
Distributed Adapters Pattern: A Design
Pattern for Object-Oriented Distributed

Applications

Vander Alves∗ Paulo Borba†

Centro de Informática
Universidade Federal de Pernambuco

1 Introduction

We introduce the Distributed Adapters Pattern (DAP) in the context of remote communi-
cation between two components, where it is intended that these components be decoupled
from specific communication Application Programming Interfaces (API).

2 Context

In order to accomplish their tasks, components in a distributed system communicate with
each other by means of an inter-process communication mechanism. When the compo-
nents handle communication themselves we obtain applications where the core functional-
ity of its components is interwoven with communication tasks. Therefore, the application
becomes dependent on a particular communication mechanism, and its components are
hard to reuse and extend.

In order to illustrate the use of DAP, we take a banking example as a concrete context.
The banking service stores entities such as account and customer records, and has opera-
tions for manipulating these entities, such as deposit and addAccount. These operations
are to be provided remotely to clients of the service, and thus its implementation must rely
on a distribution platform. Additionally, it is expected that such implementation follows
an incremental method: a non-distributed version is implemented before the distributed
one. Another assumption is that it may be desirable to change the distribution platform.

3 Problem

Avoiding tangled communication and business code in order to provide reusability and
extensibility.

∗Supported in part by CNPq. Electronic mail: vra@cin.ufpe.br.
†Supported in part by CNPq, grant 521994/96–9. WWW: http://www.cin.ufpe.br/~phmb. Elec-

tronic mail: phmb@cin.ufpe.br.



4 Forces

DAP balances the following forces:

• Separation of concerns;

• The components should be independent from the communication API;

• The code modification in components to support communication should be mini-
mized;

• Changing the communication mechanism should be a simple task, minimizing the
impact on business code;

• Adequate communication performance;

• Development productivity must not be significantly affected.

5 Solution

Introduce a pair of object adapters [4] to achieve decoupling of components in distributed
architectures. The adapters basically encapsulate the API that is necessary for allowing
the distributed or remote access of Target objects (hereafter Target object refers to a
business object providing services to other business objects). In this way, Source objects
(hereafter Source object denotes a business object acting as a client of a Target object) of
an application become autonomous with respect to the distribution layer, so that changes
in the latter do not impact the former.

Source
Adapter Adapter

TargetSource Target

Machine A Machine B

User interface Facade

Figure 1: An example of DAP.

There are two kinds of adapters: source adapters and target adapters. Roughly, the
latter wraps Target objects in the places where they are located, and the former represents
those objects in remote locations. In a typical interaction, a user interface object (a GUI,
for instance) in one machine would request the services of a source adapter located in the
same machine. The source adapter would then request the services of a corresponding
target adapter residing in a remote machine. Finally, the target adapter would request
the services of a Facade [4] object co-located with the target adapter. Figure 1 illustrates
this example.

Source and target adapters provide a higher level of abstraction than stub and skeletons
do. The adapters isolate user interface and business code from distribution API, whereas



stubs and skeletons isolate user interface and business code from the implementation of
distribution issues, but not from distribution API. Source adapters delegate lower level
distribution issues such as marshalling to stubs, and target adapters delegate such issues
to skeletons.

As another example, the banking application of Section 2 is structured according to
DAP as Figure 2 illustrates.

Figure 2: Class diagram of a banking application according to DAP.

The uncolored elements deal with the business aspects of the application, whose Facade
is the Bank class, which unifies all services of the application. The gray elements denote
the adapters and their collaborators. Essentially, these gray elements hide distribution
API from user interface and business code. In the following section, each element is
described abstractly; their implementation is sketched in Section 8.

5.1 Structure

Figure 3 details the structure of DAP by means of a class diagram. The Source and
Facade classes abstract business components as mentioned previously. The Facade class
is named after the Facade design pattern [4]. The Facade Interface abstracts the be-
havior of the Facade class in a distributed scenario. However, this interface, the Source

and Facade classes have no communication code. These three elements constitute a
distribution-independent layer in the pattern. The remaining elements of the pattern
deal with this aspect.

