2)

• request(V, σ, id1, id2) =̂ (A1 \ σ.R(id1)) ∩A2 6= ∅

• ungrantedness(V, σ, id1, id2) =̂ (A1 ∩A2) ⊆ (σ.R(id1) ∪ σ.R(id2))

• in vocabulary(V, σ, id1, id2) =̂ (A1 \σ.R(id1))∪ (A2 \σ.R(id2)) ⊆ V oc(V)

Ungranted requests are the building blocks of a more complex structure
denoted cycle of ungranted requests. A cycle of this kind is represented as a
sequence of different process identifiers, C, where each element at the position
i, C(i), has an ungranted request to the element at the position i⊕ 1, C(i⊕ 1),
where ⊕ is addition modulo length of the sequence. A conflict is a proper cycle
of ungranted requests with length 2. After these definitions a fundamental
theorem extracted from [4] is introduced.

Theorem 1. Let V be a live network. Any deadlocked state has a cycle of
ungranted requests.

Theorem 1 allows one to reduce the problem of avoiding deadlock by pre-
venting cycles of ungranted requests. With this result it is already possible to
fully verify a tree topology network in a local way, by checking only pairs of
processes, due to the fact that only conflicts can arise in tree networks. Never-
theless, networks with cycles in their topology cannot be locally verified by this
method, since the verification of absence of cycles of ungranted requests with
length greater than 2 involves a global verification of the entire system.

Also we present a rule (theorem) drawn from [10], stating allows one to
reduce the task of guaranteeing deadlock freedom to the task of finding a set
of functions on the semantics of processes, g(σ, i) and a ordering relation such
that when there is a request from atom id1 to atom id2, g(σ, id2) > g(σ, id2).
This is formalised as follows.

Theorem 2 (Ordering ungranted requests). Let V be a network and that (Π, >)
is a strict partial order. Then if the functions g(σ, id) have the property that,
whenever σ is a state of any two-element subnetwork having the identifiers id1

and id2 where id1 6= id2

ungranted request(σ, id1, id2, V)⇒ g(σ, id1) > g(σ, id2).

Then V is deadlock free.

In [4, 9, 10, 6], a set of patterns and examples of classes of networks is defined
by semantic behavioural properties and a rather informal description of the their
network structure. Although helpful for designing deadlock free systems, these

5

patterns lack systematisation, and more importantly, the associated restrictions
are expressed as semantic properties that must be proved in a semantic model.
Also, some of the properties are too restrictive; for instance, the behaviour of
a resource process is tied to be the one given by the rule. As a major contri-
bution of this work, we present an approach to fully systematise and formalise
these patterns. Also, we derive refinement assertions that precisely capture the
conformance to a particular pattern. Two examples are provided.

4 Local deadlock analysis based on Patterns and
Refinement Checking

In the approach for avoiding deadlock presented here we derive refinement ex-
pressions to capture behavioural properties. Besides the induced systematisa-
tion, these expressions can be verified using a refinement checker, enabling one
to automatically verify behavioural constraints.

The first concept that we present is a function used to abstract the behaviour
that is insignificant for deadlock analysis. If a process of a network can perform
an individual event in a state σ, i.e., an event that does not require the permis-
sion of another process, then this state is deadlock free, since this process can
perform this event. Thus, for the purpose of deadlock analysis, all states where
a process offer an individual event can be discarded as deadlock is impossible.
As we are not concerned with divergent behaviour, the hiding operator is used
to abstract this meaningless states.

Definition 4 (Abstraction function). For a network V , let B(id, V) be the
behaviour, A(id, V) the alphabet and AV oc(id, V) the set of events used for
communicating with other processes of atom id. Then we define:

Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V))

where: AVoc(id,V) = Union({inter(A(id,V),A(ID_(a),V)) | a <- V, ID_(a) != id})

A conflict is another concept of interest in deadlock analysis. As already
discussed, it allows one to locally verify an acyclic network to be deadlock free.
Conflict can be more intuitively captured by a refinement expression if the
pair of atoms being verified for conflict is placed in a particular behavioural
context. This context first abstracts the behavior of both atoms by using the
function Abs and extend their behaviour by allowing them to deterministically
offer the special event req whenever an event from A(id1, V) ∩ A(id2, V) is
offered. Secondly, it composes the pair of processes using the alphabets extended
with the req event. This context is given by the Context process, where the Ext

process performs the abstraction and extension mentioned.

Definition 5 (Extended behaviour of a pair of processes). Let id1 and id2 be
two processes of network V .
Context(id1,id2,V)= Ext(id1,id2,V)[union(A(id1,V),{req})||union(A(id2,V),{req})]Ext(id2,id1,V)

where: Ext(id1,id2,V) = Abs(id1,V) [[x <- x, x <- req | x <- inter(A(id1,V),A(id2,V))]]

6

When placed in this context, a conflict arises when the req event is offered
and A(id1, V) ∩ A(id2, V) is refused. Hence, a conflict free pair of processes
does not have a revival of the form (s,X, req) where A(id1) ∩ A(id1) ⊆ X.
The process ConflictFreeSpec, presented next, describes a process that has every
possible behaviour but the ones that generate the conflicting form of revivals. It
specifies all the states such that when req is offered, then A(id1, V)∩A(id2, V)
is not refused. The Context is conflict free, if the following refinement expression
holds.

Definition 6 (Extended behavior conflict freedom specification). Let id1 and
id2 be two identifiers of atoms of network V .

ConflictFreeSpec(id1,id2,V) =
let U_A = union(A(id1,V),A(id2,V))

I_A = inter(A(id1,V),A(id2,V))
CF_ = ((|~| ev : I_A @ ev -> CF_) [] req -> CHAOS(union(U_A,{req})))

|~| (|~| ev : U_A @ ev -> CF_)
within CF_

where: CHAOS(Alp) = SKIP |~| STOP |~| (|~| ev : Alp @ ev -> CHAOS(Alp))

Definition 7 (Conflict freedom predicate). Let id1 and id2 be two identifiers
of network V .

ConflictFree(id1, id2, V) =̂

∀σ • state(σ, V)⇒ ¬conflict(σ, id1, id2, V)

Theorem 3 (ConflictFreedomSpec stable revivals).

traces(ConflictFreeSpec(id1, id2, V)) =̂ (A(id1, V) ∪A(id2, V) ∪ {req})∗

deadlocks(ConflictFreeSpec(id1, id2, V)) =̂ {s|req ∈ dom s}
revivals(ConflictFreeSpec(id1, id2, V)) =̂

{(s,X, a)|s ∈ (A1 ∪A2 ∪ {req})∗ ∧
a ∈ (A1 ∪A2 ∪ {req}) ∧ a 6∈ X ∧
(a = req ⇒ (A1 ∩A2) 6⊆ X)}

Proof. Calculated with the revivals, deadlocks and traces clauses.

Theorem 4 (Context stable revivals).

traces(ConflictFreeSpec(id1, id2, V)) =̂ (A(id1, V) ∪A(id2, V) ∪ {req})∗

deadlocks(ConflictFreeSpec(id1, id2, V)) =̂ {s|req ∈ ran s}
revivals(ConflictFreeSpec(id1, id2, V)) =̂

{(s,X, a)|s ∈ (A1 ∪A2 ∪ {req})∗ ∧
a ∈ (A1 ∪A2 ∪ {req}) ∧ a 6∈ X ∧
(a = req ⇒ (A1 ∩A2) 6⊆ X)}

Proof. Calculated with the revivals, deadlocks and traces clauses.

7

We prove the soundness of our specification by the following theorem.

Theorem 5 (Soundness of conflict freedom refinement expression). Let V =
{(id1, B1, A1), (id2, B2, A2)}
ConflictFreeSpec(id1,id2,V) [V=Context(id1,id2,V)⇐⇒ ConflictFree(id1, id2, V).

Proof. Let ConflictFreeSpec(id1, id2, V) = CFS, Context(id1, id2, V) = Cx
and ConflictFree(id1, id2, V) ≡ CF .
First case(=⇒):

CFS [V=Cx ∧ ¬CF [Assumption]

=⇒
revivals(Cx) ⊆ revivals(CFS) ∧
(∃σ • state(σ, V) ∧ conflict(σ, id1, id2, V))

[[V= and CF defs]

=⇒
revivals(Cx) ⊆ revivals(CFS) ∧
(∃σ • state(σ, V) ∧
request(σ, id1, id2, V) ∧
request(σ, id2, id1, V) ∧
ungrantedness(σ, id1, id2, V) ∧
in vocabulary(σ, id1, id2, V))

[conflict def]

=⇒
revivals(Cx) ⊆ revivals(CFS) ∧
(σ.s, A(id1, V) ∪A(id2, V), req) ∈ revivals(Cx)

[revivals(Cx) def]

=⇒
false

[PC and ST]

=⇒
CFS [V=Cx⇒ CF

[PC]

Other direction(⇐=):

CF [As 1]

∀σ • state(σ, V)⇒ ¬conflict(σ, V) [CF def]

∀σ • state(σ, V)⇒
(¬request(σ, id1, id2, V) ∨
¬request(σ, id2, id1, V) ∨
¬ungrantedness(σ, id1, id2, V) ∨
¬in vocabulary(σ, id1, id2, V))

[conflict def]

Case 1:

∀σ • state(σ, V)⇒
(¬request(σ, id1, id2, V) ∨
¬request(σ, id2, id1, V))

8

=⇒
traces(Cx) ⊆ (A1 ∪A2)∗ ∧
revivals(Cx) ⊆ {(s,X, a)|s ∈ (A1 ∪A2)∗ ∧ a ∈ (A1 ∪A2) ∧ a 6∈ X} ∧
deadlocks(Cx) = ∅

[Cx stable revival semantics and request def]

=⇒
traces(Cx) ⊆ traces(CFS) ∧
revivals(Cx) ⊆ revivals(CFS) ∧
deadlocks(Cx) ⊆ deadlocks(CFS)

[ST]

=⇒
CFS [V=Cx

[[V= def]

Case 2:

∀σ • state(σ, V)⇒
¬ungrantedness(σ, id1, id2, V)

=⇒
traces(Cx) ⊆ (A1 ∪A2 ∪ req)∗ ∧
revivals(Cx) ⊆ {(s,X, a)|s ∈ (A1 ∪A2 ∪ req)∗ ∧ a ∈ (A1 ∪A2 ∪ req) ∧

a 6∈ X ∧ (A1 ∪A2) 6⊆ X} ∧
deadlocks(Cx) = {s|req ∈ ran s}

[ungrantedness and stable revivals semantics of Cx def]

=⇒
traces(Cx) ⊆ traces(CFS) ∧
revivals(Cx) ⊆ revivals(CFS) ∧
deadlocks(Cx) ⊆ deadlocks(CFS)

[ST]

=⇒
CFS [V=Cx

[[V= def]

Case 3:

∀σ • state(σ, V)⇒
¬in vocabulary(σ, id1, id2, V)

=⇒
traces(Cx) ⊆ (A1 ∪A2 ∪ req)∗ ∧
revivals(Cx) = ∅
deadlocks(Cx) = ∅

[Cx stable revival semantics and in vocabulary def]

=⇒
traces(Cx) ⊆ traces(CFS) ∧
revivals(Cx) ⊆ revivals(CFS) ∧
deadlocks(Cx) ⊆ deadlocks(CFS)

[ST]

=⇒
CFS [V=Cx

[[V= def]

9

4.1 Behavioral patterns

In this section we introduce a set of patterns that prevent deadlocks for cyclic
networks. They are based on design rules and class of networks presented in the
literature. Nevetheless, in this work we systematise the conditions that must
hold in order to a network be compliant to a pattern. Moreover, we introduce
a way of capturing behavioural restrictions though refinement expressions that
is new to the best knowledge of the author.

This refinement based technique relies on a particular aspect of the maximal
failures of a refined process. Let us call the process on the left hand side of
the refinement relation the abstract process, and the one on the right hand
the concrete one. If the refinement relation holds, the maximal failures of the
concrete process must lie within the set of failures such that, let f be a failure
of this set, then f must refuse the set of impossible events after f.s. If the
maximal failure lies outside this set, then the refinement relation does not hold,
since either the failures restriction is violated or the traces one. This result is
stated in the next theorem.

Theorem 6 (Maximal failures induced by refinement). Let P and Q be two
arbitrary processes.

P [F=Q⇒Mfailures(Q) ⊆MCfailures(P)

where: MCfailures(P) =̂ {f : failures(P)|f.R ⊇ initials(P/f.s)
Σ
}

Proof. This proof can be found in Appendix A.

In a very similar manner, as we use the stable revival model for a behavioural
restriction on the Client/Server pattern, we also demonstrate that if the refine-
ment holds then there is a specific set of failures of P within which the maximal
revivals of Q must lie.

