Matem'atica~Discreta 2° Semestre de 2014 - 1° Prova - 21 de Novembro de 2014

- 1. (1,6) Responda e justifique apropriadamente:
 - a) Três conjuntos têm 5, 10 e 15 elementos, respectivamente. Quantos elementos podem ter sua união e sua interseção?
 - b) Qual a diferença simétrica de A e \bar{A} ?
 - c) Se f é uma função; de \mathbb{N} em \mathbb{R} então podemos afirmar que f não é bijetora?
 - d) Se f e g são funções bijetoras, $f: A \to Y$ e $g: B \to X$, de forma que $X \subseteq A$ e $Y \subseteq B$ então existe uma bijeção $h: A \to B$?
- **2.** (1,0) Seja F_n um número de Fibonacci. Use indução matemática para provar que:

$$\sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1$$

3. (1,0) Prove a seguinte identidade usando argumento combinatório:

$$\binom{3n}{3} = 3\binom{n}{3} + 6n\binom{n}{2} + n^3$$

- 4. (1,0) Use o princípio da casa dos pombos na justificativa das seguintes perguntas:
 - a) No filme "Doze é demais" existem 12 crianças na família. Prove que:
 - a.1) Pelo menos duas crianças nasceram no mesmo dia;
 - a.2) Pelo menos dois membros da família, incluindo os pais, nasceram no mesmo mês.
 - b) Mostre que entre quaisquer 4 inteiros é possível encontrar dois números cuja diferença é divisível por 3.
- **5.** (0,5) Sabendo que 20 e 97 são primos entre si, aplique o algoritmo de Euclides para escrever 1 como uma soma de 97 e 20. Ou seja, 1 = 20x + 97y. Compute $x \in y$ conforme pedido.
- **6.** (1,2) Use o pequeno teorema de Fermat para:
 - a) Provar que 17 | $a^{80} 1$, sendo mdc(a, 17) = 1 e a um inteiro positivo;
 - **b)** Calcular o resto da divisão de 3⁵⁰ por 7;
 - c) Provar que 5⁹⁹ é um inverso de 5 módulo 101 (dica: 101 é primo)
- 7. (0,7) Ao tentar formar grupos de trabalho numa turma com no mximo 60 alunos, conclui-se que se os grupos tiverem 3 elementos ficam dois alunos de fora, se tiverem quatro fica 1 de fora, mas que se consegue formar grupos de 5 elementos desde que o professor faça parte de um deles. Quantos alunos tem a turma? Aplique o teorema chinês do resto para justificar a sua resposta.

Para quem não fez uma MP: Prove o Teorema Binomial usando indução matemática.