Mechanical Abstraction of CSP; Processes

Alexandre Mota*, Paulo Borba, and Augusto Sampaio

Universidade Federal de Pernambuco
Centro de Informéatica - Cln
P.0.Box 7851 - Cidade Universitaria
50740-540 Recife - PE Brazil
{acm,phmb,acas}@cin.ufpe.br

Abstract. We propose a mechanised strategy to turn an infinite CSPz
process (formed of CSP and Z constructs) into one suitable for model
checking. This strategy integrates two theories which allow us to consider
the infiniteness of CSPz as two separate problems: data independence for
handling the behavioural aspect and abstract interpretation for handling
the data structure aspect. A distinguishing feature of our approach to
abstract interpretation is the generation of the abstract domains based
on a symbolic execution of the process.

1 Introduction

Impressive efforts have been carried out to compact various classes of transition
systems while still preserving most properties; currently, even a simple model
checker can easily analyse millions of states. However, many systems cannot be
analysed either because they are infinite state or are too large. This is normally
induced by the use of (infinite or too large) data types on communications and
process parameters. Indeed, various techniques have been proposed and are still
being carefully studied in order to handle certain classes of such systems: local
analysis [15,17], data independence [23,26], symmetry elimination and partial
order reduction [10], test automation [28], abstract interpretation [22], integra-
tion of model checkers with theorem provers [29,30], etc. Unfortunately, the most
powerful techniques still need a non-guided user support for a complete and ad-
equate usage. This support concerns the elaboration of some kind of abstraction
such that model checking can be applied successfully; in the current literature—
to the best of our knowledge—there is no technique nor strategy to generate
such abstractions from the system description itself.

The goal of this paper is to propose a strategy for analysing infinite CSP z
processes in which user intervention is only needed to aid theorem proving.
Therefore, even though the strategy is not fully automatic in general it can be
mechanised via model checking and theorem proving integration, which seems
to be a promising research direction in formal verification [30]. In particular,
this strategy is a combination of data independence and abstract interpretation

* This work was financially supported by CNPq grant 143720/98-8.

in a slightly different manner than approaches available in the literature. More
specifically, our approach is based on Lazi¢’s work [26] to model checking data
independent CSP processes and Wehrheim’s work [13,14] to data abstracting
CSPoz [8] (a combination of CSP and Object-Z), although we concentrate on
CSPy [7,8] (an integration of CSP and Z). The reason to use Wehrheim’s ap-
proach instead of, for example, the ones proposed in [24,9], is that her approach
already uses a CSP algebraic style which is very convenient for using FDR [12].
Wehrheim’s work can be seen as a CSP view of other approaches [24,9]. Lazi¢’s
work is used on the CSP part to fix a flaw in the work of Wehrheim. This is
the reason why we consider the CSP part of a CSPz process data independent,
while the Z part takes into account the data dependencies.

We show that a data dependent infinite state CSP; process can be trans-
formed into a finite CSP; process by using generated subtypes on its channel
declarations, state, input and output variables, and by rewriting some expres-
sions (the postconditions of the schemas) in order to perform model checking.
We present an algorithm for our strategy in which decidable aspects are trans-
ferred to the user by means of using theorem provers to answer the algorithm’s
questions. Currently, the strategy supports model checking of some classical
properties, in general, and other properties on special situations. The classical
properties readily available are: deadlock and livelock (See [4] for more details).

The major advantage of our approach is that, unlike related work in the
literature, we calculate the data abstraction from the process description itself.
Notably, the most promising works on this research area assume some kind of
data abstraction determined by the user [24,9,29,16]. The success of our strategy
is directly related to how much the expansion of the Z part yields infinite regular
behaviours [1]. We deal with infinity in the following way: if the composition of
schemas originate a stable behaviour from a certain state to infinite then we
can obtain optimal abstraction. The abstraction is obtained by replacing infinite
states for a representative state according to the stable property.

Although, in principle, we could employ our strategy to other specification
languages, the choice for CSP; was based on the way a process is modelled and
interpreted. Every CSPz process is seen as two independent and complemen-
tary parts: a behavioural one—described in CSP—and a data structure based—
modelled in Z. The behavioural part is naturally data independent while data
dependent aspects are confined to the data structures part. Finally, the data
structures part has a very simple form which enables the mechanisation of the
strategy to be relatively straightforward.

This paper is organised as follows. The following section presents an overview
of CSPz through an example; its semantics is informally described to ease the
understanding of our data abstraction approach. Section 3 introduces the notion
of data independence for CSP processes. The theory of abstract interpretation is
briefly described in Section 4. The main contribution of this paper is described
in Section 5 where some examples are used for illustrating our approach to ab-
stracting CSP z processes, before we present our algorithm for data abstraction.
Finally, we present our conclusions including topics for further research.

2 Overview of CSP,

This section introduces the language CSPz [7,8]; a process of the On-Board
Computer (OBC) of a Brazilian artificial microsatellite (SACI-1) [11,3] is used
for that purpose. The Watch-Dog Timer, or simply WDT, is responsible for
waiting periodic reset signals that come from another OBC process, the Fault-
Tolerant Router (FTR). If such a reset signal does not come, the WDT sends
a recovery signal to the FTR asynchronously, to normalise the situation. This
procedure is repeated three times; if, after that, the FTR still does not respond,
then the WDT considers the FTR faulty, finishing its operation successfully.
CSPz is based on the version of CSP presented by Roscoe [4] instead of
the original version of Hoare [6]. A CSPz specification is enclosed into a spec
and end_spec scope with its name following these keywords. The interface is the
first part of a CSPz specification and there it is declared the external channels
(keyword chan) and the local (or hidden) ones (keyword Ichan). Each list of com-
municating channels has an associated type: a schema type, or [vy : T1; ... vy :
T, | P] where v1,..., v, are lists of variables, Ti,..., T, their respective types,
and P is a predicate over v;,...,v,. Untyped channels are simply events by
CSP tradition. Types could be built-in or user-defined types; in the latter case,
they might be declared outside the spec and end_spec scope, as illustrated by
the following given-set and used to build the type of the channel clockWDT.