Theorem 7 (Maximal revivals induced by stable revival refinement). Let P
and Q be two deadlock free processes.

P [V=Q⇒Mrevivals(Q) ⊆MCrevivals(P)

where: Mrevivals(Q) =̂ {r|r ∈ revivals(Q) ∧ max(r,Q)}
MCrevivals(Q) =̂ {r|r ∈ revivals(Q) ∧ r.R ⊇ initials(failure(r))

Σ
∧ r.R ⊇

initials(r.s)
Σ
}

Proof. This proof can be found in Appendix A.

4.1.1 Resource allocation pattern

The resource allocation pattern can be applied to systems that, in order to
perform an action, have to acquire some shared resources such as a lock. In this
pattern the atoms of a network are divided into user and resource processes.
The functions acquire(idU , idR) and release(idU , idR) give the event used by the

10

user process idU to acquire (and, recpectively, release) the resource idR. This
pattern imposes a behavioural restriction on both resource and user processes.

The expected behaviour of a resource is given by the following process. It
offers the events of acquisition to all users able to acquire this resource and,
once acquired, it offers the release event to the user that has acquired it.

Definition 8 (Resource specification). Let id be an identifier of a resource atom
and users(id) a set of user identifiers used by this resource.

ResourceSpec(id,V) =

let idsU = users(id)

Resource =

[] idU : idsU @

acquire(idU,id) -> release(idU,id) -> Resource

within Resource

The required behaviour of a user is given by the following process. It first
acquires all the necessary resources and then releases them. Both acquiring
and releasing must be performed using the order denoted by the resources(id)
sequence.

Definition 9 (User specification). Let id be an identifier of a user atom and
resources(id) a sequence of resource identifiers in which this user atom acquire
its resources.

UserSpec(id,V) =

let Aquire(s) =

if s != <> then

acquire(id,head(s)) -> Aquire(tail(s))

else SKIP

Release(s) =

if s != <> then

release(id,head(s)) -> Release(tail(s))

else SKIP

User(s) =

Aquire(s);Release(s);User(s)

within

User(resources(id))

The behavioural restriction imposed by the resource allocation pattern is
given by a conformance notion using the stable failure refinement relation [F=.
The refinement relation ensures that user and resource atoms of the network
meet their respective specification.

Definition 10 (Resource allocation behavioural restriction). Let uset and rset
be the sets of users and resources atoms identifiers, respectively.

BehaviourRA(V, uset, rset) =̂ Behaviour(V, uset, UserSpec, [F=) ∧
Behaviour(V, rset, ResourceSpec, [F=)

11

where: Behaviour(V, S, Spec,R) = ∀ id : S • Spec(id, V)RAbs(id, V)

Besides the behavioural restriction, this pattern also imposes a structural
restriction, which is given by a conjunction of smaller conditions. The first
condition, partitions, ensures that users and resources are two disjoint partitions
of the network identifiers. The disjointAlpha condition guarantees that the
alphabet of users and resources are disjoint, whereas controlledAlpha imposes
that the shared events between users and resources must be the set of acquire
and release events. Finally, strictOrder ensures that the transitive closure of
the >RA relation, >∗RA, is a strict total order.

Definition 11 (Resource allocation structural restriction). Let V be a network,
users a set of user atom identifiers, resources a set of resource atom identifiers.

StructureRA(V, users, resources) =̂

partitions(domV, users, resources) ∧ (P)

disjointAlpha(V, resources) ∧ (DARes)

disjointAlpha(V, users) ∧ (DAUsers)

controlledAlpha(V, users, resources) ∧ (CA)

strictOrder(>∗RA′) (SO)

where:

• partitions(S, P1, P2) =̂ S = P1 ∪ P2 ∧ P1 ∩ P2 = ∅

• disjointAlpha(V, S) =̂ ∀ id1, id2 : S • A(id1, V) ∩A(id2, V) = ∅

• controlledAlpha(V, S1, S2) =̂ ∀ id1 : S1, id2 : S2 •
A(id1, V) ∩A(id2, V) = {acquire(id1, id2), release(id1, id2)}

• id1 >RA id2 =̂ ∃ id : users • ∃ i, j : dom sequence(id) •
id1 = sequence(id)(i) ∧ id2 = sequence(id)(j) ∧ i < j

• id1 >RA′ id2 =̂ id2 = id′1 ∨ id >RA id2 ∧ id1 = id′

The compliance with the resource allocation pattern is given by the confor-
mance to both behavioural and structural conformances; i.e. the network must
satisfy both the StructureRA and BehaviourRA predicates.

As the purpose of the pattern is to avoid deadlock, we present a theorem
which demonstrates that compliance to the resource allocation pattern prevents
deadlock.

The resource allocation pattern guarantees that the resources have the resourceProperty
and that the users atoms the userProperty, this guarantee is given by theo-
rems 19 and 20.

Definition 12 (Resource property). Let id be an identifier of network V .

resourceProperty(id, V) =̂

∀ f : Mfailures(Abs(id, V)) • AcquiredResource(f, id, V) ∨ ReleasedResource(f, id, V)

12

where:

• AcquiredResource(f, id, V) =̂

(odd(f.s) ∧
(∃ idu1 : users(id) • odd(f.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f.s |̀ {acquire(idu1, id), release(idu1, id)})))

• ReleasedResource(f, id, V) =̂

(even(f.s) ∧ (∀ idu : users(id) • acquire(idu, id) ∈ (A(id, V) \ f.R) ∧
even(f.s |̀ {acquire(idu, id), release(idu, id)})))

Definition 13 (User property). Let id be an identifier of network V .

userProperty(id, V) =̂

∀ f : Mfailures(Abs(id, V)) • UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

where:

• UserReleasing(f, id, V) =̂

∃ idr : resources •
((A(id, V) \ f.R) = {release(id, idr)} ∧
odd(f.s |̀ {acquire(id, idr), release(id, idr)}))

• UserAcquiring(f, id, V) =̂

∃ idr : resources •
((A(id, V) \ f.R) = {acquire(id, idr)} ∧
even(f.s |̀ {acquire(id, idr), release(id, idr)}) ∧
min(r(f.s, id) ∪ {big})) >RA idr

• r(s, id) =̂ {idr|idr ∈ ran resources(id) ∧ odd(s |̀ {acquire(id, idr), release(id, idr)})}

The following theorem is the main result of this section it establishes that a
network that is conform to the resource allocation pattern is deadlock free.

Theorem 8 (Deadlock free resource allocation network). Let V be a network
users and resources two sets of identifiers.

If RA(V, users, resources) then V is deadlock free.

where: RA(V, users, resources) =̂ StructureRA(V, users, resources) ∧
BehaviourRA(V, users, resources)

Proof. By Theorem 12 and Theorem 2.

13

4.1.2 Client/server pattern

The client/server pattern is used for architectures where an atom can behave
as a server or as a client in the network. The events in the alphabets of atoms
can be classified into client requests, server requests and responses. When the
process offers a server request event it is in a server state, in which it has to offer
all its server requests to its clients. This behaviour is described by the following
specification. The specification allows the process to behave arbitrarily when
performing non server request events; however if a server request is offered, it
offers all server request events. The server request events of atom id is given by
the function serverRequests(id).

Definition 14 (Behavioural server requests specification). Let id be an identi-
fier of the atom in a network V and serverEvents a function that yield the set
of server events of an atom given its identifier.

ServerRequestsSpec(id,V) =

let sEvs = serverRequests(id)

othersEvs = diff(A(id,V),sEvs)

Server = ((|~| ev : othersEvs @ ev -> SKIP)

|~| ([] ev : sEvs @ ev -> SKIP)) ;

Server

within

if not empty(othersEvs) then

Server

else

RUN(sevs)

where:
RUN(evs) = [] ev : evs @ ev -> RUN(evs)

Also, as a server, if a request demands a response, it must offer one of the
possible response events to that request. The function responses gives this set
of the expected responses for a request event. The server must offer at least a
response from this set. The ServerResponsesSpec specification describes this
expected behaviour; after a server request event in sEvs, it must offer at least
one of the responses(req) events.

Definition 15 (Behavioural server responses specification). Let id be an iden-
tifier of the atom being tested and serverEvents a function that yields the set
of server events of an atom given its identifier.

RequestsResponsesSpec(id,V) =

let

cEvs = clientRequests(id)

sEvs = serverRequests(id)

ClientRequestsResponsesSpec =

(|~| ev : cEvs @ ev ->

14

(if empty(responses(ev)) then SKIP

else ([] res : responses(ev) @ res -> SKIP)))

ServerRequestsResponsesSpec =

(|~| ev : sEvs @ ev ->

(if empty(responses(ev)) then SKIP

else (|~| res : responses(ev) @ res -> SKIP)))

C = ClientRequestsResponsesSpec;C

S = ServerRequestsResponsesSpec;S

CS = (ClientRequestsResponsesSpec

|~| ServerRequestsResponsesSpec);CS

within

if empty(cEvs) and empty(sEvs) then STOP

else

if empty(cEvs) then S

else

if empty(sEvs) then C

else CS

No restriction is imposed in client requests whatsoever; a process can always
perform one of its client requests. Hence no specification of expected behaviour
is required. On the other hand, the client must be able to accept any of the
expected responses after performing a request. The client requests of an atom
identified by id is given by the function clientRequests(id). This expected
behaviour is given by the process ClientResponsesSpec where after an event
from clientsRequests, the process offers all its response events, given by the
same responses function.

The conformance relation of an atom’s behaviour to the ServerRequestsSpec
is given by the refinement relation in the stable revivals model. Both ClientRespon

sesSpec and ServerResponsesSpec conformance is ensured by the stable fail-
ure refinement relation.

Definition 16 (Client/server behavioural restriction). Let V be a network.

BehaviourCS(V) =̂ Behaviour(V,domV, ServerRequestsSpec, [V=) ∧
Behaviour(V,domV, RequestResponsesSpec, [F=)

Similarly to the resource allocation structural restriction, the structural re-
striction of the client/server pattern is composed of a conjunction of smaller
clauses. The disjointAlpha predicate ensures that the server events and client
events of any atom are disjoint. The controlledAlpha predicate guarantees that
the communication alphabet is restricted to client and server events. The paired
Events guarantees that every server event has a client pair and vice-versa. Also,
the strictOrder predicate guarantees that the transitive closure of the >CS re-
lation, (>∗CS), is a strict order.

Definition 17 (Client/server structural restriction). Let V be a network, SRq(id) =
serverRequests(id), CRq(id) = clientRequests(id), SRp(id) =

⋃
req∈SRq(id) responses(req)

15

and CRp(id) =
⋃

req∈CRq(id) responses(req).

StructureCS(V) =̂ disjointAlpha(domV) ∧ controlledAlpha(V,domV) ∧
pairedEvents(V,domV) ∧ strictOrder(>∗CS)

where:

• disjointAlpha(S) =̂

∀ id : S • SRq(id) ∩ CRq(id) = ∅ ∧ SRq(id) ∩ CRp(id) = ∅ ∧
SRp(id) ∩ CRq(id) = ∅ ∧ SRp(id) ∩ CRp(id) = ∅

• controlledAlpha(V, S) =̂

∀ id : S • AV oc(id, V) = SRq(id) ∪ CRq(id) ∪ SRp(id) ∪ CRp(id)

• pairedRequests(V, S) =̂

∀ id : domV • ∀ req : SRq(id) • ∃ id′ : domV • req ∈ CRq(id′) ∧
∀ id : domV • ∀ req : CRq(id) • ∃ id′ : domV • req ∈ SRq(id′)

• id1 >CS id2 =̂ CRq(id1) ∩ SRq(id2) 6= ∅

A network conforms to this predicate if the conjunction of the structural and
behavioural restriction is satisfied.

In the same way as the one presented for the resource allocation pattern, we
introduce a set of properties that a maximal failure of a atom must have if com-
pliant to the Client/Server pattern. These properties are used as a specification
of the maximal failures of the atoms in the proof of deadlock freedom.

Definition 18 (Client server property).

clientServerProperty(id, V) =̂

∀ f : Mfailures(Abs(id, V)) •
ServerResponding(f, id, V) ∨ ClientResponding(f, id, V) ∨
ServerRequesting(f, id, V) ∨ ClientRequesting(f, id, V)

Definition 19 (ServerResponding predicate).

ServerResponding(f, id, V) =̂

SResp(f, id, V) ∧ ∃ ev : responses(last(f.s)) • ev ∈ (A(id, V) \ f.R)

where:
SResp(f, id, V) =̂ f.s 6= 〈〉 ∧ last(f.s) ∈ SRq(id) ∧ responses(last(f.s)) 6= ∅

Definition 20 (ClientResponding predicate).

