A Language for Specifying Java Transformations

Fernando Castor and Paulo Borba’
Centro de Informética
Universidade Federal de Pernambuco

Abstract

In this paper we present Jal'S, a language for specifying transformations for Java
programs. The man feaure of the language is the dmilarity of its syntax to the syntax of
Java, decreasing the semantic gep between the transformation language and the language
being transformed. This feature helps developers dready used to the syntax of Java to quickly
adapt to the syntax of JaTS. We begin by presenting the syntax and informa semantics of
JaTS, specifying some key aspects of the semantics formdly. Next, we evaduate the
expressve power of the language, comparing it with other languages for specifying program
transformations.

Resumo

Neste trabaho nbés apresentamos JaTS, uma linguagem para especificar
transformagdes para programes ecritos em Java. A principa caracteristica dessa linguagem é
a proximidade da sua sintaxe com a de Java, diminuindo 0 gap semantico entre a linguagem
de trandormacdo e a linguagem transformada. Essa caracteristica proporciona a
desenvolvedores ja habituados com a sintaxe de Java uma répida adaptacdo a sintaxe de JarTS.
Comegamos agpresentando a Sntaxe e a semantica informal de JaTS, especificando alguns
aspectos chave dessa seméantica formamente. Em seguida, avaliamos o poder expressvo da
linguagem, comparando-a com outras linguagens para especificar transformagtes.

1. Introduction

Program transformation is a powerful technique for supporting software engineering
activities. refactoring [9, 16], forma software development [4, 5], code generation and
language trandation [8].

In fact, refactoring [9, 16], the process of restructuring code with the purpose of
meking it eeder to underdand and maintan without changing its observable behavior, is
grongly coupled with program transformation. Refactorings can be specified as parameterized
program transformations that obey behavior-preserving preconditions [17]. Nowadays, the use
of refactoring to increase qudity is consdered a very important development practice. For
ingance, Extreme Programming [2], a recent approach for software development,
recommends the use of refactoring as a continuous activity, intimately related to coding.

"Supported in part by CNPg, Grant 301021/95-3. Emal: {fj cl f, phnb} @i n. uf pe. br. WWW:
http://ww. ci n.ufpe. br/~{fjclf, phnb} Address. CaixaPostal 7851, Recife, PE, Brazil.

Forma and rigorous software development methods are strong candidates to the use
of program transformation as well, snce refinement laws can be easly described as program
trandformations satisfying preconditions that guarantee the soundness of the refinement. This
is the case for imperative languages, as in the refinement caculus [14], but dso for object-
oriented languages [4, 5]. In both cases, dgebraic laws for programming languages can be
viewed and implemented as program transformations.

Those gpplications of program transformation show its importance, but its use in
precticd, large scale, projects is not possble without automation. Tool support is vitad to the
goplication of program transformations, in order to provide productivity and diminate the
danger of introducing errors, when peforming such a tedious and demanding task. Severd
program transformation tools have been implemented. Many of these are not language-
specific [3, 8], being able to trandform programs from an arbitrary source language to an
arbitrary dedtination language. Although this may be an advantage, it complicates the use of
the tools, dnce they require two kinds of user: the transformation engineer, who configures
the tool (encodes the transformations) and the programmer, who uses the tool for software
development (gpplies the transformations). This is usudly necessary because, in most cases,
the language in which the trandformations are encoded is subgtantidly different from the one
to which they are gpplied.

There are ds0 language-specific tools for program transformation. Most of these
have the drawback of supporting only a fixed set of built-in transformations. For instance,
refactoring systems [12, 16] usudly implement a few smple refactorings that can be gpplied,
but a programmer cannot add a new refactoring to this tool, unless he has access to the source
code of the sysem. Forma software development systems are usudly smilar: they support a
St of built-in refinement laws that cannot be extended.

In order to avoid the drawbacks of the genera purpose and language-pecific
transformation tools, we present a language to specify program transformations for the Java
programming language [11]. In this language, trandformations are specified usng a supersst
of Java, making it easer for programmers to specify the transformations they wish to gpply
and thus diminating the need for the transformation engineer. Also, it takes the semantics of
Java into account, meking it possble to implement trandformations that could not be
implemented if only the syntax was taken into account. The language has been named JaTS,
an acronym for Java Trandormation Sydem, the sydem that actudly implements this
language, stores and applies transformations to Java programs. We concentrate here on the
definition of the language: its syntax, semantics and pragmatics.