[CLK]

The WDT interface includes a communicating channel clockWDT (it can
send or receive CLK data via variable clk), two external events reset and re-
cover, and four local events timeQut, noTimeOQut, failFTR, and off WDT.

spec WDT
chan clockWDT: [clk : CLK]
chan reset, recover
Ichan timeOut, noTimeOut, failFTR, of WDT

The concurrent behaviour of a CSPz specification is introduced by the key-
word main, where other equations can be added to obtain a more structured
description: a hierarchy of processes. The equation main describes the WDT be-
haviour in terms of a parallel composition of two other processes, Signal and
Verify, which synchronise in the event of WDT. The process Signal waits for
consecutive reset signals (coming from the FTR process) or synchronises with
Verify (through the event of WDT) when the FTR goes down. The process Ver-
ify waits for a clock period, then checks whether a reset signal arrived at the
right period or not via the choice operator (0). If a timeOut occurs then the
WDT tries to send, at most for three times, a recovery signal to the FTR. If
the FTR is not ready to synchronise in this event, after the third attempt, then
Verify assumes that the FTR is faulty (enabling failFTR) and then synchronises
with Signal (at of WDT), in which case both terminate (behaving like SKIP).

From the viewpoint of the SACI-1 project, the WDT is turned off because it
cannot restart (recover) the FTR anymore.

main=>Signal I Verify
{ofWDT}
Signal=(reset— Signal O off WDT—SKIP)
Verify=(clockWDT?clk— (noTimeQut— Verify
O timeOut— (recover— Verify
O failFTR—offWDT—SKIP)))

The Z part complements the main equation by means of a state space and
operations defining the state change upon occurrence of each CSP event. The
system state (State) has simply a declarative part recording the number of cycles
the WDT tries to recover the FTR, and the last clock received. The initialisation
schema, (Init) asserts that the number of cycles begins at zero; prime (') variables
characterises the resulting state. The number of cycles belongs to the constant
set LENGTH (used in the declarative part of the state space).

LENGTH ==10..3 State = [cycles : LENGTH; time : CLK]
Init = [State’ | cycles’ = 0]

To fix a time out period we introduce the constant WD TtOut of type CLK.
To check whether the current time is a time out, we use the constant relation
WDTP which expresses when one element of CLK is a multiple of another.

WDTtOut : CLK
WDTP : CLK + CLK

The following operations are defined as standard Z schemas (with a declara-
tion part and a predicate which constrains the values of the declared variables)
whose names originate from the channel names, prefixing the keyword com_.
Informally, the meaning of a CSPz specification is that, when a CSP event c
occurs the respective Z operation com_c is executed, possibly changing the data
structures. When a given channel has no associated schema, this means that no
change of state occurs. For events with an associated non-empty schema type,
the Z schema must have input and/or output variables with corresponding names
in order to exchange communicated values between the CSP and the Z parts.
Hence, the input variable clk? (in the schema com_clockWDT below) receives
values communicated via the clockWDT channel. For schemas where prime vari-
ables are omitted, we assume that no modification occurs in the corresponding
component; for instance, in the schema com_reset below it is implicit that the
time component is not modified (time' = time).

com_reset = [AState | cycles’ = 0]
com_clockWDT = [AState; clk? : CLK | time' = clk?]

The precondition of the schema com_noTimeQOut specifies that the current
time is not a multiple of the time out constant (the time out has not yet occurred)
by = WDTP(time, WDTtOut). Its complement is captured by com_timeQut.

com_noTimeOut = [= State | =~ WDTP (time, WDTtOut))
com_timeQOut = [= State | WDTP (time, WD TtOut)]

As already explained, the recovery procedure is attempted for 3 times, after
which the WDT assumes that the FTR is faulty. This forces the occurrence of
failF TR and then turns off the WDT process.

com_recover = [AState | cycles < 3 A cycles’ = cycles + 1]
com_failFTR = [= State | cycles = 3]

end_spec WDT

2.1 Semantics and Refinement

A CSP process is defined as a combination of a CSP and a Z part. Its semantics
is given in terms of the semantic models of CSP, that is, traces, failures, and
failures-divergences [7,8]. Thus, the Z part has a non-standard semantics (see
the standard semantics of Z [20]) given by the standard semantics of CSP.

These semantic models yield different views of a process. The traces model
(T) is the simplest; it allows one to observe the possible behaviours of a pro-
cess. The failures model (F) is more complex: possible (traces) and non-possible
(refusals) behaviours can be appreciated. The strongest model is the failures-
divergences (FD) model, which also considers divergent behaviours.

Following the CSP tradition, a specification is better than another in terms
of the semantic models when it satisfies a (parameterised) refinement relation
C, where M is one of the three possible models. For example, let P and) be
CSP processes. We say that @) is better than P (in the semantical model M) iff

PCy @

which means
T(Q) C T(P), for the traces model,
T(Q) CT(P)ANF(Q) C F(P), for the failures model, and
F(Q) C F(P)AD(Q) C D(P), for the failures-divergences model.

2.2 A Normal Form for CSP; Processes

In [2,3] we show how an arbitrary CSPz process can be transformed in a pure
CSP process, for the purpose of model checking using FDR. In this approach, a
CSP 4 specification is defined as the parallel composition of two CSP processes:
the CSP part and the Z one. In the remaining sections we assume that this
transformation has already been carried out. Let P be a CSPz process with
Interface = {ai,...,a,}. The normal form of P, as a pure CSP process, looks
like Py = main | Z5tate where

{a1,...,0,}

pre com_a; & a; — Z com—a(State)
O pre com_as & ay — Zcom_az(State)
ZState - - -
O
pre com_ay, & a, — Z com-an(State)
It is worth observing that schemas are transformed into functions!. This kind
of normal form? is turned out to be very useful for our abstraction strategy as
further discussed in the remainder of this paper.

