
Web Systems Acceptance Tests and Code Generation

Eduardo Aranha1 and Paulo Borba2
Informatics Center

Federal University of Pernambuco
Recife, Brazil

Introduction

In Extreme Programming (XP) [2], acceptance tests are used to prove that the application works as
the customer wishes. The available test languages offer low level of abstraction and legibility,
because they are based in languages like Visual Basic and XML. GUI capture and playback tools
facilitate the creation of test cases, though they have many limitations to program and maintain the
test cases [1].

Acceptance tests interact with the GUI (Graphical User Interface) of the system, simulating
the actions of users and verifying the information content presented. In Web systems, for example,
the GUI is composed of Web pages and its components, like frames, links and images. In that way,
the information about the GUI structure and behavior of a system can be found and extracted from
its acceptance test cases, making possible the generation of part of the GUI code.

This paper presents a language and an environment to program Web Systems acceptance
test cases. Code generators are presented to improve productivity and to motivate the XP practice
of creation of these tests before the implementation of the proper system.

The WSat Language

The language we defined, WSat (Web System Acceptance Test), aims at a high level of
abstraction and reuse, explicitly expressing aspects related to the GUI structure of the tested
systems like, for example, Web pages, forms, links and texts. This is done by defining types that
represent web components. In the Figure 1, we can see the initial and response page of a simple
search system of Web documents.

Fig. 1 – Initial and response pages of a search system.

1 Supported in part by IPAD. Electronic mail: ehsa@cin.ufpe.br.
2 Supported in part by CNPq, grant 521994/96-9. Electronic mail: phmb@cin.ufpe.br.

To test this system, we initially define the type I ni t i al Page to represents Web pages with title
“ Sear ch Syst em” and an HTML form as defined by the type Sear chFor m:

 st at i c WebPage I ni t i al Page {
 t i t l e = “ Sear ch Syst em” ;

 Sear chFor m sear chFor m;
 . . .
 }
 WebFor m Sear chFor m {
 name = " sear chFor m" ;
 met hod = " POST" ;
 Edi t Box {
 name = " keywor ds" ;
 val ue = " " ;
 } keywor ds;

 . . .
 }

WSat have predefined types like WebPage, WebLi nk and WebFor m. The WebPage type, for
example, represents all possible Web pages. The defined type I ni t i al Page represents all
possible Web pages that satisfy its defined properties. To test the response page of the system,
we define the type ResponsePage, as shown bellow.

 WebPage ResponsePage {
 t i t l e = “ Sear ch Syst em Response” ;
 }

As we can see, we do not use the WSat keyword st at i c in the definition of the type
ResponsePage. This keyword indicates Web pages that are not generated dynamically by
technologies like Servlets or JSP. This and others information not shown here are used only for
code generation purpose. To verify the dynamic content of Web page and the system behavior, we
create test cases as shown bellow.

 t est Case t est Sear chSys t em {
 St r i ng ur l = “ ht t p: / / www. sear chsyst em. com” ;
 I ni t i al Page page = [I ni t i al Page] get WebPage(ur l) ;
 Sear chFor m f or m = page. sear chFor m;
 f or m. keywor ds. val ue = “ uf pe” ;
 ResponsePage r esp = [ResponsePage] f or m. submi t () ;
 WebLi nk l i nk = r esp. f i ndWebLi nkByURL(“ ht t p: / / www. uf pe. br ”) ;
 }

The test case t est Sear chSyst em requests the page at URL " ht t p: / /
www. sear chsyst em. com" , verifying if it conforms to the initial system page ([I ni t i al Page]
operator). Then, the test simulates the form submission with the “ uf pe” keyword by calling the
submi t service defined in the WebFor m type. To verify if the system give the correct answer, we
look for the link “ ht t p: / / www. uf pe. br ” in the response page.

As we can see, properties defined in WSat types are used to test the components of Web
systems. In order to simulate the users actions, we can use the services of the WSat predefined
types. Some of these services are used to test dynamic content of Web pages. We can use, for
example, services like f i ndWebI mageByName, f i ndText ByRegExp and f i ndWebLi nkByURL
to retrieve components that represent images, texts and links with the given properties.

In order to validate WSat, we created an execution environment for it by compiling WSat
programs to Java code.

Code Generators

In order to reduce development efforts with tests, we implemented two code generators. The first
one is a test code generator, which generates WSat code from HTML prototypes used to validate
the requirements. WSat types are generated to represent the components found like Web pages,
frames, forms and links. As we can see, a lot of code to test GUI structure is generated. However,
the code to test the system behavior could not be generated yet by this test code generator.
 WSat types contain information about the GUI structure of the tested system. From this
information, we can generate part of the GUI code using a system code generator. For example,
considering GUIs implemented with Servlets, we can generate one Servlet for each Web page
tested by a WSat type in the test code. The generated Servlets could be associated to response
templates based in the HTML prototypes. Unit test classes for the Servlets and other types of code
are generated, too.
 The system code to be generated is dependent of the development environment used. For
this reason, the system code generator was build following the Visitor design pattern [3]. Each
visitor manipulates the syntactic tree of WSat programs and it has a specific functionality, like to
generate Servlets or to generate JSP files. In this way, we can specialize the code generator to
new development environment building new visitors.

Development Methodology

Aiming an efficient use of WSat and the code generators, some activities need to be added to XP
methodology. In Figure 2, we can see the proposed changes in the XP flow.

Fig. 2 – Changes in the XP flow chart.

HTML prototypes are created from the requirements found in the user stories. Then, the test code
generator is used to generate part of the acceptance test code. The test programmer completes
the WSat code needed in the actual iteration. The generated WSat types are complemented and
new types could be created to test more complex information. The test cases are written at this
time, too.

From the WSat types created in the actual iteration, we generate the part of the GUI code
to be developed using the system code generator. The generated code is afterwards used by the
programmer to start the system development for that iteration. With few adjustments, the code
generated for the system could be executed just like the HTML prototype. The programmer is
responsible now for implement the system functionalities basically writing the code under the GUI
layer.

Conclusions

Through experiments, we evidence that the type definitions written in WSat code has a high level
of abstraction and readability, facilitating the test programming. The use of types to represent Web
components becomes the test activity more interesting and partially similar to modeling activities,
eliminating part of the traditional tedium existent in writing test cases.

Programs written in WSat could check the components and the behavior of Web systems
GUI, given the supporting needed to do acceptance tests. To support other types of tests, like
performance and stress tests, programs WSat could have embedded Java code. However, this
type of code compromises the abstraction level of code.

With the developed code generators, it is possible to generate automatically part of the test
and system code, improving development productivity and motivating the creation of acceptance
tests before the Web system implementation.

HTML
Prototype User Stor ies

Acceptance
Tests I teration

Generated System
Code

Generated Test
Code Requirements

 In one experiment done, more than 30% of test code was constituted by the declaration of
WSat types (GUI structure description). The test code generator could generate a good part of that
code, reducing the initial effort to program the tests. And with relation to the system code, more
than 4% of it was automatically generated. The time saved by the generators, in this case, was
sufficient to program simple test cases. However, it is probably not possible when we have a
substantial number of test cases.
 We can explore in future works the association between Web pages, like links and form
actions. These associations could permit the generation of other types of code, different from the
actually generated. For example, may be could be possible to generate part of the acceptance test
cases.

Referências

[1] M. Finsterwalder. Automating Acceptance Tests for GUI Applications in an Extreme

Programming Environment. In XP2001, Sardinia, Italy.

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[3] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

