Progressive implementation with
aspect—oriented programming

Sérgio Soares* and Paulo Borba f
Informatics Center
Federal University of Pernambuco

Abstract

The object—oriented paradigm has some limitations, such as tangled code and code
spread over several units, making harder software maintainability. Some of these limi-
tations maybe compensated by design patterns and implementation methods guiding the
software structure. On the other hand, extensions of the object—oriented paradigm, such
as aspect—oriented programming, try to solve the object—oriented limitations. These tech-
niques allow higher software modularity making easer software reuse and maintainability
in practical situation where the object—oriented paradigm, design patterns, and implemen-
tation methods do not offer an adequate support. The aim of the work presented here
is to analyze if different concerns (non—functional requirements) can be implemented and
tested separately, in a progressive way, providing quality software and development produc-
tivity. A general-purpose aspect—oriented extension to Java, called AspectJ, is being used
to define the aspect—oriented progressive approach implementing its crosscutting concerns
(persistence, distribution and concurrency control). This separation of concerns allows bet-
ter modularity, by avoiding tangled code and code spread over several units, and therefore
increasing software maintainability.

Keywords: Aspect—oriented programming, separation of concerns, frameworks, patterns,
software engineering, Java.

1 Introduction

The need for developing quality software increased the use of object—orientation looking for
greater reuse and better maintainability, increasing the development productivity and support-
ing requirements changes. However, the object—oriented paradigm has some limitations [14, 15],
such as tangled code and code spread over several units, making harder software maintainabil-
ity. Some of these limitations maybe compensated by design patterns [4, 8] and implementation
methods [3, 10].

On the other hand, extensions of the object—oriented paradigm, such as aspect—oriented
programming [6], composition filters [1], subject—oriented programming [15], and adaptive pro-
gramming [9], new programming techniques, are trying to solve the object—oriented limitations.
These techniques allow easer software reuse and maintainability in practical situation where
the object—oriented paradigm, design patterns, and implementation methods do not offer an
adequate support [18]. However, there are some limitations of these techniques that demand
tool support [18] to keep high the maintainability level.

The aim of this work is to analyze if different non—functional concerns can be implemented
and tested separately, possibly by different teams, in a progressive way, increasing software qual-
ity and development productivity. If this is possible, we could support a progressive approach

*PhD. Student. Email: scbs@cin.ufpe.br
fAdvisor. Email: phmb@cin.ufpe.br

for object—oriented implementation, where persistence, distribution, and concurrency control
are not initially considered in the implementation activities, but are gradually introduced,
preserving the application’s functional requirements. This approach allows early functional
requirements validation, as the functional requirements can be fully implemented without the
effort to implement the non—functional ones, which will be implemented only after the vali-
dation. In fact, this progressive implementation was partially validated with design patterns,
however, without full separation of concerns, which is our aim in using AOP.

A general-purpose aspect—oriented extension to Java, called AspectJ [11] is being used
to define these crosscutting concerns (persistence, distribution and concurrency control) sep-
arated from the system core (functional requirements). This separation of concerns allows
better modularity, by avoiding tangled code and code spread over several units. The system
maintainability is also increased, since it is just needed to implement a new aspect and then
weaving (process that composes aspects with the original system to create the final system) it
with the system to add a new concern, or a new implementation of a concern.

This paper is structured in five sections. Section 2 shows a software architecture used by
the system, in which crosscutting concerns are implemented, and an overview about AspectJ.
Distribution aspects are showed in Section 3 describing a particular aspect of the Ph.D. work.
Related works are discussed in Section 4, and finally, Section 5 presents our conclusions.

2 Background

This section explains the software architecture of the system used in the implementation, and
presenting an overview of AspectJ, the Aspect—Oriented language used to define the aspects.

2.1 Software architecture

The progressive implementation approach is tailored to a specific software architecture that
implements a layer architecture using design patterns [8, 4]. This software architecture aims
to separate data management, business rules, communication (distribution), and presentation
(user interface) concerns. Such structure prevents tangled code, for example, business code
interlacing with data access code, and design patterns allow us to reach greater reuse and
extensibility levels. However, this goal is not reached at all; there are some tangled code,
for example, code regarding exception handling of each concern, code regarding concurrency
control, and code that defines which interface implementation for data management will be
used. In addition, the architecture does not prevent some spread code, for example, code
regarding which classes has to be serialized in distribution environment is scattered in the
system, as well as the exception handling and the concurrency control code.

AspectJ was chosen to implement the crosscutting concerns in order to avoid some tangled
code that still remains when using the layer architecture, as well as spread code, and to re-
structure the system to become easier maintain and evolve it, without invasive changes. The
aspects definition sometimes eliminates the need for design patterns usage, since it modularizes
in a higher level the crosscutting concerns.

