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Preface

Logic appears in a ‘sacred’ and in a ‘profane’ form; the sacred form is domi-
nant in proof theory, the profane form in model theory. The phenomenon is
not unfamiliar, one observes this dichotomy also in other areas, e.g. set the-
ory and recursion theory. Some early catastrophies, such as the discovery of
the set theoretical paradoxes (Cantor, Russell), or the definability paradoxes
(Richard, Berry), make us treat a subject for some time with the utmost
awe and diffidence. Sooner or later, however, people start to treat the mat-
ter in a more free and easy way. Being raised in the ‘sacred’ tradition, my
first encounter with the profane tradition was something like a culture shock.
Hartley Rogers introduced me to a more relaxed world of logic by his example
of teaching recursion theory to mathematicians as if it were just an ordinary
course in, say, linear algebra or algebraic topology. In the course of time I have
come to accept this viewpoint as the didactically sound one: before going into
esoteric niceties one should develop a certain feeling for the subject and ob-
tain a reasonable amount of plain working knowledge. For this reason this
introductory text sets out in the profane vein and tends towards the sacred
only at the end.

The present book has developed out of courses given at the mathematics
department of Utrecht University. The experience drawn from these courses
and the reaction of the participants suggested strongly that one should not
practice and teach logic in isolation. As soon as possible examples from every-
day mathematics should be introduced; indeed, first-order logic finds a rich
field of applications in the study of groups, rings, partially ordered sets, etc.

The role of logic in mathematics and computer science is two-fold — a tool
for applications in both areas, and a technique for laying the foundations. The
latter role will be neglected here, we will concentrate on the daily matters of
formalised (or formalizable) science. Indeed, I have opted for a practical ap-
proach, — I will cover the basics of proof techniques and semantics, and then
go on to topics that are less abstract. Experience has taught us that the nat-
ural deduction technique of Gentzen lends itself best to an introduction, it is
close enough to actual informal reasoning to enable students to devise proofs
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by themselves. Hardly any artificial tricks are involved and at the end there
is the pleasing discovery that the system has striking structural properties,
in particular it perfectly suits the constructive interpretation of logic and it
allows normal forms. The latter topic has been added to this edition in view of
its importance in theoretical computer science. In chapter 3 we already have
enough technical power to obtain some of the traditional and (even today)
surprising model theoretic results.

The book is written for beginners without knowledge of more advanced
topics, no esoteric set theory or recursion theory is required. The basic in-
gredients are natural deduction and semantics, the latter is presented in con-
structive and classical form.

In chapter 5 intuitionistic logic is treated on the basis of natural deduction
without the rule of Reductio ad absurdum, and of Kripke semantics. Intuition-
istic logic has gradually freed itself from the image of eccentricity and now it
is recognised for its usefulness in e.g., topos theory and type theory, hence its
inclusion in a introductory text is fully justified. The final chapter, on normali-
sation, has been added for the same reasons; normalisation plays an important
role in certain parts of computer science; traditionally normalisation (and cut
elimination) belong to proof theory, but gradually applications in other areas
have been introduced. In chapter 6 we consider only weak normalisation, a
number of easy applications is given.

Various people have contributed to the shaping of the text at one time
or another; Dana Scott, Jane Bridge, Henk Barendregt and Jeff Zucker have
been most helpful for the preparation of the first edition. Since then many
colleagues and students have spotted mistakes and suggested improvements;
this edition benefited from the remarks of Eleanor McDonnell, A. Scedrov and
Karst Koymans. To all of these critics and advisers I am grateful.

Progress has dictated that the traditional typewriter should be replaced
by more modern devices; this book has been redone in LATEX by Addie Dekker
and my wife Doke. Addie led the way with the first three sections of chap-
ter one and Doke finished the rest of the manuscript; I am indebted to both
of them, especially to Doke who found time and courage to master the se-
crets of the LATEX trade. Thanks go to Leen Kievit for putting together the
derivations and for adding the finer touches required for a LATEX manuscript.
Paul Taylor’s macro for proof trees has been used for the natural deduction
derivations.

June 1994 Dirk van Dalen

The conversion to TEX has introduced a number of typos that are corrected
in the present new printing. Many readers have been so kind to send me their
collection of misprints, I am grateful to them for their help. In particular I want
to thank Jan Smith, Vincenzo Scianna, A. Ursini, Mohammad Ardeshir, and
Norihiro Kamide. Here in Utrecht my logic classes have been very helpful; in
particular Marko Hollenberg, who taught part of a course, has provided me
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with useful comments. Thanks go to them too.
I have used the occasion to incorporate a few improvements. The definition
of ‘subformula’ has been streamlined – together with the notion of positive
and negative occurrence. There is also a small addendum on ‘induction on the
rank of a formula’.

January 1997 Dirk van Dalen

At the request of users I have added a chapter on the incompleteness of arith-
metic. It makes the book more self-contained, and adds useful information on
basic recursion theory and arithmetic. The coding of formal arithmetic makes
use of the exponential; this is not the most efficient coding, but for the heart
of the argument that is not of the utmost importance. In order to avoid extra
work the formal system of arithmetic contains the exponential. As the proof
technique of the book is that of natural deduction, the coding of the notion
of derivability is also based on it. There are of course many other approaches.
The reader is encouraged to consult the literature.

The material of this chapter is by and large that of a course given in Utrecht
in 1993. Students have been most helpful in commenting on the presentation,
and in preparing TEX versions. W. Dean has kindly pointed out some more
corrections in the old text.

The final text has benefited from comments and criticism of a number
of colleagues and students. I am grateful for the advice of Lev Beklemishev,
John Kuiper, Craig Smoryński, and Albert Visser. Thanks are due to Xander
Schrijen, whose valuable assistance helped to overcome the TEX-problems.

May 2003 Dirk van Dalen

A number of corrections has been provided by Tony Hurkens; furthermore, I
am indebted to him and Harold Hodes for pointing out that the definition of
“free for” was in need of improvement. Sjoerd Zwart found a nasty typo that
had escaped me and all (or most) readers.

April 2008 Dirk van Dalen
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0

Introduction

Without adopting one of the various views advocated in the foundations of
mathematics, we may agree that mathematicians need and use a language, if
only for the communication of their results and their problems. While math-
ematicians have been claiming the greatest possible exactness for their meth-
ods, they have been less sensitive as to their means of communication. It is well
known that Leibniz proposed to put the practice of mathematical communi-
cation and mathematical reasoning on a firm base; it was, however, not before
the nineteenth century that those enterprises were (more) successfully under-
taken by G. Frege and G. Peano. No matter how ingeniously and rigorously
Frege, Russell, Hilbert, Bernays and others developed mathematical logic, it
was only in the second half of this century that logic and its language showed
any features of interest to the general mathematician. The sophisticated re-
sults of Gödel were of course immediately appreciated, but they remained for
a long time technical highlights without practical use. Even Tarski’s result
on the decidability of elementary algebra and geometry had to bide its time
before any applications turned up.

Nowadays the application of logic to algebra, analysis, topology, etc. are
numerous and well-recognised. It seems strange that quite a number of simple
facts, within the grasp of any student, were overlooked for such a long time.
It is not possible to give proper credit to all those who opened up this new
territory, any list would inevitably show the preferences of the author, and
neglect some fields and persons.

Let us note that mathematics has a fairly regular, canonical way of formu-
lating its material, partly by its nature, partly under the influence of strong
schools, like the one of Bourbaki. Furthermore the crisis at the beginning of
this century has forced mathematicians to pay attention to the finer details of
their language and to their assumptions concerning the nature and the extent
of the mathematical universe. This attention started to pay off when it was
discovered that there was in some cases a close connection between classes of
mathematical structures and their syntactical description. Here is an example:

It is well known that a subset of a group G which is closed under
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multiplication and inverse, is a group; however, a subset of an algebraically
closed field F which is closed under sum, product, minus and inverse, is in
general not an algebraically closed field. This phenomenon is an instance of
something quite general: an axiomatizable class of structures is axiomatised
by a set of universal sentences (of the form ∀x1, . . . , xnϕ, with ϕ quantifier
free) iff it is closed under substructures. If we check the axioms of group the-
ory we see that indeed all axioms are universal, while not all the axioms of
the theory of algebraically closed fields are universal. The latter fact could of
course be accidental, it could be the case that we were not clever enough to
discover a universal axiomatization of the class of algebraically closed fields.
The above theorem of Tarski and Los tells us, however, that it is impossible
to find such an axiomatization!

The point of interest is that for some properties of a class of structures
we have simple syntactic criteria. We can, so to speak, read the behaviour
of the real mathematical world (in some simple cases) off from its syntactic
description.

There are numerous examples of the same kind, e.g. Lyndon’s Theorem:
an axiomatisable class of structures is closed under homomorphisms iff it can
be axiomatised by a set of positive sentences (i.e. sentences which, in prenex
normal form with the open part in disjunctive normal form, do not contain
negations).

The most basic and at the same time monumental example of such a
connection between syntactical notions and the mathematical universe is of
course Gödel’s completeness theorem, which tells us that provability in the
familiar formal systems is extensionally identical with truth in all structures.
That is to say, although provability and truth are totally different notions, (the
first is combinatorial in nature, the latter set theoretical), they determine the
same class of sentences: ϕ is provable iff ϕ is true in all structures.

Given the fact that the study of logic involves a great deal of syntactical
toil, we will set out by presenting an efficient machinery for dealing with
syntax. We use the technique of inductive definitions and as a consequence
we are rather inclined to see trees wherever possible, in particular we prefer
natural deduction in the tree form to the linear versions that are here and
there in use.

