
Using OpenGL in Visual C++
by Alan Oursland

Copyright © 2000 Interface Technologies, Inc. All Rights Reserved.

Series Overview

With the release of NT 3.5, OpenGL became a part of the Windows operating system. Now with support
for OpenGL in Windows 95 and Windows 98 and low priced graphics accelerators becoming readily
available even on low end machines, the prospects of using OpenGL on any Windows machine is
becoming more attractive every day. If you are interested in creating quality 2-D or 3-D graphics in
Windows, or if you already know another variant of GL, keep reading. This tutorial will show you how to
use OpenGL and some of its basic commands.

GL is a programming interface designed by Silicon Graphics. OpenGL is a generic version of the interface
made available to a wide variety of outside vendors in the interest of standardization of the language.
OpenGL allows you to create high quality 3-D images without dealing with the heavy math usually
associated with computer graphics. OpenGL handles graphics primitives, 2-D and 3-D transformations,
lighting, shading, Z-buffering, hidden surface removal, and a host of other features. I'll use some of these
topics in the sample programs following; others I'll leave to you to explore yourself. If you want to learn
more about OpenGL you can search the MSDN website for the keyword "OpenGL".

Here is the list of topics covered in this series:
1. Writing an OpenGL Program
2. Simple 2-D Graphics
3. Transformations and the Matrix Stack
4. Simple 3-D Graphics

Writing an OpenGL Program

The first program demonstrated here will show you the minimum requirements for setting up a Windows
program to display OpenGL graphics. As GDI needs a Device Context (DC) to draw images, OpenGL
requires a Rendering Context (RC). Unlike GDI, in which each GDI command requires that a DC is
passed into it, OpenGL uses the concept of a current RC. Once a rendering context has been made
current in a thread, all OpenGL calls in that thread will use the same current rendering context. While
multiple rendering contexts may be used to draw in a single window, only one rendering context may be
current at any time in a single thread.

The goal of this sample is to create and make current an OpenGL rendering context. There are three
steps to creating and making current a rendering context:

1. Set the window's pixel format.
2. Create the rendering context.
3. Make the rendering context current.

Take the following steps to create the project:
1. Create a new Project Workspace of type "MFC AppWizard (exe)". Select the directory you where

you want the project directory to be created, and type "GLSample1" as the project name. Click
"Create" to enter the AppWizard. Following is a list of the steps in the AppWizard and the
parameters you should enter in each of them. Any parameters not listed are optional.

2. Single Document Interface
3. Database support: None
4. Compond Document Support: None

5. Docking Toolbar: OFF (optional)
Initial Status Bar: OFF (optional)
Printing an Print Preview: OFF (Printing OpenGL images is accomplished by creating an RC
using a printer DC. If you would like to experiment with this later, without rebuilding everything, go
ahead and turn this option on).
Context-Sensitive Help: OFF (optional)
3D Controls: ON (optional)

6. Use the MFC Standard style of project
Generate Source File Comments: Yes
Use the MFC library as a shared DLL.

7. Keep everything at the default.
Press Finish

Check the "New Project Information" dialog to make sure everything is as it should be and press OK. The
new project will be created in the subdirectory "GLSample1".

First we will include all necessary OpenGL files and libraries in this project. Select "Project-Settings" from
the menu. Click on the "Link" tab (or press Ctrl-Tab to move there). Select the "General" category (it
should already be selected by default), and enter the following into the Object/Library Modules edit box:
"opengl32.lib glu32.lib glaux.lib". Press OK. Now open the file "stdafx.h". Insert the following lines into the
file:

#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows
// headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <gl\gl.h>
#include <gl\glu.h>
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // MFC support for Windows 95 Common Controls

#endif // _AFX_NO_AFXCMN_SUPPORT

OpenGL requires the window to have styles WS_CLIPCHILDREN and WS_CLIPSIBLINGS set. Edit
OnPreCreate so that it looks like this:

BOOL CGLSample1View::PreCreateWindow(CREATESTRUCT& cs)
{

cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS);

return CView::PreCreateWindow(cs);
}

The first set to creating a rendering context is to define the window's pixel format. The pixel format
describes how the graphics that the window displays are represented in memory. Parameters controlled
by the pixel format include color depth, buffering method, and supported drawing interfaces. We will look
at some of these below. First create a new protected member function in the CGLSample1View class
called "BOOL SetWindowPixelFormat(HDC hDC)" (my preferred method of doing this is right clicking on
the class name in the Project Workspace and selecting "Add Function..." from the resulting pop-up menu.
You may also do it manually if you wish) and edit the function so that it looks like this:

BOOL CGLSample1View::SetWindowPixelFormat(HDC hDC)
{

PIXELFORMATDESCRIPTOR pixelDesc;

pixelDesc.nSize = sizeof(PIXELFORMATDESCRIPTOR);
pixelDesc.nVersion = 1;

pixelDesc.dwFlags = PFD_DRAW_TO_WINDOW |
PFD_DRAW_TO_BITMAP |
PFD_SUPPORT_OPENGL |
PFD_SUPPORT_GDI |
PFD_STEREO_DONTCARE;

pixelDesc.iPixelType = PFD_TYPE_RGBA;
pixelDesc.cColorBits = 32;
pixelDesc.cRedBits = 8;
pixelDesc.cRedShift = 16;
pixelDesc.cGreenBits = 8;
pixelDesc.cGreenShift = 8;
pixelDesc.cBlueBits = 8;
pixelDesc.cBlueShift = 0;
pixelDesc.cAlphaBits = 0;
pixelDesc.cAlphaShift = 0;
pixelDesc.cAccumBits = 64;
pixelDesc.cAccumRedBits = 16;
pixelDesc.cAccumGreenBits = 16;
pixelDesc.cAccumBlueBits = 16;
pixelDesc.cAccumAlphaBits = 0;
pixelDesc.cDepthBits = 32;
pixelDesc.cStencilBits = 8;
pixelDesc.cAuxBuffers = 0;
pixelDesc.iLayerType = PFD_MAIN_PLANE;
pixelDesc.bReserved = 0;
pixelDesc.dwLayerMask = 0;
pixelDesc.dwVisibleMask = 0;
pixelDesc.dwDamageMask = 0;

m_GLPixelIndex = ChoosePixelFormat(hDC, &pixelDesc);
if (m_GLPixelIndex==0) // Let's choose a default index.
{

m_GLPixelIndex = 1;
if (DescribePixelFormat(hDC, m_GLPixelIndex,

sizeof(PIXELFORMATDESCRIPTOR), &pixelDesc)==0)
{

return FALSE;
}

}

if (SetPixelFormat(hDC, m_GLPixelIndex, &pixelDesc)==FALSE)
{

return FALSE;
}

return TRUE;

}

Now add the following member variable to the CGLSample1View class (again, I like to use the right
mouse button on the class name and select "Add Variable..."):

int m_GLPixelIndex; // protected

Finally, in the ClassWizard, add the function OnCreate in response to a WM_CREATE message and edit
it to look like this:

int CGLSample1View::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

HWND hWnd = GetSafeHwnd();
HDC hDC = ::GetDC(hWnd);

if (SetWindowPixelFormat(hDC)==FALSE)
return 0;

return 0;
}

Compile the program and fix any syntax errors. You may run the program if you wish but at the moment, it
will look like a generic MFC shell. Try playing with the pixel format descriptor. You may want to try
passing other indices into DescribePixelFormat to see what pixel formats are available. I'll spend some
time now explaining what the code does and precautions you should take in the future.

PIXELFORMATDESCRIPTOR contains all of the information defining a pixel format. I'll explain some of
the important points here, but for a complete description look in the VC++ online help.

• dwFlags Defines the devices and interfaces with which the pixel format is compatible. Not all of
these flags are implemented in the generic release of OpenGL. Refer to the documentation for
more information. dwFlags can accept the following flags:

PFD_DRAW_TO_WINDOW -- Enables drawing to a window or device surface.
PFD_DRAW_TO_BITMAP -- Enables drawing to a bitmap in memory.
PFD_SUPPORT_GDI -- Enables GDI calls. Note: This option is not valid if PFD_DOUBLEBUFFER
is specified.
PFD_SUPPORT_OPENGL -- Enables OpenGL calls.
PFD_GENERIC_FORMAT -- Specifies if this pixel format is supported by the Windows GDI
library or by a vendor hardware device driver.
PFD_NEED_PALETTE -- Tells if the buffer requires a palette. This tutorial assumes color will be
done with 24 or 32 bits and will not cover palettes.
PFD_NEED_SYSTEM_PALETTE -- This flag indicates if the buffer requires the reserved system
palette as part of its palette. As stated above, this tutorial will not cover palettes.
PFD_DOUBLEBUFFER -- Indicates that double-buffering is used. Note that GDI cannot be used
with windows that are double buffered.
PFD_STEREO -- Indicates that left and right buffers are maintained for stereo images.

• iPixelType Defines the method used to display colors. PFD_TYPE_RGBA means each set of
bits represents a Red, Green, and Blue value, while PFD_TYPE_COLORINDEX means that each
set of bits is an index into a color lookup table. All of the examples in this program will use
PFD_TYPE_RGBA.

• cColorBits Defines the number of bits used to define a color. For RGBA it is the number of bits
used to represent the red, green, and blue components of the color (but not the alpha). For
indexed colors, it is the number of colors in the table.

• cRedBits, cGreenBits, cBlueBits, cAlphaBits The number of bits used to represent
the respective components.

• cRedShift, cGreenShift, cBlueShift, cAlphaShift The number of bits each
componet is offset from the beginning of the color.