Figure 1 presents an UML [2] diagram of the specific software architecture. Accesses to the
system are made through a unique entry point, the system facade [8]. In this software architec-
ture the system facade also implements the Singleton [8] design pattern to guarantee that there
is just a single instance of this class. This is the class whose instance should be distributed over
the user interfaces. The facade is composed of business collections, target of facade methods
delegation. The persistence mechanism interface is responsible to abstract which persistence
mechanism is in use. Classes implementing this interface should handle databases connections,
transaction management and sharing of databases communication channels among concurrent
users. Persistent data collections are used to map flat data into business objects, and vice versa.

G Facade
clientOperationi]) | systemOperation()

i Persistencetechanisminterface

BusinessCollection
systernOperation()

beginTransaction()
commitTransaction()
rollbackTransactiond)

connect()
- A

BusinessDatalnterface -

S ——= N, :

il ingert() b Fersistencetechanism
o removel) e
nd update() e
o search() L
YYolatileDataCaollection BusinessBasic PersistentDataCallection
getDatal)

Figure 1: Software architecture’s class diagram.

Those collections are used by business collections through business—data interfaces. These in-
terfaces allow multiple implementations where each data collection access different mechanisms,
even though volatile implementation.

2.2 AspectJ overview

AspectJ [11] is a general-purpose aspect—oriented extension to Java. The aspect—oriented
paradigm makes possible to define crosscutting concerns separated from each other. This
separation of concerns allows better modularity, by avoiding tangled code and code spread
over several units. The system maintainability is also increased, since it is just needed to
implement a new aspect and then weaving (process that composes aspects with the original
system to create the final system) it to add a new concern, or a new implementation of a
concern in the system.

AQP activities
System Concemn 1, Executable
requirements Aspectual Concern 2 | Weaavin system
Decomposition £
Concern N

Figure 2: AOP development phases.

Figure 2 illustrates the aspectual decomposition, which identifies the crosscutting concerns
of a system, and the weaving, which composes the identified concerns with the system to obtain
the final version with the required functions.

Features

The main construct of the AspectJ language is an aspect. Each aspect defines a functionality
that crosscuts others, called concerns, in a system.

An aspect can have attributes, methods, and a hierarchy of aspects, by defining specialized
aspects. The AspectJ introduction mechanism can affect the static structure of the programs

1l: aspect FaultHandler {

B

3t private boolean Server.disabled = false;

4:

o private wvoid reportFault() {

6 System.out.println("Failure! Please fix it.");
7 1

8:

S: puklic static voild fixServer(Server =) |
10: z.disakled = false:
Rl I
a2
e pointcut services(Server s): target(s) && call(pukclic * *(..));
14
15 before (Server =): gervices(z) {
16: if (s.disabled) throw new DisabledException();
17: i
18
19 after (Server 3) throwing (FaultException e): services(z) {
LR z.disakbled = true;
2l E reportFault ()
Piihs }
233 ¥

Figure 3: AspectJ definition example.

by introducing new methods and fields to an existing a class, convert checked exceptions into
unchecked exceptions, and changing the class hierarchy, by extending an existing class or
interface with another or implementing an interface in an existing class.

Furthermore, an aspect can also affect the dynamic structure of a program changing the
way a program executes, by intercepting points of the program execution flow, called join
points, and adding behavior before, after, or around (instead of) the join point. Examples of
join points are method calls, method executions, instantiations, constructor executions, field
references (get and set), exception handling, static initializations, others, and combinations of
these by using the !, && or || operators.

Usually, an aspect defines a pointcut that selects some join points and values at those join
points. Then an advice defines the code that is executed when a pointcut is reached. The advice
is who defines if the code executes before, after, or around the pointcut.

Figure 3 shows an aspect definition example, from the AspectJ Programming Guide, where
the aspect FaultHandler adds one field onto Server class (line 3), defines two methods (lines
5 to 7 and 9 to 11). The aspect also defines one pointcut (line 13), and two advice (lines 15 to
17 and 19 to 22). The introduced field flags the server’s objects if the execution of any public
method (identified by the pointcut definition) throws a FaultException, which is defined by
the after advice. The before advice checks the server’s flag before calling any public method
(identified by the pointcut definition) avoiding methods call to disabled servers.

3 Distribution Aspects

This section overviews guidelines for implementing distribution code using AspectJ. These
guidelines were derived from an experience on implementing distribution aspects in a real
information system, a health complaint system. The distribution aspects implement basic
remote access to system services using RMI (Remote Method Invocation) [12] and exception
handling. In fact the aspects definition follows a pattern that can be used to implement
distribution using another technology, like CORBA [13]. The aspects are divided in server—
side, client—side, and exception handling aspects. Figure 4 shows how the aspects and the
system are structured.

