
A Language for Specifying Java Transformations 
 

Fernando Castor and Paulo Borba* 
Centro de Informática 

Universidade Federal de Pernambuco 
 
 
 

Abstract 
 

In this paper we present JaTS, a language for specifying transformations for Java 
programs. The main feature of the language is the similarity of its syntax to the syntax of 
Java, decreasing the semantic gap between the transformation language and the language 
being transformed. This feature helps developers already used to the syntax of Java to quickly 
adapt to the syntax of JaTS. We begin by presenting the syntax and informal semantics of 
JaTS, specifying some key aspects of the semantics formally. Next, we evaluate the 
expressive power of the language, comparing it with other languages for specifying program 
transformations.  
 

Resumo 
 

Neste trabalho nós apresentamos JaTS, uma linguagem para especificar 
transformações para programas escritos em Java. A principal característica dessa linguagem é 
a proximidade da sua sintaxe com a de Java, diminuindo o gap semântico entre a linguagem 
de transformação e a linguagem transformada. Essa característica proporciona a 
desenvolvedores já habituados com a sintaxe de Java uma rápida adaptação à sintaxe de JaTS. 
Começamos apresentando a sintaxe e a semântica informal de JaTS, especificando alguns 
aspectos chave dessa semântica formalmente. Em seguida, avaliamos o poder expressivo da 
linguagem, comparando-a com outras linguagens para especificar transformações.  
 
 
1. Introduction 

 
 
Program transformation is a powerful technique for supporting software engineering 

activities: refactoring [9, 16], formal software development [4, 5], code generation and 
language translation [8]. 

In fact, refactoring [9, 16], the process of restructuring code with the purpose of 
making it easier to understand and maintain without changing its observable behavior, is 
strongly coupled with program transformation. Refactorings can be specified as parameterized 
program transformations that obey behavior-preserving preconditions [17]. Nowadays, the use 
of refactoring to increase quality is considered a very important development practice. For 
instance, Extreme Programming [2], a recent approach for software development, 
recommends the use of refactoring as a continuous activity, intimately related to coding. 
_____________________________________ 

*Supported in part by CNPq, Grant 301021/95-3.  Email: {fjclf,phmb}@cin.ufpe.br.  WWW: 
http://www.cin.ufpe.br/~{fjclf,phmb}    Address:  Caixa Postal 7851, Recife, PE, Brazil. 



Formal and rigorous software development methods are strong candidates to the use 
of program transformation as well, since refinement laws can be easily described as program 
transformations satisfying preconditions that guarantee the soundness of the refinement. This 
is the case for imperative languages, as in the refinement calculus [14], but also for object-
oriented languages [4, 5]. In both cases, algebraic laws for programming languages can be 
viewed and implemented as program transformations. 

Those applications of program transformation show its importance, but its use in 
practical, large scale, projects is not possible without automation. Tool support is vital to the 
application of program transformations, in order to provide productivity and eliminate the 
danger of introducing errors, when performing such a tedious and demanding task. Several 
program transformation tools have been implemented. Many of these are not language-
specific [3, 8], being able to transform programs from an arbitrary source language to an 
arbitrary destination language. Although this may be an advantage, it complicates the use of 
the tools, since they require two kinds of user: the transformation engineer, who configures 
the tool (encodes the transformations) and the programmer, who uses the tool for software 
development (applies the transformations). This is usually necessary because, in most cases, 
the language in which the transformations are encoded is substantially different from the one 
to which they are applied.  

There are also language-specific tools for program transformation. Most of these 
have the drawback of supporting only a fixed set of built-in transformations. For instance, 
refactoring systems [12, 16] usually implement a few simple refactorings that can be applied, 
but a programmer cannot add a new refactoring to this tool, unless he has access to the source 
code of the system. Formal software development systems are usually similar: they support a 
set of built-in refinement laws that cannot be extended. 

In order to avoid the drawbacks of the general purpose and language-specific 
transformation tools, we present a language to specify program transformations for the Java  
programming language [11]. In this language, transformations are specified using a superset 
of Java, making it easier for programmers to specify the transformations they wish to apply 
and thus eliminating the need for the transformation engineer. Also, it takes the semantics of 
Java into account, making it possible to implement transformations that could not be 
implemented if only the syntax was taken into account. The language has been named JaTS, 
an acronym for Java Transformation System,  the system that actually implements this 
language, stores and applies transformations to Java programs. We concentrate here on the 
definition of the language: its syntax, semantics and pragmatics.  