One of the amazing phenomena in the development of the foundations
of mathematics is the discovery that the language of mathematics itself can
be studied by mathematical means. This is far from a futile play: Gödel’s
incompleteness theorems, for instance, lean heavily on a mathematical analysis
of the language of arithmetic, and the work of Gödel and Cohen in the field
of the independence proofs in set theory requires a thorough knowledge of the
mathematics of mathematical language. Set theory remains beyond the scope
of this book, but a simple approach to the incompleteness of arithmetic has
been included. We will aim at a thorough treatment, in the hope that the
reader will realise that all these things which he suspects to be trivial, but
cannot see why, are perfectly amenable to proof. It may help the reader to
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think of himself as a computer with great mechanical capabilities, but with
no creative insight, in those cases where he is puzzled because ‘why should we
prove something so utterly evident’ ! On the other hand the reader should keep
in mind that he is not a computer and that, certainly when he gets beyond
chapter 2, certain details should be recognised as trivial.

For the actual practice of mathematics predicate logic is doubtlessly the
perfect tool, since it allows us to handle individuals. All the same we start
this book with an exposition of propositional logic. There are various reasons
for this choice.

In the first place propositional logic offers in miniature the problems that
we meet in predicate logic, but there the additional difficulties obscure some
of the relevant features e.g. the completeness theorem for propositional logic
already uses the concept of ‘maximal consistent set’, but without the compli-
cations of the Henkin axioms.

In the second place there are a number of truly propositional matters that
would be difficult to treat in a chapter on predicate logic without creating
a impression of discontinuity that borders on chaos. Finally it seems a mat-
ter of sound pedagogy to let propositional logic precede predicate logic. The
beginner can in a simple context get used to the proof theoretical, algebraic
and model theoretic skills that would be overbearing in a first encounter with
predicate logic.

All that has been said about the role of logic in mathematics can be re-
peated for computer science; the importance of syntactical aspects is even
more pronounced than in mathematics, but it does not stop there. The lit-
erature of theoretical computer science abounds with logical systems, com-
pleteness proofs and the like. In the context of type theory (typed lambda
calculus) intuitionistic logic has gained an important role, whereas the tech-
nique of normalisation has become a staple diet for computer scientists.
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Propositional Logic

1.1 Propositions and Connectives

Traditionally, logic is said to be the art (or study) of reasoning; so in order
to describe logic in this tradition, we have to know what ‘reasoning’ is. Ac-
cording to some traditional views reasoning consists of the building of chains
of linguistic entities by means of a certain relation ‘... follows from ...’, a view
which is good enough for our present purpose. The linguistic entities occurring
in this kind of reasoning are taken to be sentences, i.e. entities that express a
complete thought, or state of affairs. We call those sentences declarative. This
means that, from the point of view of natural language our class of acceptable
linguistic objects is rather restricted.

Fortunately this class is wide enough when viewed from the mathemati-
cian’s point of view. So far logic has been able to get along pretty well under
this restriction. True, one cannot deal with questions, or imperative state-
ments, but the role of these entities is negligible in pure mathematics. I must
make an exception for performative statements, which play an important role
in programming; think of instructions as ‘goto, if ... then, else ...’, etc. For
reasons given below, we will, however, leave them out of consideration.

The sentences we have in mind are of the kind ‘27 is a square number’,
‘every positive integer is the sum of four squares’, ‘there is only one empty
set’. A common feature of all those declarative sentences is the possibility of
assigning them a truth value, true or false. We do not require the actual deter-
mination of the truth value in concrete cases, such as for instance Goldbach’s
conjecture or Riemann’s hypothesis. It suffices that we can ‘in principle’ as-
sign a truth value.

Our so-called two-valued logic is based on the assumption that every sen-
tence is either true or false, it is the cornerstone of the practice of truth tables.

Some sentences are minimal in the sense that there is no proper part which
is also a sentence. e.g. 5 ∈ {0, 1, 2, 5, 7}, or 2+2 = 5; others can be taken apart
into smaller parts, e.g. ‘c is rational or c is irrational’ (where c is some con-
stant). Conversely, we can build larger sentences from smaller ones by using
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connectives. We know many connectives in natural language; the following list
is by no means meant to be exhaustive: and, or, not, if ... then ..., but, since,
as, for, although, neither ... nor ... . In ordinary discourse, and also in infor-
mal mathematics, one uses these connectives incessantly; however, in formal
mathematics we will economise somewhat on the connectives we admit. This
is mainly for reason of exactness. Compare, for example, the following two
sentences: “π is irrational, but it is not algebraic”, “Max is a Marxist, but he
is not humourless”. In the second statement we may discover a suggestion of
some contrast, as if we should be surprised that Max is not humourless. In the
first case such a surprise cannot be so easily imagined (unless, e.g. one has just
read that almost all irrationals are algebraic); without changing the meaning
one can transform this statement into “π is irrational and π is not algebraic”.
So why use (in a formal text) a formulation that carries vague, emotional un-
dertones? For these and other reasons (e.g. of economy) we stick in logic to a
limited number of connectives, in particular those that have shown themselves
to be useful in the daily routine of formulating and proving.

Note, however, that even here ambiguities loom. Each of the connectives
has already one or more meanings in natural language. We will give some
examples:

1. John drove on and hit a pedestrian.
2. John hit a pedestrian and drove on.
3. If I open the window then we’ll have fresh air.
4. If I open the window then 1 + 3 = 4.
5. If 1 + 2 = 4, then we’ll have fresh air.
6. John is working or he is at home.
7. Euclid was a Greek or a mathematician.

From 1 and 2 we conclude that ‘and’ may have an ordering function in time.
Not so in mathematics; “π is irrational and 5 is positive” simply means that
both parts are the case. Time just does not play a role in formal mathematics.
We could not very well say “π was neither algebraic nor transcendent before
1882”. What we would want to say is “before 1882 it was unknown whether
π was algebraic or transcendent”.

In the examples 3-5 we consider the implication. Example 3 will be gener-
ally accepted, it displays a feature that we have come to accept as inherent to
implication: there is a relation between the premise and conclusion. This fea-
ture is lacking in the examples 4 and 5. Nonetheless we will allow cases such
as 4 and 5 in mathematics. There are various reasons to do so. One is the
consideration that meaning should be left out of syntactical considerations.
Otherwise syntax would become unwieldy and we would run into an esoteric
practice of exceptional cases. This general implication, in use in mathemat-
ics, is called material implication. Some other implications have been studied
under the names of strict implication, relevant implication, etc.

Finally 6 and 7 demonstrate the use of ‘or’. We tend to accept 6 and to
reject 7. One mostly thinks of ‘or’ as something exclusive. In 6 we more or
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less expect John not to work at home, while 7 is unusual in the sense that we
as a rule do not use ‘or’ when we could actually use ‘and’. Also, we normally
hesitate to use a disjunction if we already know which of the two parts is the
case, e.g. “32 is a prime or 32 is not a prime” will be considered artificial (to
say the least) by most of us, since we already know that 32 is not a prime. Yet
mathematics freely uses such superfluous disjunctions, for example “2 ≥ 2”
(which stands for “2 > 2 or 2 = 2”).

In order to provide mathematics with a precise language we will create an
artificial, formal language, which will lend itself to mathematical treatment.
First we will define a language for propositional logic, i.e. the logic which
deals only with propositions (sentences, statements). Later we will extend our
treatment to a logic which also takes properties of individuals into account.

The process of formalization of propositional logic consists of two stages:
(1) present a formal language, (2) specify a procedure for obtaining valid or
true propositions.

We will first describe the language, using the technique of inductive def-
initions. The procedure is quite simple: First give the smallest propositions,
which are not decomposable into smaller propositions; next describe how com-
posite propositions are constructed out of already given propositions.

Definition 1.1.1 The language of propositional logic has an alphabet consist-
ing of

(i) proposition symbols : p0, p1, p2, . . . ,
(ii) connectives : ∧ , ∨ , → , ¬ , ↔ , ⊥ ,
(iii) auxiliary symbols : ( , ).

The connectives carry traditional names:
∧ - and - conjunction
∨ - or - disjunction
→ - if ..., then ... - implication
¬ - not - negation
↔ - iff - equivalence, bi-implication
⊥ - falsity - falsum, absurdum
The proposition symbols and⊥ stand for the indecomposable propositions,

which we call atoms, or atomic propositions.

Definition 1.1.2 The set PROP of propositions is the smallest set X with
the properties
(i) pi ∈ X(i ∈ N), ⊥∈ X,
(ii) ϕ, ψ ∈ X ⇒ (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ) ∈ X,
(iii) ϕ ∈ X ⇒ (¬ϕ) ∈ X.
The clauses describe exactly the possible ways of building propositions. In
order to simplify clause (ii) we write ϕ, ψ ∈ X ⇒ (ϕ�ψ) ∈ X , where � is one
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of the connectives ∧, ∨, →, ↔.
A warning to the reader is in order here. We have used Greek letters ϕ, ψ

in the definition; are they propositions? Clearly we did not intend them to be
so, as we want only those strings of symbols obtained by combining symbols
of the alphabet in a correct way. Evidently no Greek letters come in at all!
The explanation is that ϕ and ψ are used as variables for propositions. Since
we want to study logic, we must use a language to discuss it in. As a rule
this language is plain, everyday English. We call the language used to discuss
logic our meta-language and ϕ and ψ are meta-variables for propositions. We
could do without meta-variables by handling (ii) and (iii) verbally: if two
propositions are given, then a new proposition is obtained by placing the
connective ∧ between them and by adding brackets in front and at the end,
etc. This verbal version should suffice to convince the reader of the advantage
of the mathematical machinery.

Note that we have added a rather unusual connective, ⊥. Unusual, in
the sense that it does not connect anything. Logical constant would be a
better name. For uniformity we stick to our present usage. ⊥ is added for
convenience, one could very well do without it, but it has certain advantages.
One may note that there is something lacking, namely a symbol for the true
proposition; we will indeed add another symbol, 
, as an abbreviation for the
”true” proposition.
Examples.

