
Implementing Distribution and
Persistence Aspects with AspectJ

Sérgio Soares
∗

scbs@cin.ufpe.br
Eduardo Laureano
eagcl@cin.ufpe.br

Paulo Borba
phmb@cin.ufpe.br

Informatics Center
Federal University of Pernambuco

Recife, Pernambuco, Brazil

ABSTRACT
This paper reports our experience using AspectJ, a general-
purpose aspect-oriented extension to Java, to implement dis-
tribution and persistence aspects in a web-based information
system. This system was originally implemented in Java and
restructured with AspectJ. Our main contribution is to show
that AspectJ is useful for implementing several persistence
and distribution concerns in the application considered, and
other similar applications. We have also identified a few
drawbacks in the language and suggest some minor modi-
fications that could significantly improve similar implemen-
tations. Despite the drawbacks, we argue that the AspectJ
implementation is superior to the pure Java implementa-
tion. Some of the aspects implemented in our experiment
are abstract and constitute a simple aspect framework. The
other aspects are application specific but we suggest that
different implementations might follow the same aspect pat-
tern. The framework and the pattern allow us to propose
architecture-specific guidelines that provide practical advice
for both restructuring and implementing certain kinds of
persistent and distributed applications with AspectJ.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Orien-
ted Programming; D.3.2 [Programming Languages]: Lan-
guage Classifications—AspectJ

General Terms
Languages, Standardization, Experimentation

∗Also affiliated to Catholic University of Pernambuco, In-
formatics and Statistics Department, Recife, Pernambuco,
Brazil.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

Keywords
Aspect-oriented programming, separation of concerns, As-
pectJ, distributed programming, object persistence

1. INTRODUCTION
This paper reports our experience using AspectJ [14], a

general purpose aspect-oriented [6, 15] extension to Java [11],
to implement distribution and persistence aspects in a sim-
ple but real and non trivial web-based information system, a
health complaint system, which was originally implemented
in Java.

The distribution aspects implement basic remote access
to system services using Java RMI (Remote Method Invo-
cation) [18]. The persistence aspects implement basic persis-
tence functionality using relational databases, and support
the following main concerns: connection and transaction
control, partial (shallow) object loading and object caching
for improving performance, and synchronization of object
states with the corresponding database entities, for ensur-
ing consistency. During implementation of the aspects, we
found a need for defining auxiliary exception handling as-
pects, which we also present here. We discuss the lessons
learned implementing those aspects and justify our design
decisions.

The main contribution of our experience is to show that
AspectJ is useful for implementing several persistence and
distribution concerns in the kind of application considered,
but we have also identified a few drawbacks in the lan-
guage and suggest some minor modifications that could sig-
nificantly improve implementations similar to the ones dis-
cussed here. Moreover, we mention other development dif-
ficulties that could be minimized by proper tools and pro-
cesses for aspect-oriented development. We also argue that
the AspectJ implementation of the health complaint system
is superior to the pure Java implementation.

Some of the aspects implemented in our experiment are
abstract and constitute a simple aspect framework. They
can be extended for implementing persistence and distribu-
tion in other applications that comply with the architecture
of the health complaint system, a layer architecture used
for developing web-based information systems. The other
aspects are application specific and therefore have different
implementations for different applications. Nevertheless, we
suggest that different implementations might follow a com-
mon aspect pattern, having aspects with the same structure.

Figure 1: System configurations.

Based on the framework and the pattern, we propose archi-
tecture specific guidelines that provide practical advice for
both restructuring and implementing certain kinds of per-
sistent and distributed applications with AspectJ.

This paper is structured as follows. Section 2 discusses the
layer architecture and the Java implementation of the sys-
tem used in the experiment. Section 3 overviews the AspectJ
language. Distribution aspects are discussed in Section 4,
persistence aspects in Section 5, and exception handling as-
pects in Section 6. Finally, Section 7 presents related work,
and Section 8 contains our conclusions.

2. THE HEALTH WATCHER SYSTEM
The Health Watcher, the information system used in our

experiment, is a real health complaint system developed to
improve the quality of the services provided by health care
institutions. By allowing the public to register several kinds
of health complaints, such as complaints against restaurants
and food shops, health care institutions can promptly inves-
tigate the complaints and take the required actions. The
system has a web-based user interface for registering com-
plaints and performing several other associated operations.

In order to achieve modularity and extensibility, a layer
architecture and associated design patterns [10, 1, 17] were
used in the Java implementation of the system. This layer
architecture helps to separate data management, business,
communication (distribution), and presentation (user inter-
face) concerns. This structure leads to less tangled code—
such as when business code interlaces with distribution code—
but does not completely avoid it. For example, the code for
starting and terminating transactions cannot, in general, be
easily untangled by using this architecture and an object-
oriented language. Moreover, in the cases where it can be
untangled, one has to pay a high price for that: adapters
have to be written just to take care of the transaction func-
tionality. The code for providing data access on demand
cannot be untangled too.

The layer architecture of the Health Watcher system does
not prevent spread code too. This is the case of the code
specifying the classes that have to be serializable for allow-

ing the remote communication of its objects. The exception
handling code is also scattered throughout the system. The
transactions code appears only on the facade class [10], the
unique entry point to the system, but it is essentially repli-
cated on all transactional methods of this class.

Despite not completely separating concerns, the layer ar-
chitecture gives some support to adaptability through sev-
eral system configurations. Figure 1 shows two possible con-
figurations, where a relational database is used as the per-
sistence mechanism. In the one used in our experiment, the
system is used through an HTML [12] and Javascript [8] user
interface, which interacts with Java servlets [13] running in
a web server. In the other configuration, a Java user inter-
face interacts directly with an application server using Java
RMI. Instead of RMI, it would be possible to use EJB [23]
(Enterprise JavaBeans) or another distribution technology.
Similarly, we could also have an object-oriented database as
the persistence mechanism. Moreover, for making tests eas-
ier and allowing early functional requirements validation, we
could not use a persistence mechanism at all, but test and
validate the system using nonpersistent data structures. Af-
ter the system is mostly validated, we could then implement
the persistence code. This kind of flexibility was desirable
for the Health Watcher system, and justified the use of the
layer architecture and some of the design decisions that we
discuss later.

Figure 2 presents part of the Health Watcher UML [2]
class diagram. For simplification, it only shows the classes
involved in the complaint processing services, the others es-
sentially follow the same pattern; we also omit the classes
from the communication layer, which allows remote access
to system services. Complaints are registered, updated,
and queried through a web client implemented using Java
servlets. Accesses to the Health Watcher services are made
through its facade (HWFacade), which is composed of busi-
ness collections. The interface IPersistenceMechanism ab-
stracts which persistence mechanism is in use. Classes im-
plementing this interface (PersistenceMechanism) should
handle database connections and transaction management.
Persistent data collections (PersistentComplaintData) are

Figure 2: Partial Health Watcher class diagram.

used to map persistent data into business basic objects (Com-
plaint), and vice versa. Those collections are used by busi-
ness collections (ComplaintRecord) through business-data
interfaces (ComplaintData). These interfaces allow multiple
implementations of the data collections, using different data
storage and management mechanisms, including nonpersis-
tent data structures (VolatileComplaintData).

3. ASPECTJ OVERVIEW
AspectJ [14] is a general purpose aspect-oriented exten-

sion to Java. The aspect-oriented constructs support the
separate definition of crosscutting concerns—concerns that
affect several units of a system. This separation of concerns
allows better modularity, avoiding tangled code and code
spread over several units. Therefore, system maintainabil-
ity is also increased.

Programming with AspectJ uses both objects and aspects
to separate concerns. Concerns that are well modeled as
objects are separated that way; concerns that crosscut the
objects are separated using units called aspects, and those
are composed with the objects of a system by a process
called weaving. By weaving AspectJ aspects with standard
Java code, we obtain a new AspectJ application.

The main construct of the AspectJ [14] language is called
aspect. Each aspect defines a functionality that crosscuts
others, called concerns, in a system. An aspect can declare
attributes and methods, and can extend another aspect by
defining concrete behavior for some abstract declarations.

An aspect can be used to affect the static structure of
Java programs, by using AspectJ’s static crosscutting mech-

anism. This mechanism allows one to introduce new meth-
ods and fields to an existing class, convert checked excep-
tions into unchecked exceptions, and change the class hierar-
chy by, for example, making an existing class extend another
one.