3 Data Independence

Informally, a data independent system P [23,26] (with respect to a data type
X) is a system where no operations involving values of X can occur; it can only
input such values, store them, and compare them for equality. In that case, the
behaviour of P is preserved by replacing any concrete data type (with equality)
for X (X is a parameter of P). This is precisely defined by Lazi¢ in [26] as:

Definition 1 (Data independence) P is data independent in a type X iff:

Constants do not appear in P, only variables appear, and

If operations are used then they must be polymorphic, or

If comparisons are done then only equality tests can be used, or

If used, complex functions and predicates must originate from 2 and 3, or
If replicated operators are used then only nondeterministic choices over X
may appear in P. &

Grds Lo o~

The combination of the items in Definition 1 yields different classes of data
independent systems. In this section we consider the most simplest class to rep-
resent the CSP part of a CSPz process. This is done in order to leave the Z part
free from (possible) influences originated by the CSP part.

The work of Lazi¢ deals with the refinement relation between two data inde-
pendent processes by means of the cardinality of their data independent types.
The cardinality originates from the items in Definition 1 present in the processes
bodies. That is, suppose P Cj; @ has to be checked, for some model M, such
that P and () are infinite state and data independent. Further, consider X the
unique data independent type influencing P Cjs Q. Then, Lazi¢ guarantees this
refinement provided #X > N, for some natural N, and according to Definition 1.

These results form the basis to analyse the CSP part of a CSP z specification.
Definition 2 states the kind of data independence we are focusing.

Definition 2 (Trivially Data Independent) A trivially data independent
CSP process is a data independent process which has no equality tests, no poly-
morphic operations, and satisfies #X > 1 for all data independent type X. &

! This is presented formally in Section 5.
% Indeed, this normal form is a simplified version of the original one (See Mota and
Sampaio [3] for further information).

Definition 3 is used to guarantee that the CSPz specification we are analysing
has the simplest data independent process description for its CSP part.

Definition 3 (Partially Data Independent) A CSPjz specification is par-
tially data independent if its CSP part is trivially data independent. &

Aslong as the Z part of a CSP z specification is normally data dependent, the
previous theory cannot be applied to handle it. Hence, a more powerful theory
has to be introduced to deal with the Z part. Now, we briefly present the theory
of abstract interpretation for treating data dependent questions.

4 Abstract Interpretation

Abstract interpretation is an attractive theory based on the notion of galois
connections (or closure operators), and was originally conceived for compiler
design [21,22]. Its role is to interpret a program in an abstract domain using
abstract operations. Therefore, its main benefit is to obtain useful information
about a concrete system by means of its abstract version.

For model checking [10], this approach is used to avoid state explosion by
replacing infinite data types by finite ones; in view of this, model checking can
be extended to analyse infinite state systems. The drawbacks of this approach
are related to how to determine the abstract domains and operations, and the
possible loss of precision coming from the choice of abstract domains.

Definition 4 (Galois connection) Let (A,C4) and (C,C¢) be lattices. Fur-
ther, let a : C — A (the abstraction map or left adjunction) and v : A - C
(the concretisation map or right adjunction) be monotonic functions such that

—Va:Aeaoy(a)Caa
—Ve:CecCgyoal(ce) (whereas ¢ =¢ 7y o afc) for a galois insertion)

then (C,C¢) tz—_> (A,C4) represents a galois connection. &

Note that, in the terminology of abstract interpretation, the order C is defined
such that z C y means z is more precise than y. Hence, @ o y(a) C4 o means
ao(a) is the best approximation for ¢ and ¢ C¢ yoa(c) means the application
of v o @ adds no information to ¢. The lattice (A, C4) represents the lattice of
properties of the system having (C',C¢) as the usual semantic domain.

In the tradition of abstract interpretation, one has to establish adjunctions
such that they form a galois connection (or insertion) and, for all concrete oper-
ators, propose abstract versions for them. Moreover, this proposal might be done
such that the operators (concrete and abstract) be compatible in some sense; this
compatibility originates the notions of soundness (safety) and completeness (op-
timality) [24,25]. For example, let f : € — D be a concrete operation defined over
the concrete domains C and D. Let an abstract interpretation be speciﬁed by the

following galois connections (C, Eg)%(/l, C4) and (D, ED)<L>—I(B, Cg). In
a

addition, let f* : A — B be the corresponding abstract semantic operation for
f- Then, f* is sound for f if &' of C f*o«. Completeness is meant as the natural
strengthening of the notion of soundness, requiring its reverse relation to hold.
Hence, f* is complete for f iff &' o f = f* o .

Now, we present how an abstract interpretation can be defined in terms of
CSPz elements as well as its integration with the notion of data independence.

5 CSP,; Data Abstraction

In this section we present what means performing an ad hoc CSPz data abstrac-
tion, in terms of the theory of abstract interpretation.

Let P be a CSPz specification and Interface be its set of channel names.
Abstract a CSPz specification P means to find an abstract interpretation for
the data domains of channels and state of P, that is, define new domains and
new operations for P. Thus, let D be the data domains of state variables and M.
the data domain of channel ¢ (¢ € Interface) to be abstracted. By convention,
messages are split into input (M ™) and output (M2%) messages. Recall from
Section 2.2 that com_ operations are transformed into functions with signature.

{com_c):Dx M™ — P(D x Mfut)

We build abstract com_ functions in terms of abstract data domains and
abstract versions of primitive operations. Thus, let D4 and M, 54 be abstract data
domains of variables and channels, and & and 7. be abstraction maps. Recall from
Definition 4 that h and r. are our left adjunctions while the concretisations are
simply identity maps, that is, we are employing the concept of galois insertion.

h:D — DA

re: M, —> M CA

The communication abstractions (r.) are only defined over communicating
channels; events are not abstracted.

An abstract interpretation { - [} is defined over abstract domains. Thus, the
signature of the abstract versions become.

{ com_c [} : DA x Mi™A — P(DA x Mou:4)

It is worth noting that { com_c [} is compositional in the sense that, for
example, let s,s1,s2 be state variables of type sequence then a predicate s’ =

s1 7 sy (in a com_ function) is abstracted to s'4 = 51 " s4'.