This paper is organized as follows. Firs we present an informa description of the
gyntax and semantics of JaTS through smple but darifying examples we progressvey
introduce the congtructs of JaTS, showing an increasngly more complex transformation. Next
we formdly specify key aspects of the language usng Action Semantics [15, 18]; severd
aspects are omitted, but are described esewhere [6]. In Section 4, we evauate JaTS by
comparing its expressve power with tha of another transformation system. Findly, we date
some concluding remarks.

2. Introducing JaTS

JalS trandformations are written in a language tha extends Java with the JaTS
congructions. The god of these condructions is to dlow type (a class or interface) matching
and the gspecification of the new types that are to be generated. The smplest among these

congructions is the JaTS variable, which consss of a Java identifier preceded by the ‘#
character.

A JaTS trandformation conssts of three parts. a precondition, a left-hand and a right-
hand sde. Both ddes condst of one or more type declarations written in JaTS. Heredfter,
however, we consder type declarations having only one type declaration on both sdes. The
left-hand sde of a transformation is matched with the source Java type being transformed,
what implies that both must have smilar syntectic structures. The right-hand side defines the
type that will be produced by the tranformation.

The agpplication of a JaTS transformation to a Java type is performed in three phases:
parsng, transformation and unparang. The second phase, transformation, can be divided in
three steps. matching, replacing and execution. The fird maiches the parse tree of the left-
hand side of the transformation with the parse tree of the source Java type being transformed.
Roughly, a node in the source type maiches the one in the left-hand sde if they are identica
or if the second one corresponds to a JaTS variable. A mapping from variables to the vaues
that they were matched with is produced by the matching. This is caled the result map of the
matching. The second step conssts of replacing occurrences of JaTS variables in the parse
tree of the right-hand side by the corresponding values in he result map. The last Sep conssts
of executing some JalS dructures in the parse tree of the right-hand Sde of the
transformation. These executable structures are described later.

2.1 JaTSVariables

As mentioned earlier, the most common condruction in a JaTS type is the JarS
vaiadble. Vaiables are used as placeholders in the transformations. For example, in the
following transformation:

L eft-hand side: Right-hand side:
class #C extends bject { } class #C { }

The varigble #C is used as a placeholder for a class name, in such a way that the left-hand sde
of the trandformation matches with any empty class that explicitly extends the bj ect class,
but implements no interfaces. When applied to such an empty dass, this transformation yields
a gdmilar class with the same name as the origina one, except that it does not extend Obj ect
explicitly. For example, the application of this transformation to the following Java dass

cl ass Person extends Cbhject { }

produces, as result, the Java class

cl ass Person { }

Vaiables can be declared as having a specific type, corresponding to one of the
gyntactic condructions of Java In many cases, as in the previous example, this is not
necessary snce the vaiable agppears in a place that leaves no doubts about the kind of
Sructure it is going to be maiched with. There are some cases, however, where the user must
declare the type of some variables in order to correctly specify the intended semantics of the
transformation. For example, in the transformation

L eft-hand side:
cl ass #C extends Object inplenments #if:Name { }

Right-hand side:
class #C inplenments #if:Nane { }

the varidble #i f has been declared as having type Nane. This means tha #i f should be
maiched with a gngle inteface name, not with a lig of interface names after the
i npl enent s clause of the source Java type. So, the left-hand sde would not match with the
following Javaclass

cl ass Person extends Cbject inplenents Runnable, Conable { }

Since this dass implements two interfaces. In order to metch with this class, we should
ingeed have atrandformation with the following left-hand sde:

cl ass #C extends Object inplenents #ifs: NaneList { }

2.2 Optional Matching and Replacement

Another useful JaTS condruction alows us to specify that the matching of a certain
dructure is optiond. If a dructure in the left-hand sde of the transformation is optiond, it will
be matched with the corresponding declaration in the source Java type, if there is one.
Otherwise, the optiond part will smply be ignored by the matching process. For example, in
the transformation