This paper is organized as follows. First we present an informal description of the 
syntax and semantics of JaTS through simple but clarifying examples; we progressively 
introduce the constructs of JaTS, showing an increasingly more complex transformation. Next 
we formally specify key aspects of the language using Action Semantics [15, 18]; several 
aspects are omitted, but are described elsewhere [6]. In Section 4, we evaluate JaTS by 
comparing its expressive power with that of another transformation system. Finally, we state 
some concluding remarks.   
 
 
 

2. Introducing JaTS 
 
 

JaTS transformations are written in a language that extends Java with the JaTS 
constructions. The goal of these constructions is to allow type (a class or interface) matching 
and the specification of the new types that are to be generated. The simplest among these 



constructions is the JaTS variable, which consists of a Java identifier preceded by the ‘#’ 
character. 

A JaTS transformation consists of three parts: a precondition, a left-hand and a right-
hand side. Both sides consist of one or more type declarations written in JaTS. Hereafter, 
however, we consider type declarations having only one type declaration on both sides. The 
left-hand side of a transformation is matched with the source Java type being transformed, 
what implies that both must have similar syntactic structures. The right-hand side defines the 
type that will be produced by the transformation. 

The application of a JaTS transformation to a Java type is performed in three phases: 
parsing, transformation and unparsing. The second phase, transformation, can be divided in 
three steps: matching, replacing and execution. The first matches the parse tree of the left-
hand side of the transformation with the parse tree of the source Java type being transformed. 
Roughly, a node in the source type matches the one in the left-hand side if they are identical 
or if the second one corresponds to a JaTS variable. A mapping from variables to the values 
that they were matched with is produced by the matching. This is called the result map of the 
matching. The second step consists of replacing occurrences of JaTS variables in the parse 
tree of the right-hand side by the corresponding values in the result map. The last step consists 
of executing some JaTS structures in the parse tree of the right-hand side of the 
transformation. These executable structures are described later.  
 
 
2.1 JaTS Variables 

 
 
As mentioned earlier, the most common construction in a JaTS type is the JaTS 

variable. Variables are used as placeholders in the transformations. For example, in the 
following transformation: 

Left-hand side: 

class #C extends Object { } 

Right-hand side: 

class #C { } 

The variable #C is used as a placeholder for a class name, in such a way that the left-hand side 
of the transformation matches with any empty class that explicitly extends the Object class, 
but implements no interfaces. When applied to such an empty class, this transformation yields 
a similar class with the same name as the original one, except that it does not extend Object 
explicitly. For example, the application of this transformation to the following Java class: 

class Person extends Object { } 

produces, as result, the Java class 

class Person { } 

Variables can be declared as having a specific type, corresponding to one of the 
syntactic constructions of Java. In many cases, as in the previous example, this is not 
necessary since the variable appears in a place that leaves no doubts about the kind of 
structure it is going to be matched with. There are some cases, however, where the user must 
declare the type of some variables in order to correctly specify the intended semantics of the  
transformation. For example, in the transformation 



Left-hand side: 

class #C extends Object implements #if:Name { } 

Right-hand side: 

class #C implements #if:Name { } 

the variable #if has been declared as having type Name. This means that #if should be 
matched with a single interface name, not with a list of interface names, after the 
implements clause of the source Java type. So, the left-hand side would not match with the 
following Java class: 

class Person extends Object implements Runnable, Clonable { } 

Since this class implements two interfaces. In order to match with this class, we should 
instead have a transformation with the following left-hand side:  

class #C extends Object implements #ifs:NameList { } 

 
 
2.2 Optional Matching and Replacement 
 
 

Another useful JaTS construction allows us to specify that the matching of a certain 
structure is optional. If a structure in the left-hand side of the transformation is optional, it will 
be matched with the corresponding declaration in the source Java type, if there is one. 
Otherwise, the optional part will simply be ignored by the matching process. For example, in 
the transformation 