(p7 → p0), ((⊥ ∨p32) ∧ (¬p2)) ∈ PROP .
p1 ↔ p7, ¬¬ ⊥, ((→ ∧ �∈ PROP

It is easy to show that something belongs to PROP (just carry out the
construction according to 1.1.2); it is somewhat harder to show that something
does not belong to PROP . We will do one example:

¬¬ ⊥�∈ PROP.

Suppose ¬¬ ⊥∈ X and X satisfies (i), (ii), (iii) of Definition 1.1.2. We
claim that Y = X − {¬¬ ⊥} also satisfies (i), (ii) and (iii). Since ⊥, pi ∈ X ,
also ⊥, pi ∈ Y . If ϕ, ψ ∈ Y , then ϕ, ψ ∈ X . Since X satisfies (ii) (ϕ�ψ) ∈ X .
From the form of the expressions it is clear that (ϕ�ψ) �= ¬¬ ⊥ (look at the
brackets), so (ϕ�ψ) ∈ X − {¬¬ ⊥} = Y . Likewise one shows that Y satisfies
(iii). Hence X is not the smallest set satisfying (i), (ii) and (iii), so ¬¬ ⊥
cannot belong to PROP .

Properties of propositions are established by an inductive procedure anal-
ogous to definition 1.1.2: first deal with the atoms, and then go from the parts
to the composite propositions. This is made precise in



1.1 Propositions and Connectives 9

Theorem 1.1.3 (Induction Principle) Let A be a property, then A(ϕ)
holds for all ϕ ∈ PROP if

(i) A(pi), for all i,and A(⊥),
(ii) A(ϕ), A(ψ) ⇒ A( (ϕ�ψ)),
(iii) A(ϕ) ⇒ A( (¬ϕ)).

Proof. Let X = {ϕ ∈ PROP | A(ϕ)}, then X satisfies (i), (ii) and (iii) of
definition 1.1.2. So PROP ⊆ X , i.e. for all ϕ ∈ PROP A(ϕ) holds. �

We call an application of theorem 1.1.3 a proof by induction on ϕ. The
reader will note an obvious similarity between the above theorem and the
principle of complete induction in arithmetic.

The above procedure for obtaining all propositions, and for proving
properties of propositions is elegant and perspicuous; there is another ap-
proach, however which has its own advantages (in particular for coding):
consider propositions as the result of a linear step-by-step construction. E.g.
( (¬p0) →⊥) is constructed by assembling it from its basic parts by using
previously constructed parts: p0 . . . ⊥ . . . (¬p0) . . . ( (¬p0) →⊥). This is for-
malized as follows:

Definition 1.1.4 A sequence ϕ0, . . . , ϕn is called a formation sequence of ϕ
if ϕn = ϕ and for all i ≤ n ϕi is atomic, or

ϕi = (ϕj�ϕk) for certain j, k < i, or
ϕi = (¬ϕj) for certain j < i.

Observe that in this definition we are considering strings ϕ of symbols
from the given alphabet; this mildly abuses our notational convention.
Examples. (a) ⊥, p2, p3, (⊥ ∨p2), (¬(⊥ ∨p2)), (¬p3) and p3, (¬p3) are both
formation sequences of (¬p3). Note that formation sequences may contain
‘garbage’.

(b) p2 is a subformula of ((p7 ∨ (¬p2))→ p1); (p1 →⊥) is a subformula of
(((p2 ∨ (p1 ∧ p0))↔ (p1 →⊥)).

We now give some trivial examples of proof by induction. In practice we
actually only verify the clauses of the proof by induction and leave the con-
clusion to the reader.

1. Each proposition has an even number of brackets.
Proof. (i) Each atom has 0 brackets and 0 is even.

(ii) Suppose ϕ and ψ have 2n, resp. 2m brackets, then (ϕ�ψ) has
2(n+m+ 1) brackets.

(iii) Suppose ϕ has 2n brackets, then (¬ϕ) has 2(n+ 1) brackets. �
2. Each proposition has a formation sequence.
Proof. (i) If ϕ is an atom, then the sequence consisting of just ϕ is a formation
sequence of ϕ.

(ii) Let ϕ0, . . . , ϕn and ψ0, . . . , ψm be formation sequences of ϕ and ψ,
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then one easily sees that ϕ0, . . . , ϕn, ψ0, . . . , ψm, (ϕn�ψm) is a formation
sequence of (ϕ�ψ).

(iii) Left to the reader. �

We can improve on 2:

Theorem 1.1.5 PROP is the set of all expressions having formation se-
quences.

Proof. Let F be the set of all expressions (i.e. strings of symbols) having
formation sequences. We have shown above that PROP ⊆ F .

Let ϕ have a formation sequence ϕ0, . . . , ϕn, we show ϕ ∈ PROP by
induction on n.
n = 0 : ϕ = ϕ0 and by definition ϕ is atomic, so ϕ ∈ PROP .

Suppose that all expressions with formation sequences of length m < n
are in PROP . By definition ϕn = (ϕi�ϕj) for i, j < n, or ϕn = (¬ϕi) for
i < n, or ϕn is atomic. In the first case ϕi and ϕj have formation sequences
of length i, j < n, so by induction hypothesis ϕi, ϕj ∈ PROP . As PROP
satisfies the clauses of definition 1.1.2, also (ϕi�ϕj) ∈ PROP . Treat negation
likewise. The atomic case is trivial. Conclusion F ⊆ PROP . �

Theorem 1.1.5 is in a sense a justification of the definition of formation
sequence. It also enables us to establish properties of propositions by ordinary
induction on the length of formation sequences.

In arithmetic one often defines functions by recursion, e.g. exponentiation
is defined by x0 = 1 and xy+1 = xy ·x, or the factorial function by 0! = 1 and
(x+ 1)! = x! · (x+ 1).
The jusitification is rather immediate: each value is obtained by using the
preceding values (for positive arguments). There is an analogous principle in
our syntax.
Example. The number b(ϕ) of brackets of ϕ, can be defined as follows:

⎧
⎨

⎩

b(ϕ) = 0 for ϕ atomic,
b((ϕ�ψ)) = b(ϕ) + b(ψ) + 2,
b((¬ϕ)) = b(ϕ) + 2.

The value of b(ϕ) can be computed by successively computing b(ψ) for its
subformulae ψ. �

We can give this kind of definitions for all sets that are defined by induc-
tion. The principle of “definition by recursion” takes the form of “there is
a unique function such that . . . ”. The reader should keep in mind that the
basic idea is that one can ‘compute’ the function value for a composition in a
prescribed way from the function values of the composing parts.
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The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H� : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ�ψ)) = H�(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = �ϕ for atomic ϕ

T ((ϕ�ψ)) = � (ϕ�ψ)
�
�

�
�
T (ϕ) T (ψ)

T ((¬ϕ)) = � (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(¬(¬(p1 ∧ (¬p1)))
)

�

(p1 → (⊥ ∨ (¬p3)))

�

p1

�

(⊥∨ (¬p3))

�

⊥
�

(¬p3)

�

p3

�
��

�
�

�
�
�

�
��

�

(¬(¬(p1 ∧ (¬p1))))

�

(¬(p1 ∧ (¬p1)))

�

(p1 ∧ (¬p1))

�

p1

�

(¬p1)

�

p1

�
��

�
��

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.
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T (ϕ1) :

�

→

�

p1

�

∨

�

⊥
�

¬

�

p3

�
��

�
�

�
�

��

�
�

�

T (ϕ2) :

�

¬

�

¬

�

∧

�

p1

�

¬

�

p1

�
�

�

�
�
�

2. The rank r(ϕ) of a proposition ϕ is defined by
⎧
⎨

⎩

r(ϕ) = 0 for atomic ϕ,
r((ϕ�ψ)) = max(r(ϕ), r(ψ)) + 1,
r((¬ϕ)) = r(ϕ) + 1.

We now use the technique of definition by recursion to define the notion of
subformula.

Definition 1.1.7 The set of subformulas Sub(ϕ) is given by
Sub(ϕ) = {ϕ} for atomic ϕ
Sub(ϕ1�ϕ2) = Sub(ϕ1) ∪ Sub(ϕ2) ∪ {ϕ1�ϕ2}
Sub(¬ϕ) = Sub(ϕ) ∪ {¬ϕ}

We say that ψ is a subformula of ϕ if ψ ∈ Sub(ϕ).

Notational convention. In order to simplify our notation we will economise on
brackets. We will always discard the outermost brackets and we will discard
brackets in the case of negations. Furthermore we will use the convention that
∧ and ∨ bind more strongly than → and ↔ (cf. · and + in arithmetic), and
that ¬ binds more strongly than the other connectives.
Examples. ¬ϕ ∨ ϕ stands for ((¬ϕ) ∨ ϕ),

¬(¬¬¬ϕ∧ ⊥) stands for (¬((¬(¬(¬ϕ)))∧ ⊥)),
ϕ ∨ ψ → ϕ stands for ((ϕ ∨ ψ)→ ϕ),
ϕ→ ϕ ∨ (ψ → χ) stands for (ϕ→ (ϕ ∨ (ψ → χ))).

Warning. Note that those abbreviations are, properly speaking, not propo-
sitions.

In the proposition (p1 → p1) only one atom is used to define it, it is how-
ever used twice and it occurs at two places. For some purpose it is convenient
to distinguish between formulas and formula occurrences. Now the definition
of subformula does not tell us what an occurrence of ϕ in ψ is, we have to add
some information. One way to indicate an occurrence of ϕ is to give its place
in the tree of ψ, e.g. an occurrence of a formula in a given formula ψ is a pair
(ϕ, k), where k is a node in the tree of ψ. One might even code k as a sequence
of 0’s and 1’s, where we associate to each node the following sequence: 〈 〉 (the
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empty sequence) to the top node, 〈s0, . . . , sn−1, 0〉 to the left immediate de-
scendant of the node with sequence 〈s0, . . . , sn−1〉 and 〈s0, . . . , sn−1, 1〉 to the
second immediate descendant of it (if there is one). We will not be overly
formal in handling occurrences of formulas (or symbols, for that matter), but
it is important that it can be done.