Once we initialize our structure, we try to find the system pixel format that is closest to the one we want.
We do this by calling:

m_hGLPixelIndex = ChoosePixelFormat(hDC, &pixelDesc);

ChoosePixelFormat takes an hDC and a PIXELFORMATDESCRIPTOR*, and returns an index used to
reference that pixel format, or 0 if the function fails. If the function fails, we just set the index to 1 and get
the pixel format description using DescribePixelFormat. There are a limited number of pixel formats, and
the system defines what their properties are. If you ask for pixel format properties that are not supported,
ChoosePixelFormat will return an integer to the format that is closest to the one you requested. Once we
have a valid pixel format index and the corresponding description we can call SetPixelFormat. A window's
pixel format may be set only once.

Now that the pixel format is set, all we have to do is create the rendering context and make it current.
Start by adding a new protected member function to the CGLSample1View class called "BOOL
CreateViewGLContext(HDC hDC)" and edit it so that it looks like this:

BOOL CGLSample1View::CreateViewGLContext(HDC hDC)
{

m_hGLContext = wglCreateContext(hDC);
if (m_hGLContext == NULL)
{

return FALSE;
}

if (wglMakeCurrent(hDC, m_hGLContext)==FALSE)
{

return FALSE;
}

return TRUE;
}

Add the following member variable to the CGLSample1View class:

HGLRC m_hGLContext; // protected

Edit OnCreate to call the new function:

int CGLSample1View::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

HWND hWnd = GetSafeHwnd();
HDC hDC = ::GetDC(hWnd);

if (SetWindowPixelFormat(hDC)==FALSE)
return 0;

if (CreateViewGLContext(hDC)==FALSE)
return 0;

return 0;
}

Add the function OnDestroy in response to a WM_DESTROY message and edit it to look like this:

void CGLSample1View::OnDestroy()
{

if(wglGetCurrentContext()!=NULL)
{

// make the rendering context not current
wglMakeCurrent(NULL, NULL) ;

}

if (m_hGLContext!=NULL)
{

wglDeleteContext(m_hGLContext);
m_hGLContext = NULL;

}

// Now the associated DC can be released.
CView::OnDestroy();

}

And lastly, edit the CGLSample1View class constructor to look like this:

CGLSample1View::CGLSample1View()
{

m_hGLContext = NULL;
m_GLPixelIndex = 0;

}

Once again compile the program and fix any syntax errors. When you run the program it will still look like
a generic MFC program, but it is now enabled for OpenGL drawing. You may have noticed that we
created one rendering context at the beginning of the program and used it the entire time. This goes
against most GDI programs where DCs are created only when drawing is required and freed immediately
afterwards. This is a valid option with RCs as well, however creating an RC can be quite processor
intensive. Because we are trying to achieve high performance graphics, the code only creates the RC
once and uses it the entire time.

CreateViewGLContext creates and makes current a rendering context. wglCreateContext returns a
handle to an RC. The pixel format for the device associated with the DC you pass into this function must
be set before you call CreateViewGLContext. wglMakeCurrent sets the RC as the current context. The
DC passed into this function does not need to be the same DC you used to create the context, but it must
have the same device and pixel format. If another rendering context is current when you call
wglMakeCurrent, the function simply flushes the old RC and replaces it with the new one. You may call
wglMakeCurrent(NULL, NULL) to make no rendering context current.

Because OnDestroy releases the window's RC, we need to delete the rendering context there. But before
we delete the RC, we need to make sure it is not current. We use wglGetCurrentContext to see if there is
a current rendering context. If there is, we remove it by calling wglMakeCurrent(NULL, NULL). Next we
call wglDeleteContext to delete out RC. It is now safe to allow the view class to release the DC. Note that
since the RC was current to our thread we could have just called wglDeleteContext without first making it
not current. Don't get into the habit of doing this. If you ever start using multi-threaded applications that
laziness is going to bite you.

Congratulations on your first OpenGL program, even if it doesn't do much! If you already know OpenGL
on another platform then read the tips below and go write the next killer graphics applications. If you don't
know OpenGL keep reading. I'll give you a tour of some of its functions.

OpenGL Tips:
1. Set the viewport and matrix modes in response to a WM_SIZE message.
2. Do all of your drawing in response to a WM_PAINT message.
3. Creating a rendering context can take up a lot of CPU time. Only create it once and use it for the

life of your program.
4. Try encapsulating your drawing commands in the document class. That way you can use the

same document in different views.

Simple 2-D Graphics

The sample program presented in this section will show you how to create the viewport, set up matrix
modes, and draw some simple 2-D images.

Start by creating a new project named GLSample2 and setting it up for OpenGL like you did with the first
program, or use the first program as your starting point.