The core elements of the pattern handling distribution itself are Source Adapter

and Target Adapter. These are tied to a specific distribution API and encapsulate the
communication details. Source Adapter is an adapter [4], isolating the Source class



Figure 3: Class diagram of DAP.

from distribution code. It resides on the same machine as the Source and also works as
proxy [4] to Target Adapter. This latter may reside on another machine and is also an
adapter, isolating the Facade class from distribution code. Since Source Adapter and
Target Adapter usually reside in different machines, and thus do not interact directly,
Target Adapter implements Remote Interface, on which Source Adapter depends.

The Name Service class has operations for registering and looking up a remote object;
both adapters use this class, which represents a generic name service and is common to
most distribution platforms. The Initializer class also resides in the same machine as
Target Adapter and Facade, and is responsible for creating Facade and Target Adapter

objects. Its importance lies in the fact that it allows the same Facade object to be
accessed at the same time by different target adapters, representing different distribution
technologies. Concurrency control is orthogonal to distribution and can be studied in
books such as [5]. The factories in the pattern are useful for configuration purposes: they
are used in the creation of Facade and of the adapters. In particular, the factories isolate
business code from the creation of adapters for a specific distribution platform.

5.2 Dynamics

Figure 4 shows the sequence diagram of a typical scenario for DAP. The Initializer

creates a Facade object and a Target Adapter1, passing to the latter a reference to the
former. Target Adapter registers itself as a distributed object in the Name Service by

1Actually, Initializer delegates the creation of this adapter to DistributionFactory. We omit it
here for simplicity.



:aNameService

Legend

invocation

return

create

create

lookup

register

create
:SourceAdapter

:Initializer

:TargetAdapter

Facade

m

m
m

Source

Figure 4: Dynamics of DAP.

invoking its register method. During initialization, Source creates a Source Adapter2,
which performs a lookup operation on Name Service to obtain a reference to the re-
mote service offered by Target Adapter. Source then invokes the local m operation on
Source Adapter, which in turn calls the remote m operation of Target Adapter; this
latter delegates the call locally to Facade.

6 Consequences

DAP provides the following benefits:

• Modularity. This pattern separates concerns by structuring distribution aspects
modularly, promoting loose coupling between the different layers of an application’s
architecture: distribution, business, and user interface layers.

• Reuse and extensibility. Due to the modularity provided by the pattern, developers
can reuse the Source and Target components easily in other applications based on
other APIs and middleware technologies. In addition, changes to the middleware
aspects are simpler, since these are restricted to the distribution layer.

2In fact, Source delegates this to FacadeFactory.



• Incremental implementation. The pattern supports incremental implementation.
During the early phases in development, developers construct a functionally com-
plete prototype, where the Source component (a GUI, for example) depends directly
on the Target component (a business Facade, for example). Later, developers add
the distribution layer seamlessly, since this latter implements the same interface as
the Target component.

This pattern has the following drawbacks:

• Increased number of classes. A pair of adapters, three factories, and an initializer are
necessary; however, their structure is simple and their generation could be mostly
automated by tools.

• Extra indirection. The pair of adapters introduces two additional method calls for
each remote request. However, both of these additional calls are local, which are
much less expensive than the remote one. The work in [1] shows empirical data
analyzing the impact on efficiency caused by the adapters; the analysis reveals that
such impact is minimum.

7 Implementation

For example, here we consider how to implement the Distributed Adapters Pattern using
RMI [9] as the distribution technology. Consider the following implementation issues:

• Serialization of business objects. As RMI supports a value parameter passing mecha-
nism for local objects, the classes of these objects must implement the Serializable
interface [9]. There are no methods in this interface and it simply indicates to the
RMI system that an object may be transformed into a stream of bytes in order to
be transmitted over a network. However, this is not a negative dependence between
the business and the distribution layers since the former calls no method on the
latter; in fact, no change on the latter will affect the former.

• Additional non-functional requirements. RMI is a simple distribution platform and
does not offer fault-tolerance and caching. Such extended behavior can be imple-
mented in DAP’s adapters (a detailed implementation is presented in [1]).