The introduction of the rank function above is not a mere illustration of
the ‘definition by recursion’, it also allows us to prove facts about propositions
by means of plain complete induction (or mathematical induction). We have,
so to speak, reduced the tree structure to that of the straight line of natural
numbers. Note that other ‘measures’ will do just as well, e.g. the number of
symbols. For completeness sake we will spell out the Rank-Induction Principle:

Theorem 1.1.8 (Induction on rank-Principle) If for all ϕ [A(ψ) for all
ψ with rank less than r(ϕ)] ⇒ A(ϕ), then A(ϕ) holds for all ϕ ∈ PROP

Let us show that induction on ϕ and induction on the rank of ϕ are
equivalent.1

First we introduce a convenient notation for the rank-induction: write ϕ ≺ ψ
(ϕ � ψ) for r(ϕ) < r(ψ) (r(ϕ) ≤ r(ψ)). So ∀ψ � ϕA(ψ) stands for “A(ψ)
holds for all ψ with rank at most r(ϕ)”
The Rank-Induction Principle now reads

∀ϕ(∀ψ ≺ ϕA(ψ) ⇒ A(ϕ)) ⇒ ∀ϕA(ϕ)

We will now show that the rank-induction principle follows from the induction
principle. Let ∀ϕ(∀ψ ≺ ϕA(ψ) ⇒ A(ϕ)) (†)
be given.In order to show ∀ϕA(ϕ) we have to indulge in a bit of induction
loading. Put B(ϕ) := ∀ψ � ϕA(ψ). Now show ∀ϕB(ϕ) by induction on ϕ.

1. for atomic ϕ ∀ψ ≺ ϕA(ψ) is vacuously true, hence by (†) A(ϕ) holds.
Therefore A(ψ) holds for all ψ with rank ≤ 0. So B(ϕ)

2. ϕ = ϕ1�ϕ2. Induction hypothesis: B(ϕ1), B(ϕ2). Let ρ be any proposition
with r(ρ) = r(ϕ) = n+ 1 (for a suitable n). We have to show that ρ and
all propositions with rank less than n+ 1 have the property A. Since
r(ϕ) = max(r(ϕ1), r(ϕ2))+1, one of ϕ1 and ϕ2 has rank n — say ϕ1. Now
pick an arbitrary ψ with r(ψ) ≤ n, then ψ � ϕ1. Therefore, by B(ϕ1),
A(ψ). This shows that ∀ψ ≺ ρA(ψ), so by (†) A(ρ) holds. This shows
B(ϕ)

3. ϕ = ¬ϕ1. Similar argument.

An application of the induction principle yields ∀ϕB(ϕ), and as a consequence
∀ϕA(ϕ).

For the converse we assume the premisses of the induction principle. In or-
der to apply the rank-induction principle we have to show (†). We distinguish
the following cases:
1 The reader may skip this proof at first reading. He will do well to apply induction

on rank naively.
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1. ϕ atomic. Then (†) holds trivially.
2. ϕ = ϕ1�ϕ2. Then ϕ1, ϕ2 � ϕ (see exercise 6). Our assumption is ∀ψ ≺
ϕA(ψ), so A(ϕ1) and A(ϕ2). Therefore A(ϕ).

3. ϕ = ¬ϕ1. Similar argument.

This establishes (†). So by rank-induction we get ∀ϕA(ϕ).

Exercises

1. Give formation sequences of
(¬p2 → (p3 ∨ (p1 ↔ p2))) ∧ ¬p3,

(p7 → ¬ ⊥)↔ ((p4 ∧ ¬p2)→ p1),
(((p1 → p2)→ p1) → p2)→ p1.

2. Show that ((→�∈ PROP .

3. Show that the relation “is a subformula of” is transitive.

4. Let ϕ be a subformula of ψ. Show that ϕ occurs in each formation sequence
of ψ.

5. If ϕ occurs in a shortest formation sequence of ψ then ϕ is a subformula
of ψ.

6. Let r be the rank function.
(a) Show that r(ϕ) ≤ number of occurrences of connectives of ϕ,
(b) Give examples of ϕ such that < or = holds in (a),
(c) Find the rank of the propositions in exercise 1.
(d) Show that r(ϕ) < r(ψ) if ϕ is a proper subformula of ψ.

7. (a) Determine the trees of the propositions in exercise 1,
(b) Determine the propositions with the following trees.

�¬
�¬
�¬
�

⊥

�→

�→ �∧
�

p0

�⊥ �↔ �

p5

�

p0

�

p1

�
�

�
�

�
��

�
��

�
�

�
�

�
��

�
�

�
��

�
��

�¬
�→

�¬
�

p1

�¬
�

p1

�
��

�
��
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8. Let #(T (ϕ)) be the number of nodes of T (ϕ). By the “number of connec-
tives in ϕ” we mean the number of occurrences of connectives in ϕ. (In
general #(A) stands for the number of elements of a (finite) set A).
(a) If ϕ does not contain ⊥, show: number of connectives of ϕ+ number

of atoms of ϕ ≤ #(T (ϕ)).
(b) #(sub(ϕ)) ≤ #(T (ϕ)).
(c) A branch of a tree is a maximal linearly ordered set.

The length of a branch is the number of its nodes minus one. Show
that r(ϕ) is the length of a longest branch in T (ϕ).

(d) Let ϕ not contain ⊥. Show: the number of connectives in ϕ + the
number of atoms of ϕ ≤ 2r(ϕ)+1 − 1.

9. Show that a proposition with n connectives has at most 2n+1 subformulas.
10. Show that for PROP we have a unique decomposition theorem: for each

non-atomic proposition σ either there are two propostions ϕ and ψ such
that σ = ϕ�ψ, or there is a proposition ϕ such that σ = ¬ϕ.

11. (a) Give an inductive definition of the function F , defined by recursion
on PROP from the functions Hat, H�, H¬, as a set F ∗ of pairs.

(b) Formulate and prove for F ∗ the induction principle.
(c) Prove that F ∗ is indeed a function on PROP .
(d) Prove that it is the unique function on PROP satisfying the recur-

sion equations.

1.2 Semantics

The task of interpreting propositional logic is simplified by the fact that the
entities considered have a simple structure. The propositions are built up from
rough blocks by adding connectives.
The simplest parts (atoms) are of the form “grass is green”, “Mary likes
Goethe”,“6−3 = 2”, which are simply true or false. We extend this assignment
of truth values to composite propositions, by reflection on the meaning of the
logical connectives.

Let us agree to use 1 and 0 instead of ‘true’ and ‘false’. The problem we
are faced with is how to interprete ϕ�ψ, ¬ϕ, given the truth values of ϕ and
ψ.

We will illustrate the solution by considering the in-out-table for Messrs.
Smith and Jones.
Conjunction. A visitor who wants to see both Smith and Jones wants the
table to be in the position shown here, i.e.
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in out
Smith ×
Jones ×

“Smith is in”∧“Jones is in” is true iff
“Smith is in” is true and “Jones is in” is true.

We write v(ϕ) = 1 (resp. 0) for “ϕ is true” (resp. false). Then the above
consideration can be stated as v(ϕ∧ψ) = 1 iff v(ϕ) = v(ψ) = 1, or v(ϕ∧ψ) =
min(v(ϕ), v(ψ)).

One can also write it in the form of a truth table:
∧ 0 1
0 0 0
1 0 1

One reads the truth table as follows: the first argument is taken from the
leftmost column and the second argument is taken from the top row.

Disjunction. If a visitor wants to see one of the partners, no matter which
one, he wants the table to be in one of the positions

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

In the last case he can make a choice, but that is no problem, he wants to
see at least one of the gentlemen, no matter which one.

In our notation, the interpretation of ∨ is given by

v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1.

Shorter: v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

In truth table form:
∨ 0 1
0 0 1
1 1 1

Negation. The visitor who is solely interested in our Smith will state that
“Smith is not in” if the table is in the position:

in out
Smith ×

So “Smith is not in” is true if “Smith is in” is false. We write this as
v(¬ϕ) = 1 iff v(ϕ) = 0, or v(¬ϕ) = 1− v(ϕ).

In truth table form:
¬
0 1
1 0
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Implication. Our legendary visitor has been informed that “Jones is in if
Smith is in”. Now he can at least predict the following positions of the table

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

If the table is in the position
in out

Smith ×
Jones ×

then he knows that the information was false.

The remaining case,
in out

Smith ×
Jones ×

, cannot be dealt with in

such a simple way. There evidently is no reason to consider the information
false, rather ‘not very helpful’, or ‘irrelevant’. However, we have committed
ourselves to the position that each statement is true or false, so we decide to
call “If Smith is in, then Jones is in” true also in this particular case. The
reader should realize that we have made a deliberate choice here; a choice that
will prove a happy one in view of the elegance of the system that results. There
is no compelling reason, however, to stick to the notion of implication that
we just introduced. Various other notions have been studied in the literature,
for mathematical purpose our notion (also called ‘material implication’) is
however perfectly suitable.

Note that there is just one case in which an implication is false (see the
truth table below), one should keep this observation in mind for future appli-
cation – it helps to cut down calculations.
In our notation the interpretation of implication is given by v(ϕ→ ψ) = 0 iff
v(ϕ) = 1 and v(ψ) = 0.

Its truth table is:
→ 0 1
0 1 1
1 0 1

Equivalence. If our visitor knows that “Smith is in if and only if Jones is in”,
then he knows that they are either both in, or both out. Hence v(ϕ↔ ψ) = 1
iff v(ϕ) = v(ψ).