To deal with abstract powerset of data domains we present the most natural
extension of the previous abstract functions. Therefore, the functions h and R,
are extended naturally to the powerset of D as follows

H:PDPDA=AD:PDe{d*:D*|decDAd*=h(d)}

R.:PM, > PMA=XAXM:PM,e{m”: M| meMAm” =r.(m)}

Recall from Section 4 that abstract domains and operations might be found
such that the new interpretation be optimal abstraction of the original system.
In the following we present what that means for CSP 3.

Definition 5 (Optimal abstraction) An abstract interpretation { - [} is op-
timal according to abstractions h and r. iff

Vd:D; m:Me{ com_c [}(h(d),r.(m)) = (H x R.({| com_c(d,m)))) &

By convention, the process P4 denotes the abstract version of the process P
via abstract interpretation { - [}. The abstract version is built by replacing the
channel types for abstract versions (images of r.) and all com_ functions (that
is, replacing inner operations, such as +, 7, <, etc.) for their abstract versions.

Definition 5 can be seen as a combination between Z data refinement and in-
terface abstraction. Due to the interface abstraction, a renaming must be used to
link this result with the theory of CSP process refinement. Therefore, a renaming
R based on the abstract communication functions is defined.

Definition 6 (Interface Abstraction) Let r, : M, — M2 be communication
abstractions for all channels (¢ € Interface). Then, the interface abstraction is

given by R = U .c mierface L (M mA) : r. e (c.m, c.m”)} O

The following lemma relates the original and abstract versions of a CSPz
process. It is a corrected extension® of a theorem proposed by Wehrheim [13,14].

Lemma 1 Let P be a partially data independent CSPy specification and P4 its
abstract version defined by optimal abstract interpretation { - [} with interface
abstraction given by the renaming R. Then P[R] =rp P*.

It is worth noting that, in general, Lemma 1 concern only renamed versions of
the CSPz original processes. Thus, only those properties preserved via renam-
ing might be checked. Wehrheim [13,14] still tries to avoid this limitation via
algebraic manipulation but the problem of infinity occurs again. This is exactly
why we are primarily concerned with deadlock and livelock analysis.

Example 1 (An Ad Hoc Data Abstraction) Consider the CSPz process
spec P
chan a,b: N
main = a7z — b7y — main
State = [c : N|
com_a = [AState; z? : N | ¢’ = z7]
com_b = [AState; y? :N|cxy? >0A ¢’ =47
end_spec
Now, let N4 = {pos, nonPos} be an abstract domain with abstraction maps

re=m=h={n:N|n>0en+—pos}U{n:N|n<0en+— nonPos}

The renaming and abstract operator versions are defined as

R = s B s, = 4 POS) 81=s2=pos

{(e%, e?):ra o (a.e9, a.e?)} 727 nonPos, otherwise

U . o . true, si = pos A sz = nonPos
{(e”,e?):rqa ®(b.e”,b.e?)} false, otherwise

Then, applying ro, 7y to the channels, h to state variable ¢ and constants, and using
the abstract operators, we get

3 Please refer to Mota [1] for the proof of Lemma 1

spec pA
chan a,b: N*
main = a?z — b7y — main

State® = [c: N4]
com_a® = [AState?; z7: N4 | ¢ = 27)
com_b* = [AState?; y? : N4 | cky?SnonPos A ¢ = y7]

end_spec &

From Lemma 1 we have P4 =zp P[R]. Note that the operator > is optimal
due to the predicate 2 > 0 be more restrict than 2 > y. By using the latter, N4
would be refined to {pos, zero, neg} to achieve optimality (See [25] for details).

5.1 Guidelines for CSP; Data Abstraction

This section introduces the guidelines for CSPz; data abstraction. Recall from
Section 2.2 that the normal form of a CSPy specification has a very simple
structure for the Z part. This structure is exactly what eases the search for a
data abstraction as described in the following examples.

Initially we present an example taken from Wehrheim’s work [13,14], where
the data abstraction was proposed by the user. We demonstrate that following
our informal strategy we are able to calculate such a data abstraction.

Example 2 (Infinite Clock) Let Pcgiock be an infinite CSPz process given by
spec Pciock

chan tick, tack

main = Ue : {tick, tack} o ¢ — main

State = [n: N| Init = [State’ | n' = 0]
com_tick = [AState | com_tack = [AState |
nmod2=0An"=n+1] nmod2=1An"=n+1]
end_spec

Set the abstraction data domain to be equal to the concrete one. Set abstraction function
h to be the identity map. Recall from Section 5 that the abstractions riyck and Tiack
are not defined since there is no communication. Therefore we already know that we
do not need a renaming (interface abstraction). Our first step is very simple: ezpand
(symbolically) the Z part* until the set of enabled preconditions in the current state has
already occurred in an earlier state. This step yields the LTS of Figure 1. Note that the
precondition precom_tick, n mod 2 =0 (n is even) is valid in n =0 and n = 2. At
this point we perform our second step: try to prove that this repetition is permanent.
Let conj be a conjunction of preconditions and comp be a sequential composition as
follows

conj = pre com_tick N\ — pre com_tack
comp = com_tick § com_tack

4 This is relatively simple due to the normal form presented in Section 2.2.

n=0 n=1 n=2

com N ek
Fig. 1. LTS of the Z part of Poiock

Then the general predicate to be proven is
V State; State’ | conj e comp = conj’

This predicate (we call it by stability predicate) can be proven by theorem provers like
Z-Eves [19] or ACL2 [18], for example.

Our third step checks the proof status of the stability predicate. If it is valid then
the abstraction function h is modified. Further, this validity assures an equivalence
relation—under the conjunction of preconditions (the property)—between the states be-
fore and after the sequential composition of com_ operations, including the operations
inside the schema composition. That is, as long as com_tick § com_tack is stable then
the next possible schema operation must be com_tick, and after this the next must be
com_tack, and so on. Thus, from the above predicate we build the equivalence relation

Eyek ={n:N|nmod2=0en— n+2}"
Bk ={n:N|nmod2=1enw~ n+2}

and, for each partition, we take one element to build the abstraction function. It is worth
noting that n mod 2 = 0 is the essence (simplification) of the property pre com_tick A
- pre com_tack as well as nmod2 = 1 is the essence of = pre com_tick N\ pre com_tack.