8 Sample Code

We now provide sample code for the core elements in the pattern, using the simple banking
application mentioned in Section 2 as an example (a full implementation is given in [1]).
This application is structured according to DAP as shown by Figure 2. The Bank class is
a Facade, and it keeps references to entities such as account and customer records, and
has operations for manipulating these entities:

class Bank implements IBank {

private AccountRecord accounts;

void deposit(String accountNumber, double value)



throws UnknownAccountException {

accounts.deposit(accountNumber,value);

} ...

}

where AccountRecord provides services for manipulating a record of accounts (insertion,
updating, querying, deletion, etc.) and also for depositing to or withdrawing from them.
The exception UnknownAccountException is specific to the banking application. The
IBank interface implemented by the banking facade is a Facade Interface. It abstracts
the behavior of the application:

interface IBank {

void deposit(String accountNumber, double value)

throws CommunicationException,

UnknownAccountException;...

}

where CommunicationException is a general exception representing failure in the distri-
bution layer. This exception does not depend on any particular distribution technology
and is defined since the application will eventually become distributed.

A User interface object simply creates a BankRMISourceAdapter and forwards client
requests to it. The RMI source adapter implements IBank so that the User interface

class is unaware of the specific middleware technology. The constructor obtains a reference
to the target adapter, by invoking the connect method:

public class BankRMISourceAdapter implements IBank {

private IBankRMITargetAdapter bank;

public BankRMISourceAdapter(String whereServer)

throws CommunicationException {

connect(whereServer);

}

public void connect(String server) throws CommunicationException {

try {

bank = (IBankRMITargetAdapter) Naming.lookup(server);

} catch (Exception e) {

throw new CommunicationException (...);

}

}

A User interface object can call the connect method later in case the connection with
the target adapter fails (in fact, the source adapter itself may implement fault-tolerant
behavior as described in [1]). The deposit method forwards User interface deposit
requests to the target adapter:

public void deposit (String accountNumber, double value)

throws CommunicationException,

UnknownAccountException {

try {

bank.deposit(accountNumber,value);



} catch (RemoteException e) {

throw new CommunicationException (...);

}

}

} //end of BankRMISourceAdapter

Note that, both in the constructor and in the deposit method, the source adapter
replaces an RMI specific exception with the general CommunicationException. The
IBankRMITargetAdapter interface is the type of the reference to the target adapter and
its methods must also raise RemoteException:

public interface IBankRMITargetAdapter extends Remote {

void deposit(String accountNumber, double value)

throws CommunicationException, UnknownAccountException,

RemoteException;

}

where Remote is an RMI interface used to identify remote object types [9].
The target adapter becomes an RMI remote object by inheriting from the

UnicastRemoteObject [9]. It implements the IBankRMITargetAdapter remote interface,
so that the source adapter can call its methods remotely. The constructor of the target
adapter receives a facade object as an argument and registers the adapter itself in the
name service:

public class BankRMITargetAdapter extends UnicastRemoteObject

implements IBankRMITargetAdapter {

private IBank bank;

public BankRMITargetAdapter(IBank bank)

throws CommunicationException {

try {

this.bank = bank;

Naming.rebind("BankServer", this);

} catch (Exception e){ throw new CommunicationException(...);}

}

The source adapter invokes the deposit method on the target adapter, and this op-
eration forwards the call to the corresponding method in the facade object:

public void deposit(String accountNumber, double value)

throws CommunicationException, RemoteException,

UnknownAccountException {

bank.deposit(accountNumber, value);

}

} // end of BankRMITargetAdapter

Note that the type of the target adapter’s attribute is IBank and not Bank. The
rationale is that, since either a facade or a source adapter implements IBank, the tar-
get adapter, which depends on this interface, may refer either to a facade or to another



Source

User interface

Target

IBank IBank

IBank

Bank

DistributionDistribution

TA

SATASA

This figure illustrates an application with two levels of distribution. Each distribution component ab-
stracts both adapters. SA and TA denote Source Adapter and Target Adapter, respectively.

Figure 5: Additional levels of distribution.

source adapter. This latter case accounts for flexible configurations where there are addi-
tional levels of distribution. Figure 5 illustrates this situation. As mentioned previously,
the methods of the IBank business facade interface declare CommunicationException.
Therefore, methods in the target adapter and in its remote interface must also declare
this exception.