Original system A
local calls between A and B

Distribution llirliesidle Exception
agpects Server-side / handling
Recomposition

process Client-side Server-side

aspect ‘,\ l /aspect\

Distributed svstem
remote calls between A and B

i

Exception pyjcibution

handli :
ik specific API
aspect

Figure 4: Distribution aspects’ structure.

When the distribution aspects are woven with the system code that uses the software
architecture presented in Section 2.1, it affects the system facade (server—side aspect) and the
user interface classes (client-side aspect), making the communication between them remote, by
distributing the facade instance. In fact, the server—side aspect might crosscuts others classes
that are return types or arguments type of the facade methods.

The exception handling aspect affects both facade and the user interface to provide the
respective handling regarding new exceptions introduced by the aspects.

3.1 Server—side distribution aspect

The server—side distribution aspect is responsible to distribute the facade instance allowing
remote calls to its methods. Therefore, to distribute an object using RMI the aspect should
modify its class and the classes whose objects will be received as parameters and returned by
the methods of the facade class.

The RMI API demands that the interface methods of the class whose object will be remote
must declare that it can throws a specific RMI exception. Therefore, this exception should
added in the throws clause of the facade methods. However, the actual version of AspectJ
does not allow it. As a consequence of this problem a remote interface should defined as
an aspect auxiliary interface, which extends the java.rmi.Remote interface and has all facade
methods signatures with the specific RMI exception in its throws clause. This is a problem
regarding software evolution, because every time a new method is added in the facade, the
remote interface should be modified to add this new method signature with the API-specific
exception in its throws clause. However, a tool can mostly automate the aspect definition,
increasing the aspects productivity and reuse. Another bad consequence of this limitation is
discussed in the client—side aspect definition.

A change request was submitted in the AspectJ website, requesting a new introduction
construction, which would add an exception in a method throws clause.

After that the server—side aspect modifies the facade class to implement the auxiliary in-
terface previously defined using the introduction mechanism. Additionally, the aspect exports
the facade object making it available to accept incoming calls from clients. The server—side
aspects also modifies the classes whose objects are arguments or return values of the facade
methods. They just have to use the Java Object Serialization mechanism, by implementing

the java.io.Serializable interface

3.2 Client—side distribution aspect

The simplest way to define the client—side aspect would be just changing the client’s facade
attribute initialization to the get a reference to the remote instance. However, because of the
“adding exception in a throws clause” problem the remote instance is not a subtype of the
facade class, which is the attribute’s type of the client classes. In fact, the remote instance and
the facade class have the same super type, the remote interface.

A solution is writing an advice for each facade method, redirecting the facade local execu-
tions to its remote instance. However, this decreases the aspect maintainability since for every
new facade method an advice should be wrote to redirect the local call to the remoter instance.
As soon as the “adding exception problem” is solved a simplest solution can be used, changing
the client’s facade attribute initialization to the get a reference to the remote instance.

3.3 Exception handling

Another aspect to is exception handling. The AspectJ police to handle with exceptions in-
troduced by the aspects definition is encapsulating them in to an unchecked exception, called
soft exception. Therefore, this unchecked exception should be handled in the user interface
classes. Note that exception handling is a natural crosscutting concern, usually implemented
with spread code.

The exception handling aspect crosscuts both, user interfaces and facade classes. The aspect
should encapsulate new exceptions in a SoftException at the server—side, and handling them
at the client—side, providing the necessary behavior, usually showing messages to the user
interface.

4 Related works

A related work [5] uses design pattern, pattern languages and object-oriented frameworks
to provide separation of concerns regarding concurrency and distribution programming. Our
approach implements, or will implement, those concerns using AspectJ, without invasive code
changing, with is necessary to implement the design patterns or using frameworks. Those
invasive changes avoids the obliviousness [7] provided by the aspects definition regarding the
abstraction that the system core programmers might have about the aspects definition.

Another related work [17] defines a tool to support aspect-oriented distributed program-
ming. It defines a language to specify the classes whose objects will be distributed and the
hosts that these objects must execute. The tool includes the feature of deploying the classes
code at those hosts. Besides our approach does not consider just distribution concerns, but
also concurrency control and persistence, we will also implement a tool support for implement
those aspects, including distribution.

An approach that could be used to implement distribution aspect is Composition Filters
(CF) [1]). This approach can filter messages received and invoked by objects associating actions
to them. For example, using CF we could filter messages between the components to have
their communication distributed, and associate the action of redirecting the communication to
the remote instance. However, AspectJ is a general approach for separation of concerns. For
example, CF does not offer static crosscutting and some kinds of dynamic crosscutting that
AspectJ does. As our approach also considers persistence and concurrency control aspects,
which might not be implemented using composition filters, we use AspectJ.