L eft-hand side:
cl ass #C extends Object <inplements #ifs: NameList> { }

Right-hand side:
class #C <inplenents #ifs: NaneList> { }

the i mpl ement s dause of the left-hand Sde of the transformation is declared optiond. That
is indicated by the <’ and >’ encloang it. So, the left-hand side of this transformation can be
meatched with both of the following classes

cl ass Person extends Cbject { }

and

cl ass Person extends Cbject inplenments Runnable, C onable { }

Optiona dructures may appear in the right-hand sde of the transformation, as well.
For example, the fallowing right-hand side

class #C <inplenents #ifs: NameList> { }

soecifies tha the i npl enents dause will only be pat of the class produced by the
transformation if some vaue is mapped to #i f s in the result map of the matching. Otherwise,
the i npl enent s dause is amply ignored. It is worth mentioning that if dl the occurrences of
a vaidble in the left-hand sde of the transformation are enclosed in optional dructures, the
same must be true for the occurrences of that varidble in the right-hand sde of the
transformation.

2.3 Matching Declarations

Vaiables do not need to be matched exclusvely with smple structures, like class
names and ligs of interface names. A varigble can aso be matched with a whole method, field
or congtructor declaration. For example, consider the following transformation:

L eft-hand side:

cl ass #C extends Object <inplenments #ifs: NameList> {
#attr: Fi el dDecl arati on;
}

Right-hand side:

class #C <i npl enents #ifs: NaneLi st> {
#attr: Fi el dDecl arati on;
}

It removes the ext ends clause of a class declardtion, as in the previous example, except for
the fact that it expects the body of the source class declaration to have exactly one dattribute
declaration.

In the same way that it is possble to maich a vaiable with a fiddld or method
declaration, it is possible to match a variable with a list of declarations of the same type (a set
of methods, a set of fidds, etc). The following trandformation illustrates the declaration of
variables of thetypeFi el dDecl ar ati onSet .

L eft-hand side;

class #C extends bject <inplenents #ifs:NanmeList> {
#attrs: Fi el dDecl arati onSet ;
private #type #nane,
#attr: Fi el dDecl arati on;

}

Right-hand side:

class #C <inpl enents #ifs: NanmeLi st> {
#attr: Fi el dDecl arati on;
#attrs: Fi el dDecl arati onSet ;

}

Besdes removing the ext ends clause of a class declaration, this transformation removes a
private field declared from the body of the source class, as long as this class has a least
another fidd declaration. In fact, the source dass may have many more fidd declaraions,

since they could be matched to #at t r s. For example, the type generated by the gpplication of
this transformation to the class

cl ass Person extends Cbject inplenments Runnabl e, Conable {
private String nane;
private Address address;
private int age;
private char gender;

}
isthe fallowing:

cl ass Person inplenents Runnabl e, C onable {
private Address address;
private int age;
private char gender;

}

gnce the declaaions of the fidds age and gender were matched with #attrs, assuming
that the user chose #nane to maich with name and #at t r to match with the declaration of the
addr ess fidd. In fact, sometimes the user needs to supply arguments indicating how he
wishes the matching to proceed, otherwise, the result of applying a trandformation cannot be
predicted.

Semanticdly, the result would be non-determinidtic in other cases, but, in practice, a
paticular implementation of JalT'S would typicaly have a default behavior tha yidds one of
the possble results defined by the semantics of Jal'S. For example, our implementation of
JaTS has the following default behavior: fird, fidd declaraions in the left-hand sde are
matched with fidd declarations in the source class. In the previous example, “private
#type #nane” is mached with the firs compatible fidd declaration in the source class,
“private String nane”; next, variables of type Fi el dDecl ar at i on are matched with
unmatched field declarations. For the previous example, the variable #at tr is mached with
the next unmatched fiedd declaration, “pri vat e Address address”; findly, if a vaidde
of type Fi el dDecl arati onSet is presant in the left-hand Sde of the trandformation, the
remaning unmatched field declarations in the source cdass are maiched to it. The same
procedure agpplies to the matching of method and constructor declarations.

2.4 Executable Declarations

The right-hand dde of transformations presented in previous examples contans
declarations that gppear in the left-hand sdes, and maybe some additional fixed declarations.
However, it is dso useful to have, on the right-hand Sde, declarations that use information
from the origind declarations, but are not necessarily identica to them. In order to support
this extraction or modification of origina declarations, JaTS provides the so caled executable
declarations. They can appear anywhere a variable can, but only on the right-hand sde of
transformations, usudly, executing methods on objects that represent the nodes in the syntax
tree being trandformed; <0, they actualy encepsulate Java code that should be executed in
order to generate a vaid Java declaration or construction.