Aspects can also affect the dynamic structure of a pro-
gram by changing the way a program executes. They can
intercept certain points, called join points, of the program
execution flow and add behavior before, after, or around (in-
stead of) the join point. Examples of join points are method
calls, method executions, constructor executions, field refer-
ences (get and set), exception handling, static initializations,
and combinations of these using the logical !, && and || op-
erators.

Usually, an aspect declares pointcuts that select sets of
join points and context values at those join points. The
declarations of advice by an aspect specify the code that
should be executed when a pointcut is reached during exe-
cution. The advice declaration indicates if the code should
execute before, after, or around the pointcut.

Figure 3 shows an aspect definition, from the AspectJ
Programming Guide [25], where the aspect FaultHandler

adds one field into the Server class (line 3) and defines two
methods (lines 5 to 7 and 9 to 11). The aspect also defines
one pointcut (line 13) and two advice (lines 15 to 17 and
19 to 22). The introduced field indicates if the execution of
any public method (identified by the pointcut definition)
has thrown a FaultException, as specified by the after

advice. The before advice checks the field before calling
any public method, in this way avoiding methods call to
disabled servers.

1: aspect FaultHandler {

2:

3: private boolean Server.disabled = false;

4:

5: private void reportFault() {

6: System.out.println("Failure! Please fix it.");

7: }

8:

9: public static void fixServer(Server s) {

10: s.disabled = false;

11: }

12:

13: pointcut services(Server s): target(s) && call(public * *(..));

14:

15: before(Server s): services(s) {

16: if (s.disabled) throw new DisabledException();

17: }

18:

19: after(Server s) throwing (FaultException e): services(s) {

20: s.disabled = true;

21: reportFault();

22: }

23: }

Figure 3: AspectJ example.

4. DISTRIBUTION ASPECTS
In order to minimize the deficiencies of the pure Java im-

plementation of the system considered in our experiment
(see Section 2), AspectJ was chosen to restructure the sys-
tem and implement the distribution and persistence con-
cerns. By doing this, we aimed to achieve better separation
of concerns and avoid some tangled and spread code that
cannot be avoided by simply using the layer architecture.
Therefore, we hoped to obtain a more extensible system,
supporting, without invasive changes, the several different
configurations required by the Health Watcher stakeholders.

In this section, we concentrate on the distribution as-
pects. Later we consider the persistence aspects and the
complementary exception handling aspects. Those aspects
are presented by discussing the steps we performed towards
restructuring the pure Java version of the system and ob-
taining the AspectJ version. Although those steps are not
generally applicable for all kinds of applications, we believe
they can be used as specific guidelines for implementing dis-
tribution and persistence aspects in systems that comply to
the architecture presented in Section 2. They can, likewise,
be used as guidelines for restructuring such systems.

The first step of the restructuring process for separating
the distribution code was to remove the RMI specific code
from the pure Java version of the system. Roughly, in a
system that complies to the architecture presented in Sec-
tion 2, the RMI distribution code is tangled in the facade
class (server-side) and in the user interface classes (clients-
side). Furthermore, the business basic classes also have some
RMI code if their objects are arguments and return values
of the facade’s methods, which are remotely executed.

The RMI code was removed from the mentioned server
and client classes and a similar functionality was separately
implemented in associated server-side and client-side aspects,
as explained by the following sections. Those distribution

aspects are structured as in Figure 4. This seems to be a
common AspectJ pattern [19], where the aspects glue the
functionality of their associated classes to the original sys-
tem code. In fact, our distribution code consists of distribu-
tion aspects and auxiliary classes or interfaces. When this
code is woven with the system code, it essentially affects the
system facade and the user interface classes; the commu-
nication between them becomes remote by distributing the
facade instance.

4.1 Server-side distribution aspect
The server-side distribution aspect is responsible for mak-

ing the facade instance remotely available. It also ensures
that the methods of the facade have serializable parameter
and return types, since this is required by RMI.

Making the facade remote
RMI remote objects must implement a so-called remote in-
terface, which is used in order to access the remote services
provided by those objects. Hence, as we want to make the
facade remotely available, the server-side aspect has to mod-
ify the facade class (HWFacade) to implement a correspond-
ing remote interface (IHWFacade). This is done by using the
declare parents construct of AspectJ’s static crosscutting
mechanism:

aspect ServerSideHWDistribution {

declare parents: HWFacade implements IHWFacade;

The IHWFacade interface was part of the pure Java version
of the system, so we did not have to implement it again. In
the AspectJ version of the system, it is specific and auxiliary
to the distribution aspects, so it was grouped with the other
auxiliary types. This interface simply extends RMI’s Remote
interface and contains the signatures of the facade public
methods, but including RemoteException in their throws

clauses. This exception is used by RMI in order to indicate

Figure 4: Distribution code weaving.

several kinds of configuration problems and remote commu-
nication failures.

Additionally, we should use the declare parents con-
struct to make the facade class extend the RMI UnicastRe-
moteObject class, which defines the behavior of remote ob-
jects and makes their references remotely available. This ap-
proach, although recommended by RMI, would require the
server-side aspect to specify that RemoteException should
be added to the throws clause of the facade’s constructor.
This would be necessary because the subclass constructor
calls the superclass (UnicastRemoteObject in this case) con-
structor, which declares that it might throw RemoteExcep-

tion. Unfortunately, the current version of AspectJ does not
support that kind of static crosscutting. It can introduce,
for example, methods, fields, and implements declarations,
but not exceptions to a throws clause.

As we could not make the facade extend UnicastRemote-

Object, we obtained a similar effect using an RMI alterna-
tive. The exportObject static method, declared in Unicast-

RemoteObject, was used to export the facade instance and
make it remotely available. The exportObject method is
called by the facade main method, which essentially starts
up the remote Health Watcher server. The aspect adds the
main method to the facade class using static crosscutting:

public static void HWFacade.main(String[] args) {

try {

HWFacade f = HWFacade.getInstance();

UnicastRemoteObject.exportObject(f);

java.rmi.Naming.rebind("/HW",f);

} catch (Exception rmiEx) { ... }

}

The qualified name HWFacade.main indicates that the main

method should be added to the HWFacade class. This method
exports the facade object and binds its remote reference
to the "/HW" name, making it available to accept remote
calls. This solution avoids the tangled code of the pure Java
version without imposing any disadvantages.

Serializing types
The server-side aspect also declares that the methods of the
facade have serializable parameter and return types. The
only exceptions are for parameter and return values that
correspond to remote objects themselves, which should not
be serializable.

In order to be serializable, a class has to implement the
Java Serializable interface, which indicates that object se-
rialization should be available for its objects. So the aspect
simply uses the declare parents construct for each param-
eter and return type that should be serializable:

declare parents: healthGuide.HealthUnit || ...

complaint.Complaint || complaint.DiseaseType ||

complaint.Symptom implements

java.io.Serializable;

This might indeed be repetitive and tedious, suggesting that
either AspectJ should have more powerful metaprogram-
ming constructs or code analysis and generation tools would
be helpful for better supporting this development step. Those
tools would be even more useful for the pure Java implemen-
tation, where we have to write basically the same code, but
in a tangled and spread way.

4.2 Client-side distribution aspect
A simple implementation of the client-side aspect would

make the client (user interface) classes refer to the remote
facade instance. They all have a HWFacade field that should
yield the remote instance when accessed. At first, it seems
that this could be easily achieved with AspectJ by inter-
cepting the accesses to those fields. However, due to RMI
conventions, the type of the remote reference is actually
IHWFacade. So the remote reference is not assignable to the
HWFacade fields and, consequently, those cannot yield that
reference when accessed. This problem could be avoided
if the client classes had IHWFacade fields, but those classes
would then depend on RMI code, not satisfying the Health
Watcher requirements and going against our goals in restruc-
turing the system.

If the remote reference had HWFacade type, another pos-
sibility would be to intercept calls to the facade methods,
making sure that the calls are directed to the remote facade
instance. This could be achieved by first defining a pointcut
(line 1) to identify calls to the non-static HWFacade meth-
ods (lines 2 to 4), as long as they originate from the user
interface classes (line 5), which in our case are Java servlets:

1: pointcut facadeCalls(HWFacade f):

2: target(f) &&

3: call(* *(..)) &&

4: !call(static * *(..)) &&

5: this(HttpServlet);

In this code, the pointcut parameter f indicates that we
want to expose some value in the execution context of the
associated join points. We use the target designator to
bind the f pointcut parameter to the target of the method
calls, and the this designator to indicate that the currently
executing object has type HttpServlet.