5 Conclusion

This position paper presented the Ph.D. project that aims in analyzing if different concerns
(non—functional requirements) can be implemented and tested separately, in a progressive way.
These concerns will be implemented using AspectJ, a general-purpose aspect—oriented exten-
sion to Java. It also presented an overview of guidelines for implementing distribution aspects
with AspectJ and RMI, which were derived from an experience on restructuring a real infor-
mation system. In fact, those guidelines were originally defined for both restructuring and im-
plementing distribution aspects. Those guidelines are also a pattern to implement distribution
aspects using different APIs. Guidelines for both restructuring and implementing persistence
aspects with AspectJ are already defined and can be found elsewhere [16], including the orig-
inal definition of the distribution guidelines. At this moment, the guidelines for concurrency
control are being defined, as well as a tool to completely or partially automatize the system
refactoring and the aspects generation.

The guidelines are based on an AspectJ framework and on related patterns, which increases
the productivity of projects that use the guidelines. The framework and the patterns were
identified when restructuring the system with AspectJ. Although the guidelines are tailored to
a specific architecture and related patterns, it has been widely used to implement a wide range
of real web—based information systems. The use of a specific architecture allows the definition
of precise and more useful guidelines, giving better support to AspectJ programmers.

This experience validates AspectJ and indicates that this language is useful to separately
implement the distribution and persistence concern considered [16]. However, a few drawbacks
in the language ware identified and reported. This was the motivation for suggesting here some
minor modifications to AspectJ but that could significantly improve the implementations that
follow the guidelines.

This project will also analyze the aspect—oriented progressive implementation approach
through a case study in a real software company. Another analyzes, based in experiments,
will show what is the impact of using an AOP technique and what is the impact of using a
progressive approach to implement systems.

6 Acknowledgements

CAPES and CNPq, the Brazilian research agencies, supported this work. CAPES supports
the first author and the second is supported in part by CNPq, grant 521994/96-9.

References

[1] Lodewijk Bergmans and Mehmet Aksit. Composing Crosscuting Concerns Using Compo-
sition Filters. Communications of the ACM, 44(10):51-57, October 2001.

[2] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language — User’s
Guide. Addison—Wesley, 1999.

[3] Paulo Borba, Saulo Aratdjo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Pro-
gressive Implementation of Distributed Java Applications. In FEngineering Distributed
Objects Workshop, ACM International Conference on Software Engineering, pages 40-47,
Los Angeles, EUA, 17th-18th May 1999.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
A System of Patterns: Pattern—Oriented Software Architecture. John Wiley & Sons, 1996.

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Ferreira Rito da Silva. Concurrent Object-Oriented Programming: Separation and
Composition of Concerns using Design Pattern, Pattern Languages and Object Oriented
Frameworks. PhD thesis, Technical University of Lisbon, 1999.

Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect—oriented programming. Commu-
nications of the ACM, 44(10):29-32, October 2001.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantification
and obliviousness. In Workshop on Advanced Separation of Concerns, OOPSLA’00, 2000.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object—Oriented Software. Addison—Wesley, 1994.

Lieberherr K. J., Silva-Lepe 1., and et al. Adaptive Object—Oriented Programming Using
Graph-Based Customization. Communications of the ACM, 37(5):94-101, 1994.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development
Process. Addison—Wesley, 1999.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting Started with AspectJ. Communications of the ACM, 44(10):59-65,
October 2001.

Sun Microsystems. Java Remote Method Invocation (RMI). Available at http://java.-
sun.com/products/jdk/1.2/docs/guide/rmi, 2001.

Robert Orfali and Dan Harkey. Client/Server Programming with Java and CORBA. Wiley,
1998.

H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying suject—oriented
composition. TAPOS, 2(3):179-202, 1996. Special Issue on Subjectivity in OO Systems.

Harold Ossher and Peri Tarr. Using subject—oriented programming to overcome common

problems in object—oriented software development/evolution. In International Conference
on Software Engineering, ICSE’99, pages 698—688. ACM, 1999.

Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’02), Seattle, WA, USA, 4th-8th
November 2002. ACM Press. To appear.

Michiaki Tatsubori. Separation of Distribution Concerns in Distributed Java Program-
ming. In OOPSLA’01, Doctoral Symposium, Tampa FL, 2001.

Detlef Vollmann. Visibility of Join-Points in AOP and Implementation Languages. In
Second Workshop on Aspect-Oriented Software Development, Bonn, Germany, February
2002.