ClientResponding(f, id, V) =̂

CResp(f, id, V) ∧ (A(id, V) \ f.R) = responses(last(f.s))

where:
CResp(f, id, V) =̂ f.s 6= 〈〉 ∧ last(f.s) ∈ CRq(id) ∧ responses(last(f.s)) 6= ∅

16

Definition 21 (ServerResquesting predicate).

ServerResquesting(f, id, V) =̂

SReq(f, id, V) ∧ SRq(id) ⊆ (A(id, V) \ f.R)

where:
SReq(f, id, V) =̂ (f.s = 〈〉 ∨ last(f.s) ∈ responses(id) ∨ last(f.s) ∈ requests(id) ∧
responses(last(f.s)) = ∅) ∧ SRq(id) 6⊆ f.R

Definition 22 (ClientResquesting predicate).

ClientResquesting(f, id, V) =̂

CReq(f, id, V) ∧ ∃ req : CRq(id) • req ∈ (A(id, V) \ f.R)

where: CReq(f, id, V) =̂ (f.s = 〈〉 ∨ last(f.s) ∈ responses(id) ∨ last(f.s) ∈
requests(id) ∧ responses(last(f.s)) = ∅) ∧ f.R ∩ SRq(id) = ∅

The goal of preventing deadlock is achieved by this pattern as stated by the
following theorem.

Theorem 9 (Network CS conform is deadlock free). Let V be a network.

If ConformCS(V) then V is deadlock free.

where: ConformCS(V) = BehaviourCS(V) ∧ StructureCS(V)

Proof. We conduct the proof by assuming ConformCS(V) and proving that in
this conditions V is deadlock free.

=⇒
state(σ) ∧ max(σ, V)

[Assumption]

=⇒
∀ id : domV • clientServerProperty(id)

[Theorem 34.]

=⇒
∀ id : domV • ServerResponding(f, id, V) ∨ ClientResponding(f, id, V) ∨
ServerRequesting(f, id, V) ∨ ClientRequesting(f, id, V)

[clientServerProperty(id) def]

Here, we split the proof into 5 cases.

• ∃ id : domV • ClientResponding(f, id, V)

• ∃ id : domV • ServerResponding(f, id, V)

• ∃C • Cycle(C, σ) ∧ ∃ i, i′ : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V)

• ∃C • Cycle(C, σ) ∧ ∀ i : domC • ClientResquesting(f(C(i)), i, V)

• ∃C • Cycle(C, σ) ∧ ∀ i : domC • ServerResquesting(f, id, V)

17

Case 1. Let f = ρ(σ, id, V), we prove for Case 1 (∃ id : domV • ClientResponding(f, id, V))
a deadlock cannot occur. We start by assuming that there is a client responding
process as denoted by predicate ClientReponding.

∃ id : domV • ClientResponding(f, id, V)

=⇒
∃ id : domV • last(f.s) ∈ CReq(id) ∧ responses(last(f.s)) 6= ∅

[ClientResponding(f, id, V) def]

=⇒
(∃ id : domV • last(f.s) ∈ CReq(id) ∧ responses(last(f.s)) 6= ∅) ∧
(∃ id′ : domV • last(f.s) ∈ SReq(id′) ∧ responses(last(f.s)) 6= ∅)

[pairedEvents def]

Since after two processes agreeing on a request event, they must agree on a
response event, since process id has not performed any event after last(f.s), then
process id′ can not have performed any event either, hence last(f.s) = last(f ′.s).

=⇒
(∃ id : domV • last(f.s) ∈ CReq(id) ∧ responses(last(f.s)) 6= ∅) ∧
(∃ id′ : domV • last(f ′.s) ∈ SReq(id′) ∧ responses(last(f ′.s)) 6= ∅)

[last(f.s) = last(f ′.s)]

=⇒
(∃ id : domV • (A(id, V) \ f.R) = responses(last(f.s))) ∧
(∃ id′ : domV • ∃ ev : responses(last(f ′.s)) • ev ∈ (A(id′, V) \ f ′.R))

[ClientResponding(f, id, V) and ServerResponding(f ′id′, V) hold]

=⇒
∃ id, id′ : domV • ∃ ev : responses(last(f ′.s)) • ev 6∈ (A(id′, V) ∩ f ′.R) ∪ (A(id, V) ∩ f.R)

[ST and PC]

By triple disjointness ev cannot belong to any alphabet other than alphabets
A(id′, V) and A(id, V). Hence, ev 6∈ refusals(σ).

=⇒
∃ id, id′ : domV • ∃ ev : responses(last(f ′.s)) • ev 6∈ refusals(σ)

=⇒
∃ id, id′ : domV • ∃ ev : responses(last(f ′.s)) • refusals(σ) 6= ΣV

[ev ∈ Σ]

=⇒
refusals(σ) 6= Σ

[PC]

Case 2. Regarding this case we can prove it in a very similar reasoning to the
case 1. We assume that there is an ServerResponding atom in the network
and we show that there is a corresponding ClientResponding. Hence, we prove
that they agree on an response, what proves that in this state both processes can
perform an event making this state not deadlocked.

Case 3. Let V be an arbitrary network, σ an arbitrary state, f(id) = ρ(σ,C(id), V),
we want to prove that if ∃ i, j′ • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(i′), C(i′), V)
then the state is deadlock free.

First of all, let us assume that there is a cycle of ungranted requests in this
state. A cycle is a pair (C, σ) where C is a sequence of identifiers of the network
V and σ a state of this network.

18

If there is a ServerResponding or a ClientResponding atom in the cycle,
this implies that there is such a atom in the network and by the two previ-
ous already demonstrated cases we conclude that the network is deadlock free.
Hence, we only consider cycles without process behaving according to these pred-
icates. Hence, processes can behave according to either as ClientRequesting or
as ServerRequesting. Therefore, for our case, the following predicate holds.

• ∀ i : domC • ClientRequesting(f(C(i)), C(i), V) ∨ ServerRequesting(f(C(i)), C(i), V)

∃C • Cycle(C, σ) ∧ ∃ i, i′ : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V)

[Assumption 1]

=⇒
∃C • Cycle(C, σ) ∧ ∃ i : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V)

[Lemma 21]

=⇒
∃ i : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[Cycle def]

=⇒
∃ i : domC •
∃ req : CRq(C(i)) • req ∈ (A(C(i), V) \ f.R) ∧
ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ClientRequesting def]

=⇒
∃ i : domC •
∃ req : CRq(C(i)) • req ∈ (A(C(i), V) \ f(C(i)).R) ∧
SRq(C(i⊕ 1)) ⊆ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ServerRequesting def]

=⇒
∃ i : domC •
∃ req : CRq(C(i)) • req ∈ (A(C(i), V) \ f(C(i)).R) ∧
SRq(C(i⊕ 1)) ⊆ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∧
ungranted request(σ,C(i), C(i⊕ 1), V) ∧
∃ id : domV • req ∈ SRq(id)

[pairedEvents definition]

Here we split into two cases:

• id = C(i⊕ 1)

• id 6= C(i⊕ 1)

19

Case 3.1 (id = C(i⊕ 1)).

=⇒
∃ i : domC •
∃ req : CRq(C(i)) • req ∈ (A(C(i), V) \ f(C(i)).R) ∧
SRq(C(i⊕ 1)) ⊆ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∧
ungranted request(σ,C(i), C(i⊕ 1), V) ∧
req ∈ SRq(C(i⊕ 1))

[id = C(i⊕ 1)]

=⇒
∃ i : domC •
∃ req : CRq(C(i)) •
req ∈ ((A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∩ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R)) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ST and PC]

=⇒
∃ i : domC •
(A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∩ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) 6= ∅ ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ST and PC]

=⇒
∃ i : domC •
¬ungrantedness(σ,C(i), C(i⊕ 1), V) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ungrantedness def]

=⇒
false

[ungranted request def and PC]

=⇒
(∃ i, i′ : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V))
⇒ ∀C • ¬Cycle(C, σ)

[ungranted request def and PC]

=⇒
refusals(σ) 6= Σ

[Theorem 1]

Case 3.2 (id 6= C(i⊕ 1)).

=⇒
∃ i : domC •
∃ req : CRq(C(i)) • req ∈ (A(C(i), V) \ f(C(i)).R) ∧
SRq(C(i⊕ 1)) ⊆ (A(C(i⊕ 1), V) \ f(C(i⊕ 1)).R) ∧
ungranted request(σ,C(i), C(i⊕ 1), V) ∧
req 6∈ SRq(C(i⊕ 1))

[id 6= C(i⊕ 1)]

=⇒
∃ i : domC •
(A(C(i), V) \ f(C(i)).R) ∩A(C(i⊕ 1), V) = ∅ ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[ST and PC]

20

=⇒
∃ i : domC •
¬request(σ,C(i), C(i⊕ 1), V) ∧
ungranted request(σ,C(i), C(i⊕ 1), V)

[request def and PC]

=⇒
false

[ungranted request def and PC]

=⇒
(∃ i, i′ : domC •
ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V))
⇒ (∀C • ¬Cycle(C, σ))

[ungranted request def and PC]

=⇒
refusals(σ) 6= Σ

[Theorem 1]

Case 4 (Cycle(C, σ) ∧ ∀ i : domC • ClientRequesting(f(C(i)), C(i), V)). For
this case, we prove that a cycle cannot happen since the strict order (domV,>∗CS

) prevents it.

Cycle(C, σ) ∧ ∀ i : domC • ClientRequesting(f(C(i)), C(i), V)

=⇒
∀ i : domC • C(i) >CS C(i⊕ 1)

[CRq(i) ∩ SRq(i⊕ 1) 6= ∅]

=⇒
∀ i : domC • C(i) >∗CS C(i)

[transitivity of >∗CS]

=⇒
∀ i : domC • C(i) >∗CS C(i) ∧ irreflexive(domV,>∗CS)

[strictOrder(domV,>∗CS)]

=⇒
false

[irreflexive def and PC]

=⇒
(∀ i : domC • ClientRequesting(f(C(i)), C(i), V))⇒ (∀C • ¬Cycle(C, σ))

[irreflexive def and PC]

=⇒
refusals(σ) 6= Σ

[Theorem 1]

Case 5 (Cycle(C, σ) ∧ ∀ i : domC • ServerRequesting(f(C(i)), C(i), V)). For
this case, we use the same reasoning as the one used in the last case but instead
of using the relation >CS, we use its dual, <CS

5 Experimental analysis

As a proof of concept of our strategy, we have applied the formalised patterns
and conflict freedom assertion to verify deadlock freedom for three examples:
a ring buffer, the asymmetric dining philosophers and a leadership election al-
gorithm. The CSP models of all the three examples are parametrised to allow

21

(a) a. Ring buffer
(b) b. Dining philoso-
phers (c) c. Leadership election

Figure 1: Communication architecture with N = 3

instances with different number of processes. The CSP models can be found in
Appendix D.

The ring buffer stores data in a circular way. This system is composed of a
controller which is responsible for inputting and outputting data, and a set of
memory cells to store data. The controller is responsible for storing input data
in the appropriate cell according to its information about the top and bottom
indices of the buffer. It also possesses a cache cell where it stores the data ready
to be read. This system has an acyclic topology as it can be seen as a tree where
the controller is the root and the memory cells its leaves. We parametrised this
model by N , the number of cells to store data. Its communication architecture
for a model with N = 3 is depicted in Figure 1a.

The dining philosophers is a classical example that consists of philosophers
that try to acquire forks in order to eat. It is a classical deadlock problem
and its asymmetric version obeys our resource allocation pattern restrictions.
The forks are the resources and the philosophers the users. In the asymmetric
case, every philosopher acquires its left fork, then its right one, but one has an
asymmetric behaviour acquiring first the right and then the left fork. This is a
cyclic network that has a ring topology, and a classical example of the resource
allocation pattern. This model is parametrised byN the number of philosophers.
Its communication architecture for a model with N = 3 is depicted in Figure 1b.

The last example is a simplified model of a distributed synchronised lead-
ership election system. The nodes are composed of a controller, a memory, a
receiver and a transmitter and they exchange data to elect the leader of the
network. Every node can communicate with every other node, hence we have a
cyclic fully connected graph. For this model we applied the client/server pat-
tern as this leadership election model conforms to this pattern. We parametrised
this model by N the number of leadership election nodes. Its communication
architecture for a model with N = 3 is depicted in Figure 1c.

In order to demonstrate, in practice, that local analysis avoids combina-
torial explosion, we have conducted a comparative analysis of two verification
approaches for the three examples, all using the FDR tool: (i) analysis of the
complete model; (ii) local analysis of the model using the refinement assertions
presented in Section 4. For the analysis of our strategy (ii), we only assess
the time for verifying behavioural constraints. Since the structural restrictions

22

Ring Buffer Dining Philosophers Leader Election
N #Procs (i) (ii) #Procs (i) (ii) #Procs (i) (ii)
3 4 0.02 0.01 6 0.19 0.09 12 * 8.67
5 6 0.161 0.535 10 0.109 0.21 20 * 18
10 11 86.79 3.12 20 701.05 0.4 40 * 62
20 21 * 21.92 40 * 1 80 * 442
30 31 * 85.35 60 * 2.28 120 * 1926

∗ Exceed the execution limit of 1 hour

Table 1: Performance comparison measured in seconds.

can be static analysed, they represent a negligible value if compared to the
behavioural constraints.