0,0 Bucr n
h(n) = { 1, 1 Brack n

That is, the abstraction function is induced by the equivalence relation built. After that,
we discard this ezecution path and try to explore another one, repeating the previous
steps. Since our ezample does not have any other paths to explore, we start the final step
which builds the abstract domains and abstract operators. For us, the abstract domain
is A ={0,1} (the image of h), and the abstract version of the successor operator is the
application of the abstraction (a = h) and concretisation (y = ia) functions as follows

{rz:Nez+1}=aoAz:Nez+1)oy=Az": Aeh(z? +1)

That is, the abstraction is built by replacing the concrete domains, applying the ab-
straction function h to the constants, and the concrete operators are abstracted by an
application of the abstraction function to the result. It is worth noting that our strategy
s done in such a way that we do not have to abstract the preconditions. The reason for
this is that our abstract domains are always the subsets of the original types determined
from the lattice of the preconditions (repetition of the set of preconditions enabled).
Note that this abstraction is optimal by construction. The absence of communication
abstractions (renaming) yields an equivalence under Z data refinement and process
refinement, that is, Poiock =5D Phoer (see Lemma 1). &

It is worth noting that the stability predicate originates from the lattice of the
preconditions of the Z part: all preconditions disabled lead to deadlock whereas
all preconditions enabled lead to full nondeterminism. This lattice is known
as the lattice of properties in the terminology of abstract interpretation [22]. If,
during the symbolic execution of the Z part, we achieve a point (trace) such that
after it the set of preconditions (a given property in the lattice of preconditions) is
always the same, the domain used until that point can be seen as a representative
for the future values because they all have the same property.

Example 3 (A Precise Loop) Let P be a CSPz process given as

spec P
chan a,b
main = ¢ — maindb — main
State = [c : N| Init = [State’ | ¢’ = 0]
com_a = [AState | com_b = [AState |
c<BACd =c+1] c>bAd =c+1]
end_spec

Start by setting the abstract domain as N and h to be the identity. After that, we
ezplore the LTS (of the Z part) in a lazy fashion, observing whether the set of valid
preconditions repeats. To ease the erplanation, observe Figure 2. This figure shows that
we need 6 expansions, and respectively 5 stability predicates with status false, in order
to get a stable path. Let conj be the property being repeated and comp the sequential
composition where this is happening

conj = pre com_b A — precom_a
comp = com_b

and the general predicate to be proven is
V State; State' | conj e comp = conj’

From this predicate we achieve the following unique equivalence relation, since the se-
quential composition is built by only one schema operation.

E={c:N|c>5ec—c+1}"

where ¢ > 5 is the reduced form for = precom_a A pre com_b. The abstraction function
s built in terms of the least elements of each partition. Then

h(c)={6’ 6 E c

¢, otherwise

which determines the abstraction A=0..6 and {n+1}=An":Aeh(n?+1). &

5.2 Algorithm

In this section we present the algorithm for CSPz data abstraction. It is de-
scribed in a functional style using pattern matching. The main part of the al-
gorithm concentrates on the function findAbstraction. The other functions are

com.?
=3 c=4 =5/ \c=6 =7

c=0 c=1 c=2

com ,acpm/%om ,aco(\'\ /acpﬁ\ /ago‘“ » cpm}’

Fig. 2. LTS of the Z part of P

defined modularly as well and called by findAbstraction (See [1] for further de-
tails).

From Examples 2 and 3, we can note that the current state, trace, and
property must be known. Recall from Section 2 that we can represent all this
information using channel names. That is, via channel names we can build a
(symbolic) trace (a sequence of channel names), the current state (a sequential
schema composition where the schemas are built by prefixing the keyword com_
in front of the channel names) and a property (as a set of channels). For example,
suppose a CSPz process with interface {a, b, ¢} (without values for ease). Let
{(a,b, b, c) be a trace of this process. The corresponding state is given by

Init § com_a § com_b §com_b § com_c
and, finally, a property could be characterised by the set {a, b}, which means
precom_a A precom_b A — precom_c

that is, if a channel does not belong to the property set, then we take the negation
of the precondition of its corresponding com_ schema.
We introduce some short names, frequently used by the functions.

PCh == P ChanName Label == ChanName
AcceptanceSet == PCh Property == PCh

As traces are sequences of events and the next alternatives as well as the
current property can vary with the trace, we define the following structure.

Path == seq(AcceptanceSet x Label x Property)

Our first function is findAbstraction; the kernel of our guided data abstraction.

The base case corresponds to the empty structure; that is, no further progress
is possible, return the identity map, according to the data domains of the Z
part (assume D as the type related to the schema State). This identity will be
overridden recursively by the abstractions found.

When the Path structure is not empty, the Z part is expanded, according
to the elements in accScyr-- The first branch corresponds to aceScyrr = @. If
this is the case, then the current tuple of the Path structure is discarded and a
previous one takes place, recursively (findAbstraction t).

If the current acceptance set is not empty, the function findAbstraction tries
a next transition, based on the event chosen to be engaged (ltnest € accScyrr).
A next transition can assume two differing forms:

1. tnea:t:

an abstraction can be performed or the next acceptance set is empty;

2. tpurther: NO abstraction can be performed.