Executable declarations appear in JaT'S trandformations enclosed by the “[[” and “]]”
symbols. There are two kinds of executable declaration. The first one is cdled Information-
Extracting Declaration. For example, the declaration

[[#a.getFieldName(0)]]

yidds the name of the fidd declaration associated to #, an object returned by the invocation
of a method cdl. The dde-effects on the object in which the method is invoked are not
important, only the result of the outermost method invocation matters. For example, assume
that the JaT S class

cl ass Person inplenents Runnabl e, C onable {
public [[#a.getFieldType() 1] [[#a.getFieldName(0)]1]() {
return [[#a.getFiel dName(0)]1];
}

}

corresponds to the right-hand dde of a transformation. Assuming that variable #a is mapped

to the fidd decaation “public String nane”, the execution of the executable
declarations of this transformation would produce the following class.

cl ass Person inmpl ements Runnabl e, C onable {
public String name(){ return nane; }
}

The vaues associated to JaTS variables are objects that have a set of methods that can be
invoked insde the executable declarations. Among these methods, are get Fi el dType() and
get Fi el dNanme() . The argument passed to the get Fi el dNanme() method indicates that the
name desred is the one of the firs field declared in that fidd declaration, snce many fidds
can be declaed in only one fidd declaration. The methods in an information-extracting
declaration are executed from the innermost to the outermost, as Java methods would be. The
object returned by the outermost method is the result of the information-extracting
declaration. After execution, it replaces the executable declaration.

Whereas information-extracting declaraions extract information from origind
declarations, the second type of executable declarations modify origind declarations. This is
done by invoking methods on a copy of an origind declaration. Executable declarations of
thistype are cadled Infor mation-Modifying Declarations. For example, consder that the class

cl ass Person inplenments Runnabl e, C onable {
[[#result = #a :: #result.renmoveModi fierName(“private”);
#resul t.addModi fi er Nane(“protected”);
#resul t.addModi fi erNane(“vol atile”);]]

}

corresponds to the right-hand sde of a transformation. The execution of the executable
decladtions of this transformation, assuming that #a is mapped to “private String
nane”, produces the class

cl ass Person inplenments Runnabl e, C onable {
protected volatile String nane;

}

In fact, the execution of information-modifying declarations does not yied the result of
executing one of its method invoceations as in information-extracting declarations. The
“#resul t =#a” declaration before the “ : ” operator indicates that the varidble #r esul t will
be mapped to a copy of the object mapped to #a. The methods in the body of an information
modifying declaration change the State of the object mapped to #result. After ther
execution, that object is returned as the result of the executable declaration.

It is worth note that if an exception is thrown by a method during the execution of an
executable declaration, the application of the trandformation is aborted. Specia care should be
taken so that only valid executable declarations are derived.

2.5 lterative Declarations

JaTsS iterative declaraions are used for specifying transformations that generate sets
of declarations with the same pattern but differing on specific information obtained from a set
of declarations in the source Java type. Similarly to executable declarations, they can only
gopear in the right-hand sde of the transformation. Moreover, an iteraive declaration has
three basic components. a varigble denoting a declaration set, aso cdled iteration s, a
placeholder varidble ranging over this set and a body of declarations possbly referring to the
placeholder.

The execution of an iterative declaration yidds a copy of the body of declarations
for each dement of the iteration set, where, for each of these copies, the placeholder variable
is replaced by an dement of theiteration sat.

For example, a trandformation that hides the fieds of a class and defines “get”
methods for them can be gpecified with the iterdive dedaraion of the following
transformation:

L eft-hand side:

cl ass Person extends Object <inplenents #ifs: NanmeLi st> {
#attrs: Fi el dDecl arati onSet ;
#nt ds: Met hodDecl ar ati onSet ;

}

Right-hand side:
cl ass Person <inplenents #ifs:NaneList> {

#nt ds: Met hodDecl ar ati onSet ;
forall #a in #attrs do
[[#result=#a :: #result.renovehModifierName("public");
#resul t.addModi fi erNane("private");]]

public [[#a.getFieldType()]]
[[(#a.get Fi el dName(0)).addPreffix("get")]]() {
return [[#a.getFieldName(0)]1];

end

the gpplication of this transformation would generate a new fidd and a new method for each
object in the set associated to #at t r s. S0, gpplying this transformation to the class

cl ass Person extends Cbject inplenments Runnabl e, Conable {
public String nane;
publ i ¢ Address address;
public int age;
public char gender;