Besides identifying the join points of the facade method
calls, we would define an around advice (line 6) to affect
those join points by substituting the reference to the local
facade instance (the target of the call) with the reference to
the remote facade instance:

6: Object around(HWFacade f) throws /*...*/:

7: facadeCalls(f) {

8: return proceed(remoteHW);

9: }

This advice affects the facade calls, exposing the reference to
the target of each call (lines 6 and 7). It uses a reference to
the remote instance (remoteHW, declared and initialized by
the aspect) to proceed with the execution flow (line 8), but
changing the execution context. This is done by changing
the exposed reference to the target of the call: instead of the
reference stored in f it becomes the one stored in remoteHW.
This advice, however, would only be valid if the type of
remoteHW were HWFacade, the type of the advice parameter,
instead of IHWFacade.

Redirecting method calls
As the discussed solutions do not work with the current ver-
sion of AspectJ, we had to write an advice for each facade
method, essentially doing the same thing as the previous
around advice, but in a specific way for each single facade
method. For example, the advice for the registerComplaint
method is the following:

int around(Complaint c) throws /*...*/:

facadeCalls() && args(c) &&

call(int registerComplaint(Complaint)) {

return remoteHW.registerComplaint(c);

}

It redirects the registerComplaint calls to the facade re-
mote instance. However, this is not done by changing the
value of the target of the call, as in the general around ad-
vice shown before. Here the around advice does not pro-
ceed with the execution of the original call, but executes a
new call to the same method, with the same argument, but
with a different target. Since we do not change the value of
any variable, we avoid the typing problems, with HWFacade

and IHWFacade, discussed before. The facadeCalls point-
cut used in this advice would be essentially the same as the
one we have shown before, but does not need to expose a
reference to the target of the call.

The advice for the other facade methods are quite similar
to this one. In fact, this solution works well but we loose
generality and have to write much more tedious code. It is
also not so good with respect to software maintenance: for
every new facade method, we should write an associated ad-
vice, besides including a new method signature in the remote
interface.

In spite of the problems with the implemented solution, it
is superior to the corresponding pure object-oriented im-
plementation. In fact, without using AspectJ, we could
have worse productivity and maintenance problems. For

instance, a common pattern for separating the distribution
code in a pure Java implementation is to use factories and a
pair of adapters [10, 1] between the facade and the user in-
terface classes. However, in this way, we need to write more
code (around 20%) and a change to the facade would require
changing two classes besides the facade and the remote in-
terface. An alternative pure Java implementation could not
separate the distribution code at all, but this would not
satisfy the Health Watcher’s adaptability and extensibility
requirements.

As the necessary advice follow the same templates, we
could use code generation [3] and refactoring [9, 4] tech-
niques to reduce the problems with our solution, and also
with the pure object-oriented solution, but it would be bet-
ter to avoid those problems in the first place.

In order to eliminate the productivity and maintenance
problems, we submitted a feature request to the AspectJ
team, and they expect to consider that for the next ver-
sion of AspectJ. We suggested the support of a new static
crosscutting constructor that adds an exception to a method
throws clause. For example, it could be used as in the fol-
lowing declaration, where the wildcard * is used to match
any return type and any method name, and the wildcard ..

matches any parameter list:

declare throws: (* IHWFacade.*(..))

throws RemoteException;

This declaration would add the RMI specific exception, Re-
moteException, to the throws clause of all methods of the
IHWFacade interface, assuming that this interface simply
contains the signature of the public methods of the facade; it
would not extend Remote and its methods would not throw
RemoteException, this should be implemented by the as-
pect. In this way the client classes could have IHWFacade

fields, since the RMI details would be introduced to the in-
terface by the distribution aspects. The general solution
shown at the beginning of the section could then be used;
we should only replace HWFacade for IHWFacade in that code.

The proposed feature would be useful to solve similar
problems mentioned elsewhere [16], reinforcing the need for
its support. It would allow static exception checking, as op-
posed to the use of AspectJ’s so-called softened exceptions,
which are unchecked and therefore can be thrown anywhere,
without further declarations. However, this feature must be
used with care. It has to be used together with aspects that
handle the newly added exceptions, otherwise a well-typed
Java program, when woven with the aspect code, might yield
a non well-typed program that does not handle some thrown
exceptions. In fact, this feature has not good composition-
ality properties.

Synchronizing states
When implementing the client-side aspect we had also to
deal with the synchronization of object states. This was nec-
essary because RMI supports only a copy parameter passing
mechanism for non-remote arguments. So, when a facade
method returns an object to the client, it actually returns a
copy of the server-side object. Therefore, modifications to
the client copy are not reflected in the server-side object.

The client-side aspect should take care of this distribution
concern, and make sure that the modifications to the client
copies are reflected on the server. This could be done by in-
tercepting the user interface (client) methods and synchro-

nizing the states of the server-side copies changed by those
methods. The synchronization could be performed through
calls to update methods declared by the system facade.

Surprisingly, later we concluded that this concern and its
associated behavior are necessary for implementing persis-
tence as well. So we actually implemented it only once,
and the details are presented in Section 5. This shows that
the distribution and persistence concerns are not completely
independent. It also shows that careful design activities
are also important for aspect-oriented programming. Only
in this way we can detect in advance intersections, depen-
dences and conflicts among different aspects. Consequently,
we can avoid serious development problems and better plan
the reuse and parallel development of different aspects.

In our current implementation, the distribution aspects
depend on the persistent aspects, which implement the data
synchronization between the server and the clients. How-
ever, this concern could be easily factored out, being con-
sidered as a crosscutting concern to distribution and persis-
tence. This would allow us to use the distribution aspects
together with the state synchronization aspect, but without
the persistence aspects when they are not necessary.

5. PERSISTENCE ASPECTS
This section presents the steps that we followed in order to

restructure the persistence code of the Health Watcher sys-
tem and obtain the corresponding persistence aspects. The
first step in this direction was to remove the persistence code
from the pure Java version of the system. In a system that
complies to the architecture presented in Section 2, the per-
sistence code is mostly concentrated in the data collection
and persistence mechanism classes, but also appears in the
facade and in the business collection classes.

The persistence code was removed from the pure Java
system and a similar functionality was implemented as as-
pects. Figure 5 illustrates that and also shows that we
have aspects for making the system work with nonpersis-
tent data structures. As discussed in Section 2, this is
useful for making testing easier and allowing early func-
tional requirements validation, usually before the persis-
tence code is written. When the persistence aspects are
woven with the system code, we generate a persistent ver-
sion of the system. The persistence source code includes
the IPersistenceMechanism interface and implementations
for this interface and the IBusinessData interfaces (see Sec-
tion 2). The persistence aspects affect the facade and busi-
ness collection classes.

The persistence code includes aspects and auxiliary classes
and interfaces to address the following major concerns: con-
nection and transaction control, partial (shallow) object load-
ing and object caching for improving performance, and syn-
chronization of object states with the corresponding database
entities, for ensuring consistency. We now discuss most of
them and also briefly explain an auxiliary aspect for support-
ing data collection customization (one can choose between
nonpersistent and persistent).

5.1 Persistence mechanism control
The persistence mechanism control aspects are responsi-

ble for implementing basic persistence functionality for all
operations accessing the data storage mechanism. They cre-
ate an instance of a persistence mechanism class (an imple-
mentation of IPersistenceMechanism provided by the per-

sistence source code) and deal with database initialization,
connection handling, and resources releasing, services pro-
vided through the created instance.

For reuse purposes, this concern was implemented using
an aspect hierarchy composed of an abstract aspect and
a concrete aspect. The second is specific to the Health
Watcher system, whereas the first can be used for imple-
menting other systems that comply to the same architecture
of the Health Watcher.

Implementing a reusable aspect
The abstract persistence mechanism control aspect is reusa-
ble. It defines advice that depend on abstract pointcuts,
which are made concrete by different concrete aspects, de-
pending on the systems in which it is reused. This aspect
(AbstractPersistenceControl) defines an abstract point-
cut (initSystem) to identify the execution of the system
initialization process; this is where an instance of a persis-
tence mechanism class should be created and initialized.

abstract aspect AbstractPersistenceControl {

abstract pointcut initSystem();

abstract IPersistenceMechanism pmInit();

The aspect also declares an abstract method that should be
used to initialize the persistence mechanism instance. Both
the method and the pointcut are defined abstractly because
their concrete definitions depend on specific classes of the
system being implemented.