If accSnpest # @ is verified, then we check if the property repeats®. If it repeats,
then it calls checkStability. If an abstraction is possible, we calculate a new
Path structure—t,.,,—by calling newExploration. Otherwise, a further expansion
occurs (findAbstraction s her)-

if

findAbstraction :: Path — (D — D*)
findAbstraction () = ip

findAbstraction ((accScurr, ltcurr, Propcurr)) 7 t=

else
let

aCCcScurr = @ then findAbstraction ¢

ltnest € GCCScu'r'r

tnezt = ((accscurr \ {ltnemt}, ltnezt, propcu’r'r)) ~ t
accSnez: =validOpers t,c.: Interface

tfu'rther = ((accsne:ct, T, accsnezt)) -~ tnest

if accSpest # & then
if 3s:ran fnest ® M3(8) = GCCSnest then /* Property repeats */
let
user =checkStability tpezt accSnest
tnew =newExploration thezt acCSnext
[)
case user of
optimal : findAbstraction tnew @ optimalAbs tpez: accSneat
none : findAbstraction tfuriher
else findAbstraction tfurther
else findAbstraction t,eqt

Recall from Section 2 that the Z part constrains the CSP part through the
preconditions. That is, for a channel ¢, if the precondition of com_c is valid,
then c is ready to engage with the CSP part. Otherwise, ¢ is refused in the Z

part and

consequently in the CSP part too, because they cannot synchronise.

The function validOpers has this purpose. It takes a path and an acceptance set
as input and returns the set of channels (subset of the interface) which has the
precondition valid for the current state (built using buildComp).

validOpers :: Path — AcceptanceSet — AcceptanceSet

validOpers t & = @
validOpers ¢ accScurr =
let

e € accScurr

L]
(if [(buildComp t @) = (precom_e)']” = [false]” then &
else {e}) U (validOpers t accScurr \ {€})

® Note that the predicate 3 s; ran tpeq: ® m3(s) = accSnes: uses the function 3. The
function 7 is simply a projection function, that is, w3(a, b, ¢c) = c.

The term [p]” means the semantic interpretation of the predicate p. Hence,
generally, the clause [(buildCompt@) = (precom_e)’]” needs some theorem
proving support. But when all variables have an associated value, it is possible to
get the same result by direct application of the current state to the preconditions.
Recall from Section 2 that, for a given trace, we have a corresponding Z schema
composition. For example, suppose that the trace (a, b, ¢) has occurred, then
the state of the system is given by Init § com_a § com_b § com_c. The function
buildComp, presented in what follows, has this purpose.

buildComp :: Path — Property — SchemaExpr
buildComp () prop = Init
buildComp ((accScurr, €, Propcurr)) ~t prop =
if prop = propcu.~ then com_e else (buildComp ¢ prop) §com_e

Recall from Section 5.1 that we define a property to be a conjunction of precon-
ditions. The functions validGuards and invalidGuards, together, build properties.
The function newExploration searches for an unexplored trace. It takes a path
structure and a property as input. Associated to the Path structure only, we
have two possibilities: Either it is empty and we return an empty sequence, or
it is not empty and the resulting Path structure depends on the given property.
The first two branches deal with the current property being equal to the given
property. That is, we have found the element of the Path structure which is
keeping the information concerning the previous repeated property. Here, two
cases are checked: either the current tuple must be discarded (altscyrr = (}), or
this tuple still has a possible alternative to be considered (altscyr # ()). The
last point simply discards the current tuple and considers the rest recursively.

newExploration :: Path — Property — Path
newExploration () prop = ()
newExploration {(accScurr, €, propeurr)) "t prop =
if prop = propcurr A aCCScurr = @ then t
else
if prop = propeurr A aCCScurr # @ then ((accScurr, €, Propeurr)) ~ t
else newExploration ¢ prop

The function checkStability deserves special attention. Its purpose is to transfer
the undecidability problem, related to the check for stability, to the user, via
application of theorem proving. In this sense, we are integrating model checking
with theorem proving; a research direction stated by Pnueli [30]. This function
returns a user decision. Obviously, a user for us means some external interaction:
a human being, a theorem prover, etc. That is, we can have a predicate which
can be proven fully automatic by a theorem prover without a human being
intervention. Hence, our strategy can be fully automatic as long as the predicates
considered belong to a class of a decidable logic [23,27,18,28,5].

Therefore, before presenting the function checkStability, we introduce the
user response using a free-type definition. It can be optimal—the abstraction is
a total surjective function—or none—we must further expand this path.

USER ::= optimal — The abstraction is optimal
| none — We cannot abstract this trace

The function checkStability checks the validity of the predicate V State; State' |
conj e comp = conj', where conj captures the stable property (conjunction of
valid and invalid preconditions) and comp is a sequential schema composition.

checkStability :: Path — Property — USER
checkStability ¢ prop =
let
conj = validGuards prop A invalidGuards (Interface \ prop)
comp = buildComp ¢t prop
stable =V State; State' | conj e comp = conyj’
o if [stable]” = [true]” then optimal else none

The function validGuards yields the conjunction of the valid preconditions.

validGuards :: AcceptanceSet + ZPred
validGuards @ = true
validGuards aceScurr =
let e € accScurr ® precom_e A (validGuards accScurr \ {€})

Complementarily, the function invalidGuards generates the conjunction of the
invalid preconditions; those with a negation (=) in front of each precondition.

invalidGuards :: AcceptanceSet + ZPred
invalidGuards @ = true
invalidGuards accScurr =
let ¢ € accScurr ® - precom_e A (invalidGuards accScurr \ {€})

If the function checkStability results optimal, then we have to produce the ex-
pected data abstraction; that is, a (total and surjective) map between a small
(finite) set and an infinite one. For instance, consider Example 2. In this example,
the trace (tick®, tack?, tick?, tack®,...) is abstracted by (tick?, tack')* using

_ J 0,0 Etick, n
h(n) B { 17 1 Etack n

where

Eick :{nZN| andZ:Oonp—)n+2}*

Eiger ={n:N|nmod2=1en— n+2}*
Prior to present the function which generates abstraction, we consider some
auxiliary functions. First, buildTrace, identical to buildComp, except the response.

buildTrace :: Path — Property — seq ChanName
buildTrace () prop =)

buildTrace {(accScurr, €, propeurr)) ™t prop =
if prop = propcurr then (e) else (buildTrace t prop) ™ (e)