Left-hand side: 

class #C extends Object <implements #ifs:NameList> { } 

Right-hand side: 

class #C <implements #ifs:NameList> { } 

the implements clause of the left-hand side of the transformation is declared optional. That 
is indicated by the ‘<’ and ‘>’ enclosing it. So, the left-hand side of this transformation can be 
matched with both of the following classes: 

class Person extends Object { } 

and 

class Person extends Object implements Runnable, Clonable { } 

Optional structures may appear in the right-hand side of the transformation, as well. 
For example, the following right-hand side  

class #C <implements #ifs:NameList> { } 



specifies that the implements clause will only be part of the class produced by the 
transformation if some value is mapped to #ifs in the result map of the matching. Otherwise, 
the implements clause is simply ignored. It is worth mentioning that if all the occurrences of 
a variable in the left-hand side of the transformation are enclosed in optional structures, the 
same must be true for the occurrences of that variable in the right-hand side of the 
transformation. 

 
 
2.3 Matching Declarations 
 
 

Variables do not need to be matched exclusively with simple structures, like class 
names and lists of interface names. A variable can also be matched with a whole method, field 
or constructor declaration. For example, consider the following transformation: 

Left-hand side: 

class #C extends Object <implements #ifs:NameList> {  
    #attr:FieldDeclaration; 
} 

Right-hand side: 

class #C <implements #ifs:NameList> {  
    #attr:FieldDeclaration; 
} 

It removes the extends clause of a class declaration, as in the previous example, except for 
the fact that it expects the body of the source class declaration to have exactly one attribute 
declaration.  

In the same way that it is possible to match a variable with a field or method 
declaration, it is possible to match a variable with a list of declarations of the same type (a set 
of methods, a set of fields, etc). The following transformation illustrates the declaration of 
variables of the type FieldDeclarationSet.  

Left-hand side: 

class #C extends Object <implements #ifs:NameList> {  
    #attrs:FieldDeclarationSet; 
    private #type #name; 
    #attr:FieldDeclaration; 
} 

Right-hand side: 

class #C <implements #ifs:NameList> {  
    #attr:FieldDeclaration; 
    #attrs:FieldDeclarationSet; 
} 

Besides removing the extends clause of a class declaration, this transformation removes a 
private field declared from the body of the source class, as long as this class has at least 
another field declaration. In fact, the source class may have many more field declarations, 



since they could be matched to #attrs. For example, the type generated by the application of 
this transformation to the class 

class Person extends Object implements Runnable, Clonable {  
    private String name; 
    private Address address; 
    private int age; 
    private char gender; 

} 

is the following: 

class Person implements Runnable, Clonable {  
    private Address address; 
    private int age; 
    private char gender; 

} 

since the declarations of the fields age and gender were matched with #attrs, assuming 
that the user chose #name to match with name and #attr to match with the declaration of the 
address field. In fact, sometimes the user needs to supply arguments indicating how he 
wishes the matching to proceed, otherwise, the result of applying a transformation cannot be 
predicted.  

Semantically, the result would be non-deterministic in other cases, but, in practice, a 
particular implementation of JaTS would typically have a default behavior that yields one of 
the possible results defined by the semantics of JaTS. For example, our implementation of 
JaTS has the following default behavior: first, field declarations in the left-hand side are 
matched with field declarations in the source class. In the previous example,  “private 
#type #name” is matched with the first compatible field declaration in the source class, 
“private String name”; next, variables of type FieldDeclaration are matched with 
unmatched field declarations. For the previous example, the variable #attr is matched with 
the next unmatched field declaration, “private Address address”; finally, if a variable 
of type FieldDeclarationSet is present in the left-hand side of the transformation, the 
remaining unmatched field declarations in the source class are matched to it. The same 
procedure applies to the matching of method and constructor declarations.  
 
 
2.4 Executable Declarations 
 
 

The right-hand side of transformations presented in previous examples contains 
declarations that appear in the left-hand sides, and maybe some additional fixed declarations. 
However, it is also useful to have, on the right-hand side, declarations that use information 
from the original declarations, but are not necessarily identical to them. In order to support 
this extraction or modification of original declarations, JaTS provides the so called executable 
declarations. They can appear anywhere a variable can, but only on the right-hand side of 
transformations, usually, executing methods on objects that represent the nodes in the syntax 
tree being transformed; so, they actually encapsulate Java code that should be executed in 
order to generate a valid Java declaration or construction.  