Use ClassWizard to add an OnSize function to CGLSample2View in response to a WM_SIZE message.
Edit OnSize to look like this:

void CGLSample2View::OnSize(UINT nType, int cx, int cy)
{

CView::OnSize(nType, cx, cy);

GLsizei width, height;
GLdouble aspect;

width = cx;
height = cy;

if (cy==0)
aspect = (GLdouble)width;

else
aspect = (GLdouble)width/(GLdouble)height;

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 500.0*aspect, 0.0, 500.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

Now use ClassWizard to add an OnPaint function to CGLSample2View in response to a WM_PAINT
message. Edit OnPaint to look like this:

void CGLSample2View::OnPaint()
{

CPaintDC dc(this); // device context for painting (added by
// ClassWizard)

glLoadIdentity();

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_POLYGON);
glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
glVertex2f(100.0f, 50.0f);
glColor4f(0.0f, 1.0f, 0.0f, 1.0f);
glVertex2f(450.0f, 400.0f);
glColor4f(0.0f, 0.0f, 1.0f, 1.0f);
glVertex2f(450.0f, 50.0f);

glEnd();

glFlush();
}

Compile and run the program. You should see a black window with a large multicolored triangle in it. Try
resizing the window and watch the triangle resize along with it. OnSize defines the viewport and the
viewing coordinates. The viewport is the area of the window that the OpenGL commands can draw into. It
is set in this program by calling

glViewport(0, 0, width, height);

This sets the lower left hand corner of the viewport to the lower left hand corner of the window and sets
the height and width to that of the window. The parameters passed into the function are in screen
coordinates. Try changing the glViewport command in OnSize to the following. Then compile and run the
program to see what happens.

glViewport(width/4, height/4, width/2, height/2);

Make the window taller than it is wide. Because the viewport is smaller than the screen, part of the
triangle will be clipped. Change the code back to the way it was originally.

The next command called in OnSize is glMatrixMode(GL_PROJECTION). OpenGL maintains three
internal matrices to control various transformations. These matrices are name Projection, ModelView, and
Texture. The Projection matrix handles transformations from the eye coordinates to clip coordinates. The
ModelView matrix converts object coordinates to eye coordinates. The Texture matrix converts textures
from the coordinates they are defined in to the coordinates needed to map them onto a surface.
glMatrixMode sets which of these matrices will be affected by matrix operations. Don't worry if you don't
understand these right now, I'll explain them as needed.

We call glLoadIdentity to initialize the project matrix. gluOrtho2D sets the project matrix to display a two
dimension orthogonal image. The numbers passed into this function define the space within which you
may draw. This space is known as the world coordinates. We now initialize the ModelView matrix and
leave OpenGL in this matrix mode. Matrix operations (which include transformations) carried out while in
the ModelView mode will affect the location and shape of any object drawn. For example if we called
"glRotated(30, 0, 0, 1)" just before our glBegin call in OnPaint, our triangle would be rotated 30 degrees
around the lower left corner of the screen. We will look at this more a little later. (For those of you who
have used IRIS GL, we have just set up the equivalent of calling mmode(MSINGLE). There is an entire
section in the VC++ online documentation detailing the differences between IRIS GL and OpenGL for
those who are interested.)

OnPaint is the beast that actually draws our triangle. First we clear our ModelView matrix. This isn't really
necessary since we aren't doing any transformations, but I added it just in case we decide to do any. Next
we clear the color buffer (which in this case happens to be the screen, but could be a print buffer or
bitmap depending on the type of device context you used to create rendering context). The next call is
glBegin(GL_POLYGON). This function changes the state of the rendering context. From an object
oriented perspective, it creates an internal object of type GL_POLYGON, which is defined by all

commands issued until glEnd() is called. We make three glColor4f and three glVertex2f calls to define our
triangle.

Let me take a moment at this point to discuss the naming conventions OpenGL uses. All
OpenGLcommands use the prefix "gl". There are also a number of "glu" commands which are considered
"GL Utilities". These "glu" commands are simply combinations of "gl" commands that perform commonly
useful tasks - like setting up 2-D orthographic matrices. Most "gl" commands have a number of variants
that each take different data types. The glVertex2f command, for instance, defines a vertex using two
floats. There are other variants ranging from four doubles to an array of two shorts. Read the list of
glVertex calls in the online documentation and you will feel like you are counting off an eternal list.
glVertex2d, glVertex2f, glVertex3i, glVertex3s, glVertex2sv, glVertex3dv...

The definition for our triangle uses the following technique. We call glColor4f(1.0f, 0.0f, 0.0f, 1.0f). This
sets the current color to Red by specifying the Red component to 1 and the Green and Blue components
to 0. We then define a vertex at point (100,50) in our world coordinates by calling glVertex2f(100.0f,
50.0f). We now have a red vertex at point (100,50). We repeat this process, setting the color to Green
and Blue respectively, for the next two vertices. The call to glEnd ends the definition of this polygon. At
this point there should still be nothing on the screen. OpenGL will save the list of commands in a buffer
until you call glFlush. glFlush causes these commands to be executes. OpenGL automatically
interpolates the colors between each of the points to give you the multihued triangle you see on the
screen.

Play with some of the different shapes you can create with glBegin. There is a list of modes and valid
commands to create shapes below. In the next version of this program, we will move our drawing routines
into the document class. I will also show you how to use the basic transforms and the importance of
pushing and popping matrices onto and off of the matrix stack.
glBegin(GLenum mode) parameters:

GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES,
GL_QUADS, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUAD_STRIP,
GL_POLYGON

Functions that are valid between glBegin and glEnd:

glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord,
glEvalPoint, glMaterial, and glEdgeFlag

Transformations and the Matrix Stack

The sample program presented in this section will show you how to use display lists, basic transforms, the
matrix stack, and double buffering.