We conducted the analysis for different instances of N ’s (3, 5, 10, 20, 30),
as explained before; these are summarised in Table 1. In the table we present
the amount of time involved in each case. We used a dedicated server with an 8
core Intel(R) Xeon(R) 2.67GHz and 16 GB of RAM in an Ubuntu 4.4.3 system.

The results demonstrate how the time for deadlock verification can grow
exponentially with the linear increase of the number of processes for global
methods such as (i). Also, it demonstrates that our approach, based on patterns
that support local analysis, seems promising; to our knowledge, it is the first
sound and be the only automated strategy for guaranteeing deadlock freedom
for complex systems. Notice, particularly, that our strategy (ii) allows one to
verify a leadership election system with 30 nodes in less than 35 minutes, a very
promising result in dealing with a complex system involving a fully connected
graph of components. On the other hand, global analysis of the complete model
in FDR is unable to give an answer in the established time limit for a 3 node
instance. In order to give an idea of the size of this system with 30 nodes, the
processes controller, receiver, transmitter and memory have 854, 271, 263 and
99 states, respectively. This means that the leader election system can have
up to 85430 × 27130 × 26330 × 9930 states. Another consideration is that local
analysis also enables the use of parallel cores to verify simultaneously different
processes, which would reduce the amount of time for verification even further.

6 Conclusion and related work

Our verification strategy focuses on a local analysis of deadlock freedom of
design models of concurrent systems which obey certain architectural patterns.
Although this method is not complete, it already covers a vast spectrum of
systems, those that are conflict free systems, as well as cyclic systems that can
be designed in terms of the formalised patterns. The strategy seems promising
in terms of performance, applicability and complexity mastering, as evidenced
by the application of the strategy for complex systems such as a distributed
leadership election example.

23

Roscoe and Brookes developed a structured model for analysing deadlock in
networks [4]. They created the model based on networks of processes and a body
of concepts that helped to analyse networks in a more elegant and abstract way.
Roscoe and Dathi also contributed by developing a proof method for deadlock
freedom [10]. They have built a method to prove deadlock freedom based on
variants, similar to the ones used to prove loop termination. In their work, they
also start to analyse some of the patterns that arise in deadlock free systems.
Although their results enable one to verify locally a class of networks, there is
no framework available that implements their results such as the one presented
here. A more recent work by Roscoe et al. [11] presents some compression
techniques, which are able to check the dining philosopher example for 10100

processes. Compression techniques are an important complementary step for
further improving our strategy.

Following these initial works, Martin defined some design rules to avoid
deadlock freedom [6]. He also developed an algorithm and a tool with the
specific purpose of deadlock verification, the Deadlock checker [7], which reduces
the problem of deadlock checking to the quest of cycles of ungranted requests,
in live networks. The algorithm used by this tool can also incur an exponential
explosion in the state space to be verified, as the quest of a cycle of ungranted
request can be as hard as the quest of finding a deadlocked state.

In a recent work, Ramos et al. developed a strategy to compose systems
guaranteeing deadlock freedom for each composition [8]. The main drawback
with their method is the lack of compositional support to cyclic networks. One
of the rules presented there is able to, in a compositional way, connect compo-
nents in order to build a tree topology component. They presented a rule to
deal with cyclic components but it is not compositional, in the sense that the
verification of its proviso is not local, i.e. it must be performed in the entire
system. Our strategy complements and can be easily combined with this com-
positional approach. A distinguishing feature of our strategy is precisely the
possibility of combining it with other systematic approaches to analysis.

As future work we plan to formalise additional patterns, such as the cyclic
communicating pattern. Also, we plan to carry out further practical experiments
and implement an elaborate framework to support the entire strategy, running
FDR in background to carry out the analyses.

A General theorems

Theorem 10 (Maximal failures induced by refinement). Let P and Q be two
arbitrary processes.

P [F=Q⇒Mfailures(Q) ⊆ {f : failures(P)|f.R ⊇ initials(P/f.s)
Σ
}

Proof. The proof is conducted by contradiction.

P [F=Q ∧Mfailures(Q) 6⊆ {f |f : failures(P) ∧ f.R ⊇ initials(P/f.s)
Σ
}[Assumption]

24

=⇒
P [F=Q ∧ ∃mf : Mfailures(Q) • mf 6∈ {f |f : failures(P) ∧ f.R ⊇ initials(P/f.s)

Σ
}

[6⊆ def]

=⇒
P [F=Q ∧ ∃mf : Mfailures(Q) • mf 6∈ failures(P) ∨ mf.R 6⊇ initials(P/mf.s)

Σ
}

[6⊆ def]

Here we have to prove the contradiction for two cases:

• mf 6∈ failures(P)

• mf.R ⊇ initials(P/mf.s)
Σ

Case 1. mf 6∈ failures(P)

=⇒
P [F=Q ∧ ∃mf : Mfailures(Q) • mf 6∈ failures(P)

[mf 6∈ failures(P) holds]

=⇒
P [F=Q ∧ ∃mf : failures(Q) • mf 6∈ failures(P)

[Mfailures def]

=⇒
P [F=Q ∧ failures(Q) 6⊆ failures(P)

[6⊆ def]

=⇒
false

[[F= def and PC]

Case 2. mf.R ⊇ initials(P/mf.s)
Σ

=⇒
P [F=Q ∧
∃mf : Mfailures(Q) • mf.R 6⊇ initials(P/mf.s)

Σ

[mf.R ⊇ initials(P/mf.s)
Σ

holds]

=⇒
P [F=Q ∧
∃mf : Mfailures(Q) • ∃ ev : initials(P/mf.s)

Σ
• ev 6∈ mf.R

[6⊇ def]

=⇒
P [F=Q ∧
∃mf : Mfailures(Q) • ∃ ev : Σ • ev 6∈ initials(P/mf.s) ∧ ev 6∈ mf.R

[initials(P/mf.s)
Σ

def]

=⇒
P [F=Q ∧
∃mf : Mfailures(Q) • ∃ ev : Σ • ev 6∈ initials(P/mf.s) ∧ ev ∈ initials(Q/mf.s)

[Healthiness F2]

=⇒
P [F=Q ∧
∃(mf : Mfailures(Q) •
(∃ ev : Σ • ev 6∈ initials(P/mf.s) ∧ ev ∈ initials(Q/mf.s)) ∧ mf.s ∈ traces(Q))

[Healthiness T2]

25

Case 2.1. mf.s ∈ traces(P)

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) •
(∃ ev : Σ • ev 6∈ initials(P/mf.s) ∧ ev ∈ initials(Q/mf.s))
∧ mf.s ∈ traces(Q) ∧ mf.s ∈ traces(P))

[mf.s ∈ traces(P) holds]

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) •
∃ ev : Σ • mf.ŝ 〈ev〉 6∈ traces(P) ∧ mf.ŝ 〈ev〉 ∈ traces(Q))

[initials def]

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) •
∃ ev : Σ • ∃ s • s 6∈ traces(P) ∧ s ∈ traces(Q))

[PC]

=⇒
P [F=Q ∧ ∃ s • s 6∈ traces(P) ∧ s ∈ traces(Q)

[PC]

=⇒
P [F=Q ∧ traces(P) 6⊇ traces(Q)

[6⊇ def]

=⇒
false

[[F= def and PC]

Case 2.2. mf.s 6∈ traces(P)

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) •
(∃ ev : Σ • ev 6∈ initials(P/mf.s) ∧ ev ∈ initials(Q/mf.s))
∧ mf.s ∈ traces(Q) ∧ mf.s 6∈ traces(P))

[mf.s 6∈ traces(P) holds]

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) • mf.s ∈ traces(Q) ∧ mf.s 6∈ traces(P))

[mf.s 6∈ traces(P)]

=⇒
P [F=Q ∧ (∃mf : Mfailures(Q) • ∃ s • s ∈ traces(Q) ∧ s 6∈ traces(P))

[PC]

=⇒
P [F=Q ∧ (∃ s • s ∈ traces(Q) ∧ s 6∈ traces(P))

[PC]

=⇒
P [F=Q ∧ traces(Q) 6⊇ traces(P)

[6⊇ def]

=⇒
false

[[F= and PC]

Theorem 11 (Maximal revivals induced by stable revival refinement). Let P
and Q be two deadlock free processes.

P [V=Q⇒Mrevivals(Q) ⊆MCrevivals(P)

where: Mrevivals(Q) =̂ {r|r ∈ revivals(Q) ∧ max(r,Q)}
MCrevivals(Q) =̂ {r|r ∈ revivals(Q) ∧ r.R ⊇ initials(failure(r))

Σ
∧ r.R ⊇

initials(r.s)
Σ
}

26

Proof.

P [V=Q ∧Mrevivals(Q) 6⊆MCrevivals(P)Assumption

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • r 6∈MCrevivals(P)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • r 6∈ revivals(P) ∨
r.R 6⊇ initials(P/failure(r))

Σ
∨

r.R ⊇ initials(r.s)
Σ

Case 1.

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • r.R 6⊇ initials(P/failure(r))

Σ

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : initials(P/failure(r))

Σ
• ev 6∈ r.R

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/failure(r)) ∧ ev 6∈ r.R
=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/failure(r)) ∧ ev ∈ initials(Q/failure(r))
=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • (r.s, r.R, ev) 6∈ revivals(P) ∧ (rs.r.R, ev) ∈ revivals(Q)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ r : revivals(Q) • r 6∈ revivals(P)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • revivals(Q) 6⊆ revivals(P)

=⇒
P [V=Q ∧ revivals(Q) 6⊆ revivals(P)

=⇒
false

Case 2.

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • r.R 6⊇ initials(P/r.s)

Σ
}

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : initials(P/r.s)

Σ
} • ev 6∈ r.R

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R

Case 2.1 (ev 6∈ initials(Q/r.s)).

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧ ev 6∈ initials(Q/r.s)

27

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧
∀ r′ : revivals(Q) • r′.a 6= ev

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧
∀ r′ : revivals(Q) • failure(r′) = failure(r)⇒ r′.a 6= ev

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧
(r.s, r.R ∪ ev, r.a) ∈ revivals(Q)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧
(r.s, r.R ∪ ev, r.a) ∈ revivals(Q) ∧ r ⊂ (r.s, r.R ∪ ev, r.a)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧
(r.s, r.R ∪ ev, r.a) ∈ revivals(Q) ∧ ¬max(r,Q)

=⇒
false

Case 2.2 (ev ∈ initials(Q/r.s)).

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ev 6∈ initials(P/r.s) • ev 6∈ r.R ∧ ev ∈ initials(Q/r.s)
=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • r.ŝ 〈ev〉 6∈ traces(P) ∧ r.ŝ 〈ev〉 ∈ traces(Q) ∧
=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • ∃ s : traces(Q) • s 6∈ traces(P)

=⇒
P [V=Q ∧ ∃ r : Mrevivals(Q) • ∃ ev : Σ • traces(Q) 6⊆ traces(P)

=⇒
P [V=Q ∧ traces(Q) 6⊆ traces(P)

[PC]

=⇒
false

[PC and [V= def]

Case 3. The case where ∃ r : Mrevivals(Q) • r 6∈ refusals(P) is trivial.

B Resource allocation auxiliary lemmas

Theorem 12 (RA conformance imply ungranted requests strict order). Let V
be a network, users and resources two partitions of this network, and id1 and
id2 two identifiers of this network. Assuming RA(V, users, resources):

28

∀σ ; id1, id2 : domV • state(σ, V) ∧ max(σ, V) ∧ id1 6= id2 ∧
ungranted request(σ, id1, id2, V)⇒ g(σ, id1) >∗RA′ g(σ, id2)

where:

• g(σ, id) =̂

r(ρ(σ, id, V).s)′ id ∈ users
big id ∈ resources ∧ even(ρ(σ, id, V).s)

id id ∈ resources ∧ odd(ρ(σ, id, V).s)

Proof. Let V be an arbitrary network, id1 and id2 two identifiers of this network,
σ an arbitrary state of this network, and f1 = ρ(σ, id1) and f2 = ρ(σ, id2).

id1 ∈ domV ∧ id2 ∈ domV ∧ state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V)

[Assumption]

Since Paritions holds, there are 4 cases for combinations of id1 and id2:

• Case 1: id1 ∈ resources ∧ id2 ∈ users

• Case 2: id1 ∈ resources ∧ id2 ∈ resources

• Case 3: id1 ∈ users ∧ id2 ∈ resources

• Case 4: id1 ∈ users ∧ id2 ∈ users

Case 1 (id1 ∈ resources ∧ id2 ∈ users).

