Refactoring and Code Generation Tools for AspectJ

Paulo Borba* Sérgio Soares'
Informatics Center
Federal University of Pernambuco

October 29, 2002

1 Introduction

Code generation and refactoring tools have been quite useful for developing object-
oriented applications [4, 2]. They increase development productivity by automating
tedious, repetitive, and error-prone tasks. By reducing the number of programming
errors, they also help to improve software quality.

Based on our experience developing AspectJ [5] applications, we believe that
aspect-aware code generation and refactoring tools can bring similar benefits for
the development of aspect-oriented applications as well. Although aspect-oriented
languages such as AspectJ provide some of the power of metaprogramming con-
structs, we think this is not enough for dispensing with code manipulation tools.

In fact, code generation tools could generate part of the implementation of spe-
cific AspectJ patterns. For instance, we have noticed [6, 7] that the implementation
of persistence and distribution aspects in several applications might follow the same
structure, which could be automatically generated. The generation tools could also
be used to instantiate specific AspectJ frameworks. This sometimes involves te-
dious coding that can only be avoided by generation tools or metaprogramming
constructs more powerful than the ones currently supported by AspectJ.

Similarly, AspectJ-aware refactoring tools could be used for improving and main-
taining existing AspectJ code. Again, this would be necessary when implementing
distribution concerns as suggested elsewhere [6], since for every newly introduced
remote method we should introduce an associated advice following an specific pat-
tern. The advice should also be removed when the method is removed. User defined
refactorings could simultaneously change both the pure Java and the AspectJ code,
keeping the code consistent.

Aspect] refactoring tools could also help developers to restructure Java code
in order to separately implement different concerns using AspectJ features. This is
necessary, for example, when migrating Java applications to AspectJ. A well defined
set of refactorings can guide the developer in this task and guarantee that the
resulting AspectJ system preserves the behavior of the original system. Sometimes
refactorings are also useful for exposing join points that should be intercepted by
the aspect code.

*Supported in part by CNPq, grant 521994/96-9. Electronic mail: phmb@cin.ufpe.br. Tele-
phone: +55 81 3271 8430, extension 4323. Fax: +55 81 3271 8438.

TSupported by CAPES. Also affiliated to Catholic University of Pernambuco. Electronic mail:
scbs@cin.ufpe.br.



2 Aspectd Transformations

Our approach for developing refactoring and code generation tools for AspectJ is
to consider program transformation as a unifying concept for code generation and
refactoring [3]. A refactoring comprises several behavior preserving changes on the
program, but does not add new functionalities. A generator, on the other hand,
introduces new functionalities. With such unifying view, AspectJ transformations
may create new code and modify existing ones as long as the semantics of the original
program is preserved. For instance, the following simple program equivalence can
be used to introduce a pointcut declaration, specifying a set of join points:

aspect A {
pointcut p(params) :
events;

aspect A {} =

}

It can also be used to remove a useless pointcut declaration, when applied as a
transformation from right to left.

In the example, the details of the introduced or removed pointcut should be given
by instantiating the transformation variables, which appear in italics. However we
could provide more information in the transformation if necessary, indicating the
exact template of the code to be manipulated or generated. Moreover, besides
variables, we could use more powerful metaprogramming constructs to specify the
transformations [1].

We can similarly define transformations that manipulate both aspects and classes.
This is the main point to consider when adapting our previous work [3, 1] on de-
veloping similar tools for Java. In fact, existing Java refactorings [4] are not valid
when developing with AspectJ. They have to be adapted to consider the impact
that the modifications on the Java code have on the aspects code. For example,
when modifying the name of an intercepted field we have to modify the class that
declares the field and the aspects that intercept accesses to that field.

Another example where adaptations are necessary is when inlining a method; we
have to check if the call to that method is not intercepted by some advice, otherwise
the refactoring would yield an invalid program. We could alternatively define an
AspectJ-aware inline method refactoring in such a way that applying it to the code
sketched on the left would yield the code sketched on the right:

class C {...
int d(O) {
return x*2;
}
int m(int i) {

class C {...
. int m(int i) {
return d()*i; System.out.print(...);
¥ = return (x*2)*i;
’ }
aspect A {... 3
before:
call(int €.dQO)) {
System.out.print(...);
}

aspect A {...}

}

where not only the call to d was inlined and the method declaration removed. Notice
that the advice that intercepts calls to d was also “inlined” and its declaration
removed too.



3 Coding Wizards

The transformations specify how the code should be refactored or generated, but
they should not be visible to the programmer that uses the refactoring and gener-
ation tools for supporting coding activities. In order to accomplish that, we intend
to provide coding wizards, which encapsulate transformations and the associated
graphical user interfaces used to configure and provide parameters for these trans-
formations. The programmers can then work directly with the wizards, not with
the transformations. The wizards can be activated through IDEs menu options [3].

The wizards are defined by assembling transformations and graphical compo-
nents reused or constructed by a tool customizer, which should also be responsible
for defining the wizards. The components are Java Beans that comply to a specific
interface. Transformations should be written in a language that extends AspectJ
with metaprogramming constructs [1]. Such extension allows the tool customizer
to program generic templates, and by using them he specifies how AspectJ code
should be generated or modified, as illustrated before. This flexibility for creat-
ing and composing wizards based on an open architecture contrasts with typical
code generation and refactoring tools, which support only a fixed set of built-in
generators or refactorings.

4 Conclusions

Based on our practical experience with AspectJ, we believe that code generation
and refactoring tools can play an important role in the development of aspect-
oriented applications. This was noticed in several occasions during the development
of two AspectJ applications: a health watcher system [6], having persistence and
distribution aspects, and a J2ME dictionary application, having several aspects for
adapting the application to different situations.

Corresponding Java tools can be adapted to AspectJ, and integrated to IDEs
in a similar way. The major difficulty involved is that manipulations of the pure
Java code have to consider the impact they might have on the aspects code, and
vice-versa. In our approach, this means that the specified transformations should
consider both the pure Java code and the associated aspects code. Special code
analysis, such as the ones implemented in existing IDE plug-ins for AspectJ, should
be implemented to support that.

References

[1] Fernando Castor and Paulo Borba. A language for specifying Java transforma-
tions. In V Brazilian Symposium on Programmig Languages, pages 236251,
Curitiba, Brazil, 23th—25th May 2001.

[2] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison—Wesley, 2000.

[3] Marcelo d’Amorim, Clévis Nogueira, Gustavo Santos, Adeline Souza, and Paulo
Borba. Integrating Code Generation and Refactoring. In Workshop on Gener-
ative Programming, ECOOP02, Malaga, Spain, June 2002. Springer Verlag.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[5] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. Getting Started with AspectJ. Communications of the
ACM, 44(10):59-65, October 2001.



[6] Tiago Massoni, Augusto Sampaio, and Paulo Borba. Progressive Implementa-
tion of Aspects. In Workshop on Advanced Separation of Concerns in Object-
Oriented Systems — OOPSLA’01, Tampa Bay, USA, 14th-18th October 2001.

[7] Sérgio Soares and Paulo Borba. PaDA: A Pattern for Distribution Aspects.
In Second Latin American Conference on Pattern Languages Programming —
SugarLoafPLoP, Itaipava, Rio de Janeiro, Brazil, August 2002.