Executable declarations appear in JaTS transformations enclosed by the “[[” and “]]” 
symbols. There are two kinds of executable declaration. The first one is called Information-
Extracting Declaration. For example, the declaration 

[[ #a.getFieldName(0) ]]  

yields the name of the field declaration associated to #a, an object returned by the invocation 
of a method call. The side-effects on the object in which the method is invoked are not 
important, only the result of the outermost method invocation matters. For example, assume 
that the JaTS class 

class Person implements Runnable, Clonable {  
    public [[ #a.getFieldType() ]] [[ #a.getFieldName(0) ]]() {  
        return [[ #a.getFieldName(0) ]]; 
    } 
} 

corresponds to the right-hand side of a transformation. Assuming that variable #a is mapped 
to the field declaration “public String name”, the execution of the executable 
declarations of this transformation would produce the following class: 

class Person implements Runnable, Clonable {  
    public String name(){ return name; } 
} 

The values associated to JaTS variables are objects that have a set of methods that can be 
invoked inside the executable declarations. Among these methods, are getFieldType() and 
getFieldName(). The argument passed to the getFieldName() method indicates that the 
name desired is the one of the first field declared in that field declaration, since many fields 
can be declared in only one field declaration. The methods in an information-extracting 
declaration are executed from the innermost to the outermost, as Java methods would be. The 
object returned by the outermost method is the result of the information-extracting 
declaration. After execution, it replaces the executable declaration. 

Whereas information-extracting declarations extract information from original 
declarations, the second type of executable declarations modify original declarations. This is 
done by invoking methods on a copy of an original declaration. Executable declarations of 
this type are called Information-Modifying Declarations. For example, consider that the class 

class Person implements Runnable, Clonable {  
    [[ #result = #a :: #result.removeModifierName(“private”); 
                       #result.addModifierName(“protected”); 
                       #result.addModifierName(“volatile”); ]] 
} 

corresponds to the right-hand side of a transformation. The execution of the executable 
declarations of this transformation, assuming that #a is mapped to “private String 
name”, produces the class 

class Person implements Runnable, Clonable {   
    protected volatile String name;    

} 



In fact, the execution of information-modifying declarations does not yield the result of 
executing one of its method invocations, as in information-extracting declarations. The 
“#result=#a” declaration before the “::” operator indicates that the variable #result will 
be mapped to a copy of the object mapped to #a. The methods in the body of an information-
modifying declaration change the state of the object mapped to #result. After their 
execution, that object is returned as the result of the executable declaration.  

It is worth note that if an exception is thrown by a method during the execution of an 
executable declaration, the application of the transformation is aborted. Special care should be 
taken so that only valid executable declarations are derived.  

 
 

2.5 Iterative Declarations 
 
 

JaTS iterative declarations are used for specifying transformations that generate sets 
of declarations with the same pattern but differing on specific information obtained from a set 
of declarations in the source Java type. Similarly to executable declarations, they can only 
appear in the right-hand side of the transformation. Moreover, an iterative declaration has 
three basic components: a variable denoting a declaration set, also called iteration set, a 
placeholder variable ranging over this set and a body of declarations possibly referring to the 
placeholder.  

The execution of an iterative declaration yields a copy of the body of declarations 
for each element of the iteration set, where, for each of these copies, the placeholder variable 
is replaced by an element of the iteration set.  

For example, a transformation that hides the fields of a class and defines “get” 
methods for them can be specified with the iterative declaration of the following 
transformation: 

Left-hand side: 

class Person extends Object <implements #ifs:NameList> {  
    #attrs:FieldDeclarationSet; 
    #mtds:MethodDeclarationSet;     
} 

Right-hand side: 

class Person <implements #ifs:NameList> {  
 
    #mtds:MethodDeclarationSet;     
    forall #a in #attrs do 
      [[#result=#a :: #result.removeModifierName("public");     
                      #result.addModifierName("private");]] 
 
      public [[#a.getFieldType()]]  
             [[(#a.getFieldName(0)).addPreffix("get")]]() {  
          return [[ #a.getFieldName(0) ]];           
      } 
    end  
} 



the application of this transformation would generate a new field and a new method for each 
object in the set associated to #attrs. So, applying this transformation to the class    

class Person extends Object implements Runnable, Clonable {  
    public String name; 
    public Address address; 
    public int age; 
    public char gender; 
} 

yields the following class: 

class Person implements Runnable, Clonable {  
    private String name; 
    private Address address; 
    private int age; 
    private char gender; 
    public String getName() { return nome; } 
    public Address getAddress() { return address; } 
    public int getAge() { return age; } 
    public char getGender() { return gender; } 
} 

In JaTS, it is possible to specify conditional replacement. For example, the right-
hand side shown above could be modified, so that the get methods were added only for 
formerly public fields. Due to space constraints, however, we have omitted the construction 
to specify this kind of replacement. 
 