Two advice were declared to initialize and release resources;
their implementations use the abstract pointcut previously
defined:

before(): initSystem() {

getPm().connect();

}

after() throwing: initSystem() {

getPm().disconnect();

}

The getPm method declared by this aspect, but omitted here,
creates, if necessary, and returns a valid IPersistenceMecha-

nism instance. The before advice states that, before sys-
tem initialization, a persistence mechanism instance is cre-
ated and connected to the database system. If any problem
happens during initialization, the after throwing advice is
executed; the resources allocated by the persistence mecha-
nism are then released.

Those advice call methods that might raise exceptions,
but it would not be interesting to handle them in the ad-
vice code, which will usually be executed before or after
some facade code, during system initialization time. So
those exceptions were declared as soft, not checked, by the
declare soft static crosscutting AspectJ construct. This
allowed us to handle them in auxiliary exception handling
aspects, defined in Section 6. Those aspects intercept the
user interface code for properly handling the soft exceptions.

Note that this aspect uses a single instance of the persis-
tence mechanism for the whole application, but it is simple
to adapt this aspect to work with a pool of persistence mech-
anisms, instead of just one, when required.

Implementing a concrete aspect
The abstract pointcut and method declared in the previ-
ous aspect were concretely defined for the Health Watcher
system:

Figure 5: Persistence code weaving.

aspect PersistenceControlHW

extends AbstractPersistenceControl {

pointcut initSystem(): call(HWFacade.new(..));

IPersistenceMechanism pmInit() {

IPersistenceMechanism pm;

pm = PersistenceMechanismRDBMS.getInstance();

return pm;

}

The pointcut definition states that the initialization point
of the Health Watcher system is the creation of the fa-
cade (HWFacade) instance. This aspect also implements the
persistence mechanism initialization method, pmInit. This
method obtains an instance of the concrete implementa-
tion of the persistence mechanism for relational databases,
PersistenceMechanismRDBMS, and then connects it to the
database system, using the connect method.

As in the previous abstract aspect, we have to indicate
that the persistence mechanism exception is soft when raised
during the execution of the getInstance method:

pointcut obtainPmInstance():

call(*

PersistenceMechanismRDBMS.getInstance(..));

declare soft: PersistenceMechanismException:

obtainPmInstance();

The obtainPmInstance is just an auxiliary pointcut.
The abstract aspect depends only on the persistence mech-

anism interface IPersistenceMechanism, benefiting software
evolution, whereas the concrete aspect depends on a con-
crete persistence mechanism. Only the concrete aspect needs
to be modified to support a different data storage mech-
anism such as object-oriented databases or another imple-
mentation for relational databases. The system can then be
easily customized by simply replacing the concrete aspects
and going through the weaving process.

By using factories, a similar kind of customization could
also be achieved in the pure Java implementation of the

system. This would require more code to be written. On
the other hand, it would allow customization without re-
compiling the system code, at least for a pre-existing set
of customization alternatives. This is not currently sup-
ported by AspectJ, but is expected to be. Moreover, with
the pure Java version it would be expensive to separate the
code for ordering the creation and use of the persistence
mechanism. This would have to be tangled to the facade
code. Since the tangled code would depend only on the
IPersistenceMechanism interface, the main direct disad-
vantage in this case would be with respect to the legibility of
the facade, instead of its reusability or extensibility. Those
would be indirectly affected only.

5.2 Transaction control
When dealing with data stored in a persistence mechanism

it is essential to work with transactions in order to guaran-
tee the ACID properties [5]: atomicity of operations, data
consistency, isolation when performing operations, and data
durability even if the system fails. In the Health Watcher
system, the transaction control code was mostly invoked
from the facade class. Therefore, we removed this code and
implemented the transaction control concern using two as-
pects to improve reusability, similarly to what was done in
the implementation of the previous concern.

Implementing a reusable aspect
The simplest version of the abstract transaction control as-
pect defines an abstract pointcut that should identify the
transactional methods of the system; that is, the methods
whose execution should be bound by a transaction:

abstract aspect AbstractTransactionControl {

abstract pointcut transactionalMethods();

abstract IPersistenceMechanism getPm();

It also declares an abstract method that is used to obtain a
valid persistence mechanism instance; it is necessary for in-

voking the transaction services supported by the persistence
mechanism.

The abstract transaction control aspect also implements
three advice to start, successfully terminate, and abort trans-
actions. The first one is a before advice that starts a trans-
action just before the execution of any transactional method:

before(): transactionalMethods() {

getPm().beginTransaction();

}

As in the previous aspect definition, we should declare that
the exceptions raised by the methods called inside the advice
are soft; we omit the code here.

We also have an after returning advice that commits
the transaction when the method executions returns suc-
cessfully:

after() returning: transactionalMethods() {

getPm().commitTransaction();

}

At last, an after throwing advice executes if any problem
happens during the execution of any transactional method:

after() throwing: transactionalMethods() {

getPm().rollbackTransaction();

}

The rollbackTransaction method should rolls the transac-
tion back to the original state, maintaining the database in
a consistent state.

Notice that any exception that is thrown and not handled
by a transactional method aborts the transaction. We had
the same behavior in the pure Java version of the Health
Watcher system. This decision was perfectly adequate for
both versions of the system and we believe that it would be
adequate for other systems too. Nevertheless, this shows
that the programmer that writes the persistence aspects
should be aware of the behavior of the affected code. Like-
wise, the programmer who wishes to reuse our transaction
aspects should be aware of the effect of throwing, and not
handling, an exception. In fact, there might be a strong de-
pendency between the aspect code and the Java code [16].
In the transactions case, we do not think that this brings
major problems in practice. In general, more powerful As-
pectJ tools would be necessary to provide multiple views,
and associated operations, for the strongly related AspectJ
and Java units of code. Current tools only show the de-
pendency between the Java code and the aspects that affect
it.

Implementing a concrete aspect
The concrete transaction control aspect (TransactionCon-
trolHW) inherits from the previous abstract aspect and pro-
vides concrete definitions for the abstract pointcut and meth-
od.

When defining the concrete pointcut, we did not want
to directly list the signatures of all transactional methods.
This would impact aspect legibility and make the aspect
code too much directly dependent on modifications on the
method signatures. Therefore, we defined an interface con-
taining the signatures of the transactional methods. This
interface, ITransactionalMethods, is used by the pointcut
to identify the transactional methods of the system. The
pointcut matches the execution of all methods defined by
the interface:

aspect TransactionControlHW

extends AbstractTransactionControl {

declare parents: HWFacade

implements ITransactionalMethods;

pointcut transactionalMethods():

execution(* ITransactionalMethods.*(..));

The aspect also uses the declare parents static crosscut-
ting construct to make the facade class, which contains all
transactional methods of the Health Watcher system, im-
plement the ITransactionalMethods interface. This is nec-
essary for associating the methods that are going to be ex-
ecuted with the signatures in the interface.

The definition of the concrete method refers to the con-
crete persistence control aspect, which provides access to an
instance of the persistence mechanism:

IPersistenceMechanism getPm() {

PersistenceControlHW a;

a = PersistenceControlHW.aspectOf();

return a.getPm();

}

This method yields a valid instance of the persistence mech-
anism. This is done by obtaining the instance that is avail-
able in the PersistenceControlHW aspect, through its getPm
method. We use the aspectOf method to obtain an instance
of the aspect. This makes the concrete transaction aspect
dependent on the concrete persistence control aspect, but
the abstract aspects are independent of each other and can
be reused and support different system customization alter-
natives.

With this approach, the aspect is not directly dependent
on the transactional methods signatures, but the auxiliary
ITransactionalMethods interface is totally dependent on
them. In fact, the interface should contain a subset of the
signatures of the methods defined by the facade class. This
suggests that the interface could be easily generated by semi-
automatically extracting information from the facade. This
could be done every time the facade code changes, minimiz-
ing maintenance problems.