The truth table of ↔ is:
↔ 0 1
0 1 0
1 0 1

Falsum. An absurdity, such as “0 �= 0”, “some odd numbers are even”, “I
am not myself”, cannot be true. So we put v(⊥) = 0.
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Strictly speaking we should add one more truth table, i.e. the table for 
,
the opposite of falsum.

Verum. This symbol stands for manifestly true propostion such as 1 = 1; we
put v(
) = 1 for all v.

We collect the foregoing in

Definition 1.2.1 A mapping v : PROP → {0, 1} is a valuation if
v(ϕ ∧ ψ) = min(v(ϕ), v(ψ)),
v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)),
v(ϕ→ ψ) = 0 ⇔ v(ϕ) = 1 and v(ψ) = 0,
v(ϕ↔ ψ) = 1 ⇔ v(ϕ) = v(ψ),
v(¬ϕ) = 1− v(ϕ)
v(⊥) = 0.

If a valuation is only given for atoms then it is, by virtue of the definition
by recursion, possible to extend it to all propositions, hence we get:

Theorem 1.2.2 If v is a mapping from the atoms into {0, 1}, satisfy-
ing v(⊥) = 0, then there exists a unique valuation [[·]]v, such that [[ϕ]]v = v(ϕ)
for atomic ϕ.

It has become common practice to denote valuations as defined above by
[[ϕ]], so will adopt this notation. Since [[·]] is completely determined by its values
on the atoms, [[ϕ]] is often denoted by [[ϕ]]v . Whenever there is no confusion
we will delete the index v.

Theorem 1.2.2 tells us that each of the mappings v and [[·]]v determines
the other one uniquely, therefore we call v also a valuation (or an atomic
valuation, if necessary). From this theorem it appears that there are many
valuations (cf. Exercise 4).

It is also obvious that the value [[ϕ]]v of ϕ under v only depends on the
values of v on its atomic subformulae:

Lemma 1.2.3 If v(pi) = v′(pi) for all pi occurring in ϕ, then [[ϕ]]v = [[ϕ]]v′ .

Proof. An easy induction on ϕ. �

An important subset of PROP is that of all propositions ϕ which are al-
ways true, i.e. true under all valuations.
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Definition 1.2.4 (i) ϕ is a tautology if [[ϕ]]v = 1 for all valuations v,
(ii) |= ϕ stands for ‘ϕ is a tautology’,
(iii) Let Γ be a set of propositions, then Γ |= ϕ iff for all v: ([[ψ]]v = 1 for all

ψ ∈ Γ )⇒ [[ϕ]]v = 1.

In words: Γ |= ϕ holds iff ϕ is true under all valuations that make all ψ in Γ
true. We say that ϕ is semantical consequence of Γ . We write Γ �|= ϕ if Γ |= ϕ
is not the case.
Convention. ϕ1, . . . , ϕn |= ψ stands for {ϕ1, . . . , ϕn} |= ψ.

Note that “[[ϕ]]v = 1 for all v” is another way of saying “[[ϕ]] = 1 for all
valuations”.
Examples. (i) |= ϕ→ ϕ; |= ¬¬ϕ→ ϕ; |= ϕ ∨ ψ ↔ ψ ∨ ϕ,

(ii) ϕ, ψ |= ϕ ∧ ψ; ϕ,ϕ→ ψ |= ψ; ϕ→ ψ, ¬ψ |= ¬ϕ.
One often has to substitute propositions for subformulae; it turns out to

be sufficient to define substitution for atoms only.
We write ϕ[ψ/pi] for the proposition obtained by replacing all occurrences

of pi in ϕ by ψ. As a matter of fact, substitution of ψ for pi defines a mapping
of PROP into PROP , which can be given by recursion (on ϕ).

Definition 1.2.5 ϕ[ψ/pi] =
{
ϕ if ϕ atomic and ϕ �= pi
ψ if ϕ = pi

(ϕ1�ϕ2)[ψ/pi] = ϕ1[ψ/pi]�ϕ2[ψ/pi]
(¬ϕ)[ψ/pi] = ¬ϕ[ψ/pi].

The following theorem spells out the basic property of the substitution of
equivalent propositions.

Theorem 1.2.6 (Substitution Theorem) If |= ϕ1 ↔ ϕ2, then
|= ψ[ϕ1/p]↔ ψ[ϕ2/p], where p is an atom.

The substitution theorem is actually a consequence of a slightly stronger

Lemma 1.2.7 [[ϕ1 ↔ ϕ2]]v ≤ [[ψ[ϕ1/p]↔ ψ[ϕ2/p]]]v and
|= (ϕ1 ↔ ϕ2)→ (ψ[ϕ1/p]↔ ψ[ϕ2/p])

Proof. Induction on ψ. We only have to consider [[ϕ1 ↔ ϕ2]]v = 1 (why?).

– ψ atomic. If ψ = p, then ψ[ϕi/p] = ϕi and the result follows immediately.
If ψ �= p, then ψ[ϕi/p] = ψ, and [[ψ[ϕ1/p]↔ ψ[ϕ2/p]]]v = [[ψ ↔ ψ]]v = 1.

– ψ = ψ1�ψ2. Induction hypothesis: [[ψi[ϕ1/p]]]v = [[ψi[ϕ2/p]]]v. Now the
value of [[(ψ1�ψ2)[ϕi/p]]]v = [[ψ1[ϕi/p]�ψ2[ϕi/p]]]v is uniquely determined
by its parts [[ψj [ϕi/p]]]v, hence [[(ψ1�ψ2)[ϕ1/p]]]v = [[(ψ1�ψ2)[ϕ2/p]]]v.

– ψ = ¬ψ1. Left to the reader.
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The proof of the second part essentially uses the fact that |= ϕ → ψ iff
[[ϕ]]v ≤ [[ψ]]v for all v(cf. Exercise 6). �

The proof of the substitution theorem now immediately follows . �
The substitution theorem says in plain english that parts may be replaced

by equivalent parts.
There are various techniques for testing tautologies. One such (rather slow)

technique uses truth tables. We give one example:

(ϕ→ ψ) ↔ (¬ψ → ¬ϕ)

ϕ ψ ¬ϕ ¬ψ ϕ→ ψ ¬ψ → ¬ϕ (ϕ→ ψ)↔ (¬ψ → ¬ϕ)
0 0 1 1 1 1 1
0 1 1 0 1 1 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1

The last column consists of 1’s only. Since, by lemma 1.2.3 only the values
of ϕ and ψ are relevant, we had to check 22 cases. If there are n (atomic)
parts we need 2n lines.

One can compress the above table a bit, by writing it in the following form:

(ϕ → ψ) ↔ (¬ψ → ¬ϕ)
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 1 1 0 0
1 1 1 1 0 1 0

Let us make one more remark about the role of the two 0-ary connectives,
⊥ and 
. Clearly, |= 
 ↔ (⊥→⊥), so we can define 
 from ⊥. On the other
hand, we cannot define ⊥ from 
 and →; we note that from 
 we can never
get anything but a proposition equivalent to 
 by using ∧,∨,→, but from ⊥
we can generate ⊥ and 
 by means of applying ∧,∨,→.

Exercises

1. Check by the truth table method which of the following propositions are
tautologies

(a) (¬ϕ ∨ ψ) ↔ (ψ → ϕ)
(b) ϕ→ ((ψ → σ) → ((ϕ→ ψ)→ (ϕ→ σ)))
(c) (ϕ→ ¬ϕ) ↔ ¬ϕ
(d) ¬(ϕ→ ¬ϕ)
(e) (ϕ→ (ψ → σ)) ↔ ((ϕ ∧ ψ)→ σ)
(f) ϕ ∨ ¬ϕ (principle of the excluded third)
(g) ⊥↔ (ϕ ∧ ¬ϕ)
(h) ⊥→ ϕ (ex falso sequitur quodlibet)
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2. Show (a) ϕ |= ϕ;
(b) ϕ |= ψ and ψ |= σ ⇒ ϕ |= σ;
(c) |= ϕ→ ψ ⇔ ϕ |= ψ.

3. Determine ϕ[¬p0 → p3/p0] for ϕ = p1 ∧ p0 → (p0 → p3);
ϕ = (p3 ↔ p0) ∨ (p2 → ¬p0).

4. Show that there are 2ℵ0 valuations.

5. Show [[ϕ ∧ ψ]]v = [[ϕ]]v · [[ψ]]v,
[[ϕ ∨ ψ]]v = [[ϕ]]v + [[ψ]]v − [[ϕ]]v · [[ψ]]v,
[[ϕ→ ψ]]v = 1− [[ϕ]]v + [[ϕ]]v · [[ψ]]v,
[[ϕ↔ ψ]]v = 1− |[[ϕ]]v − [[ψ]]v|.

6. Show [[ϕ→ ψ]]v = 1 ⇔ [[ϕ]]v ≤ [[ψ]]v.

1.3 Some Properties of Propositional logic

On the basis of the previous sections we can already prove a lot of theorems
about propositional logic. One of the earliest discoveries in modern proposi-
tional logic was its similarity with algebras.
Following Boole, an extensive study of the algebraic properties was made by a
number of logicians. The purely algebraic aspects have since then been studied
in the so-called Boolean Algebra.

We will just mention a few of those algebraic laws.