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V)

[id1 ∈ resources ∧ id2 ∈ users holds]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
resourceProperty(id1, V) ∧ userProperty(id2, V)

[Theorem 19 and Theorem 20]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(AcquiredResource(f1, id1, V) ∨ ReleasedResource(f1, id1, V)) ∧
(UserAcquiring(f2, id2, V) ∨ UserReleasing(f2, id2, V))

[Definition 13 and Definition 12]

Case 1.1 (AcquiredResource(f1, id1, V) holds).

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
AcquiredResource(f1, id1, V)

[AcquiredResource(f1, id1, V) holds]

29

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(odd(f.s) ∧
(∃ idu1 : users(id) • odd(f.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f.s |̀ {acquire(idu1, id), release(idu1, id)})))

[AcquiredResource(f1, id1, V) def]

We consider two cases for the idu1 in the definition of AcquiredResource(f1, id1, V)
predicate:

• idu1 = id2

• idu1 6= id2

Case 1.1.1. idu1 = id2

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
odd(f1.s |̀ {acquire(id2, id1), release(id2, id1)}))

[idu1 = id2]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
∧ odd(f1.s |̀ {acquire(id2, id1), release(id2, id1)})
∧ odd(f2.s |̀ {acquire(id2, id1), release(id2, id1)})

[f1.s |̀ {acquire(id2, id1), release(id2, id1)} = f2.s |̀ {acquire(id2, id1), release(id2, id1)]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
g(id1) = id1 ∧ id1 ∈ r(id2, f2.s)

[P and r def]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
g(id1) = id1 ∧ id1 >RA g(id2)

[>RA def]

=⇒
g(id1) >∗RA′ g(id2)

[PC]

30

Case 1.1.2. idu 6= id2

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(∃ idu : users • idu 6= id2 ∧ (A(id1, V) \ f1.R) = {release(idu, id1)})

[idu 6= id2 holds]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩A(id2) = ∅

[A(id1, V) ∩A(id2, V) = {acquire(id2, id1), release(id2, id1)}]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
¬request(σ, id1, id2, V)

[request def]

=⇒
false

[ungranted request def and PC]

=⇒
g(σ, id1) >∗RA′ g(σ, id2)

[PC]

Case 1.2 (ReleasedResource(f1, id1, V) holds).

id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
even(f1.s)

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
g(σ, id1) = big

[g def]

=⇒
id1 ∈ resources ∧ id2 ∈ users ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
g(σ, id1) = big ∧ big >RA g(σ, id2)

[>RA def and g def]

=⇒
g(σ, id1) >RA g(σ, id2)

[PC]

31

Case 2. id1 ∈ user ∧ id2 ∈ resource

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V)

[id1 ∈ user ∧ id2 ∈ resource holds]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
userProperty(id1, V)

[Theorem 20]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
UserAcquiring(f1, id1, V) ∨ UserReleasing(f1, id1, V)

[Definition 13]

Here we consider two cases for idr in UserAcquiring and UserReleasing
definitions:

• eitheroneidr = id2

• bothidr 6= id2

Case 2.1. idr 6= id2

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(∃ idr : ran resources(id) • idr 6= id2 ∧
(((A(id1, V) \ f1.R) = {acquire(id1, idr)}) ∨
(A(id1, V) \ f1.R) = {release(id1, idr)})))

[userProperty(id1, V) and idr 6= id2]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(∃ idr : ran resources(id) • idr 6= id2 ∧
(((A(id1, V) \ f1.R) = {acquire(id1, idr)}) ∨
(A(id1, V) \ f1.R) = {release(id1, idr)})) ∧
(A(id1, V) \ f1.R) ∩A(id2, V) = ∅)

[A(id1, V) ∩A(id2, V) = {acquire(id1, id2), release(id1, id2)}) and ST and PC]

32

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩A(id2, V) = ∅ ∧
(∃ idr : ran resources(id) • idr 6= id2 ∧
(((A(id1, V) \ f1.R) = {acquire(id1, idr)}) ∨
(A(id1, V) \ f1.R) = {release(id1, idr)})))

[PC]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩A(id2, V) = ∅

[PC]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
¬request(σ, id1, id2, V)

[request def]

=⇒
false

[ungranted request def and PC]

=⇒
g(id1) >∗RA′ g(id2)

[PC]

Case 2.2 (idr = id2). For this case, we consider all the cases that can occur
between a process conforms to the userProperty and another conforms to the
resourceProperty. These are:

• UserAcquiring(f1, id1, V) and AcquiredResource(f2, id2, V)

• UserAcquiring(f1, id1, V) and ReleaseResource(f2, id2, V)

• UserReleasing(f1, id1, V) and AcquiredResource(f2, id2, V)

• UserReleasing(f1, id1, V) and AcquiredResource(f2, id2, V)

• UserReleasing(f1, id1, V) and ReleasedResource(f2, id2, V)

Case 2.2.1 (UserAcquiring(f1, id1, V) ∧ AcquiredResource(f2, id2, V) holds).

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
min(r(f1.s, id1) ∪ {big})′ >RA id2 ∧ odd(f2.s)

[UserAcquiring(f1, id1, V) ∧ AcquiredResource(f2, id2, V) holds]

=⇒
min(r(f1.s, id1) ∪ {big})′ >RA id2 ∧ g(σ, id2) = id2 ∧
g(σ, id1) = min(r(f1.s, id1) ∪ {big})′

[PC and g def]

33

=⇒
g(σ, id1) >RA g(σ, id2)

[PC]

=⇒
g(σ, id1) >∗RA′ g(σ, id2)

[PC]

Case 2.2.2 (UserAcquiring(f1, id1, V) ∧ ReleaseResource(f2, id2, V)).

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) = {acquire(id1, id2)} ∧
(∀ idu : users(id2) • acquire(idu, id2) ∈ (A(id2, V) \ f2.R))

[UserAcquiring(f1, id1, V) ∧ ReleaseResource(f2, id2, V) holds]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) = {acquire(id1, id2)} ∧
acquire(id1, id2) ∈ (A(id2, V) \ f2.R)

[PC]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩ (A(id2, V) \ f2.R) = {acquire(id1, id2)}

[PC and ST]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩ (A(id2, V) \ f2.R) 6= ∅

[PC and ST]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
¬ungrantedness(σ, id1, id2, V)

[ungrantedness def]

=⇒
false

[ungranted request def and PC]

=⇒
g(σ, id1) >∗RA′ g(σ, id2)

[PC]

For the sub case UserReleasing(f1, id1, V) ∧ AcquiredResource(f2, id2, V)
we consider two cases for the idu1 quantified variable of the AcquiredResource(f2, id2, V)
definition:

• idu1 = id1

34

• idu1 6= id1

Case 2.2.3 (UserReleasing(f1, id1, V) ∧ AcquiredResource(f2, id2, V) ∧ idu1 = id1).

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) = {release(id1, id2)} ∧
(A(id2, V) \ f2.R) = {release(id1, id2)}

[UserReleasing(f1, id1, V) ∧ AcquiredResource(f2, id2, V) ∧ idu1 = id1 holds]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩ (A(id2, V) \ f2.R) = {release(id1, id2)}

[ST and PC]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
(A(id1, V) \ f1.R) ∩ (A(id2, V) \ f2.R) 6= ∅

[ST and PC]

=⇒
id1 ∈ users ∧ id2 ∈ resources ∧
state(σ, V) ∧ max(σ, V) ∧
id1 6= id2 ∧ ungranted request(σ, id1, id2, V) ∧
¬ungrantedness(σ, id1, id2, V)

[ungrantedness def and PC]

=⇒
false

[ungranted request def and PC]

=⇒
g(id1) >∗RA′ g(id2)

[PC]

Case 2.2.4 (UserReleasing(f1, id1, V) ∧ AcquiredResource(f2, id2, V) ∧ idu1 6= id1).

=⇒
idu1 6= id1 ∧
(∃ idu1 : users(id) • odd(f.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f.s |̀ {acquire(idu1, id), release(idu1, id)})) ∧
odd(f1.s |̀ {acquire(id1, id2), release(id1, id2)})

[UserReleasing(f1, id1, V) ∧ AcquiredResource(f2, id2, V) ∧ idu1 6= id1 holds]

=⇒
even(f2.s |̀ {acquire(id1, id2), release(id1, id2)}) ∧
odd(f1.s |̀ {acquire(id1, id2), release(id1, id2)})

[PC]

35

=⇒
even(f1.s |̀ {acquire(id1, id2), release(id1, id2)}) ∧
odd(f1.s |̀ {acquire(id1, id2), release(id1, id2)})

[f2.s |̀ {acquire(id1, id2), release(id1, id2)} = f1.s |̀ {acquire(id1, id2), release(id1, id2)}]

=⇒
false

[PC]

=⇒
g(id1) >∗RA′ g(id2)

[PC]

Case 2.2.5 (UserReleasing(f1, id1, V) ∧ ReleasedResource(f2, id2, V)).

=⇒
odd(f1.s |̀ {acquire(id1, id2), release(id1, id2)}) ∧
even(f2.s |̀ {acquire(id1, id2), release(id1, id2)}) ∧

[UserReleasing(f1, id1, V) ∧ ReleasedResource(f2, id2, V)]

=⇒
odd(f1.s |̀ {acquire(id1, id2), release(id1, id2)}) ∧
even(f1.s |̀ {acquire(id1, id2), release(id1, id2)})

[f2.s |̀ {acquire(id1, id2), release(id1, id2)} = f1.s |̀ {acquire(id1, id2), release(id1, id2)}]

=⇒
false

[PC]

=⇒
g(id1) >∗RA′ g(id2)

[PC]

Lemma 13 (failures(F(P))).

failures(F (P)) =

{(〈〉, X)|X ⊆ Σ \ {acquire(idU, id)|idU : users(id)}}
∪ {〈acquire(idU, id)〉, X)|idU ∈ users(id) ∧ X ⊆ Σ \ {release(idU, id)}
∪ {〈acquire(idU, id), release(idU, id)〉̂ s,X)|(s,X) ∈ failures(P)}

Proof. Calculated with failures clauses.

Lemma 14 (maxCandidatesfailures(F(P))).

MCfailures(Fn+1(P)) =

{(〈〉, X)|X = Σ \ {acquire(idU, id)|idU : users(id)}}
∪ {〈acquire(idU, id)〉, X)|idU ∈ users(id) ∧ X = Σ \ {release(idU, id)}
∪ {〈acquire(idU, id), release(idU, id)〉̂ s,X)|(s,X) ∈MCfailures(Fn(P))}

Proof. Calculated with Lemma 13 and initials of F(P).

Lemma 15.

∀ f : MCfailures(ResourceSpec(id, V)) •
ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

36

Proof. The failures of a recursive are calculated as the least fixed point in the
subset order with the following theorem. failures(P) =̂

⋃
n∈N failures(F

n(div))
The MCfailures can be calculated using this result being thenMCfailures(P) =̂⋃n∈N

0 MCfailures(Fn(div)). We prove our theorem then by induction of n.

Case 1. Base case: f ∈MCfailures(F 0(div))

a ∈MCFailures(div) [Assumption]

=⇒
a ∈ ∅

[failures(div) = ∅]

=⇒
false

[ST and PC]

=⇒
ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

[PC]

Case 2. Inductive case:

f ∈MCfailures(Fn(div))⇒ ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)
(IH)

=⇒
f ∈MCfailures(Fn+1(div))⇒ ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

From Lemma 14, we know that the f ∈ MCfailures(Fn(div)) it must belong
to one of the three sets described in this lemma. Lets call the sets (i),(ii) and
(iii) respecting the order in which they appear in aforementioned lemma. Then
we prove that for each membership case the property holds.