The function cShiftT makes a cyclic shift in a trace; it always shifts the elements
to the left. For instance, the call cShiftT (a, b, b, ¢) returns (b, ¢, a, b).

cShiftT :: seq ChanName — N — seq ChanName
cShiftT s 0 = s

cShiftT (e) " s n = (cShiftT s (n—1)) " (e)

Finally, we have buildSeqC; it returns a sequential schema composition from a
trace. Or, buildSeqC{a, b, b, ¢) returns com_a § com_b § com_b § com_c.

buildSeqC :: seq ChanName -+ SchemaFEzpr
buildSeqC (e) = com_e
buildSeqC {(e) ™ s = com_e § (buildSeqC s)

The function optimalAbs generates the abstraction; a mapping between one fixed
value, according to the equivalence relations of the periodic property, and their
infinite equivalents. Note that the least value refers to the first element of the
stable trace. The rest is obtained by sequential composition, since the future
sequential compositions repeat indefinitely. And, differently from the Examples 2
and 3, this function builds the abstraction using the Z notation.

optimalAbs :: Path — Property — (D — D%)
optimalAbs ¢ prop =
let
stable = buildTrace t prop
1 < j < #stable
EqRel(j) = {[buildSeqC(cShiftT stable (j —1))]°}
abs; € EqRel(j)
o
#stable

2=1

{s : EqRel(i) ® s — abs;}

It is worth noting that, unlike the Examples 2 and 3, optimalAbs builds the equiv-
alence relations (EqRel) implicitly. The difference is that while in the examples
we deal with values directly, in this definition we are working with bindings
(association between names and values) provided by the Z language [20].

In what follows, we present the proof of correctness for our algorithm. But
first, a previous result is given (See [1] for a detailed proof).

Lemma 2 (Overhidden Preserved Abstraction) Let P be a CSPz process, t and
t' be Path structures, and prop be a property of P. If the overhidden

findAbstraction t & optimalAbs t' prop
could be applied and terminates successfully then it yields optimal abstraction. &
Now, the main result of this section can take place.

Theorem 1 (Optimal Abstraction) Let P be a CSPz process. If the function find-
Abstraction, applied to the Z part of P, terminates then it yields optimal data abstrac-
tion.

Proof. The proof follows by induction on the size of the Path structure.

— Base case ({)): trivial.
— Induction case ({(accScurr, lbcurr, Propeurr)) ~ t): by case analysis where accScurr,
ltnest, tnest, tfurther, GCCSnect, aNA tnew are given as in the algorithm
1. accScurr = F: via induction hypothesis on findAbstraction t.
2. accScurr # D N accSnezt # D: it depends on the analysis of case 4.
3. accScurr # D N accSnest = D: in this case, the call findAbstraction tneq: occurs.
AS trest # (), the induction case is considered again. The unique open situation
is when the future calls belong to the present situation. Therefore, after m calls
we get accScurr = & which yields optimal data abstraction by 1.
4. accScurr £ D N 4CCSnect D A TS : Tan tnest ® T3(8) = aCCSnest - we have

findAbstraction tnew @ optimalAbs tpezt acCSnext

which, by hypothesis and Lemma 2, yields optimal data abstraction.

5. accScurr # D N acCSnect P A = Is: 1an tneat ® T3(8) = acCSneqt: as long
as the call findAbstraction tfuriher terminates, by hypothesis, then optimal data
abstraction is guaranteed by the previous situations. &

Currently, we have a Haskell prototype® for the algorithm. It was integrated
to the theorem prover Z-Eves [19]. The function checkStability generates the
predicates—to be proven by Z-Eves—and the user controls every step, guiding
the approach. Indeed, Examples 2 and 3 were built using the prototype. The Z
part is introduced via a functional characterisation of the com_ operations [2,3].
Further, when the postcondition of some com_ operation is nondeterministic
or is based on communication two approaches can used to compute the next
state: one is based on testing [28] and another on theorem proving [16]. We
have employed the testing approach on the WDT because it is less expensive
and its nondeterminism is simple. The WDT was submitted to the prototype
and we have confirmed our hypothesis stated in [2,3] which assumes that the
WDT only needs two clock elements in its CLK given type: one for enabling the
schema com_noTimeOut and another for com_timeOut. The WDT abstraction
is optimal with interface abstraction (Please refer to [1] for further details).
Acknowledgements. We would like to thank Ana Cavalcanti, David Deharb, David
Naumann, Jim Woodcock, and He Hifeng for comments on earlier drafts of this paper.
We also thank Ranko Lazi¢ and Heike Wehrheim for sending us drafts of their papers.

6 Conclusion

Our original goal was about model checking CSP 7 [2,3]. This effort has presented
another difficulty: how to model check infinite state systems since they emerge
naturally in CSP 7 specifications. The works of Lazié¢ [26] and Wehrheim [13,14]
has been adopted as a basis for this work due to their complementary contribu-
tions to our aim. However, both had some kind of limitation: Lazié’s work allows
only to check data independent refinements, whereas Wehrheim’s work leaves the
task of proposing abstract domains and operations (the most difficulty part of a
data abstraction) to the user. In this sense, we believe that the results reported
here contribute in the following way to the works: to our earlier work [2,3] by

6 It is located at http://www.cin.ufpe.br/acm/stable.hs

enabling model checking of infinite CSP z processes; to Lazié¢’s work by captur-
ing data dependencies in the Z part of a CSPz specification; and to Wehrheim’s
work by mechanising her non-guided data abstraction technique.

Another result was to find a flaw in some results of Wehrheim’s work, based
on Lazi¢’s work (See [1] for further details). It is related to the CSP part of a
CSP ; process; Wehrheim’s work does not discriminate what CSP elements the
CSP part can use. Thus, if equality tests are allowed the CSP part can have
stronger dependencies than those of the Z part. This was fixed on Lemma 1 by
considering the CSP part to be trivially data independent.