Once again, follow the above steps to get to a starting point for this third sample program (or continue to
modify the same program). In this program we will be creating a "robot arm" that you can control with your
mouse. This "arm" will actually be two rectangles where one rectangle rotates about a point on the other
rectangle. Begin by adding the public member function "void RenderScene(void)" to the CGLSample3Doc
class. Modify CGLSample3View::OnPaint and CGLSample3Doc:: RenderScene so that they look like
this:

void CGLSample3View::OnPaint()
{

CPaintDC dc(this); // device context for painting

CGLSample3Doc* pDoc = GetDocument();

pDoc->RenderScene();
}

void CGLSample3Doc::RenderScene(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glFlush();
}

At this time our program generates a black screen. We will do something about that in a minute, but first
we need to add some state variables to the CGLSample3Doc class. Add the following enumerated types
and variables to the document class. Then initialize them in the document constructor.

enum GLDisplayListNames
{

ArmPart=1
};

double m_transY;
double m_transX;
double m_angle2;
double m_angle1;

CGLSample3Doc::CGLSample3Doc()
{

m_transY=100;
m_transX=100;
m_angle2=15;
m_angle1=15;

}

• ArmPart - This is a identifier for the display list that we will be creating to draw the parts of the
arm.

• m_transY - This is the y offset of the arm from the world coordinate system origin
• m_transX - This is the x offset of the arm from the world coordinate system origin
• m_angle2 - This is the angle of the second part of the arm with respect to the first part.
• m_angle1 - This is the angle of the first part of the arm with respect to the world coordinate axis.

We will be using what is known as a display list to draw the parts of our arm. A display list is simply a list
of OpenGL commands that have been stored and named for future processing. Display lists are often
preprocessed, giving them a speed advantage over the same commands called out of a display list. Once
a display list is created, its commands may be executed by calling glCallList with the integer name of the
list. Edit CGLSample3Doc::OnNewDocument to look like this:

BOOL CGLSample3Doc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

glNewList(ArmPart);
glBegin(GL_POLYGON);

glVertex2f(-10.0f, 10.0f);
glVertex2f(-10.0f, -10.0f);
glVertex2f(100.0f, -10.0f);
glVertex2f(100.0f, 10.0f);

glEnd();
glEndList();

return TRUE;
}

Note: Microsoft has changed the OpenGL API since this was written. If you are using a newer version of
the API, you will need to make the following call to glNewList:

glNewList(ArmPart, GL_COMPILE);

GL_COMPILE tells OpenGL to just build the display list. Alternatively, you can pass
GL_COMPILE_AND_EXECUTE into glNewList. This will cause the commands to be executed as the
display list is being built!

Now edit CGLSample3Doc::RenderScene to look like this:

void CGLSample3Doc::RenderScene(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
glCallList(ArmPart);

glFlush();
}

If you were to run the program now, all you would see is a small red rectangle in the lower left hand
corner of the screen. Now add the following lines just before the call to glCallList:

glTranslated(m_transX, m_transY, 0);
glRotated(m_angle1, 0, 0, 1);

These two commands affect the ModelView matrix, causing our rectangle to rotate the number of degrees
stored in m_angle1 and translate by the distance defined by (m_transX, m_transY). Run the program now
to see the results. Notice that every time the program gets a WM_PAINT event the rectangle moves a
little bit more (you can trigger this by placing another window over the GLSample3 program and then
going back to GLSample3). The effect occurs because we keep changing the ModelView matrix each
time we call glRotate and glTranslate. Note that resizing the window resets the rectangle to its original
position (OnSize clears the matrix to an identity matrix, as you can see in the code) We need to leave the
matrix in the same state in which we found it. To do this we will use the matrix stack. Edit
CGLSample3Doc::RenderScene to look like the code below. Then compile and run the program again.

void CGLSample3Doc::RenderScene(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();
glTranslated(m_transX, m_transY, 0);
glRotated(m_angle1, 0, 0, 1);
glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
glCallList(ArmPart);

glPopMatrix();

glFlush();
}

glPushMatrix takes a copy of the current matrix and places it on a stack. When we call glPopMatrix, the
last matrix pushed is restored as the current matrix. Our glPushMatrix call preserves the initial identity
matrix, and glPopMatrix restores it after we dirtied up the matrix. We can use this technique to position
objects with respect to other objects. Once again, edit RenderScene to match the code below.

void CGLSample3Doc::RenderScene(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();
glTranslated(m_transX, m_transY, 0);
glRotated(m_angle1, 0, 0, 1);
glPushMatrix();

glTranslated(90, 0, 0);
glRotated(m_angle2, 0, 0, 1);
glColor4f(0.0f, 1.0f, 0.0f, 1.0f);
glCallList(ArmPart);

glPopMatrix();
glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
glCallList(ArmPart);

glPopMatrix();

glFlush();
}

When you run this you will see a red rectangle overlapping a green rectangle. The translate commands
actually move the object's vertex in the world coordinates. When the object is rotated, it still rotates
around its own vertex, thus allowing the green rectangle to rotate around the end of the red one. Follow
the steps below to add controls so that you can move these rectangles.