 
2.6 Preconditions 
 
 

Some transformations can only be applied if certain preconditions hold. These 
preconditions are essential components of refactorings and refinement laws, but are also 
useful for a wide range of program transformations. In JaTS, a precondition is specified as an 
expression preceded by the keyword “precondition”. Most of the arithmetic, logical, 
relational and conditional operators of Java can be used to specify a precondition, except for 
those that need an environment, like “=”, “+=“ and “++”, postfix and prefix. Also, some 
precondition-specific JaTS constructions are allowed. 

Preconditions work much like information-extracting declarations, except for the 
fact that, after the evaluation of the expression, the result must be a boolean value. The 
following is an example of a precondition for the transformation of the previous section:   

precondition #attrs.size() > 0 && !(#attrs in #mtds) &&  

             !(#attrs in #attrs.getInitializations()); 

Since the variable #attrs is mapped to a declaration set,  this precondition says that the 
variable #attrs must be associated to a set with, at least, one element and that the elements 
of that set are all unreferenced, otherwise, the transformation cannot be applied. The method 
“size()” is invoked in the object that corresponds to the variable #attrs. This method 
returns an integer corresponding to the number of objects in the declaration set.  

The “in” operator checks if there are references to the value mapped to a certain 
variable in a certain context and yields true if references are found. In case the value is a 



collection, the check is performed for all of its elements and the result yielded is true if any 
element in the collection is referenced. The kind of check performed by this operator is very 
useful for describing preconditions for refactorings and refinement laws. In the previous 
example, it is verified if the elements of the declaration set mapped to #attrs are all 
unreferenced in the set of method declarations mapped to #mtds and in the set of the 
initializations of the field declarations mapped to #attrs. The transformation described in 
the previous section, when using this precondition, implements the Encapsulate Field [9] 
refactoring. 
 
 
 

3. An Action Semantics for JaTS 
 
 

As JaTS introduces several nontrivial constructions and is intended to support 
critical activities such as formal development and refactoring, it is important to precisely 
define the semantics of those constructions. This leads to a comprehensive unambiguous 
understanding of the language and provides a sound basis for guiding the implementation of 
transformation systems using JaTS as its language. 

In order to formally specify the semantics of JaTS, we chose the Action Semantics 
[15, 18]  formalism, which was created with the goal of making the formal specification of 
programming languages more readable and easier to reuse and modify. Indeed, the main 
advantage of Action Semantics over other formalisms for specifying the semantics of 
programming languages is its readability. Besides that, the notation has built-in constructs for 
specifying non-trivial concepts like exceptions and iteration, which adds up for the 
readability, abstractness and ease of use of the formalism.  

An Action Semantics (AS) specification is composed by the abstract syntax of the 
language being specified, which defines the overall structure of the language without 
worrying about matters such as ambiguity, semantic functions, mapping each element of the 
syntax to the semantic entities representing its behavior and semantic entities, which represent 
the implementation-independent behavior of programs, as well as the contributions that parts 
of programs make to its overall behavior. In this section, we will not specify the abstract 
syntax neither the semantic entities of JaTS. These will be mentioned throughout the parts of 
the specification, when necessary. 
 
 
3.1 Semantic Functions 
 
 

The specification of the semantics of the JaTS language contains four main semantic 
functions: run, match, execute and replace.  

The run function specifies the meaning of applying a transformation. It receives as 
arguments a transformation (left-hand side, right-hand side and precondition), source Java 
types and a possibly empty map with variable-value mappings provided by the user (see 
Section 2.3). The match and replace functions have a simple semantics, roughly corresponding 
to the well known concepts of pattern-matching and substitution; their specifications are 
omitted for brevity. We focus on the execute semantic function and on its auxiliary functions, 
due to the complexity of the execution process. 
 