In the direction of mechanisation, our approach is similar to the works of
Stahl [16] and Shankar [29]. The main difference is that while they use boolean
abstraction (replace predicates and expressions for boolean variables), we use
subtype abstraction (replace types for subtypes and abstract operations for op-
erations closed under the subtypes); this choice is crucial to make our work
free from user intervention and can yield optimal abstraction, but it offers some
limitations if the state variables are strongly coupled; on the other hand, Stahl
and Shankar work with weakly coupled variables due to the boolean abstraction
strategy, however they need an initial user support and focus on safe abstrac-
tions. The normal form of a CSP z specification [2,3] has also played an important
role in this part of our work by allowing the Z part to be more easily analysed.
Both their approach and ours need theorem proving support and follow the re-
search direction of tool and theory integration [30]. Therefore, our work is also
an inexperienced research in the direction of data abstraction mechanisation.

For future research we intend to investigate compositional results for optimal
abstractions, analyse further properties beyond deadlock and livelock, classify
processes according to the predicates they use, and incorporate the abstraction
algorithm into our mechanised model checking strategy in order to handle infinite
CSPz processes with minimum user assistance.

References

1. A.Mota. Model checking CSPz: Techniques to Overcome State Explosion. PhD
thesis, Universidade Federal de Pernambuco, 2002.

2. A.Mota and A.Sampaio. Model-Checking CSP-Z. In Proceedings of the European
Joint Conference on Theory and Practice of Software, volume 1382 of LNCS, pages
205—220. Springer-Verlag, 1998.

3. A.Mota and A.Sampaio. Model-Checking CSP-Z: Strategy, Tool Support and In-
dustrial Application. Science of Computer Programming, 40:59-96, 2001.

4. A-W.Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

5. B.Boigelot, S.Rassart, and P.Wolper. On the Expressiveness of Real and Integer

Arithmetic Automata (Extended Abstract). LNCS, 1443:01-52, 1999.

C.A.R.Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

C.Fischer. Combining CSP and Z. Technical report, Univ. Oldenburg, 1996.

8. C.Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik Universitdt Oldenburg, 2000.

9. C.Loiseaux, S.Graf, J.Sifakis, A.Bouajjani, and S.Bensalem. Property Preserving
Abstractions for the Verification of Concurrent Systems. In Formal Methods in
System Design, volume 6, pages 11-44. Kluwer Academic Publishers, Boston, 1995.

N

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

E.M.Clarke, O.Grumberg, and D.A.Peled. Model Checking. The MIT Press, 1999.
J.A.C.F.Neri et al. SACI-1: A cost-effective microssatellite bus for multiple mission
payloads. Technical report, Instituto Nacional de Pesquisas Espaciais - INPE, 1995.
M.Goldsmith et al. FDR: User Manual and Tutorial, version 2.77. Formal Systems
(Europe) Ltd, August 2001.

H.Wehrheim. Data Abstraction for CSP-OZ. In J.Woodcock and J.Wing, editors,
FM’99 World Congress on Formal Methods. LNCS 1709, Springer, 1999.
H.Wehrheim. Data Abstraction Techniques in the Validation of CSP-OZ Sp. In
Formal Aspects of Computing, volume 12, pages 147-164, 2000.

K.Laster and O.Grumberg. Modular model checking of software. In Tools and
Algorithms for the Construction and Analysis of Systems, number 1382 in LNCS,
pages 20-35, 1998.

K.Stahl, K.Baukus, Y.Lakhneich, and M.Steffen. Divide, Abstract, and Model
Check. SPIN, pages 57-76, 1999.

M.Huhn, P.Niebert, and F.Wallner. Verification based on local states. In Tools and
Algorithms for the Construction and Analysis of Systems, number 1382 in LNCS,
pages 36-51, 1998.

M.Kaufmann and J.Moore. An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. IEEE Trans. on Software Engineering, 23(4):203-213,
1997.

M.Saaltink. The Z-Eves System. In ZUM’97: The Z Formal Specification Notation.
LNCS 1212, Springer, 1997.

M.Spivey. The Z Notation: A Reference Manual. Prentice-Hall International, 2nd
edition, 1992.

P.Cousot and R.Cousot. Systematic design of program analysis frameworks. In
Conference Record of the 6th ACM Symp. on Principles of Programming Languages
(POPL’79), pages 269-282. ACM Press, New York, 1979.

P.Cousot and R.Cousot. Abstract interpretation frameworks. J. Logic. and Comp.,
2(4):511-547, 1992.

P.Wolper. Expressing interesting properties of programs in propositional tempo-
ral logic (extended abstract). In Proc. 18th ACM Symposium on Principles of
Programming Languages, pages 184-193, 1986.

R.Cleaveland and J.Riely. Testing-based abstractions for value-passing systems. In
J. Parrow B. Jonsson, editor, CONCUR’94, volume 836, pages 417-432. Springer-
Verlag Berlin, 1994.

R.Giacobazzi and F.Ranzato. Making abstract interpretations complete. Journal
of the ACM, 47(2):361-416, 2000.

R.Lazi¢. A semantic study of data-independence with applications to the mechanical
verification of concurrent systems. PhD thesis, Oxford University, 1999.
S.A.Cook and D.G.Mitchell. Satisfiability Problem: Theory and Applications. In
Discrete Mathematics and Theoretical Computer Science. AMS, 1997.

S.Liu. Verifying Consistency and Validity of Formal Specifications by Testing. In
FM’99 - Formal Methods, pages 896-914. LNCS 1708, 1999.

S.Owre, S.Rajan, J.M.Rushby, N.Shankar, and M.K.Srivas. PVS: Combining Spec-
ification, Proof Checking, and Model Checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV’96, volume 1102 of LNCS,
pages 411-414, New Brunswick, NJ, July/August 1996. Springer-Verlag.
Y.Kesten, A.Klein, A.Pnueli, and G.Raanan. A Perfecto Verification: Combin-
ing Model Checking with Deductive Analysis to Verify Real-Life Software. In
J.M.Wing, J.Woodcock and J.Davies, editor, FM’99-Formal Methods, volume 1 of
LNCS 1708, pages 173-194. Springer-Verlag, 1999.