Theorem 1.3.1 The following propositions are tautologies:

(ϕ ∨ ψ) ∨ σ ↔ ϕ ∨ (ψ ∨ σ) (ϕ ∧ ψ) ∧ σ ↔ ϕ ∧ (ψ ∧ σ)
associativity

ϕ ∨ ψ ↔ ψ ∨ ϕ ϕ ∧ ψ ↔ ψ ∧ ϕ
commutativity

ϕ ∨ (ψ ∧ σ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ σ) ϕ ∧ (ψ ∨ σ)↔ (ϕ ∧ ψ) ∨ (ϕ ∧ σ)
distributivity

¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ
De Morgan’s laws

ϕ ∨ ϕ↔ ϕ ϕ ∧ ϕ↔ ϕ

idempotency

¬¬ϕ↔ ϕ

double negation law
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Proof. Check the truth tables or do a little computation. E.g. De Morgan’s
law: [[¬(ϕ ∨ ψ)]] = 1 ⇔ [[ϕ ∨ ψ]] = 0⇔ [[ϕ]] = [[ψ]] = 0 ⇔ [[¬ϕ]] = [[¬ψ]] = 1⇔
[[¬ϕ ∧ ¬ψ]] = 1.
So [[¬(ϕ ∨ ψ)]] = [[¬ϕ ∧ ¬ψ]] for all valuations, i.e |= ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ.
The remaining tautologies are left to the reader. �

In order to apply the previous theorem in “logical calculations” we need a
few more equivalences. This is demonstrated in the simple equivalence
|= ϕ ∧ (ϕ ∨ ψ)↔ ϕ (exercise for the reader). For, by the distributive law
|= ϕ∧ (ϕ∨ψ)↔ (ϕ∧ϕ)∨ (ϕ∧ψ) and |= (ϕ∧ϕ)∨ (ϕ∧ψ)↔ ϕ∨ (ϕ∧ψ), by
idempotency and the substitution theorem. So |= ϕ ∧ (ϕ ∨ ψ) ↔ ϕ ∨ (ϕ ∧ ψ).
Another application of the distributive law will bring us back to start, so just
applying the above laws will not eliminate ψ!

We list therefore a few more convenient properties.

Lemma 1.3.2 If |= ϕ→ ψ, then |= ϕ ∧ ψ ↔ ϕ and
|= ϕ ∨ ψ ↔ ψ

Proof. By Exercise 6 of section 1.2 |= ϕ→ ψ implies [[ϕ]]v ≤ [[ψ]]v for all v. So
[[ϕ ∧ ψ]]v = min([[ϕ]]v , [[ψ]]v) = [[ϕ]]v and [[ϕ ∨ ψ]]v = max([[ϕ]]v , [[ψ]]v) = [[ψ]]v
for all v. �

Lemma 1.3.3 (a) |= ϕ ⇒ |= ϕ ∧ ψ ↔ ψ
(b) |= ϕ ⇒ |= ¬ϕ ∨ ψ ↔ ψ
(c) |= ⊥ ∨ ψ ↔ ψ
(d) |= 
 ∧ ψ ↔ ψ

Proof. Left to the reader. �

The following theorem establishes some equivalences involving various con-
nectives. It tells us that we can “define” up to logical equivalence all connec-
tives in terms of {∨,¬}, or {→,¬}, or {∧,¬}, or {→,⊥}.
That is, we can find e.g. a proposition involving only ∨ and ¬, which is equiv-
alent to ϕ↔ ψ, etc.

Theorem 1.3.4 (a) |= (ϕ↔ ψ)↔ (ϕ→ ψ) ∧ (ψ → ϕ),
(b) |= (ϕ→ ψ)↔ (¬ϕ ∨ ψ),
(c) |= ϕ ∨ ψ ↔ (¬ϕ→ ψ),
(d) |= ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ),
(e) |= ϕ ∧ ψ ↔ ¬(¬ϕ ∨ ¬ψ),
(f) |= ¬ϕ↔ (ϕ→⊥),
(g) |= ⊥↔ ϕ ∧ ¬ϕ.
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Proof. Compute the truth values of the left-hand and right-hand sides. �
We now have enough material to handle logic as if it were algebra. For

convenience we write ϕ ≈ ψ for |= ϕ↔ ψ.

Lemma 1.3.5 ≈ is an equivalence relation on PROP ,i.e.
ϕ ≈ ϕ (reflexitivity),
ϕ ≈ ψ ⇒ ψ ≈ ϕ (symmetry),
ϕ ≈ ψ and ψ ≈ σ ⇒ ϕ ≈ σ (transitivity).

Proof. Use |= ϕ↔ ψ iff [[ϕ]]v = [[ψ]]v for all v. �
We give some examples of algebraic computations, which establish a chain

of equivalences.

1. 1. |= [ϕ→ (ψ → σ)] ↔ [ϕ ∧ ψ → σ],
ϕ→ (ψ → σ) ≈ ¬ϕ ∨ (ψ → σ), (1.3.4(b))
¬ϕ ∨ (ψ → σ) ≈ ¬ϕ ∨ (¬ψ ∨ σ), ( 1.3.4(b) and subst. thm.)
¬ϕ ∨ (¬ψ ∨ σ) ≈ (¬ϕ ∨ ¬ψ) ∨ σ, (ass.)
(¬ϕ ∨ ¬ψ) ∨ σ ≈ ¬(ϕ ∧ ψ) ∨ σ, (De Morgan and subst. thm.)
¬(ϕ ∧ ψ) ∨ σ ≈ (ϕ ∧ ψ)→ σ, ( 1.3.4(b))

So ϕ→ (ψ → σ) ≈ (ϕ ∧ ψ)→ σ.
We now leave out the references to the facts used, and make one long
string. We just calculate till we reach a tautology.

2. 2. |= (ϕ→ ψ)↔ (¬ψ → ¬ϕ),
¬ψ → ¬ϕ ≈ ¬¬ψ ∨ ¬ϕ ≈ ψ ∨ ¬ϕ ≈ ¬ϕ ∨ ψ ≈ ϕ→ ψ

3. 3. |= ϕ→ (ψ → ϕ),
ϕ→ (ψ → ϕ) ≈ ¬ϕ ∨ (¬ψ ∨ ϕ) ≈ (¬ϕ ∨ ϕ) ∨ ¬ψ.

We have seen that ∨ and ∧ are associative, therefore we adopt the convention,
also used in algebra, to delete brackets in iterated disjunctions and conjunc-
tions; i.e. we write ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4, etc. This is alright, since no matter
how we restore (syntactically correctly) the brackets, the resulting formula is
determined uniquely up to equivalence.

Have we introduced all connectives so far? Obviously not. We can eas-
ily invent new ones. Here is a famous one, introduced by Sheffer: ϕ|ψ stands
for “not both ϕ and ψ”. More precise: ϕ|ψ is given by the following truth table

Sheffer stroke
| 0 1
0 1 1
1 1 0

Let us say that an n-ary logical connective $ is defined by its truth table,
or by its valuation function, if [[$(p1, . . . , pn)]] = f([[p1]], . . . , [[pn]]) for some
function f .
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Although we can apparently introduce many new connectives in this way,
there are no surprises in stock for us, as all of those connectives are definable
in terms of ∨ and ¬:

Theorem 1.3.6 For each n-ary connective $ defined by its valuation func-
tion, there is a proposition τ , containing only p1, . . . , pn, ∨ and ¬, such that
|= τ ↔ $(p1, . . . , pn).

Proof. Induction on n. For n = 1 there are 4 possible connectives with truth
tables

$1

0 0
1 0

$2

0 1
1 1

$3

0 0
1 1

$4

0 1
1 0

One easily checks that the propositions ¬(p∨¬p), p∨¬p, p and ¬p will meet
the requirements.

Suppose that for all n-ary connectives propositions have been found.
Consider $(p1, . . . , pn, pn+1) with truth table:

p1 p2 . . . pn pn+1 $(p1, . . . , pn, pn+1)
0 0 0 0 i1
. . 0 1 i2
. 0 1 . .
. 1 1 . .
0 . . . .
. 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 . . .
. . . . .
. . . . .
. 0 . . .
. 1 0 . .
. . 0 . .
1 . 1 0 .
. . 1 1 i2n+1

where ik ≤ 1.

We consider two auxiliary connectives $1 and $2 defined by
$1(p2, . . . , pn+1) = $(⊥, p2, . . . , pn+1) and
$2(p2, . . . , pn+1) = $(
, p2, . . . , pn+1), where 
 = ¬ ⊥

(as given by the upper and lower half of the above table). By the induction
hypothesis there are propositions σ1 and σ2, containing only p2, . . . , pn+1, ∨
and ¬ so that |= $i(p2, . . . , pn+1)↔ σi.
From those two propositions we can construct the proposition τ :
τ := (p1 → σ2) ∧ (¬p1 → σ1).
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Claim |= $(p1, . . . , pn+1)↔ τ .
If [[p1]]v = 0, then [[p1 → σ2]]v = 1, so [[τ ]]v = [[¬p1 → σ1]]v = [[σ1]]v =

[[$1(p2, . . . , pn+1)]]v = [[$(p1, p2, . . . , pn+1)]]v, using [[p1]]v = 0 = [[ ⊥]]v.
The case [[p1]]v = 1 is similar.

Now expressing → and ∧ in terms of ∨ and ¬ (1.3.4), we have [[τ ′]] =
[[$(p1, . . . , pn+1)]] for all valuations (another use of lemma 1.3.5), where τ ′ ≈ τ
and τ ′ contains only the connectives ∨ and ¬. �

For another solution see Exercise 7.

The above theorem and theorem 1.3.4 are pragmatic justifications for our
choice of the truth table for→: we get an extremely elegant and useful theory.
Theorem 1.3.6 is usually expressed by saying that ∨ and ¬ form a function-
ally complete set of connectives. Likewise ∧, ¬ and →, ¬ and ⊥, → form
functionally complete sets.

In analogy to the
∑

and
∏

from algebra we introduce finite disjunctions
and conjunctions:

Definition 1.3.7
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∧∧

i≤0

ϕi = ϕ0

∧∧

i≤n+1

ϕi =
∧∧

i≤n
ϕi ∧ ϕn+1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨∨

i≤0

ϕi = ϕ0

∨∨

i≤n+1

ϕi =
∨∨

i≤n
ϕi ∨ ϕn+1

Definition 1.3.8 If ϕ =
∧∧

i≤n

∨∨

j≤mi

ϕij , where ϕij is atomic or the negation of

an atom, then ϕ is a conjunctive normal form. If ϕ =
∨∨

i≤n

∧∧

j≤mi

ϕij , where ϕij

is atomic or the negation of an atom, then ϕ is a disjunctive normal form.