1. Add the following member variables to the view class:

CPoint m_RightDownPos; // Initialize to (0,0)
CPoint m_LeftDownPos; // Initialize to (0,0)
BOOL m_RightButtonDown; // Initialize to FALSE
BOOL m_LeftButtonDown; // Initialize to FALSE

2. Add member functions responding to WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_RBUTTONDOWN, and WM_RBUTTONUP. Edit them as shown below:

void CGLSample3View::OnLButtonUp(UINT nFlags, CPoint point)
{

m_LeftButtonDown = FALSE;
CView::OnLButtonUp(nFlags, point);

}

void CGLSample3View::OnLButtonDown(UINT nFlags, CPoint point)
{

m_LeftButtonDown = TRUE;
m_LeftDownPos = point;
CView::OnLButtonDown(nFlags, point);

}

void CGLSample3View::OnRButtonUp(UINT nFlags, CPoint point)
{

m_RightButtonDown = FALSE;
CView::OnRButtonUp(nFlags, point);

}

void CGLSample3View::OnRButtonDown(UINT nFlags, CPoint point)
{

m_RightButtonDown = TRUE;
m_RightDownPos = point;
CView::OnRButtonDown(nFlags, point);

}

3. Add a member function responding to WM_MOUSEMOVE and edit it as shown below.

void CGLSample3View::OnMouseMove(UINT nFlags, CPoint point)
{

if (m_RightButtonDown)
{

CGLSample3Doc* pDoc = GetDocument();
CSize rotate = m_RightDownPos - point;
m_RightDownPos = point;

pDoc->m_angle1 += rotate.cx/3;
pDoc->m_angle2 += rotate.cy/3;
InvalidateRect(NULL);

}

if (m_LeftButtonDown)
{

CGLSample3Doc* pDoc = GetDocument();
CSize translate = m_LeftDownPos - point;
m_LeftDownPos = point;
pDoc->m_transX -= translate.cx/3;
pDoc->m_transY += translate.cy/3;
InvalidateRect(NULL);

}

CView::OnMouseMove(nFlags, point);
}

Build and run the program. You may now drag with the left mouse button anywhere on the screen to
move the arm, and drag with the right button to rotate the parts of the arm. The above code uses the
Windows interface to change data. The OpenGL code then draws a scene based on that data. The only
problem with the program now is that annoying flicker from the full screen refreshes. We will add double
buffering to the program and then call it complete.

Double buffering is a very simple concept used in most high performance graphics programs. Instead of
drawing to one buffer that maps directly to the screen, two buffers are used. One buffer is always
displayed (known as the front buffer), while the other buffer is hidden (known as the back buffer). We do
all of our drawing to the back buffer and, when we are done, swap it with the front buffer. Because all of
the updates happen at once we don't get any flicker.

The only drawback to double buffering is that it is incompatible with GDI. GDI was not designed with
double buffering in mind. Because of this, GDI commands will not work in an OpenGL window with double
buffering enable. That being said, we first need to change all of the "InvalidateRect(NULL);" calls to
"InvalidateRect(NULL, FALSE);". This will solve most of our flicker problem (the rest of the flicker was

mainly to make a point). To enable double buffering for the pixel format, change the pixelDesc.dwFlags
definition in CGLSample3View::SetWindowPixelFormat to the following:

pixelDesc.dwFlags = PFD_DRAW_TO_WINDOW |
PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER |
PFD_STEREO_DONTCARE;

There are no checks when we set the pixel format to make sure that ours has double buffering. I will
leave this as an exercise for the reader.

First we need to tell OpenGL to draw only onto the back buffer. Add the following line to the end of
CGLSample3View::OnSize:

glDrawBuffer(GL_BACK);

Each time we draw a new scene we need to swap the buffer. Add the following line to the end of
CGLSample3View::OnPaint:

SwapBuffers(dc.m_ps.hdc);

When you compile and run the program now you should see absolutely no flicker. However, the program
will run noticeably slower. If you still see any flicker then ChoosePixelFormat is not returning a pixel
format with double buffering. Remember that ChoosePixelFormat returns an identifier for the pixel format
that it believes is closest to the one you want. Try forcing different indices when you call SetPixelFormat
until you find a format that supports double buffering.

Simple 3-D Graphics

The sample program presented in this section will show you how to use basic 3-D graphics. It will show
you how to set up a perspective view, define and object and transform that object in space. This section
assumes some knowledge of graphics. If you don't know what a word means, you can probably look it up
in most graphics books. The Foley and Van Dam book listed on this page will definitely have the
definitions.