The Health Watcher system with the transaction aspects
is significantly better than the pure Java system. In the
original system code, the transactional methods explicitly
call methods for transaction control. They also have code
for handling the associated exceptions. For each method,
there are at least 6 lines of tangled code to call the transac-
tion lifecycle methods and handle the exceptions. Factoring
all these repeated lines of code in a single unit avoids te-
dious work and increases productivity. It also makes the
code much easier to evolve, especially if modifications in the
transaction control policies are required. In this way the de-
velopers can be more focused on the more interesting aspects
of transaction implementation and on the main functionality
implementation.

Implementing alternative policies
The aspects illustrated in this section offer a uniform trans-
action control policy, which was useful for most situations
in the Health Watcher system but might not be adequate
for more complex or performance demanding systems. The
same performance limitations are reported by a similar, al-
though independently developed, AspectJ implementation
of transactions in the context of the OPTIMA framework for

Figure 6: Transactional methods hierarchy.

controlling concurrency and failures with transactions [16].
However, slight variations of our implementation can offer
several alternative policies and solve those limitations. For
example, we could have different transaction implementa-
tions for read only and update operations (read transaction
and write transaction, respectively). We could also have
more than one class with transactional methods.

In order to support different transaction implementations,
it is useful to define an appropriate interface hierarchy to in-
dicate the different kinds of transactional methods. The hi-
erarchy shown in Figure 6 establishes that all transaction
control interfaces should extend ITransactionalMethods.
Interfaces specifying read only methods should extend Read-

OnlyTransactionalMethods, and interfaces specifying up-
date methods should extend UpdateTransactionalMethods.
The class that implements the transactional methods should
then implement the specific interfaces, instead of simply im-
plementing ITransactionalMethods, as done before.

In addition to a different interface hierachy, we should
have variations of the abstract and concrete aspects. In-
stead of having a single pointcut, transactionalMethods,
we should have two pointcuts, one for read operations (read-
OnlyTransMethods) and the other for write operations (up-
dateTransMethods). Those pointcuts must match the ex-
ecution of the methods of the associated interfaces. The
abstract aspect should now have two sets of transactions
advice, one set for each pointcut. Each set has a before, an
after returning, and an after throwing advice, similar
to the ones illustrated before. In this way, we can spec-
ify different behavior for the different kinds of transactional
methods.

Roughly generalizing, the transaction control aspects should
contain a pointcut and a set of three transactions advice for
each kind of transactional method existing in the system. In
an extreme situation, we could maybe imagine each trans-
actional method having a different type of transaction im-
plementation. In this case, the AspectJ version would only
have a small advantage over the pure Java version: by re-
moving the tangled code, the facade becomes simpler. On
the other hand, considering that we do not have advanced
AspectJ tools as discussed in the beginning of the section,
there is an disadvantage too: as we separated related code,
changes to a code unit might usually impact the other. How-

ever, these extreme situations do not seem to be usual. In
fact, it seems that our AspectJ implementation of transac-
tions can usually have significant advantages over pure Java
implementations. That is certainly the case of systems such
as the Health Watcher.

Another straightforward variation of the transaction con-
trol aspects supports multiple classes with transactional meth-
ods. In this case, one interface should be defined for each one
of the classes. Those interfaces should extend the transac-
tional methods interface ITransactionalMethods. For in-
stance, suppose that the Health Watcher system contains
transactional methods in two classes: CitizenFacade, defin-
ing the main system services, and AdminFacade, containing
system administration and configuration services. So we
would define two interfaces: ITransactionalCitizen and
ITransactionalAdmin. Figure 7 shows the UML class dia-
gram for this hierarchy.

Besides having the extra interfaces, we should extend the
concrete TransactionControlHW aspect to reflect this new
structure:

declare parents: AdminFacade implements

ITransactionalAdmin;

declare parents: CitizenFacade implements

ITransactionalCitizen;

The concrete transactionalMethods pointcut should also
be modified to consider the executions of the methods de-
clared in the new transactional interfaces.

5.3 Data state synchronization control
The business and presentation layers deal with persistent

objects, which contain nonpersistent data that reflect the
data stored in the database. Those layers invoke several
methods on those objects, changing attribute values in the
objects only. So, in order to guarantee object persistence,
extra method calls are necessary to synchronize the object
data with the database data, reflecting the attribute changes
into the database. Similar synchronization calls are also
necessary for distribution purposes, as discussed at the end
of Section 4.2.

For separating concerns, those layers should not know
whether an object is persistent (its state reflects stored data)
or not (its state corresponds to nonpersistent data). There-

Figure 7: Example of multiple transactional components.

fore, we removed the synchronization calls and implemented
a similar functionality in the data state synchronization con-
trol aspect. When this aspect is woven with the pure Java
code, it introduces the synchronization method calls in the
business and presentation code, satisfying both persistence
and distribution requirements.

Identifying persistent object classes
The first thing declared by the data state synchronization
control aspect is an internal interface (PersistentObject)
used to identify classes whose objects are persistent:

aspect UpdateStateControl {

private interface PersistentObject {

void synchronizeObject(String s);

}

declare parents: Complaint || HealthUnit

implements PersistentObject;

We use the declare parents construct to make the persis-
tent classes implement the interface. In this example, classes
representing health complaints, Complaint, and health units,
HealthUnit, are declared to have persistent objects. For
simplicity, we omitted the declarations for the other persis-
tent classes, and the implementations of the synchronizeOb-
ject method for each persistent class. Those implementa-
tions are introduced into the classes using static crosscut-
ting.

Identifying object updates
After identifying the persistent classes, we can identify when
their objects are updated in the presentation layer. Those
updates should be identified so that the updated objects
are temporarily stored, in a nonpersistent data structure,
and later synchronized with the database data. We used
property-based crosscutting to simplify the specification of
the updates in the presentation layer:

pointcut remoteUpdate(PersistentObject po):

this(HttpServlet) && target(po) &&

call(* set*(..));

This pointcut matches calls to the set methods of persistent
objects, the target of the calls, but it considers only the

calls executed by a servlet, the source (this) of the calls.
This works well for the Health Watcher system because its
user interface is implemented with servlets and its persistent
classes follow a name convention: the methods that change
attribute values have names starting with set.

The aspect also identifies updates in the business layer.
In the Health Watcher architecture, those updates appear
in the business collection classes. As we also follow a con-
vention for those classes names (they all end with Record),
we can have a general property-based pointcut definition for
detecting persistent object updates in the business layer:

pointcut localUpdate(PersistentObject po):

this(*Record) && target(po) &&

call(* set*(..));

The name conventions simplify the pointcut definitions, but
they are not essential. In fact, more complex pointcuts can
be defined when naming conventions are not followed. In
general, though, it could be tedious and error prone to list
the signatures of the methods that correspond to persistent
object updates. Therefore, if no conventions were followed,
it would be quite useful to have a code analysis and genera-
tion tool that helps the user to identify those methods and
generate part of the aspect code.

Capturing updated objects
The aspect identifies the updates and temporarily stores the
modified persistent objects in a nonpersistent data struc-
ture. This is specified by the following code, which declares
an advice and an aspect variable to hold a reference to the
data structure:

private Set remoteDirtyObjects = new HashSet();

after(PersistentObject po) returning:

remoteUpdate(po) {

remoteDirtyObjects.add(po);

}

In fact, this is a simplification that works only for non-
concurrent systems. Instead of having just one set of up-
dated objects, we should have one set for each system thread.
In this way, the objects updated by one system client would

be stored in a specific structure for that client. This is es-
sential for avoiding concurrency problems when storing and
accessing the updated objects. The code for intercepting the
updates in the business collection classes is quite similar to
this one, so we omit it here.

Synchronizing states
During the execution of a system service, the previous advice
captures and stores the updated objects. When the service
execution terminates, the aspect can finally introduce the
synchronization calls to reflect the updates in the database.
This is specified by the following pointcut and advice, which
runs after the execution of the servlet services (doPost and
doGet methods), when there are updated objects that need
to be synchronized:

pointcut remoteExecution():

if (hasDirtyObjects()) &&

this(HttpServlet) &&

(execution(void doPost(..))

||

execution(void doGet(..)));

after() returning: remoteExecution() {

Iterator it = remoteDirtyObjects.iterator();

while (it.hasNext()) {

PersistentObject po =

(PersistentObject) it.next();

try {

po.synchronizeObject("Remote");

} finally {

it.remove();

}

}

}

The advice basically iterates over the data structure hold-
ing the updated objects, synchronizing those objects. We
should also define a similar pointcut and advice for synchro-
nizing the objects changed by executing the methods of the
business collection classes.