 



3.1.1 Execution of  Iterative Declarations 
 

The semantics of iterative declarations is slightly complicated. The main reason for 
that is the fact that the execution of an iterative declaration involves the concepts of both 
execution and replacement. Every time the placeholder variable is mapped to an element in 
the iteration set, a new replacement has to take place before the declarations in the body of the 
iterative declaration can be executed, and that happens for each element of the iteration set. 
This is sketched below: 
 
needs : Java Action Semantics [6]. 
introduces: execute _ , execute block declarations _ , respectively execute block _ using _ and _. 
 

• execute _ :: IterativeDeclaration à action [escaping | giving a syntax-tree] [using 
current binds]. 

 
(1) execute [[ “forall” V1:Variable “in” V2:Variable “{”D:IterativeBlockDeclaration*“}”]] = 

||| check (already-matched V2) and check not (already-matched V1) 
||then 
||| give the declaration-set bound to V2 then clone it 
|then 
|| respectively execute block D using V1 and (the given declaration-set) 
or 
|| check not (already-matched V2) or check (already-matched V1) 
|then 

        || escape. 

In Action Semantics, vertical bars are responsible for identation and indicate which actions 
are passed as arguments to each action or action combinator. The or action introduces non-
determinism in an AS specification. The then action works as a sequential composition 
operator for transient information. Finally, the escape action roughly corresponds to the 
throwing of an exception.  

The execute function verifies if the placeholder variable and the iteration set are 
valid and, if so, calls the following function:  

• respectively execute block _ using _ and _ :: IterativeBlockDeclaration* à Variable à 
declaration-set à action [escaping | giving a syntax-tree] [using current binds]. 

This function binds the placeholder (PH) variable to each of the values in the iteration set and, 
for each of these values, calls the execute block declarations _  function –responsible for calling 
the replace and execute functions for each declaration in the body of declarations–. It also 
removes the value just mapped to the PH variable from the iteration set and checks if the 
iteration set is empty. The result of this function is a parse-tree consisting of the result of 
executing the iterative declaration.  

 
 

3.1.2 Execution and Replacement of Executable Declarations 
 

As mentioned earlier, there are two types of executable declaration. Both of them 
have a semantics which is more related to Java than to JaTS and, as such, has been previously 
described [6]. The replace semantic function, on the other hand, has interesting semantics 
when treating information-modifying declarations.  



The execute function evaluates all Java method invocations in the body of an 
executable declaration and yields a syntax-tree corresponding to the result of its execution. It 
is defined as follows: 

 
needs : Java Action Semantics [6] 
introduces: execute _ . 
 

• execute _ :: ExecutableDeclaration à action [escaping | storing | diverging | giving a 
syntax-tree] [using current binds]. 

 
We will not further specify the  execute function, since its semantics is very coupled with the 
Java semantics for method execution, and that has already been specified using Action 
Semantics [6]. 

The semantics for replacement in information-modifying declarations is a little more 
complicated than in other JaTS constructs. That happens because these declarations use an 
auxiliary variable as a placeholder and this variable is not replaced by the value associated to 
it in the result map. Instead, it is replaced by the value associated to another variable. The 
replace semantic function for information-modifying declarations is specified below: 

 
needs : Java Action Semantics [6] 
introduces: replace _ . 
 

• replace _ :: ExecutableDeclaration à action [escaping | giving a syntax-tree] [using 
current binds]. 

 
(1) replace [[ “[[” V:Variable “=” V1:Variable “::” P:MethodCall+ “]]” ]] =  

|check (already matched V) then escape 
or 
|| check not (already-matched V) 
|then  
||| give the object bound to token of V1 

||then  
|||| clone the given object 
|||then 
||||| (bind token of V to the given object and rebind) hence (replace P) 

The function first verifies if the V variable has already been matched. This variable 
will be used as a placeholder for the value mapped to V1 in the scope of the executable 
declaration and cannot be previously matched. Then, a copy of the value mapped to V1 is 
mapped to V and the variables in the sequence of method calls of the information-modifying 
declaration are replaced by the values mapped to them, where the clone action returns an 
identical “deep” copy of the given object or syntax tree and the hence action works as a 
sequential composition operator for scoped information. 