Case 2.1. f ∈ (i)

f ∈ (i) [f ∈ (i) holds]

=⇒
f = (〈〉, X = Σ \ {acquire(idU, id)|idU : users(id)})

[(i) def]

=⇒
(even(f.s) ∧ (∀ idu : users(id) • acquire(idu, id) ∈ (A(id, V) \ f.R) ∧
even(f.s |̀ {acquire(idu, id), release(idu, id)})))

[PC and ST]

=⇒
ReleasedResource(f, id, V)

[ReleasedResource def]

=⇒
ReleasedResource(f, id, V) ∨ AcquiredResource(f, id, V)

[PC]

Case 2.2. f ∈ (ii)

f ∈ (ii) [f ∈ (ii)]

=⇒
f ∈ {〈acquire(idU, id)〉, X)|idU ∈ users(id) ∧ X = Σ \ {release(idU, id)}

[(ii) def]

37

=⇒
(odd(f.s) ∧
(∃ idu1 : users(id) • odd(f.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f.s |̀ {acquire(idu1, id), release(idu1, id)})))

[(ii) def]

=⇒
AcquiredResource(f, id, V)

[AcquiredResource def]

=⇒
ReleasedResource(f, id, V) ∨ AcquiredResource(f, id, V)

[PC]

Case 2.3. f ∈ (iii)

f ∈ (iii) [f ∈ (iii) holds]

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ s,X)|(s,X) ∈ failures(P)}

[(iii) def]

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.X)|f ′ ∈MCfailures(Fn(P))}

[(s,X) = f’]

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.X)|f ′ ∈MCfailures(Fn(P))} ∧
(ReleasedResource(f ′, id, V) ∨ AcquiredResource(f ′, id, V))

[IH]

Case 2.3.1. (ReleasedResource(f ′, id, V) holds

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.X)|f ′ ∈MCfailures(Fn(P))} ∧
ReleasedResource(f ′, id, V)

[(ReleasedResource(f ′, id, V) holds]

=⇒
f ∈ {(〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.R)|f ′ ∈MCfailures(Fn(P))} ∧
(even(f ′.s) ∧ (∀ idu : users(id) • acquire(idu, id) ∈ (A(id, V) \ f ′.R) ∧
even(f ′.s |̀ {acquire(idu, id), release(idu, id)})))

[(ReleasedResource(f ′, id, V) def]

=⇒
(even(f.s) ∧ (∀ idu : users(id) • acquire(idu, id) ∈ (A(id, V) \ f.R) ∧
even(f.s |̀ {acquire(idu, id), release(idu, id)})))

[PC and SQT and ST]

=⇒
ReleasedResource(f, id, V)

[(ReleasedResource(f ′, id, V) def]

=⇒
ReleasedResource(f, id, V) ∨ AcquiredResource(f, id, V)

[PC]

Case 2.3.2 (AcquiredResource(f ′, id, V) holds).

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.X)|f ′ ∈MCfailures(Fn(P))} ∧
AcquiredResource(f ′, id, V)

[AcquiredResource(f ′, id, V) holds]

38

=⇒
f ∈ {〈acquire(idU, id), release(idU, id)〉̂ f ′.s, f ′.X)|f ′ ∈MCfailures(Fn(P))} ∧
(odd(f ′.s) ∧
(∃ idu1 : users(id) • odd(f ′.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f ′.s |̀ {acquire(idu1, id), release(idu1, id)})))

[AcquiredResource(f ′, id, V) def]

=⇒
(odd(f.s) ∧
(∃ idu1 : users(id) • odd(f.s |̀ {acquire(idu1, id), release(idu1, id)}) ∧
∀ idu2 : users(id) • idu1 6= idu2 ⇒
even(f.s |̀ {acquire(idu1, id), release(idu1, id)})))

[PC and SQT and ST]

=⇒
AcquiredResource(f, id, V)

[PC]

=⇒
AcquiredResource(f, id, V) ∨ ReleasedResource(f, id, V)

[PC]

Lemma 16 (failures(F(P)) where F = UserSpec). Let AS = acquireSeq(resources(id))
and RS = releaseSeq(resources(id))

failures(F (P)) =

{(s,X)|s < AS ∧ X ⊆ Σ \ {AS(#s)}}
∪ {(AS ŝ,X)|s < RS ∧ X ⊆ Σ \ {RS(#s)}}
∪ {(ASˆRS ŝ,X)|(s,X) ∈ failures(P)}

where:

• acquireSeq(id, s) =̂ acquire(id, head(s))̂ acquireSeq(id, tail(s))

• acquireSeq(id, 〈〉) =̂ 〈〉

• releaseSeq(id, s) =̂ release(id, head(s))̂ releaseSeq(id, tail(s))

• releaseSeq(id, 〈〉) =̂ 〈〉

Proof. Calculated with the failures clauses.

Lemma 17 (MCfailures(F(P)) where F = UserSpec). Let AS = acquireSeq(resources(id))
and RS = releaseSeq(resources(id))

MCfailures(F (P)) =

{(s,X)|s < AS ∧ X = Σ \ {AS(#s)}}
∪ {(AS ŝ,X)|s < RS ∧ X = Σ \ {RS(#s)}}
∪ {(ASˆRS ŝ,X)|(s,X) ∈MCfailures(P)}

39

Proof. Calculated with MCFailures definition and Lemma 16.

Lemma 18. Let V be an arbitrary network and id an arbitrary id of such a
network.

∀ f : MCfailures(UserSpec(id, V)) • UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

Proof. The failures of a recursive are calculated as the least fixed point in the
subset order with the following theorem. failures(P) =̂

⋃
n∈N failures(F

n(div))
The MCfailures can be calculated using this result being thenMCfailures(P) =̂⋃n∈N

0 MCfailures(Fn(div)). We prove our theorem then by induction of n.

Case 1. Base case: f ∈MCfailures(F 0(div))

a ∈MCfailures(div)

=⇒
a ∈ ∅

[failures(div) = ∅]

=⇒
false

[ST]

=⇒
UserAcquiring(f, id, V) ∨ UserReleasing(f, id, V)

[PC]

Case 2. Inductive case:

f ∈MCfailures(Fn(div))⇒ ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

=⇒
f ∈MCfailures(Fn+1(div))⇒ ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

(IH)

From Lemma 17, we know that the f ∈ MCfailures(Fn(div)) it must belong
to one of the three sets described in this lemma. Lets call the sets (i),(ii) and
(iii) respecting the order in which they appear in aforementioned lemma. Then
we prove that for each membership case the property holds.

Case 2.1 (f ∈ (i)).

=⇒
f ∈ (i)

[f ∈ (i) holds]

=⇒
f ∈ {(s,X)|s < AS ∧ X = Σ \ {AS(#s)}}

[(i) def]

=⇒
∃ idr : resources • ((A(id, V) \ f.R) = {acquire(id, idr)} ∧
even(f.s |̀ {acquire(id, idr), release(id, idr)}) ∧
min(r(f.s, id) ∪ {big})) >∗RA′ idr

[STandSQTandPC]

=⇒
UserAcquiring(f, id, V)

[UserAcquiring def]

40

=⇒
UserAcquiring(f, id, V) ∨ UserReleasing(f, id, V)

[PC]

Case 2.2 (f ∈ (ii)).

f ∈ (ii)

=⇒
f ∈ {(AS ŝ,X)|s < RS ∧ X = Σ \ {RS(#s)}}

[(ii) def]

=⇒
∃ idr : resources •
((A(id, V) \ f.R) = {release(id, idr)} ∧
odd(f.s |̀ {acquire(id, idr), release(id, idr)}))

[PC and SQT and ST]

=⇒
UserReleasing(f, id, V)

[UserReleasing def]

=⇒
UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

[PC]

Case 2.3 (f ∈ (iii)).

=⇒
f ∈ (iii)

[f ∈ (iii) holds]

=⇒
f ∈ {(ASˆRS ŝ,X)|(s,X) ∈MCfailures(P)}

[(iii) def]

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)}

[f = (s,X)]

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)} ∧
UserReleasing(f ′, id, V) ∨ UserAcquiring(f ′, id, V)

[IH]

Case 2.3.1 (UserReleasing(f ′, id, V)).

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)} ∧
UserReleasing(f ′, id, V)

[UserReleasing(f ′, id, V) holds]

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)} ∧
∃ idr : resources •
((A(id, V) \ f ′.R) = {release(id, idr)} ∧
odd(f ′.s |̀ {acquire(id, idr), release(id, idr)}))

[UserReleasing(f ′, id, V) def]

=⇒
∃ idr : resources •
((A(id, V) \ f.R) = {release(id, idr)} ∧
odd(f.s |̀ {acquire(id, idr), release(id, idr)}))

[ST and SQT and PC]

=⇒
UserReleasing(f, id, V)

[UserReleasing def]

41

=⇒
UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

[PC]

Case 2.3.2 (UserAcquiring(f ′, id, V)).

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)} ∧
UserAcquiring(f ′, id, V)

[UserAcquiring(f ′, id, V) holds]

=⇒
f ∈ {(ASˆRS f̂ ′.s, f ′.R)|f ′ ∈MCfailures(P)} ∧
(∃ idr : resources • ((A(id, V) \ f ′.R) = {acquire(id, idr)} ∧
even(f ′.s |̀ {acquire(id, idr), release(id, idr)}) ∧
min(r(f ′.s, id) ∪ {big})) >RA idr)

[UserAcquiring(f ′, id, V) def]

=⇒
∃ idr : resources • ((A(id, V) \ f.R) = {acquire(id, idr)} ∧
even(f.s |̀ {acquire(id, idr), release(id, idr)}) ∧
min(r(f.s, id) ∪ {big})) >RA idr

[ST and SQT and PC]

=⇒
UserAcquiring(f, id, V)

[UserAcquiring(f, id, V) def]

=⇒
UserAcquiring(f, id, V) ∨ UserReleasing(f, id, V)

[PC]

Theorem 19 (Resources have resourceProperty). ∀ id : resources • resourceProperty(id, V)

Proof.

id ∈ resources [As1]

=⇒
id ∈ resources ∧
ResourceSpec(id,V) [F=Abs(id, V)

[BehaviourRA restriction]

=⇒
id ∈ resources ∧
Mfailures(Abs(id, V)) ⊆MCfailures(ResourceSpec(id, V))

[Theorem 10]

=⇒
id ∈ resources ∧
Mfailures(Abs(id, V)) ⊆MCfailures(ResourceSpec(id, V)) ∧
∀ f : MCfailures(ResourceSpec(id, V)) •
ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

[Lemma 15]

=⇒
id ∈ resources ∧
Mfailures(Abs(id, V)) ⊆MCfailures(ResourceSpec(id, V)) ∧
∀ f : Mfailures(Abs(id, V)) •
ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

[PC and ST]

42

=⇒
∀ f : Mfailures(Abs(id, V)) •
ResourceAcquired(f, id, V) ∨ ResourceRelease(f, id, V)

[PC]

=⇒
resourceProperty(id, V)

[resourceProperty(id, V) def]

Theorem 20 (Users have userProperty). ∀ id : users • userProperty(id, V)

Proof.

id ∈ users [Assumption 1]

=⇒
id ∈ users ∧
UserSpec(id,V) [F=Abs(id, V)

[BehaviourRA restriction]

=⇒
id ∈ users ∧
Mfailures(Abs(id, V)) ⊆MCfailures(UserSpec(id, V))

[Theorem 10]

=⇒
id ∈ users ∧
Mfailures(Abs(id, V)) ⊆MCfailures(UserSpec(id, V)) ∧
∀ f : MCfailures(UserSpec(id, V)) • UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

[Lemma 18]

=⇒
id ∈ users ∧
Mfailures(Abs(id, V)) ⊆MCfailures(UserSpec(id, V)) ∧
∀ f : Mfailures(Abs(id, V)) • UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

[PC and ST]

=⇒
∀ f : Mfailures(Abs(id, V)) • UserReleasing(f, id, V) ∨ UserAcquiring(f, id, V)

[PC]

=⇒
userProperty(id, V)

[userProperty(id, V) def]

C Client/server auxiliary lemmas

Lemma 21. Let f(id) = ρ(σ, id, V) and let (C, σ) be a cycle of the network V
such that:

• ∀ i : domC • ClientRequesting(f(C(i)), C(i), V) ∨ ServerRequesting(f(C(i)), C(i), V)

Hence, in such a cycle the following lemma holds.

∀σ,C • Cycle(C, σ) ∧
(∃ i, i′ : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V))⇒

∃ i : domV • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V)

43

Proof. We can prove this lemma by induction in the size of the cycle. The base
case being the cycle with size 2.

Case 1 (Base case). Here, we consider the base case when the size of the cycle
is zero. This is vacuously true since the predicate cycle(C, σ) is false, therefore
we can deduce that the desired conclusion.

Case 2 (Inductive case). In the inductive case, we prove that if our lemma work
for the case where the size of the cycle is equal to n, it also works to the case
when the size equals to n+1. Let (C, σ) be a cycle where #C = n, and a (C ′, σ),
another cycle where, C ′ = C 〈̂idn+1〉 and n+ 1 indicates the last position of the
cycle.

((∃ i, i′ : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V))⇒
(I.H.)

∃ i : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V))

=⇒
((∃ i, i′ : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i′)), C ′(i′), V))⇒

∃ i : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i⊕ 1)), C ′(i⊕ 1), V))

Hence, we begin our reasoning by assuming the following:

(∃ i, i′ : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i′)), C ′(i′), V)
[Assumption 1]

Here, we consider 3 cases for the for the cycle C: the case when all the partici-
pants of the cycle behave as requesting clients, the case when all the participants
behave as requesting server and when there is both a client and a server request-
ing in the cycle.