Create an OpenGL window with double buffering enabled. Set up the view class OnSize and OnPaint
message handlers just as they are in the previous program. Add a RenderScene function to the
document class, but do not put any OpenGL commands into it yet.

First we need to change our viewing coordinate system. gluOrtho2D, the function we have been calling to
set up our projection matrix, actually creates a 3 dimensional view with the near clipping plane at z=-1
and the far clipping plane at 1. All of the "2-D" commands we have been calling have actually been 3-D
calls where the z coordinate was zero. Surprise! You've been doing 3-D programming all along. To view
our cube, we would like to use perspective projection. To set up a perspective projection we need to
change OnSize to the following:

void CGLSample4View::OnSize(UINT nType, int cx, int cy)
{

CView::OnSize(nType, cx, cy);

GLsizei width, height;
GLdouble aspect;

width = cx;

height = cy;

if (cy==0)
aspect = (GLdouble)width;

else
aspect = (GLdouble)width/(GLdouble)height;

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45, aspect, 1, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glDrawBuffer(GL_BACK);
}

For those who didn't heed my warning above, orthogonal projection maps everything in three-dimensional
space onto a two dimensional surface at right angles. The result is everything looks the same size
regardless of its distance from the eye point. Perspective project simulates light passing through a point
(as if you were using a pinhole camera). The result is a more natural picture where distant objects appear
smaller. The gluPerspective call above sets the eye point at the origin, gives us a 45 angle field of view, a
front clipping plane at 1, and a back clipping plane at 10.

Now lets draw our cube. Edit RenderScene to look like this:

void CGLSample4Doc::RenderScene(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();
glTranslated(0.0, 0.0, -8.0);
glRotated(m_xRotate, 1.0, 0.0, 0.0);
glRotated(m_yRotate, 0.0, 1.0, 0.0);

glBegin(GL_POLYGON);
glNormal3d(1.0, 0.0, 0.0);
glVertex3d(1.0, 1.0, 1.0);
glVertex3d(1.0, -1.0, 1.0);
glVertex3d(1.0, -1.0, -1.0);
glVertex3d(1.0, 1.0, -1.0);

glEnd();

glBegin(GL_POLYGON);
glNormal3d(-1.0, 0.0, 0.0);
glVertex3d(-1.0, -1.0, 1.0);
glVertex3d(-1.0, 1.0, 1.0);
glVertex3d(-1.0, 1.0, -1.0);
glVertex3d(-1.0, -1.0, -1.0);

glEnd();

glBegin(GL_POLYGON);
glNormal3d(0.0, 1.0, 0.0);
glVertex3d(1.0, 1.0, 1.0);
glVertex3d(-1.0, 1.0, 1.0);
glVertex3d(-1.0, 1.0, -1.0);
glVertex3d(1.0, 1.0, -1.0);

glEnd();

glBegin(GL_POLYGON);
glNormal3d(0.0, -1.0, 0.0);
glVertex3d(-1.0, -1.0, 1.0);
glVertex3d(1.0, -1.0, 1.0);
glVertex3d(1.0, -1.0, -1.0);
glVertex3d(-1.0, -1.0, -1.0);

glEnd();

glBegin(GL_POLYGON);
glNormal3d(0.0, 0.0, 1.0);
glVertex3d(1.0, 1.0, 1.0);
glVertex3d(-1.0, 1.0, 1.0);
glVertex3d(-1.0, -1.0, 1.0);
glVertex3d(1.0, -1.0, 1.0);

glEnd();

glBegin(GL_POLYGON);
glNormal3d(0.0, 0.0, -1.0);
glVertex3d(-1.0, 1.0, -1.0);
glVertex3d(1.0, 1.0, -1.0);
glVertex3d(1.0, -1.0, -1.0);
glVertex3d(-1.0, -1.0, -1.0);

glEnd();
glPopMatrix();

}

Add member variables to the document class for m_xRotate and m_yRotate (look at the function
definitions to determine the correct type). Add member variables and event handlers to the view class to
modify the document variables when you drag with the left mouse button just like we did in the last
example (hint: Handle the WM_LBUTTONDOWN, WM_LBUTTONUP, and WM_MOUSEMOVE events.
Look at the sample source code if you need help). Compile and run the program. You should see a white
cube that you can rotate. You will not be able to see any discernible feature yet since the cube has no
surface definition and there is no light source. We will add these features next.