 
 
 

4. Evaluating JaTS   
 
 

Since there are many languages and tools for specifying program transformations [3, 
8, 12, 17], it is interesting to better compare JaTS with one of these languages, in order to 
assess its ease of use, expressive power and limitations. We then chose LET [8], a language to 



specify program transformations in a higher level of abstraction than that supported by the 
TXL language [7].  

In LET, transformations are specified as a 4-tuple consisting of a lexical component, 
a syntactic component, a transformational component and an auxiliary component. The first 
and second describe, respectively, the non-terminal and terminal symbols of the grammar of 
the source language. The transformational component consists of mappings from 
constructions in the source language to constructions in the destination language. The 
transformations are applied by pattern matching and replacement. The auxiliary component 
consists of TXL auxiliary routines.  

Implementing the transformation shown in Section 2.5 using LET would be easy. 
Abstracting from the details of encoding the grammar of Java in LET, the task would consist 
of programming only the transformational component of the LET specification. No TXL code 
would be necessary.  

A powerful feature of LET is the capability of using TXL functions as part of the 
transformation, adding all the expressive power of TXL to LET. This feature, however, 
presents the drawback of requiring the user to know TXL as well. JaTS, on the other hand, is 
a superset of Java and, as such, is easier to use and get used with, at least for Java 
programmers. Since it is a language-specific transformation language, JaTS takes into account 
the semantics of Java when performing a transformation, so that JaTS transformations can 
only generate well-formed Java programs.  

Some problems arise when trying to implement some JaTS constructions using LET. 
The first one arises when trying to code a JaTS transformation that uses optional matching. 
Since LET does not support optional structures, we have to treat each optional structure as 
being two different structures. For example, the JaTS pattern: 

class #C <implements #ifs:NameList> { (...) } 

would be implemented in LET as two patterns: one corresponding to a class declaration where 
the implements clause is present and one corresponding to a class declaration where it is 
not.  

In spite of the duplication of code, that solution would be fair if only the 
implements clause of a class declaration could be declared optional. The truth, however, is 
that many structures in a JaTS specification may be declared optional. If we tried to code the 
JaTS pattern 

class #C <extends #SC> <implements #ifs:NameList> { (...) } 

using LET, we would have to create four different patterns, so that all the possibilities of 
matching could be covered. The number of patterns required grows exponentially with the 
number of optional structures present, making it impractical to implement transformations 
with optional structures in LET.  

Another problem arises when we try to implement the semantics for declaration 
matching in LET. For example, consider the following JaTS transformation: 

Left-hand side: 

class #C {  
    #a:FieldDeclaration;     
    #m:MethodDeclaration;     
    #n:MethodDeclaration;     
} 



 

Right-hand side: 

class #C {  
    #a:FieldDeclaration;     
    #n:MethodDeclaration;     
} 

This very simple transformation removes one of the method declarations from the body of a 
class that has exactly one field declaration and two method declarations. Implementing this 
transformation in LET as a series of patterns, one for method declarations, one for field 
declarations, etc, is not possible, since we cannot define a transformation rule that behaves 
differently when matching identical patterns.  

An alternative approach would be to define a rule matching the whole class 
declaration. The pattern to be matched in this case would be a class declaration containing a 
field declaration followed by two method declarations. This solution works fine, as long as 
the order of the declarations in the source class does not change.  

The semantics for the matching of declaration sets could not be implemented in LET 
either, due to limitations in the expressive power of the language. The problems encountered 
were similar to the ones mentioned in the previous example.  
 
 
 

5. Conclusions 
 
 

In this paper we introduced JaTS, a language for specifying program transformations 
for the Java programming language. We presented its syntax and informal semantics, formally 
specified some key aspects of its semantics and analyzed the language comparing it with 
another language for specifying program transformations. A prototype system implementing 
all the constructions presented in this paper and capable of storing the transformations and 
applying them to Java programs has been devised.  

The JaTS language may be used to specify a wide range of program transformations, 
since it was not designed with a specific kind of transformation in mind. Many refinement 
laws [4, 5] can be easily implemented using JaTS. Some refactorings can also be defined as 
JaTS program transformations, making it a useful tool in the development of software using 
Extreme Programming [2], for example. JaTS may also be used to simply generate code, 
freeing the programmer from the task of generating tedious code. For example, a program 
transformation that generates “set” and “get” methods for a class that has only fields, has 
already been implemented and tested. 