• ∀ i : domC • ClientRequesting(f(C ′(i)), C ′(i), V)

• ∀ i : domC • ServerRequesting(f(C ′(i)), C ′(i), V)

• (∃ i, i′ : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V)

Case 2.1 (∀ i : domC • ClientRequesting(f(C ′(i)), C ′(i), V)). This represents
the case where the C part of the cycle C ′ has only client requesting atoms.

=⇒
∀ i : domC • ClientRequesting(f(C ′(i)), C ′(i), V)

=⇒
∀ i : domC • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(n+ 1)), C ′(n+ 1), V)

[From Assumption 1 and Case 1.1]

=⇒
ClientRequesting(f(C ′(n)), C ′(n), V) ∧ ServerRequesting(f(C ′(n+ 1)), C ′(n+ 1), V)

[PC]

=⇒
∃ i : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i⊕ 1)), C ′(i⊕ 1), V))

[PC]

44

Case 2.2 (∀ i : domC • ServerRequesting(f(C ′(i)), C ′(i), V)). This repre-
sents the case where the C part of the cycle C ′ has only server requesting atoms.

=⇒
∀ i : domC • ServerRequesting(f(C ′(i)), C ′(i), V)

=⇒
∀ i : domC • ServerRequesting(f(C ′(i)), C ′(i), V) ∧ ClientRequesting(f(C ′(n+ 1)), C ′(n+ 1), V)

[From Assumption 1 and Case 1.1]

=⇒
ClientRequesting(f(C ′(n+ 1)), C ′(n+ 1), V) ∧ ServerRequesting(f(C ′(1)), C ′(1), V)

[PC]

=⇒
∃ i : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i⊕ 1)), C ′(i⊕ 1), V))

[PC]

Case 2.3 ((∃ i, i′ : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V)).
This represents the case where there are both a client requesting atom and a
server requesting one in C.

=⇒
∃ i, i′ : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i′)), C(i′), V)

=⇒
∃ i : domC • ClientRequesting(f(C(i)), C(i), V) ∧ ServerRequesting(f(C(i⊕ 1)), C(i⊕ 1), V))

[I.H.]

=⇒
∃ i : domC ′ • ClientRequesting(f(C ′(i)), C ′(i), V) ∧ ServerRequesting(f(C ′(i⊕ 1)), C ′(i⊕ 1), V))

[domC ⊆ domC ′]

Lemma 22 (S body failures).

failures(F (id, V)(N)) =

{(〈〉, X)|req ∈ SRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ resp 6∈ X}∪
{(〈req〉̂ s,X)|req ∈ SRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(S(id, V))}∪
{(〈req, resp〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(S(id, V))}

Proof. Calculated with the failures clauses.

Lemma 23 (C body failures).

failures(C(id, V)) =

{(〈〉, X)|req ∈ CRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ CRq(id) ∧ X ∩ responses(req) = ∅}∪
{(〈req〉̂ s,X)|req ∈ CRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(C(id, V))}∪
{(〈req, resp〉, X)|req ∈ CRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(C(id, V))}

45

Proof. Calculated with the failures clauses.

Lemma 24 (S body MCfailures).

MCfailures(S(id, V)) =

{(〈〉, X)|req ∈ SRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ resp 6∈ X}∪
{(〈req〉̂ s,X)|req ∈ SRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(S(id, V))}∪
{(〈req, resp〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(S(id, V))}

Proof. Calculated with the failures clauses plus the definition of Mfailures.

Lemma 25 (C body MCfailures).

failures(C(id, V)) =

{(〈〉, X)|req ∈ CRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ CRq(id) ∧ X ∩ responses(req) = ∅}∪
{(〈req〉̂ s,X)|req ∈ CRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(C(id, V))}∪
{(〈req, resp〉, X)|req ∈ CRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(C(id, V))}

Proof. Calculated with the failures clauses plus the definition of Mfailures.

Theorem 26 (S Mfailures imply pre CS property).

∀ f : failures(S(id, V)) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)

Proof.

Case 1 (Base case).

f ∈ failures(F 0(div))

=⇒
f ∈ failures(div)

[F 0 def]

=⇒
f ∈ ∅

[failures(div) def]

=⇒
false

[ST]

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

[PC]

46

Case 2 (Inductive case).

f ∈ failures(Fn+1(div))

Here we split the proof since f ∈ failures(Fn+1(div)) implies that f must
belong to one of the composing set. We denote the composing sets appering in
the definition of its failures by (i), (ii), (iii) and (iiii) respecting the order in
which they appear. Hence:

• f ∈ (i)

• f ∈ (ii)

• f ∈ (iii)

• f ∈ (iiii)

Case 2.1 ((i)).

=⇒
f ∈ (i)

=⇒
f ∈ {(〈〉, X)|req ∈ SRq(id) ∧ req 6∈ X}

[(i) def]

=⇒
(f.s = 〈〉 ∨ last(f.s) ∈
responses(id) ∨ last(f.s) ∈ requests(id) ∧
responses(last(f.s)) = ∅) ∧ SRq(id) 6⊆ f.R

[ST and PC]

=⇒
SReq(f, id, V)

[SReq(f, id, V) def]

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

[PC]

Case 2.2 ((ii)).

=⇒
f ∈ (ii)

=⇒
f ∈ {(〈req〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ resp 6∈ X}

[(ii) def]

=⇒
SResp(f, id, V) ∧ ∃ ev : responses(last(f.s)) • ev ∈ (A(id, V) \ f.R)

[ST and PC]

=⇒
ServerResponding(f, id, V)

[ServerResponding(f, id, V) def]

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

[PC]

47

Case 2.3 ((iii)).

=⇒
f ∈ (iii)

=⇒
f ∈ {(〈req〉̂ f ′.s, f ′.R)|req ∈ SRq(id) ∧ responses(req) = ∅ ∧
f ′ ∈ failures(ServerFn(id, V)(div))}

[(iii) def]

=⇒
f ∈ {(〈req〉̂ f ′.s, f ′.R)|req ∈ SRq(id) ∧ responses(req) = ∅ ∧
f ′ ∈ failures(ServerFn(id, V)(div))} ∧
ClientRequesting(f ′, id, V) ∨ ClientResponding(f ′, id, V) ∨
SReq(f ′, id, V) ∨ ServerResponding(f ′, id, V)

[I.H.]

Here, we have to split in 4 cases when each of the predicate holds for f ′. In each
case, when the predicate holds for f ′, it is quite straightforward to prove that it
holds also to f , hence we only present the final conclusion.

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

[PC]

Case 2.4 ((iiii)).

=⇒
f ∈ (iiii)

=⇒
f ∈ {(〈req, resp〉̂ s,X)|req ∈ SRq(id) ∧
resp ∈ responses(req) ∧ (s,X) ∈ failures(S(id, V))}

[(iiii) def]

=⇒
f ∈ {(〈req, resp〉̂ f ′.s, f ′.R)|req ∈ SRq(id) ∧
resp ∈ responses(req) ∧ f ′ ∈ failures(S(id, V))} ∧
ClientRequesting(f ′, id, V) ∨ ClientResponding(f ′, id, V) ∨
SReq(f ′, id, V) ∨ ServerResponding(f ′, id, V)

[I.H.]

Here in the same way as in the previous case, we have to split in 4 cases when
each of the predicate holds for f ′. In each case, when the predicate holds for f ′,
it is quite straightforward to prove that it holds also to f , hence we only present
the final conclusion.

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

[PC]

Theorem 27 (C failures imply pre CS property).

∀ f : failures(C(id, V)) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)

48

Proof. The reasoning presented here is very similar to the one present for demon-
strating that the MCfailures of S.

Case 1 (Base case).

f ∈ failures(F 0(div))

=⇒
f ∈ failures(div)

=⇒
f ∈ ∅
=⇒
false

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

Case 2 (Inductive case).

f ∈ failures(Fn+1(div))

Here we split the proof since f ∈ failures(Fn+1(div)) implies that f must
belong to one of the composing set. We denote the composing sets appering in
the definition of its failures by (i), (ii), (iii) and (iiii) respecting the order in
which they appear. Hence:

• f ∈ (i)

• f ∈ (ii)

• f ∈ (iii)

• f ∈ (iiii)

Case 2.1 ((i)).

=⇒
f ∈ (i)

=⇒
f ∈ {(〈〉, X)|req ∈ CRq(id) ∧ req 6∈ X}
=⇒
CReq(f, id, V) ∧ ∃ req : CRq(id) • req ∈ (A(id, V) \ f.R)

=⇒
ClientRequesting(f, id, V)

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

49

Case 2.2 ((ii)).

=⇒
f ∈ (ii)

=⇒
f ∈ {(〈req〉, X)|req ∈ CRq(id) ∧ X ∩ responses(req) = ∅}
=⇒
CResp(f, id, V) ∧ (A(id, V) \ f.R) = responses(last(f.s))

=⇒
ClientResponding(f, id, V)

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

Case 2.3 ((iii)).

=⇒
f ∈ (iii)

=⇒
f ∈ {(〈req〉̂ s,X)|req ∈ CRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(F (id, V)n(div))}
=⇒
f ∈ {(〈req〉̂ s,X)|req ∈ CRq(id) ∧
responses(req) = ∅ ∧ (s,X) ∈ failures(F (id, V)n(div))} ∧
ClientRequesting(f ′, id, V) ∨ ClientResponding(f ′, id, V) ∨
SReq(f ′, id, V) ∨ ServerResponding(f ′, id, V)

Here, we have to split in 4 cases when each of the predicate holds for f ′. In each
case, when the predicate holds for f ′, it is quite straightforward to prove that the
same predicate also holds for f , hence we only present the final conclusion.

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

Case 2.4 ((iiii)).

=⇒
f ∈ (iiii)

=⇒
f ∈ {(〈req, resp〉, X)|req ∈ CRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(F (id, V)n(div))}
=⇒
f ∈ {(〈req, resp〉, X)|req ∈ CRq(id) ∧
resp ∈ responses(req) ∧ (s,X) ∈ failures(F (id, V)n(div))} ∧
ClientRequesting(f ′, id, V) ∨ ClientResponding(f ′, id, V) ∨
SReq(f ′, id, V) ∨ ServerResponding(f ′, id, V)

50

Here in the same way as in the previous case, we have to split in 4 cases when
each of the predicate holds for f ′. In each case, when the predicate holds for
f ′, it is quite straightforward to prove that the same predicate also holds for f ,
hence we only present the final conclusion.

=⇒
ClientRequesting(f, id, V) ∨ ClientResponding(f, id, V) ∨
SReq(f, id, V) ∨ ServerResponding(f, id, V)

Lemma 28 (CS Mfailures).

failures(C(id, V)) =

{(〈〉, X)|req ∈ CRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ CRq(id) ∧ X ∩ responses(req) = ∅}∪
{(〈req〉̂ s,X)|req ∈ CRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(C(id, V))}∪
{(〈req, resp〉, X)|req ∈ CRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(C(id, V))}∪
{(〈〉, X)|req ∈ SRq(id) ∧ req 6∈ X}∪
{(〈req〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ resp 6∈ X}∪
{(〈req〉̂ s,X)|req ∈ SRq(id) ∧ responses(req) = ∅ ∧ (s,X) ∈ failures(S(id, V))}∪
{(〈req, resp〉, X)|req ∈ SRq(id) ∧ resp ∈ responses(req) ∧ (s,X) ∈ failures(S(id, V))}

Proof. Calculated with the revivals clauses.

Lemma 29.

∀ f : Mfailures(CS(id, V)) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)

Proof. The reasoning for this proof is very similar to the steps adopted for the
two lemmas concerning processes S and C.

Lemma 30.

∀ f : Mfailures(RequestResponseSpec(id, V)) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)

Proof. This follows easily from lemmas 27, 26 and 29

Lemma 31 (Revivals of ServerReqSpec).

revivals(F (id, V)n+1(P)) =

{(〈〉, X, a)|a ∈ Σ \ SRq(id) ∧ a 6∈ X}∪
{(〈〉, X, a)|a ∈ SRq(id) ∧ SRq(id) ∩X = 〈〉}∪
{(〈ev〉̂ s,X, a)|ev ∈ A(id, V) ∧ (s,X, a) ∈ revivals(F (id, V)n(P))

51

Lemma 32 (Revivals of ServerReqSpec).

MCrevivals(F (id, V)n+1(P)) =

{(〈〉, X, a)|a ∈ Σ \ SRq(id) ∧ a 6∈ X ∧ (SRq(id) ∩X 6= ∅ ⇒ X ⊇ SRq(id))}∪
{(〈〉, X, a)|a ∈ SRq(id) ∧ SRq(id) ∩X = 〈〉}∪
{(〈ev〉̂ s,X, a)|ev ∈ A(id, V) ∧ (s,X, a) ∈MCrevivals(F (id, V)n(P))

Lemma 33.