The normal forms are analogous to the well-known normal forms in alge-
bra: ax2 + byx is “normal”, whereas x(ax+ by) is not. One can obtain normal
forms by simply “multiplying”, i.e. repeated application of distributive laws.
In algebra there is only one “normal form”; in logic there is a certain duality
between ∧ and ∨, so that we have two normal form theorems.

Theorem 1.3.9 For each ϕ there are conjunctive normal forms ϕ∧ and dis-
junctive normal forms ϕ∨, such that |= ϕ↔ ϕ∧ and |= ϕ↔ ϕ∨.

Proof. First eliminate all connectives other than ⊥, ∧, ∨ and ¬. Then prove
the theorem by induction on the resulting proposition in the restricted lan-
guage of ⊥,∧, ∨ and ¬. In fact, ⊥ plays no role in this setting; it could just
as well be ignored.

(a) ϕ is atomic. Then ϕ∧ = ϕ∨ = ϕ.
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(b) ϕ = ψ ∧ σ. Then ϕ∧ = ψ∧ ∧ σ∧. In order to obtain a disjunctive nor-
mal form we consider ψ∨ =

∨∨
ψi, σ∨ =

∨∨
σj , where the ψi’s and σj ’s are

conjunctions of atoms and negations of atoms.
Now ϕ = ψ ∧ σ ≈ ψ∨ ∧ σ∨ ≈

∨∨

i,j

(ψi ∧ σj).

The last proposition is in normal form, so we equate ϕ∨ to it.
(c) ϕ = ψ ∨ σ. Similar to (b).
(d) ϕ = ¬ψ. By induction hypothesis ψ has normal forms ψ∨ and ψ∧.

¬ψ ≈ ¬ψ∧ ≈ ¬∨∨ ∧∧
ψij ≈

∧∧ ∨∨ ¬ψij ≈
∧∧ ∨∨

ψ′
ij , where ψ′

ij = ¬ψij if
ψij is atomic, and ψij = ¬ψ′

ij if ψij is the negation of an atom. (Observe
¬¬ψij ≈ ψij). Clearly

∧∧ ∨∨
ψ′
ij is a conjunctive normal form for ϕ. The dis-

junctive normal form is left to the reader.
For another proof of the normal form theorems see Exercise 7. �
When looking at the algebra of logic in theorem 1.3.1, we saw that ∨ and ∧

behaved in a very similar way, to the extent that the same laws hold for both.
We will make this ‘duality’ precise. For this purpose we consider a language
with only the connectives ∨, ∧ and ¬.

Definition 1.3.10 Define an auxiliary mapping ∗ : PROP → PROP recur-
sively by ϕ∗ = ¬ϕ if ϕ is atomic,

(ϕ ∧ ψ)∗ = ϕ∗ ∨ ψ∗,
(ϕ ∨ ψ)∗ = ϕ∗ ∧ ψ∗,
(¬ϕ)∗ = ¬ϕ∗.

Example. ((p0 ∧ ¬p1) ∨ p2)∗ = (p0 ∧ ¬p1)∗ ∧ p∗2 = (p∗0 ∨ (¬p1)∗) ∧ ¬p2 =
(¬p0 ∨ ¬p∗1) ∧ ¬p2 = (¬p0 ∨ ¬¬p1) ∧ ¬p2 ≈ (¬p0 ∨ p1) ∧ ¬p2.

Note that the effect of the ∗-translation boils down to taking the negation
and applying De Morgan’s laws.

Lemma 1.3.11 [[ϕ∗]] = [[¬ϕ]]

Proof. Induction on ϕ. For atomic ϕ [[ϕ∗]] = [[¬ϕ]].
[[(ϕ ∧ ψ)∗]] = [[ϕ∗ ∨ ψ∗]] = [[¬ϕ ∨ ¬ψ]]) = [[¬(ϕ ∧ ψ)]]).
[[(ϕ ∨ ψ)∗]] and [[(¬ϕ)∗]] are left to the reader. �

Corollary 1.3.12 |= ϕ∗ ↔ ¬ϕ.

Proof. Immediate from Lemma 1.3.11. �
So far this is not the proper duality we have been looking for. We really

just want to interchange ∧ and ∨. So we introduce a new translation.
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Definition 1.3.13 The duality mapping d : PROP → PROP is recursively
defined by ϕd = ϕ for ϕ atomic,

(ϕ ∧ ψ)d = ϕd ∨ ψd,
(ϕ ∨ ψ)d = ϕd ∧ ψd,
(¬ϕ)d = ¬ϕd.

Theorem 1.3.14 (Duality Theorem) |= ϕ↔ ψ ⇔ |= ϕd ↔ ψd.

Proof. We use the ∗ -translation as an intermediate step. Let us introduce the
notion of simultaneous substitution to simplify the proof:
σ[τ0, . . . , τn/p0, . . . , pn] is obtained by substituting τi for pi for all i ≤ n simul-
taneously (see Exercise 15). Observe that ϕ∗ = ϕd[¬p0, . . . ,¬pn/p0, . . . , pn],
so ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn] = ϕd[¬¬p0, . . . ,¬¬pn/p0, . . . , pn], where the
atoms of ϕ occur among the p0, . . . , pn.

By the Substitution Theorem |= ϕd ↔ ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn]. The
same equivalence holds for ψ.

By Corollary 1.3.12 |= ϕ∗ ↔ ¬ϕ, |= ψ∗ ↔ ¬ψ. Since |= ϕ ↔ ψ, also |=
¬ϕ↔ ¬ψ. Hence |= ϕ∗ ↔ ψ∗, and therefore |= ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn]↔
ψ∗[¬p0, . . . ,¬pn/p0, . . . , pn].

Using the above relation between ϕd and ϕ∗ we now obtain |= ϕd ↔ ψd.
The converse follows immediately, as ϕdd = ϕ. �

The duality Theorem gives us one identity for free for each identity we
establish.

Exercises

1. Show by ‘algebraic’ means
|= (ϕ→ ψ) ↔ (¬ψ → ¬ϕ), Contraposition,
|= (ϕ→ ψ) ∧ (ψ → σ) → (ϕ→ σ), transitivity of →,
|= (ϕ→ (ψ ∧ ¬ψ)) → ¬ϕ,
|= (ϕ→ ¬ϕ) → ¬ϕ,
|= ¬(ϕ ∧ ¬ϕ),
|= ϕ→ (ψ → ϕ ∧ ψ),
|= ((ϕ→ ψ)→ ϕ) → ϕ. Peirce’s Law .

2. Simplify the following propositions (i.e. find a simpler equivalent proposi-
tion).
(a) (ϕ→ ψ) ∧ ϕ, (b) (ϕ→ ψ) ∨ ¬ϕ, (c) (ϕ→ ψ) → ψ,
(d) ϕ→ (ϕ ∧ ψ), (e) (ϕ ∧ ψ) ∨ ϕ, (f)(ϕ→ ψ)→ ϕ.

3. Show that {¬ } is not a functionally complete set of connectives. Idem
for {→,∨} (hint: show that each formula ϕ with only → and ∨ there is a
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valuation v such that [[ϕ]]v = 1 ).

4. Show that the Sheffer stroke, |, forms a functionally complete set (hint:
|= ¬ϕ↔ ϕ | ϕ).

5. Show that the connective ↓ (ϕ nor ψ), with valuation function [[ϕ↓ψ]] = 1
iff [[ϕ]] = [[ψ]] = 0, forms a functionally complete set.

6. Show that | and ↓ are the only binary connectives $ such that {$} is func-
tionally complete.

7. The functional completeness of {∨,¬} can be shown in an alternative way.
Let $ be an n-ary connective with valuation function [[$(p1, . . . , pn)]] =
f([[p1]], . . . , [[pn]]). We want a proposition τ (in ∨,¬) such that [[τ ]] =
f([[p1]], . . . , [[pn]]).

Suppose f([[p1]], . . . , [[pn]]) = 1 at least once. Consider all tuples
([[p1]], . . . , [[pn]]) with f([[p1]], . . . , [[pn]]) = 1 and form corresponding con-
junctions p̄1 ∧ p̄2 ∧ . . . ∧ p̄n such that p̄i = pi if [[pi]] = 1, p̄i = ¬pi if
[[pi]] = 0 . Then show |= (p̄1

1 ∧ p̄1
2 ∧ . . . ∧ p̄1

n) ∨ . . . ∨ (p̄k1 ∧ p̄k2 ∧ . . . ∧ p̄kn)↔
$(p1, . . . , pn), where the disjunction is taken over all n-tuples such that
f([[p1]], . . . , [[pn]]) = 1.

Alternatively, we can consider the tuples for which f([[p1]], . . . , [[pn]]) =
0. Carry out the details. Note that this proof of the functional complete-
ness at the same time proves the Normal Form Theorems.

8. Let the ternary connective $ be defined by [[$(ϕ1, ϕ2, ϕ3)]] = 1 ⇔
[[ϕ1]] + [[ϕ2]] + [[ϕ3]] ≥ 2 (the majority connective). Express $ in terms
of ∨ and ¬.

9. Let the binary connective # be defined by
# 0 1
0 0 1
1 1 0

Express # in terms of ∨ and ¬.