Comparing with the pure Java version, this solution is
easier to modify since the synchronization concern is com-
pletely separated. It is also conciser than the corresponding
Java implementation, where the synchronization calls are
replicated in several parts of the system. Nevertheless it
also requires some tedious code to be written, so it would
be helpful to have a code analysis and generation tool that
would help the programmer in implementing this aspect for
different systems complying to the same architecture of the
Health Watcher system.

Our solution for state synchronization also seems to be
less error prone than the Java implementation, where the
programmers might usually forget to write some synchro-
nization calls. On the other hand, in the pure Java version
the programmer might write the synchronization calls he
wants, wherever he wants, benefiting from special optimiza-
tions. Some of those optimizations could also be achieved
with AspectJ, by implementing different strategies for stor-
ing the updated objects and later synchronizing them. In
general, though, we expect the AspectJ version to be less
efficient than the Java version. In the Health Watcher sys-
tem, this efficiency loss was insignificant. In more complex
systems, dealing with several complex objects, we suspect
it might not be worth to separate the synchronization con-

cern using the implementation we proposed. Fortunately,
the consequences of not separating this concern are not so
drastic. In particular, that would not prevent alternative
customizations for the system since the synchronization calls
are not middleware dependent.

Generalizing the distribution aspects
Although not shown here, the various implementations of
the synchronizeObject method call facade methods when
receive the "Remote" argument, which indicates that the
synchronization originates from updates in the user interface
classes. In a distributed version of the system, those calls
to the facade methods should be remote. In fact, the distri-
bution aspects should intercept those calls. Unfortunately,
as presented in Section 4.2, the client-side distribution as-
pect is based on the facadeCalls pointcut, which inter-
cepts only facade method calls originating from servlets (see
the this(HttpServlet) constraint in the pointcut). The
synchronizeObject calls originate from persistent objects.

In order to solve this problem, we had to generalize the
definition of the facadeCalls pointcut in such a way that
it includes new joint points corresponding to the execution
of the facade methods called by the synchronizeObject

method. This shows the importance of defining general
pointcuts that consider the interception of both the pure
Java code and the other aspects code. Moreover, this rein-
forces the fact that the distribution and persistence concerns
are not completely independent. Therefore, careful design
activities should have been performed before implementa-
tion, avoiding rework, although that was minimal in the
reported case. A difficult in that direction is the lack of a
proper notion of aspect interface, which would be useful for
supporting parallel development.

5.4 Data collection customization
As explained before, the Health Watcher system should

also work using nonpersistent data. In order to support
this, two aspects were coded in such a way that we can
build both application versions: nonpersistent and persis-
tent. Each version is the result of weaving pure Java code
with additional AspectJ code, as shown in Figure 5.

For the nonpersistent version, we have one aspect respon-
sible for attaching nonpersistent data collections to the sys-
tem:

aspect VolatileDataCollections {

after() returning (CitizenFacade facade):

call(CitizenFacade.new(..)) {

facade.setComplaintRecord(new

ComplaintRecord(new

ComplaintRepositoryArray())); ...

}

}

This attachment is possible because both nonpersistent and
persistent data collections implement the same interface.
Similar aspects can also be defined to attach different kinds
of persistent data collections. We omit the aspect that at-
taches the data collections using relational databases with
Java Database Connectivity.

As discussed in Section 5.1, this kind of customization can
also be supported by the pure Java implementation, with
several advantages and some disadvantages.

5.5 Data access on demand
Objects might have a complex structure, being composed

of several other dependent objects. In those cases, object
storage and retrieval in data storage mechanisms need spe-
cial care to avoid performance degradation. An adequate
approach to access this kind of object is to parameterize
the data loading level. For each kind of object usage, an
adequate loading level should be defined. For example, a
service that lists complaints may only need to access the
complaints description and code, whereas a service that gen-
erates a complex report may need the complaints descrip-
tion, code, associated disease type and related health unit
data. This kind of data access on demand is an interesting
feature when accessing large persistent object graphs, so it
was implemented in the Health Watcher system.

A common solution to associate the object access strate-
gies with the different kinds of object usages is to provide
the access methods with an extra parameter, say an integer,
to indicate the desired loading level. So, for example, the
search(int) method for accessing disease types by their in-
teger code should have an extra parameter to indicate how
much disease type information should be accessed. There
are two problems with this approach. The first is that the
extra parameter has nothing to do with the conceptual ser-
vice being implemented, so we loose in legibility. The second
problem is that this approach requires whoever accesses the
objects to indicate this parameter value, generating an in-
direct dependence with specific persistent data collections,
where the extra access methods are implemented.

In order to avoid those problems detected in the pure Java
version of the Health Watcher, we defined an aspect to deal
with data access on demand. This aspect calls access meth-
ods with the extra parameter, but those are not visible to
the system services. Those services, for example, call the
search(int) method for accessing disease types. The as-
pect intercepts those calls and then calls the access methods
with an extra argument indicating the required data loading
level. In this way we preserve the implementation of data ac-
cess calls without needing an extra parameter, or any other
kind of workaround in the user interface and business layers.

Identifying kinds of object usages
The data access on demand aspect first declares the point-
cuts that identify where a specific kind of object usage is
adopted. In order to illustrate that, suppose that any sub-
class of ListServlet is used for generating a web page listing
partial information about several objects of the same class.
For example, such a subclass could generate a page with par-
tial information about the various disease types registered
in the system. In this case, the methods of ListServlet

(and its subclasses) clearly adopt a particular kind of object
usage, namely partial object loading. Therefore, we must
define a pointcut matching the execution of those methods:

aspect ParameterizedDataLoading {

pointcut listServlet():

this(ListServlet+) &&

execution(* *(..));

More pointcuts should be defined for later indicating the
points where other kinds of object usages are necessary.
We omit the details here, but they would be similar to
listServlet.

Applying the adequate loading level
After specifying that the methods of ListServlet adopt a
specific kind of object usage, we must, for instance, spec-
ify that this kind of usage should be applied when search-
ing disease type objects in the associated data collection
(DiseaseRepositoryRDBMS):

pointcut diseaseTypeAccess(

DiseaseRepositoryRDBMS rep,

int code):

call(DiseaseType search(int)) &&

target(rep) && args(code) &&

cflow(listServlet());

The target and the argument of the search(int) method are
exposed by the pointcut because those values are necessary
for redirecting the matched method calls. The cflow con-
struct is used to match only method calls that are in the ex-
ecution flow of the join points matched by the listServlet

pointcut. Therefore, we intercept only search(int) method
calls that originate from the execution of the methods of
ListServlet and its subclasses. Similar pointcuts should be
declared for other access methods called in the same context.

Besides the pointcuts, we must have advice that intercept
calls to the access methods and apply the appropriate data
loading level. For accesses to disease types, we have the
following:

Object around(DiseaseRepositoryRDBMS rep,

int code) throws

RepositoryException,

ObjectNotFoundException:

diseaseTypeAccess(rep, code) {

return rep.searchByLevel(code,

DiseaseType.SHALLOW_ACCESS);

}

We basically replace the search method call for a searchBy-

Level call, using the same target and argument. The spec-
ified shallow loading level corresponds to the level adopted
by listServlet. Using this solution, the persistent data
collections should provide methods such as searchByLevel,
with extra parameters to indicate the loading level. Alter-
natively, they could provide methods with different names.

This solution modularizes a persistence concern and solves
some problems of the pure Java implementation. However,
it presents some problems with respect to extensibility and
legibility, problems of the original version as well. For exam-
ple, when modifying the ListServlet code, the programmer
must be aware of the advice that intercept that code, other-
wise it might try to have access to non loaded disease type
information. It might even be necessary to change the as-
pect as a result of the ListServlet change. This shows a
strong dependence between the aspects and the Java code,
requiring more powerful AspectJ tools as discussed in Sec-
tion 5.2. For the transaction aspects, those tools could be
helpful. For the aspect presented in this section, they would
be very important.

Our solution to data access on demand also requires more
code to be written than in the pure Java version. Fortu-
nately, the extra code follows the same pattern of the point-
cuts and advice shown in this section. Code generation tools
could easily generate the code templates.