}
yiedsthe following class

cl ass Person inplenents Runnabl e, C onable {
private String name;
private Address address;
private int age;
private char gender;
public String getName() { return none; }
public Address get Address() { return address; }
public int getAge() { return age; }
public char getGender() { return gender; }

In JaTS, it is possble to specify conditiona replacement. For example, the right-
hand sde shown above could be modified, so that the get methods were added only for
formerly publ i c fidds. Due to space congraints, however, we have omitted the construction
to specify thiskind of replacement.

2.6 Preconditions

Some transformations can only be applied if certan preconditions hold. These
preconditions are essentid components of refactorings and refinement laws, but ae dso
useful for a wide range of program transformations. In JaTS, a precondition is specified as an
expression preceded by the keyword “precondition”. Mo of the aithmetic, logicd,
relational and conditiond operators of Java can be used to specify a precondition, except for
those that need an environment, like “=", “+=* and “++’, podfix and prefix. Also, some
precondition-specific JaT'S congtructions are alowed.

Preconditions work much like informationextracting declarations, except for the
fact that, after the evduation of the expresson, the result must be a boolean vaue The
following is an example of a precondition for the transformation of the previous section:

precondition #attrs.size() > 0 & !(#attrs in #ntds) &&
I'(#attrs in #attrs.getlnitializations());

Since the variable #attrs is mapped to a declaration s&t, this precondition says that the
vaidble #att rs must be associated to a set with, at least, one dement and that the elements
of that set are al unreferenced, otherwise, the transformation cannot be agpplied. The method
“si ze()” is invoked in the object that corresponds to the variable #at t r s. This method
returns an integer corresponding to the number of objects in the declaration set.

The “i n” operaor checks if there are references to the value mapped to a certan
vaiable in a certain context and yields true if references are found. In case the vaue is a

collection, the check is peformed for dl of its dements and the result yidded is t r ue if awy
element in the collection is referenced. The kind of check performed by this operator is very
useful for describing preconditions for refactorings and refinement laws. In the previous
example, it is verified if the dements of the declaation st mapped to #attrs ae dl
unreferenced in the set of method declarations mapped to #nmtds and in the st of the
initidizations of the fidd declaraions mapped to #attrs. The trandformation described in
the previous section, when usng this precondition, implements the Encapsulate Field [9]
refactoring.

3. An Action Semantics for JaTS

As JalS introduces severd nontrivid congructions and is intended to support
critical activities such as forma development and refactoring, it is important to precisely
define the semantics of those condructions. This leads to a comprehensve unambiguous
undergtanding of the language and provides a sound bass for guiding the implementation of
transformation systems using Jal'S as its language.

In order to formdly specify the semantics of JaTS, we chose the Action Semantics
[15, 18] formaism, which was created with the god of making the forma specification of
programming languages more readable and esser to reuse and modify. Indeed, the man
advantage of Action Semantics over other formdisms for specifying the semantics of
programming languages is its readability. Besides that, the notation has built-in congructs for
soecifying nontrivid concepts like exceptions and iteration, which adds up for the
readability, abstractness and ease of use of the formalism.

An Action Semantics (AS) specification is composed by the abdtract syntax of the
language being gpecified, which defines the ovedl dructure of the language without
worrying about matters such as ambiguity, semantic functions, mapping each dement of the
gyntax to the semantic entities representing its behavior and semantic entities, which represent
the implementation-independent behavior of programs, as wdl as the contributions that parts
of programs make to its overal behavior. In this section, we will not specify the abdtract
gyntax neither the semantic entities of JaTS. These will be mentioned throughout the parts of
the specification, when necessary.

3.1 Semantic Functions

The specification of the semantics of the JaT'S language contains four main semantic
functions: run, match, execute and replace.