Comparing JaTS with related approaches for specifying program transformations, 
JaTS offers significant advantages. A simple syntax, not far from Java, the language being 
transformed, eliminating thus, the need for the transformation engineer. That makes it easier 
for the user to implement and alter transformations, increasing productivity and reducing the 
probability of errors being introduced. Also, JaTS constructions allow a higher level of 
abstraction for specifying transformations, not just because the syntax of JaTS is close to 
Java, but also because specific concepts of Java are taken in to account by JaTS constructions.  

Many works related to program transformation have been devised. Among the tools 
supporting refactoring [12, 13, 17, 19], there is one [19] that deserves some special attention, 
since it focuses on the Java programming language. It supports a set of well-known 



refactorings, some of them not yet supported by JaTS. It has limitations, however, since the 
user cannot specify new refactorings, even simple ones. As for general-purpose 
transformation systems [3, 8], we briefly evaluated the expressive power of one of them, LET 
[8], in Section 4. Some JaTS constructions could not be implemented using LET, since it 
cannot take the semantics of Java into account, only its syntax.  
 
 

Acknowledgements 
 
 

We would like to thank Hermano Perelli for his support on specifying the semantics 
of JaTS. We are also grateful to the anonymous referees, who helped to improve this paper.  
 
 
 

References 
 
 
[1] Débora Aranha and Paulo Borba. Parameterized packages and Java. In II Brazilian 

Symposium on Programming Languages, pages 204-218, Campinas, Brazil, September 
1997. 

  
[2] Kent Beck. Extreme Programming Explained : Embrace Change. Addison-Wesley, 

1999. 
  
[3] U. Bergmam, A.F. Prado and J.C.S.P. Leite. Desenvolvimento de Sistemas Orientados 

a Objetos Utilizando o Sistema Transformacional Draco-PUC. In X Simpósio 
Brasileiro de Engenharia de Software, pages 173-188, São Carlos, Brasil. 1996. 

  
[4] Paulo Borba and Augusto Sampaio. The Basic Laws of ROOL: An Object-Oriented 

Language. Revista Brasileira de Informática Teórica e Aplicada, Volume VII, Número 
1, Setembro, 2000. 

  
[5] Paulo Borba. Where are the laws of object-oriented programming? In I Brazilian 

Workshop on Formal Methods, pages 59-70, Porto Alegre, Brazil, October 1998. 
  
[6] Deryck F. Brown and David A. Watt. JAS: a Java Action Semantics. In Proceedings of 

AS'99, BRICS notes series, 1999. 
  
[7] James R. Cordy and Ian H. Carmichael. The TXL Programming Language Syntax and 

Informal Semantics. Department of Computing and Information Science. Queen´s 
University at Kingston. Kinston, Canada, June 1993. 

  
[8] Marcelo F. Felix and Edward H. Hausler. LET: Uma Linguagem para Especificar 

Transformações. In III Simpósio Brasileiro de Linguagens de Programação, pages 
109-123, Porto Alegre, Brazil, May 1999. 

  
[9] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 

1999. 
  



[10] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: 
Elements of Reusable Object-Oriented software. Addison-Wesley, 1995. 

  
[11] James Gosling, Bill Joy and Guy Steele. The Java Language Specification. Addison-

Wesley, 1996. 
  
[12] William G. Griswold and David Notkin. Automated Assistance for Program 

Restructuring. In ACM Transactions on Software Engineering and Methodology, Vol 
2, No 3, July 1993, Pages 228-269. 

  
[13] Ivan Moore. Automatic Inheritance Hierarchy Restructuring and Method Refactoring. 

In Procedings of OOPSLA’ 96, pages 235-249, USA, 1996. 
  
[14] Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994. 
  
[15] Peter D. Mosses. A Tutorial on Action Semantics. Notes for Formal Methods Europe’ 

96, BRICS Notes Series, 1996. 
  
[16] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University 

of Illinois at Urbana-Champaign, 1992. 
  
[17] Don Roberts, John Brant and Ralph Johnson. A Refactoring Tool for Smalltalk. 

Theory and Practice of Object Systems, pages 253-263, 1997. 
  
[18] David A. Watt. Programming Language Syntax and Semantics. Prentice-Hall, 1991. 
  
[19] The jFactor Documentation. Avaliable at  

http://www.instantiations.com/jfactor/docs/default.htm 
 