6. EXCEPTION HANDLING ASPECTS
As some of the advice presented so far might raise ex-

ceptions that are not handled by the advice themselves, we
had to implement auxiliary exception handling aspects. In
the Health Watcher system, they basically handle AspectJ’s
unchecked soft exception, since this is the type of the excep-
tions raised by the distribution and persistence advice. How-
ever, those aspects constitute an exception handling frame-
work that could be used to handle other types of exceptions
as well. Although exception handling is a natural crosscut-
ting concern, usually implemented with spread code, in our
experiment we concentrated on separating distribution and
persistence concerns, and simply used the exception han-
dling aspects to handle advice exceptions.

Handling exceptions
We first implemented a general aspect that defines an ab-
stract pointcut for identifying the join points where the
(softened) exceptions must be handled:

public abstract aspect ExceptionHandlingAspect {

public abstract pointcut exceptionJoinPoints();

after() throwing (Throwable ex):

exceptionJoinPoints() {

this.exceptionHandling(ex);

}

protected abstract void

exceptionHandling(Throwable ex);

}

The aspect also defines an after throwing advice that ex-
ecutes when an exception is thrown in the specified join
points. This advice specifies that the exception should be
handled by the exceptionHandling method, which is also
declared as abstract by the aspect.

Handling exceptions with servlets
As the user interface classes of the Health Watcher system
are Java servlets, we extended the general exception han-
dling aspect with behavior useful for handling exceptions
with servlets. The servlets are basically used to properly
notify the user that something went wrong, and maybe sug-
gest some specific actions she should take. In order to do
that, the aspect code must have access to PrintWriter ob-
jects, which are used by servlets to write responses back to
the service requester. The following aspect does that by
defining a pointcut (line 3) that identifies the join points
where a PrintWriter object is obtained (line 5) through
the response object (line 4):

1: abstract aspect ServletsExceptionHandlingAspect

2: extends ExceptionHandlingAspect {

3: pointcut printWriterCreation():

4: target(HttpServletResponse) &&

5: call(PrintWriter getWriter());

It also declares an after returning advice (lines 7 to 11),
which actually get and store the PrintWriter object re-
turned by the getWriter method call:

6: Hashtable printWriters = new Hashtable();

7: after() returning (PrintWriter out):

8: printWriterCreation() {

9: Thread id = Thread.currentThread();

10: printWriters.put(id, out);

11: }

We store the object in a Hashtable (line 6) indexed by the
threads that execute the intercepted method calls. This
is necessary because one PrintWriter object is created for
each request received by a servlet. So when handling excep-
tions we should make sure that we use the right PrintWriter
to notify the user.

This aspect also provides the concrete definition of the
exceptionHandling method. It basically accesses the ex-
ceptions wrapped as soft exceptions, obtains the correct
PrintWriter object, and properly notifies the user. We
should also define an advice for removing an object inserted
into the hashtable as soon as the associated servlet request
terminates. For simplicity, we omit the details here.

In order to be reusable, the previous aspect is abstract
and does not provide a concrete pointcut to identify the join
points where the exceptions must be caught. This should
be done by specific aspects. In the Health Watcher sys-
tem, we defined such a specific aspect for identifying default
exception handling join points: the service methods of the
servlets, meaning that the default handling behavior is to
notify the user. If other aspects need to define specific ex-
ception handling behavior, they must define a specialization
of the aspect ExceptionHandlingAspect, providing the han-
dling behavior and the join points to catch the exceptions.

7. RELATED WORK
Another AspectJ implementation of transactions was in-

dependently developed in the context of the OPTIMA frame-
work for controlling concurrency and failures with transac-
tions [16]. This implementation does not consider distribu-
tion and persistence concerns as we do here, but deals mostly
with transactions for implementing concurrency concerns.
Nevertheless, there are similarities with our approach, so we
discuss it in detail here.

The authors of the OPTIMA approach first analyze the
adequacy of AspectJ for completely abstracting transaction
concerns in such a way that transactional behavior can be
introduced in an automatic and transparent way to existing
non-transactional applications. They conclude that AspectJ
is not suitable for this purpose. We have not tried to analyze
that in our experiment since we believe that the main aim of
AspectJ, and aspect-oriented programming in general, is to
modularize crosscutting concerns, not to make them com-
pletely transparent. For some situations, this transparency
could be achieved by proper tools that would generate As-
pectJ code, but not by the language itself.

The kind of transparency sought by the authors should
not be confused with obliviousness, which is supported by
AspectJ and allows an application programmer to not worry
about inserting hooks in the code so that it is later affected
by the aspects. This does not mean that the application
programmer should not be aware of the aspects that inter-
cept the application code. Likewise, the aspect programmer
should be aware of the code that his aspect intercepts. In
this sense, there might be strong dependencies between As-
pectJ modules, reducing some of the benefits of modularity.
In spite of that, there are still important benefits that can be
achieved. Moreover, we believe that this problem could be
minimized by more powerful AspectJ tools providing multi-
ple views, and associated operations, of the system modules.
Appropriate notions of aspect interfaces should also be de-
veloped.

AspectJ’s ability to separate transactional interfaces (be-

gin, abort, commit), defining aspects to invoke the transac-
tional methods whenever necessary, has also been analyzed
by the same authors. Their implementation is similar to
what we present at the beginning of Section 5.2, but they
do not explore the variations that we present at the end of
the same section. Those variations can actually avoid the
performance problems they mentioned. They also faced the
same problem we had with the impossibility of adding an
exception to a method throws clause. However, our trans-
action control approach avoids this problem, which actually
appears here when dealing with the distribution concerns
(see Section 4.1).

When separating the transactional interfaces, they also
complain about the strong dependencies mentioned before,
suggesting that AspectJ might not be useful for this task
either. In the transactions case, we argue that the depen-
dencies do not bring major problems in practice. This is the
case because changes in the transaction aspects are mini-
mal and usually do not affect the pure Java code, whereas
changes in the Java code have only a very small impact on
the aspects, assuming that it has been established that any
exception that is thrown and not handled by a transactional
method aborts the transaction. In fact, powerful AspectJ
tools for dealing with dependencies would be needed much
more for the data access on demand aspects (see Section 5.5)
than for the transaction aspects. It seems that our AspectJ
implementation of transactions can usually have significant
advantages over pure Java implementations (see 5.2). That
is certainly the case for systems such as the Health Watcher.

Finally, the OPTIMA experience tries to separate trans-
action mechanisms, supporting different customizations for
transaction and concurrency control. They conclude that
AspectJ is useful for that. Although we have not imple-
mented much transaction customization, we had the same
positive experience using aspects to customize data collec-
tions and distribution services.

The implementation of distribution and persistence con-
cerns in pure object-oriented applications was explored else-
where, leading to specific design patterns [1, 17]. Those
patterns support the progressive implementation of distri-
bution and persistence code in an object-oriented applica-
tion. Despite having similar goals, this approach does not
achieve full separation of concerns; for instance, the distri-
bution and persistence exception handling are tangled with
user interface and business code. There is also code spread
over several units, such as in the serialization mechanism im-
plementation, and the identification of what objects should
be made persistent. Several parts of the paper explain why
the AspectJ version of the system is superior to a corre-
sponding pure object-oriented implementation that follows
most of those patterns.

Regarding distribution and aspects, another work [24] pro-
poses a tool for supporting aspect-oriented distributed pro-
gramming. They have the same goal of implementing dis-
tribution without changing the core system code. However,
this work uses a specific language to state what objects are
located in a host, and modifies bytecodes using Java re-
flection. In contrast, our approach uses a general-purpose
language.

Some approaches relate persistence with aspects and data-
bases. However, they investigate the persistence of the as-
pects [20], and also how to handle crosscutting features in
the database implementations, generating aspect-oriented

database management systems (AODBMS) [21]. Those ap-
proaches differ from ours because we use aspects to imple-
ment object persistence whereas they implement methods
to persist aspects. Therefore, they are, in fact, orthogonal
to what we propose here.

8. CONCLUSION
We discussed our experience on restructuring a simple,

but real and non-trivial, web-based information system with
AspectJ. In the new version of the system, the implemen-
tation of the distribution and persistence concerns are com-
pletely separated from each other and from the business and
user interface concerns. Among other benefits, this allows
us, for instance, to easily change the distribution middleware
or the persistence mechanism without affecting the imple-
mentation of the other concerns.