The run function specifies the meaning of goplying a trandformation. It receives as
aguments a trandormation (left-hand dde, right-hand sde and precondition), source Java
types and a possbly empty map with variable-value mappings provided by the user (see
Section 2.3). The match and replace functions have a smple semantics, roughly corresponding
to the wel known concepts of pattern-matching and subgitution; their specifications are
omitted for brevity. We focus on the execute semantic function and on its auxiliary functions,
due to the complexity of the execution process.

3.1.1 Execution of Iterative Declarations

The semantics of iterative declarations is dightly complicated. The man reason for
that is the fact that the execution of an iterative declaration involves the concepts of both
execution and replacement. Every time the placeholder variable is mapped to an dement in
the iteration set, anew replacement has to take place before the declarations in the body of the
iterative declaration can be executed, and that happens for each dement of the iteration set.
Thisis sketched below:

needs: Java Action Semantics|[6].
introduces. execute _, execute block declarations _, respectively execute block _ using _and _.

execute _ :: IterativeDeclaration -> action [escaping | giving a syntax-tree] [using
current binds].

(1) execute [[“forall” Vy:Variable “in” V,:Variable “{"D:IterativeBlockDeclaration”“}"]] =
|1l check (already-matched V) and check not (already-matched V;)
|Ithen
|11 give the declaration-set bound to V, then clone it
|then
|| respectively execute block D using V; and (the given declaration-set)
or
|| check not (already-matched V,) or check (already-matched V;)
|then
|| escape.

In Action Semantics, verticd bars are respongble for identation and indicate which actions
are passed as arguments to each action or action combinator. The or action introduces non
determinism in an AS gpecification. The then action works as a sequentid compostion
operator for trangent information. Findly, the escape action roughly corresponds to the
throwing of an exception.

The execute function verifies if the placeholder varidble and the iteration set are
vaid and, if so, cdls the following function:

respectively execute block _ using _ and _ :: IterativeBlockDeclaration” - Variable ->
declaration-set - action [escaping | giving a syntax-tree] [using current binds].

This function binds the placeholder (PH) variable to each of the vaues in the iteration set and,
for each of these vaues, cdls the execute block declarations _ function —responsble for caling
the replace and execute functions for each declaration in the body of declarations-. It dso
removes the value jus mapped to the PH varigble from the iteration set and checks if the
iteration set is empty. The result of this function is a parse-tree condgting of the result of
executing the iterative declaration.

3.1.2 Execution and Replacement of Executable Declarations

As mentioned earlier, there are two types of executable declaration. Both of them
have a semantics which is more related to Java than to JaT'S and, as such, has been previoudy
described [6]. The replace semanttic function, on the other hand, has interesting semantics
when treating information modifying declarations.

The execute function evduates dl Java method invocations in the body of an

executable declaration and yields a syntax-tree corresponding to the result of its execution. It
is defined asfollows:

needs: Java Action Semantics[6]
introduces. execute _ .

- execute _ :: ExecutableDeclaration -> action [escaping | storing | diverging | giving a
syntax-tree] [using current binds].

We will not further specify the execute function, since its semantics is very coupled with the
Java semantics for method execution, and that has dready been specified usng Action
Semantics[6].

The semantics for replacement in information-modifying declarations is a litle more
complicated than in other JaTS condructs. That happens because these declarations use an
auxiliary variable as a placeholder and this variable is not replaced by the vaue associated to
it in the result map. Insteed, it is replaced by the vaue associated to another variable. The
replace Semantic function for information-modifying declarationsis specified below:

needs: Java Action Semantics|[6]
introduces. replace _ .

replace _ :: ExecutableDeclaration -> action [escaping | giving a syntax-tree] [using
current binds].

(€D)] replace [[“[[” V:Variable “=" V;:Variable “::” P:MethodCall™ “]]”]] =
|check (already matched V) then escape
or
|| check not (already-matched V)
|then
|1] give the object bound to token of V;
|Ithen
|11] clone the given object
|11then
11111 (bind token of V to the given object and rebind) hence (replace P)

The function fird veifies if the v variable has dready been maiched. This variable
will be used as a placeholder for the vaue mapped to v, in the scope of the executable
declaration and cannot be previoudy matched. Then, a copy of the vaue mapped to v, is
mapped to v and the variables in the sequence of method cdls of the informationmodifying
declaration are replaced by the vaues mapped to them, where the clone action returns an
identicd “deep” copy of the given object or syntax tree and the hence action works as a
sequentia composition operator for scoped information.