Add the following lines to the beginning of RenderScene:

GLfloat RedSurface[] = { 1.0f, 0.0f, 0.0f, 1.0f};
GLfloat GreenSurface[] = { 0.0f, 1.0f, 0.0f, 1.0f};
GLfloat BlueSurface[] = { 0.0f, 0.0f, 1.0f, 1.0f};

These define surface property values. Once again, the numbers represent the red, green, blue and alpha
components of the surfaces. The surface properties are set with the command glMaterial. Add
glMaterialCalls to the following locations:

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, RedSurface);
glBegin(GL_POLYGON);

...
glEnd();

glBegin(GL_POLYGON);
...

glEnd();

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, GreenSurface);
glBegin(GL_POLYGON);

...
glEnd();

glBegin(GL_POLYGON);
...

glEnd();

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, BlueSurface);
glBegin(GL_POLYGON);

...
glEnd();

glBegin(GL_POLYGON);
...

glEnd();

These new calls make two of the cube faces red, two faces green, and two faces blue. The commands
set the ambient color for front and back of each face. However, the cube will still appear featureless until
the lighting model is enabled. To do this add the following command to the end of
CGLSample4View::OnSize:

glEnable(GL_LIGHTING);

Compile and run the program. You should see one of the blue faces of the cube. Rotate the cube with
your mouse. You will notice the cube looks very strange. Faces seem to appear and disappear at
random. This is because we are simply drawing the faces of the cube with no regard as to which is in
front. When we draw a face that is in back, it draws over any faces in front of it that have been drawn. The
solution to this problem is z-buffering.

The z-buffer holds a value for every pixel on the screen. This value represents how close that pixel is to
the eye point. Whenever OpenGL attempts to draw to a pixel, it checks the z-buffer to see if the new color
is closer to the eye point than the old color. If it is the pixel is set to the new color. If not, then the pixel
retains the old color. As you can guess, z-buffering can take up a large amount of memory and CPU time.
The cDepthBits parameter in the PIXELFORMATDESCRIPTOR we used in SetWindowPixelFormat
defines the number of bits in each z-buffer value. Enable z-buffering by adding the following command at
the end of OnSize:

glEnable(GL_DEPTH_TEST);

We also need to clear the z-buffer when we begin a new drawing. Change the glClear command in
RenderScene to the following:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Compile and run the program to see the results.

We now have a colorful cube that rotates in space and draws correctly, but it is very faint. Let's add a light
to the scene so that we can see the cube better. Add the following declaration to the beginning of
RenderScene:

GLfloat LightAmbient[] = { 0.1f, 0.1f, 0.1f, 0.1f };
GLfloat LightDiffuse[] = { 0.7f, 0.7f, 0.7f, 0.7f };
GLfloat LightSpecular[] = { 0.0f, 0.0f, 0.0f, 0.1f };
GLfloat LightPosition[] = { 5.0f, 5.0f, 5.0f, 0.0f };

These will serve as the property values for our light. Now add the following commands just after glClear in
RenderScene:

glLightfv(GL_LIGHT0, GL_AMBIENT, LightAmbient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDiffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, LightSpecular);
glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);
glEnable(GL_LIGHT0);

glLight defines properties for light sources. OpenGL's light sources are all created within the
implementation of OpenGL. Each light source has an identifier GL_LIGHTi where i is zero to
GL_MAX_LIGHTS. The above commands set the ambient, diffuse, and specular properties, as well as
the position, of light zero. glEnable(GL_LIGHT0) turns on the light.

The program is currently wasting time by drawing the interior faces of the cube with our colored surfaces.
To fix this, change the GL_FRONT_AND_BACK parameter in all of the glMaterialfv calls to GL_FRONT.
We also want to set the diffuse reflectivity of the cube faces now that we have a light source. To do this,
change the GL_AMBIENT parameter in the glMaterialfv calls to GL_AMBIENT_AND_DIFFUSE. Compile
and run the program.

You now have a program that displays a lighted, multi-colored cube in three dimensions that uses z-
buffering and double buffering. Go ahead and pat yourself on the back. You deserve it.

Conclusion

This concludes the construction of GLSample4 and this tutorial. You should now know how to set up an
OpenGL program in Windows, and should also understand some of the basic graphics commands. If you
wish to explore OpenGL further, I recommend studying the sample programs in the Microsoft Platform
SDK. If you would like to learn more about graphics in general, I recommend the following books. It really
is necessary to understand the basics of the material in either of these books if you want to do any
serious 3-D graphics.

1. Foley, J. D. and Dam, A. V. and Feiner, S. K. and Hughes., J. F. Computer Graphics, Principles
and Practice. Addison-Wesley Publishing Company: Reading, Massachusetts, 1990

2. Hill, F. S. Computer Graphics. MacMillian Publishing Company: New York, 1990.

You may also visit these sites to learm more about OpenGL programming:

• www.sgi.com/software/opengl/
• msdn.microsoft.com/library/default.asp?URL=/library/psdk/opengl/int01_2v58.htm
• Microsoft also offers the following OpenGL articles in msdn.microsoft.com :

Windows NT OpenGL: Getting Started
OpenGL I: Quick Start
OpenGL II: Windows Palettes in RGBA Mode
OpenGL III: Building an OpenGL C++ Class
OpenGL IV: Color Index Mode
OpenGL V: Translating Windows DIBs
Usenet Graphics Related FAQs
SAMPLE: MFCOGL a Generic MFC OpenGL Code Sample (Q127071)

I would appreciate any comments or suggestions for this tutorial. Please email me at
naoursla@bellsouth.net. Thanks!

http://msdn.microsoft.com/
mailto:naoursla@bellsouth.net

	Using OpenGL in Visual C++