The main contribution of our experience is to validate
the use of AspectJ for implementing several persistence and
distribution concerns in the kind of application considered
here. Moreover, we notice that the implementation of those
concerns brings significant advantages in comparison with
the corresponding pure Java implementation. The only ex-
ception is the data access on demand concern; its imple-
mentation also has some disadvantages that could only be
minimized with more powerful AspectJ tools supporting as-
pect interfaces and multiple views of the system modules,
which would help programmers deal with strong dependen-
cies between the aspects and the pure Java code. In fact,
the need for this kind of tool was reported elsewhere [7].
In our experiment, we considered only basic remote com-
munication concerns, not implementing distribution issues
such as caching, fault tolerance, and automatic object de-
ployment for load balancing. However, we believe that those
issues could be implemented essentially using the presented
approach, revealing no further conclusions about the use of
AspectJ.

In spite of our successful experience with AspectJ, we have
identified a few drawbacks in the language and suggested
some minor modifications that could significantly improve
implementations similar to the one discussed here. Further-
more, we noticed that AspectJ’s powerful constructs must
be used with caution, since they might have undesirable
and unintended side effects. Moreover, as the definition
of a pointcut identifies (by using methods signatures, class
names, etc.) specific points of a given system, the aspects
become specific for that system, or for systems adopting
the same naming conventions, decreasing reuse possibilities.
This suggests that we should either support aspect parame-
terization or have the support of code generation tools when
developing with AspectJ. The need for those tools has actu-
ally been noticed on several occasions during our experience.
AspectJ’s development environment is also quite immature
and needs considerable improvements in compilation time
and bytecode size. It is also true that they have been con-
tinuously improved.

The distribution and persistence concerns considered here
can be implemented separately. However, we noticed that
the exception handling and state synchronization aspects
are actually necessary for both distribution and persistence
aspects. Moreover, the distribution and persistence aspects
can be used separately, but if they are used together then
some distribution advice must intercept the execution of
some persistence advice. This shows that the persistence

and distribution aspects are not completely independent.
Therefore, careful design activities are also important for
aspect-oriented programming. This is the only way we can
detect in advance intersections, dependencies and conflicts
among different aspects. Consequently, we can avoid serious
development problems and better plan the reuse and parallel
development of different aspects. This need for design activ-
ities does not seem to have been considered in [16], leading
to some of the problems discussed there. It has been noticed
before that distribution issues should not be handled only
at implementation or deployment time [26].

Some of the aspects implemented in our experiment are
abstract and constitute a simple aspect framework. They
can be extended for implementing persistence and distribu-
tion in other applications that comply with the architecture
of the health complaint system, a layer architecture used for
developing web-based information systems. Although spe-
cific, this architecture has been used for developing many
Java systems: a system for managing client information and
mobile telephone services configuration; a system for per-
forming online exams, helping students to evaluate their
knowledge before the real exams; a complex point of sale
system, and many others.

The other aspects are application specific and therefore
have different implementations for different applications. Nev-
ertheless, we suggest that different implementations might
follow a common aspect pattern, having aspects with the
same structure. Elsewhere [22], we document such an as-
pect pattern to implement distribution aspects in an object-
oriented application. The pattern structures can be encoded
in code generation tools [4] and automatically generated for
different applications, increasing productivity.

Based on the framework and the patterns, we can derive
architecture specific guidelines that provide practical advice
for both restructuring and implementing certain kinds of
persistent and distributed applications with AspectJ. How-
ever, much more experience with those guidelines is needed
before they could be used by a tool for partially automat-
ing the refactoring of pure Java systems similar to the one
considered here. This tool could do a lot of work mainly be-
cause the program structure and the guidelines are tailored
to a specific architecture.

9. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for making

several suggestions that significantly improved our paper.
Special thanks go to Doug Lea who was extremely help-
ful by reading the paper twice, discussing several important
points, and pointing out related work. We also thank Gre-
gor Kickzales for being available to give us some feedback
on how to improve the paper.

This work was supported by CAPES and CNPq, brazil-
ian research agencies. CAPES supported the first two au-
thors and the third was supported in part by CNPq, grant
521994/96-9.

10. REFERENCES
[1] V. Alves and P. Borba. Distributed Adapters Pattern:

A Design Pattern for Object-Oriented Distributed
Applications. In First Latin American Conference on

Pattern Languages of Programming —

SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001.
UERJ Magazine: Special Issue on Software Patterns.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. Unified

Modeling Language — User’s Guide. Addison-Wesley,
1999.

[3] K. Czarnecki and U. Eisenecker. Generative

Programming: Methods, Tools, and Applications.
Addison–Wesley, 2000.

[4] M. d’Amorim, C. Nogueira, G. Santos, A. Souza, and
P. Borba. Integrating Code Generation and
Refactoring. In Workshop on Generative

Programming, ECOOP’02, Málaga, Spain, June 2002.
Springer Verlag.

[5] R. Elmasri and S. Navathe. Fundamentals of Database

Systems. Addison–Wesley, second edition, 1994.

[6] T. Elrad, R. E. Filman, and A. Bader.
Aspect–Oriented Programming. Communications of

the ACM, 44(10):29–32, October 2001.

[7] R. E. Filman and D. P. Friedman. Aspect–Oriented
Programming is Quantification and Obliviousness. In
Workshop on Advanced Separation of Concerns,

OOPSLA’00, 2000.

[8] D. Flanagan. JavaScript The Definitive Guide.
O’Reilly & Associates, Inc., second edition, 1997.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java

Language Specification. Addison-Wesley, second
edition, 2000.

[12] I. S. Graham. The HTML Sourcebook. Wiley
Computer Publishing, second edition, 1996.

[13] J. Hunter and W. Crawford. Java Servlet

Programming. O’Reilly & Associates, Inc., first
edition, 1998.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting Started with
AspectJ. Communications of the ACM, 44(10):59–65,
October 2001.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect–Oriented Programming. In European

Conference on Object–Oriented Programming,

ECOOP’97, LNCS 1241, pages 220–242, Finland,
June 1997. Springer–Verlag.

[16] J. Kienzle and R. Guerraoui. AOP: Does it Make
Sense? The Case of Concurrency and Failures. In
European Conference on Object–Oriented

programming, ECOOP’02, LNCS 2374, pages 37–61,
Málaga, Spain, June 2002. Springer–Verlag.

[17] T. Massoni, V. Alves, S. Soares, and P. Borba. PDC:
Persistent Data Collections pattern. In First Latin

American Conference on Pattern Languages of

Programming — SugarLoafPLoP, Rio de Janeiro,
Brazil, October 2001. UERJ Magazine: Special Issue
on Software Patterns.

[18] S. Microsystems. Java Remote Method Invocation
(RMI). At http://java.sun.com/products/jdk/1.2/
docs/guide/rmi, 2001.

[19] G. C. Murphy, R. J. Walker, E. L. Baniassad, M. P.

Robillard, A. Lai, and M. A. Kersten. Does
aspect–oriented programming work? Communications

of the ACM, 44(10):75–77, October 2001.

[20] A. Rashid. On to Aspect Persistence. In 2nd

International Symposium on Generative and

Component–based Software Engineering, LNCS 2177,
pages 453–463. Springer–Verlag, October 2000.

[21] A. Rashid and E. Pulvermueller. From
Object–Oriented to Aspect–Oriented Databases. In
11th International Conference on Database and Expert

Systems Applications — DEXA 2000, LNCS 1873,
pages 125–134. Springer–Verlag, September 2000.

[22] S. Soares and P. Borba. PaDA: A Pattern for
Distribution Aspects. In Second Latin American

Conference on Pattern Languages of Programming —

SugarLoafPLoP, Itaipava, Rio de Janeiro, Brazil,
August 2002.

[23] Sun Microsystems. The Enterprise JavaBeans
Specification, October 2000. At
http://java.sun.com/products/ejb/docs.html.

[24] M. Tatsubori. Separation of Distribution Concerns in
Distributed Java Programming. In OOPSLA’01,

Doctoral Symposium, Tampa FL, 2001.

[25] A. Team. The AspectJ Programming Guide. At
http://aspectj.org, 2002.

[26] J. Waldo, S. C. Kendall, A. Wollrath, and G. Wyant.
A Note on Distributed Computing. Technical Report
TR-94-29, Sun Microsystems Laboratories, Inc.,
November 1994.