∀ r : MCrevivals(ServerRequestSpec(id, V)) •
ServerRequesting(failure(r), id, V) ∨ SRq(id) ⊆ failure(r).R

Proof. Using the same argument as used for the other lemmas.

Theorem 34 (CS predicate ensures clientServerProperty). Let V be a network
such that CS(V) holds.

∀ id : domV • clientServerProperty(id, V)

Proof. Let id be an arbitrary id of V .

CS(V) ∧ id ∈ domV [Assumption 1]

=⇒
(∀mf : Mfailures(Abs(id, V))) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V))

[BehaviourCS(V) and Lemma 30]

=⇒
(∀mf : Mfailures(Abs(id, V))) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)) ∧
(∀mf : Mfailures(Abs(id, V)) • ServerRequesting(f, id, V) ∧ SRq(id) ⊆ mf.R)

[BehaviourCS(V) and Lemma 33]

=⇒
(∀mf : Mfailures(Abs(id, V))) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨ SReq(f, id, V)) ∧
(ServerRequesting(f, id, V) ∨ SRq(id) ⊆ mf.R)

[PC]

Using predicate calculus we can distribute one clause into another. As ServerRequesting
in conjunction with any predicate other than SReq(f, id, V) is false, and with
SReq(f, id, V) this last is absorbed by ServerRequesting. Also, the SReq(f, id, V)
in conjunction with SReq is false, but with any other predicate it is absorbed
by the predicate.We end up with:

=⇒
∀Mfailures(Abs(id, V)) • ClientRequesting(f, id, V) ∨
ClientResponding(f, id, V) ∨ ServerRequesting(f, id, V) ∨
ServerRequesting(f, id, V)

=⇒
clientServerProperty(id, V)

52

D CSPM models

D.1 Network definitions

-- Network Common

-- Auxiliary definition for the network model

-- Functions to recover the ID, Behavior and Alphabet given a atomic tuple.

ID_((x,y,z)) = x

B_((x,y,z)) = y

A_((x,y,z)) = z

-- Functions to recover the Alphabet and Behaviour of an atom

-- given an Id and a Network containing this id

A(id,V) = A_(getElement(id,V))

B(id,V) = B_(getElement(id,V))

-- Auxiliary functional definitions

pick({x}) = x

getElement(id,V) = pick({ a | a <- V, ID_(a) == id})

-- Function to recover the vocabulary of the network V

--Voc(V) = Union({ inter(A_(a1),A_(a2)) | a1 <- V, a2 <- V, NEQ(a1,a2)})

Voc(V) =

let

inters(a,^ts) = union(inter(A_(a),A_(b)),inters(a,ts))

inters(a,<>) = {}

VocP(<a>^ts) = union(inters(a,ts),VocP(ts))

VocP(<>) = {}

within

VocP(seq(V))

-- Intersection between and alphabet and the vocabulary of the network

AVoc(id,V) = let Aid = A(id,V)

within Union({inter(Aid,A_(a)) | a <- V, ID_(a) != id})

-- Abstraction function

Abs(id,V) = B(id,V) \ diff(A(id,V),AVoc(id,V))

-- Create a network based on an Ids set and a

53

-- function for given the behaviour and alpha of

-- tuples

DefaultNetwork(Ids,Beh,Alp) = {(id,Beh(id),Alp(id)) | id <- Ids}

-- Function to recover the alphabet of the network V

AlphaNetwork(V) = Union({ A_(a)| a <- V})

-- Function to recover the union of every alphabetical triple joint

-- Alphabetical triple joint is given by Inter({A_(a1),A_(a2),A_(a3)}) where

-- a1,a2 and a3 are three different triples

UnionTripleJoints(V) =

Union({ Inter({A_(a1),A_(a2),A_(a3)}) |

a1 <- V, a2 <- V, a3 <- V,NEQ(a1,a2),NEQ(a3,a2),NEQ(a1,a3)})

-- Function that gives the behaviour of a network V

Behaviour(V) = || a : V @ [A_(a)] B_(a)

-- Auxiliary definition of not equal tuples

NEQ(A1,A2) = ID_(A1) != ID_(A2)

D.2 Ring buffer model

include "../../Network.csp"

Value = {0..2}

NCELLS = N-1

nametype CELL_IDS = {0..N-2}

datatype IDS = CELL.CELL_IDS | CONTROLLER

channel input, output: Value

--

-- The controller

--

Controller =

let ControllerState(cache,size,top,bot) =

InputController(cache,size,top,bot) [] OutputController(cache,size,top,bot)

InputController(cache,size,top,bot) =

size < N & input?x ->

(size == 0 & ControllerState(x,1,top,bot)

[]

54

size > 0 & write.top!x -> ControllerState(cache,size+1,(top+1)%NCELLS,bot))

OutputController(cache,size,top,bot) =

size > 0 & output!cache ->

(size > 1 & (read.bot?x ->ControllerState(x,size-1,top,(bot+1)%NCELLS))

[]

size == 1 & ControllerState(cache,0,top,bot))

within

ControllerState(0,0,0,0)

--

-- The ring

--

-- A generic cell

channel read, write: CELL_IDS. Value

RingCell(id) =

let Cell(val) =

read.id!val -> Cell(val) [] write.id?x -> Cell(x)

within

Cell(0)

-- The distributed ring

Ring = ||| i: CELL_IDS @ RingCell(i)

--

-- The Buffer Network

--

Be(CONTROLLER) = Controller

Be(CELL.id) = RingCell(id)

Al(CONTROLLER) = {|read,write,input,output|}

Al(CELL.id) = {|read.id,write.id|}

RingBufferNetwork = {(id,Be(id),Al(id)) | id <- IDS}

D.3 Dinning philosophers model

-- Dinning Philosophers

include "../../Network.csp"

nametype NS = {0..N-1}

datatype IDS = PHIL.NS | FORK.NS

channel sit, getup, eat : NS

55

channel pickup,putdown : NS.NS

next(id) = (id + 1) % N

prev(id) = (id - 1) % N

Phil(id) = sit.id -> pickup.id.id -> pickup.id!next(id) ->

eat.id -> putdown.id.id -> putdown.id!next(id) -> getup.id -> Phil(id)

APhil(id) = sit.id -> pickup.id!next(id) -> pickup.id.id ->

eat.id -> putdown.id!next(id) -> putdown.id.id -> getup.id -> APhil(id)

Fork(id) = [] i : {id,prev(id)} @ pickup.i.id -> putdown.i.id -> Fork(id)

Al(FORK.id) = {|pickup.i.id,putdown.i.id | i <- {id,prev(id)}|}

Al(PHIL.id) = {|pickup.id.i,putdown.id.i,sit.id,getup.id,eat.id | i <- {id,next(id)}|}

Be(FORK.id) = Fork(id)

Be(PHIL.id) = Phil(id)

DinningPhilosophersNetwork = union({(id,Be(id),Al(id)) |

id <- diff(IDS,{PHIL.(N-1)})},{(PHIL.(N-1),APhil(N-1),Al(PHIL.(N-1)))})

D.4 Leader election simplified model

-- Leader Election Model

NODE_IDS = {0..N-1}

channel transmit : NODE_IDS.NODE_IDS.CLAIM.PRIORITY

channel requestData : NODE_IDS

Transmit(id) = requestData.id -> updateXData.id?data -> Send(id,data);Transmit(id)

Send(id,data) =

let

S(s) = if s != <> then transmit.id!head(s)!data -> S(tail(s))

else SKIP

within

S(<0..(id-1)>^<(id+1)..N-1>)

print <0..(-1)>^<1..1>

Receive(id) =

transmit?idR!id?data -> updateRData.id!idR!data -> Receive(id)

Control(id,data) =

56

(requestData.id -> updateXData.id!data -> Control(id,data)

[]

updateRData.id?idR?d -> updateMemData.id!idR!d -> Election(id,data))

|~|

Init(id)

Init(id) = reset.id -> Control(id,undecided.0)

Election(id,claim.priority) =

readLeaders!id -> getLeaders.id?leaders ->

readHighestPriority!id -> getHighestPriority.id?hPri ->

readHighestPriorityId!id -> getHighestPriorityId.id?hPriId ->

readToVote!id -> getToVote.id?toVote ->

(if claim == leader then

if leaders > 0 then

Init(id)

else

Control(id,claim.priority)

else if claim == follower then

if leader == 0 then

Init(id)

else

Control(id,claim.priority)

else

if leaders > 0 then

Control(id,follower.priority)

else if toVote == 0 then

if hPri < priority or (hPri == priority and hPriId < id) then

Control(id,leader.priority)

else

Control(id,follower.priority)

else

Control(id,claim.priority))

-- Hp : highest priority

-- hPId: highest priority id

datatype CLAIM = leader | follower | undecided

nametype PRIORITY = { -1,0,1}

channel reset : NODE_IDS

channel getLeaders : NODE_IDS.{0..N}

channel getHighestPriority : NODE_IDS.PRIORITY

channel getHighestPriorityId : NODE_IDS.NODE_IDS

channel getToVote : NODE_IDS.{0..N}

channel readToVote,readHighestPriority,readLeaders,readHighestPriorityId : NODE_IDS

channel updateMemData,updateRData : NODE_IDS.NODE_IDS.CLAIM.PRIORITY

57

channel updateXData : NODE_IDS.CLAIM.PRIORITY

Memory(id) =

let

Mem =

readLeaders!id -> (|~| leaders : {0..N} @ getLeaders!id!leaders -> Mem)

[]

readHighestPriority!id -> (|~| hP : {0,1} @ getHighestPriority!id!hP -> Mem)

[]

readHighestPriorityId!id ->

(|~| hPId : NODE_IDS @ getHighestPriorityId!id!hPId -> Mem)

[]

readToVote!id -> (|~| toVote : {0..N} @ getToVote!id!toVote -> Mem)

[]

updateMemData!id?idR?newC?newP -> Mem

within

Mem

-- Leader Election Network

include "../../Network.csp"

datatype IDS = TRANSMIT.NODE_IDS | RECEIVE.NODE_IDS | CONTROL.NODE_IDS | MEMORY.NODE_IDS

Al(TRANSMIT.id) = {|updateXData.id,transmit.id,requestData.id|}

Al(RECEIVE.id) = {|transmit.idR.id, updateRData.id | idR <- NODE_IDS|}

Al(CONTROL.id) = {|updateRData.id, requestData.id,updateXData.id,

updateMemData.id, reset.id, getLeaders.id,

getHighestPriority.id,getHighestPriorityId.id,

getToVote.id, readToVote.id,readHighestPriority.id,

readLeaders.id,readHighestPriorityId.id|}

Al(MEMORY.id) = {|updateMemData.id, getLeaders.id, getHighestPriority.id,

getHighestPriorityId.id, getToVote.id,

readToVote.id,readHighestPriority.id,readLeaders.id,

readHighestPriorityId.id|}

Be(TRANSMIT.id) = Transmit(id)

Be(RECEIVE.id) = Receive(id)

Be(CONTROL.id) = Init(id)

Be(MEMORY.id) = Memory(id)

print Al(MEM_CELL.0.1)

Network = DefaultNetwork(IDS,Be,Al)

58

Acknowledgments

The EU Framework 7 Integrated Project COMPASS (Grant Agreement 287829)
financed most of the work presented here.

References

[1] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Trans.
Program. Lang. Syst., 15(1):73–132, 1993.

[2] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen,
Joseph Sifakis, and Rongjie Yan. D-finder 2: Towards efficient correctness
of incremental design. In NASA Formal Methods, pages 453–458, 2011.

[3] Stephen D. Brookes and A. W. Roscoe. An improved failures model for
communicating processes. In Seminar on Concurrency, volume 197 of Lec-
ture Notes in Computer Science, pages 281–305. Springer, 1984.

[4] Stephen D. Brookes and A. W. Roscoe. Deadlock analysis in networks of
communicating processes. Distributed Computing, 4:209–230, 1991.

[5] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[6] J. M. R. Martin and P. H. Welch. A Design Strategy for Deadlock-Free
Concurrent Systems. Transputer Communications, 3(4):215–232, 1997.

[7] Jeremy Martin. Deadlock checker repository, 2012. http://wotug.org/

parallel/theory/formal/csp/Deadlock/.

[8] Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota. Systematic devel-
opment of trustworthy component systems. In FM, volume 5850 of Lecture
Notes in Computer Science, pages 140–156. Springer, 2009.

[9] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[10] A. W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Inf.
Comput., 75(3):289–327, 1987.

[11] A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance,
D. M. Jackson, and J. B. Scattergood. Hierarchical compression for model-

checking csp or how to check 1020 dining philosophers for deadlock. In
TACAS, volume 1019 of Lecture Notes in Computer Science, pages 133–
152. Springer, 1995.

[12] A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

59

[13] University of Oxford. FDR: User Manual, version 2.94, 2012. http://

www.cs.ox.ac.uk/projects/concurrency-tools/.

60