4. Evauating JaTS

Since there are many languages and tools for specifying program transformations [3,
8, 12, 17], it is interesting to better compare JaTS with one of these languages, in order to
asess its ease of use, expressive power and limitations. We then chose LET [8], a language to

goecify program trandformations in a higher leve of abdraction than that supported by the
TXL language [7].

In LET, transformations are specified as a 4tuple consging of a lexicad component,
a gyntactic component, a trandformationd component and an auxiliay component. The first
and second describe, respectively, the nontermind and termind symbols of the grammar of
the source language. The trandformational component condsts of mappings from
condructions in the source language to condructions in the dedindion language. The
trandformations are applied by patern matching and replacement. The auxiliay component
conggsof TXL auxiliary routines

Implementing the trandformation shown in Section 25 usng LET would be essy.
Abgracting from the detals of encoding the grammar of Java in LET, the task would consst
of programming only the transformationd component of the LET specification. No TXL code
would be necessary.

A powerful festure of LET is the cgpability of uang TXL functions as pat of the
transformation, adding dl the expressve power of TXL to LET. This festure, however,
presents the drawback of requiring the user to know TXL as well. JaTS, on the other hand, is
a superset of Java and, as such, is easer to use and get used with, a least for Java
programmers. Since it is a language-specific transformation language, JaTS takes into account
the semantics of Java when performing a trandformation, so that JaTS transformations can
only generate well-formed Java programs.

Some problems arise when trying to implement some Jal'S condructions usng LET.
The firs one arises when trying to code a Jal'S trandformation that uses optional matching.
Since LET does not support optiona structures, we have to trest each optiona structure as
being two different Sructures. For example, the JaTS pattern:

class #C <inplenents #ifs:NaneList> { (...) }

would be implemented in LET as two patterns. one corresponding to a class declaration where
the i npl ement s clause is present and one corresponding to a class declaration where it is
not.

In spite of the duplication of code, that solution would be far if only the
i npl enent s clause of a class declaration could be declared optiond. The truth, however, is
that many gructures in a JaTS specification may be declared optiond. If we tried to code the
JaTS pattern

cl ass #C <extends #SC> <inplenents #ifs:NanmeList> { (...) }

usng LET, we would have to creste four different patterns, so that dl the possbilities of
matching could be covered. The number of patterns required grows exponentidly with the
number of optiond dructures present, meking it impractica to implement transformations
with optiond structuresin LET.

Another problem arises when we try to implement the semantics for declaration
meatching in LET. For example, congder the following JaT S transformation:

L eft-hand side;

class #C {
#a: Fi el dDecl arati on;
#m Met hodDecl ar ati on;
#n: Met hodDecl ar ati on;

Right-hand sde:

class #C {
#a: Fi el dDecl ar ati on;
#n: Met hodDecl ar ati on;

}

This very smple tranformation removes one of the method declarations from the body of a
class that has exactly one fiedd declaration and two method declarations. Implementing this
transformation in LET as a series of patterns, one for method declarations, one for fied
declarations, etc, is not possble, snce we cannot define a trandformation rule that behaves
differently when matching identica paiterns.

An dternative gpproach would be to define a rule maching the whole class
declaration. The pattern to be matched in this case would be aclass declaration containing a
field declaration followed by two method declarations. This solution works fine, as long as
the order of the declarations in the source class does not change.

The semantics for the matching of declaration sets could not be implemented in LET
gther, due to limitations in the expressve power of the language. The problems encountered
were smilar to the ones mentioned in the previous example.

5. Conclusions

In this paper we introduced JaTS, a language for specifying program transformations
for the Java programming language. We presented its syntax and informa semantics, formally
specified some key aspects of its semantics and andyzed the language comparing it with
another language for specifying program tranformations. A prototype system implementing
al the condructions presented in this paper and capable of Soring the transformations and
applying them to Java programs has been devised.

The JATS language may be used to specify a wide range of program transformatiors,
snce it was not desgned with a specific kind of trandformation in mind. Many refinement
laws [4, 5] can be easly implemented using JaTS. Some refactorings can adso be defined as
JaTS program transformations, making it a useful tool in the development of software usng
Extreme Programming [2], for example. JaTS may dso be used to amply generate code,
freeing the programmer from the task of generating tedious code. For example, a program
transformation that generates “set” and “get ” methods for a class tha has only fidds, has
aready been implemented and tested.