9 Known Uses

DAP has been used in the implementation of a Web based information system, where
the adapters are used between the web server, in which servlets [10] act as clients of the
source adapter, and the application server, in which the target adapter interacts with the
facade. The facade is not in the web server due to security and performance reasons.

Another use of DAP in Web based information systems employs the adapters between
an applet, in a client Web browser, and a facade, in a remote machine. The adapters hide
the communication details, which use HTTP [12], from the applet and the facade.

The work in [8] and [2] reveals that developers have been using patterns that have
some relation to DAP. In particular, the pattern in the first work is similar to DAP’s
source adapter; the pattern in the second work is similar to the DAP’s target adapter.

10 Related Patterns

• Distributed Proxy Pattern [6]. This pattern and DAP have similar objectives. How-
ever, following to [11], DAP does not attempt to make the incorporation of distri-
bution totally transparent. Indeed, a client of a source adapter in DAP must be
prepared to handle the general CommunicationException. DAP makes transparent
the use of a particular distribution technology, not distribution itself. In order to
achieve it, DAP uses adapters (instead of proxies), which replace specific distribu-
tion code by general code, for example by turning java.rmi.RemoteException into



CommunicationException. Moreover, the adapters in DAP may implement addi-
tional non-functional requirements, such as fault-tolerance and caching, and may
also be used to achieve n levels of distribution (as shown in Figure 5), each of which
may be implemented by a different technology.

• Wrapper-Facade [7] and DAP have the common goal of minimizing platform-specific
variation in application code. However, Wrapper-Facade encapsulates existing lower-
level non-object-oriented APIs (such as operating systems mutex, sockets, and
threads), whereas DAP encapsulates object-oriented distribution APIs, such as RMI
and CORBA.

• Adapter, Facade, and Abstract Factory. DAP is implemented using the Adapter,
the Facade, and the Abstract Factory design patterns [4].

• Broker and Trader. Well known patterns for structuring distributed systems al-
ready exist. The Broker [3] and Trader [3] patterns are examples. These are ar-
chitectural patterns and focus mostly on providing fundamental distribution issues,
such as marshalling and message protocols. Therefore, they are mostly tailored
to the implementation of distributed platforms, such as CORBA. DAP uses these
fundamental patterns and provides a higher level of abstraction: distribution API
transparency to both clients and servers.

• Chain of Responsibility [4] is similar to DAP in the sense that it decouples the sender
of a request from its receiver by giving more than one object the chance to handle
the request. This indirection is similar to the DAP’s adapters; these, however, also
perform interface filtering, isolating the distribution platform’s API, which is not
done by Chain of Responsability.

• Model-View-Controller (MVC) [3] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy, and even possible at run time. DAP is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task.

Acknowledgements

We would like to thank our shepherd, Eduardo Fernández, for all the work he put into
commenting on this paper and the great suggestions for improvement he made. During
the writer’s workshop at SugarLoafPLOP’2001, Jorge Ortega Arjona, Gunter Mussbacher
and Sérgio Soares have also made several interesting comments that helped to improve
this paper.

References

[1] Vander Alves. Progressive development of distributed object-oriented applications.
Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco, Feb.
2001.



[2] Dan Becker. Design Networked Applications in RMI Using the Adapter Design
Pattern. Java World, May 1999.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[5] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 1999.

[6] Antonio RitoSilva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A
design pattern for distributed object communication. In PLoP’97, Monticello, USA,
September 1997. http://jerry.cs.uiuc.edu/˜plop/plop97/Proceedings/ritosilva.pdf.

[7] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern Ori-
ented Software Architecture, volume 2. John Wiley & Sons, 2000.

[8] Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.

[9] Sun Microsystems. Java Remote Method Invocation Specification, 1.50 edition, Oc-
tober 1998.

[10] Sun Microsystems. Java Servlet Specification, Abril 2000.

[11] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed computing.
Technical Report TR-94-29, Sun Microsystems, November 1994.

[12] The World Wide Web Consortium. Hypertext Transfer Protocol Specification, 1.1
edition, jun. 1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html.