Comparing JarS with related approaches for gpecifying program transformations,
JaTS offers dgnificant advantages. A smple syntax, not far from Java, the language being
trandformed, diminating thus, the need for the transformation engineer. That makes it esser
for the user to implement and dter trandformations, increesing productivity and reducing the
probability of errors being introduced. Also, JaTS congructions dlow a higher leve of
abgtraction for specifying trandformations, not just because the syntax of JaTS is close to
Java, but aso because specific concepts of Java are taken in to account by JaT'S constructions.

Many works related to program transformation have been devised. Among the tools
supporting refactoring [12, 13, 17, 19], there is one [19] that deserves some specid attention,
gnce it focuses on the Java programming language. It supports a set of wdl-known

refactorings, some of them not yet supported by JaTS. It has limitations, however, snce the
user cannot specify new refactorings, even smple ones. As for generd-purpose
transformation systems [3, 8], we briefly evauated the expressve power of one of them, LET
[8], in Section 4. Some JaTS congructions could not be implemented usng LET, dnce it
cannot take the semantics of Javainto account, only its syntax.

Acknowledgements

We would like to thank Hermano Pereli for his support on specifying the semantics
of JaTS. We are dso grateful to the anonymous referees, who helped to improve this paper.

References

[1] Débora Aranha and Paulo Borba. Parameterized packages and Java. In Il Brazlian
Symposium on Programming Languages, pages 204-218, Campinas, Brazil, September
1997.

[2] Kent Beck. Extreme Programming Explained : Embrace Change. Addison-Wedey,
1999.

[3] U. Bergmam, A.F. Prado and JC.SP. Lete. Desenvolvimento de Sistemas Orientados
a Objetos Utilizando o Sigema Transformacional Draco-PUC. In X Smpdsio
Brasileiro de Engenharia de Software, pages 173-188, Sao Carlos, Brasil. 1996.

[4] Paulo Borba and Augusto Sampaio. The Basic Lawvs of ROOL: An Object-Oriented
Language. Revida Braslera de Informética Tedrica e Aplicada, Volume VII, NUmero
1, Setembro, 2000.

[5] Paulo Borba. Where are the laws of object-oriented programming? In | Brazlian
Wor kshop on Formal Methods, pages 59- 70, Porto Alegre, Brazil, October 1998.

[6] Deryck F. Brown and David A. Watt. JAS: a Java Action Semantics. In Proceedings of
AS99, BRICS notes series, 1999.

[7] James R. Cordy and lan H. Carmichadl. The TXL Programming Language Syntax and
Informal Semantics. Department of Computing and Information Science. Queen’s
University a Kingston. Kinston, Canada, June 1993.

[8] Marcdo F. Fdix and Edward H. Hauder. LET: Uma Linguagem para Especificar
Transformagdes. In Il Smpdsio Brasileiro de Linguagens de Programacédo, pages
109-123, Porto Alegre, Brazil, May 1999.

[9] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wedley,
1999.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Erich Gamma, Richad Hem, Rdph Johnson and John Vlissdes. Design Patterns:
Elements of Reusable Object-Oriented software. Addison-Wedey, 1995.

James Goding, Bill Joy and Guy Steddle. The Java Language Specification. Addison
Wedey, 1996.

William G. Griswold and David Notkin. Automated Assgance for Program
Redructuring. In ACM Transactions on Software Engineering and Methodology, Vol
2, No 3, July 1993, Pages 228-2609.

Ilvan Moore. Automatic Inheritance Hierarchy Restructuring and Method Refactoring.
In Procedings of OOPSLA’ 96, pages 235-249, USA, 1996.

Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.

Peter D. Mosses. A Tutorid on Action Semantics. Notes for Formal Methods Europe’
96, BRICS Notes Series, 1996.

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thess, Universty
of lllinois a Urbana- Champaign, 1992.

Don Roberts, John Brant and Raph Johnson. A Refactoring Tool for Smaltalk.
Theory and Practice of Object Systems, pages 253-263, 1997.

David A. Waitt. Programming Language Syntax and Semantics. Prentice-Hall, 1991.

The jFactor Documentation. Avdiable at
http:/Amww.instanti ations.com/jfactor/docs/default.htm