10. Determine conjunctive and disjunctive normal forms for ¬(ϕ↔ ψ),
((ϕ→ ψ)→ ψ) → ψ, (ϕ→ (ϕ ∧ ¬ψ)) ∧ (ψ → (ψ ∧ ¬ϕ)).

11. Give a criterion for a conjunctive normal form to be a tautology.

12. Prove
∧∧

i≤n
ϕi ∨

∧∧

j≤m
ψj ≈

∧∧

i ≤ n
j ≤ m

(ϕi ∨ ψj) and
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∨∨

i≤n
ϕi ∧

∨∨

j≤m
ψj ≈

∨∨

i ≤ n
j ≤ m

(ϕi ∧ ψj)

13. The set of all valuations, thought of as the set of all 0 − 1−sequences,
forms a topological space, the so-called Cantor space C. The basic open
sets are finite unions of sets of the form {v | [[pi1 ]]v = . . . = [[pin ]]v = 1 and
[[pj1 ]]v = . . . = [[pjm ]]v = 0}, ik �= jp for k ≤ n; p ≤ m.

Define a function [[ ]] : PROP → P(C) (subsets of Cantor space) by:
[[ϕ]] = {v | [[ϕ]]v = 1}.

(a) Show that [[ϕ]] is a basic open set (which is also closed),
(b) [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]; [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]; [[¬ϕ]] = [[ϕ]]∧,
(c) |= ϕ⇔ [[ϕ]] = C; [[⊥]] = ∅; |= ϕ→ ψ ⇔ [[ϕ]] ⊆ [[ψ]].

Extend the mapping to sets of propositions Γ by
[[Γ ]] = {v | [[ϕ]]v = 1 for all ϕ ∈ Γ}. Note that [[Γ ]] is closed.

(d) Γ |= ϕ⇔ [[Γ ]] ⊆ [[ϕ]].

14. We can view the relation |= ϕ→ ψ as a kind of ordering. Put ϕ � ψ :=
|= ϕ→ ψ and �|= ψ → ϕ.
(i) for each ϕ, ψ such that ϕ � ψ, find σ with ϕ � σ � ψ,
(ii) find ϕ1, ϕ2, ϕ3, . . . such that ϕ1 � ϕ2 � ϕ3 � ϕ4 � . . .,
(iii) show that for each ϕ, ψ with ϕ and ψ incomparable, there is a least
σ with ϕ, ψ � σ.

15. Give a recursive definition of the simultaneous substitution
ϕ[ψ, . . . , ψn/p1, . . . , pn] and formulate and prove the appropriate analogue
of the Substitution Theorem (theorem 1.2.6).
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1.4 Natural Deduction

In the preceding sections we have adopted the view that propositional logic
is based on truth tables, i.e. we have looked at logic from a semantical point
of view. This, however, is not the only possible point of view. If one thinks
of logic as a codification of (exact) reasoning, then it should stay close to the
practice of inference making, instead of basing itself on the notion of truth.
We will now explore the non-semantic approach, by setting up a system for
deriving conclusions from premises. Although this approach is of a formal na-
ture, i.e. it abstains from interpreting the statements and rules, it is advisable
to keep some interpretation in mind. We are going to introduce a number of
derivation rules, which are, in a way, the atomic steps in a derivation. These
derivations rules are designed (by Gentzen), to render the intuitive meaning
of the connectives as faithfully as possible.

There is one minor problem, which at the same time is a major advantage,
namely: our rules express the constructive meaning of the connectives. This
advantage will not be exploited now, but it is good to keep it in mind when
dealing with logic (it is exploited in intuitionistic logic).

One small example: the principle of the excluded third tells us that |=
ϕ ∨ ¬ϕ, i.e., assuming that ϕ is a definite mathematical statement, either
it or its negation must be true. Now consider some unsolved problem, e.g.
Riemann’s Hypothesis, call it R. Then either R is true, or ¬R is true. However,
we do not know which of the two is true, so the constructive content of R∨¬R
is nil. Constructively, one would require a method to find out which of the
alternatives holds.

The propositional connective which has a strikingly different meaning in a
constructive and in a non-constructive approach is the disjunction. Therefore
we restrict our language for the moment to the connectives ∧,→ and ⊥. This
is no real restriction as {→,⊥} is a functionally complete set.

Our derivations consist of very simple steps, such as “from ϕ and ϕ → ψ
conclude ψ”, written as:

ϕ ϕ→ ψ
ψ

The propositions above the line are premises , and the one below the line
is the conclusion . The above example eliminated the connective →. We can
also introduce connectives. The derivation rules for ∧ and → are separated
into
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INTRODUCTION RULES ELIMINATION RULES

(∧I) ϕ ψ ∧I
ϕ ∧ ψ

(∧E)
ϕ ∧ ψ ∧E
ϕ

ϕ ∧ ψ ∧E
ψ

(→ I)

[ϕ]

...

ψ → I
ϕ→ ψ

(→ E)
ϕ ϕ→ ψ → E

ψ

We have two rules for ⊥, both of which eliminate ⊥, but introduce a for-
mula.

(⊥)
⊥ ⊥
ϕ

(RAA)

[¬ϕ]

...

⊥
RAA

ϕ

As usual ‘¬ϕ’ is used here as an abbreviation for ‘ϕ→⊥’.
The rules for ∧ are evident: if we have ϕ and ψ we may conclude ϕ ∧ ψ,

and if we have ϕ ∧ ψ we may conclude ϕ (or ψ). The introduction rule for
implication has a different form. It states that, if we can derive ψ from ϕ
(as a hypothesis), then we may conclude ϕ→ ψ (without the hypothesis ϕ).
This agrees with the intuitive meaning of implication: ϕ → ψ means “ψ fol-
lows from ϕ”. We have written the rule (→ I) in the above form to suggest a
derivation. The notation will become clearer after we have defined derivations.
For the time being we will write the premises of a rule in the order that suits
us best, later we will become more fastidious

The rule (→ E) is also evident on the meaning of implication. If ϕ is given
and we know that ψ follows from ϕ, then we have also ψ. The falsum rule, (⊥),
expresses that from an absurdity we can derive everything (ex falso sequitur
quodlibet), and the reductio ad absurdum rule , (RAA), is a formulation of
the principle of proof by contradiction : if one derives a contradiction from
the hypothesis ¬ϕ, then one has a derivation of ϕ (without the hypothesis
¬ϕ, of course). In both (→ I) and (RAA) hypotheses disappear, this is in-
dicated by the striking out of the hypothesis. We say that such a hypothesis
is cancelled. Let us digress for a moment on the cancellation of hypotheses.
We first consider implication introduction. There is a well-known theorem in
plane geometry which states that “if a triangle is isosceles, then the angles
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opposite the equal sides are equal to one another” (Euclid’s Elements, Book I,
proposition 5). This is shown as follows: we suppose that we have an isosceles
triangle and then, in a number of steps, we deduce that the angles at the
base are equal. Thence we conclude that the angles at the base are equal if the
triangle is isosceles.

Query 1: do we still need the hypothesis that the triangle is isosceles? Of
course not! We have, so to speak, incorporated this condition in the state-
ment itself. It is precisely the role of conditional statements, such as “if it
rains I will use my umbrella”, to get rid of the obligation to require (or verify)
the condition. In abstracto: if we can deduce ψ using the hypothesis ϕ, then
ϕ → ψ is the case without the hypothesis ϕ (there may be other hypotheses,
of course).

Query 2: is it forbidden to maintain the hypothesis? Answer: no, but it
clearly is superfluous. As a matter of fact we usually experience superfluous
conditions as confusing or even misleading, but that is rather a matter of the
psychology of problem solving than of formal logic. Usually we want the best
possible result, and it is intuitively clear that the more hypotheses we state
for a theorem, the weaker our result is. Therefore we will as a rule cancel as
many hypotheses as possible.

In the case of reductio ad absurdum we also deal with cancellation of hy-
potheses. Again, let us consider an example.

In analysis we introduce the notion of a convergent sequence (an) and sub-
sequently the notion “a is a limit of (an)”. The next step is to prove that for
each convergent sequence there is a unique limit; we are interested in the part
of the proof that shows that there is at most one limit. Such a proof may run
as follows: we suppose that there are two distinct limits a and a′, and from
this hypothesis, a �= a′, we derive a contradiction. Conclusion: a = a′. In this
case we of course drop the hypothesis a �= a′, this time it is not a case of being
superfluous, but of being in conflict! So, both in the case (→ I) and of (RAA),
it is sound practice to cancel all occurrences of the hypothesis concerned.

In order to master the technique of Natural Deduction, and to get familiar
with the technique of cancellation, one cannot do better than to look at a few
concrete cases. So before we go on to the notion of derivation we consider a
few examples.

I

[ϕ ∧ ψ]1 ∧E
ψ

[ϕ ∧ ψ]1 ∧E
ϕ ∧I

ψ ∧ ϕ → I1
ϕ ∧ ψ → ψ ∧ ϕ

II

[ϕ]2 [ϕ→ ⊥]1 → E⊥ → I1
(ϕ→ ⊥)→ ⊥ → I2

ϕ→ ((ϕ→ ⊥)→ ⊥)
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III

[ϕ ∧ ψ]1 ∧E
ψ

[ϕ ∧ ψ]1 ∧E
ϕ [ϕ→ (ψ → σ)]2 → E

ψ → σ → E
σ → I1

ϕ ∧ ψ → σ → I2
(ϕ→ (ψ → σ)) → (ϕ ∧ ψ → σ)

If we use the customary abbreviation ‘¬ϕ’ for ‘ϕ →⊥’, we can bring some
derivations into a more convenient form. (Recall that ¬ϕ and ϕ→⊥, as given
in 1.2, are semantically equivalent). We rewrite derivation II using the abbre-
viation:

II′

[ϕ]2 [¬ϕ]1 → E⊥ → I1¬¬ϕ → I2
ϕ→ ¬¬ϕ

In the following example we use the negation sign and also the bi-implication;
ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ).

IV

[ϕ]1

[ϕ ↔ ¬ϕ]3

∧E
ϕ → ¬ϕ

→ E
¬ϕ [ϕ]1

→ E
⊥

→ I1
¬ϕ

[ϕ ↔ ¬ϕ]3

∧E
¬ϕ → ϕ

→ E
ϕ

[ϕ]2

[ϕ ↔ ¬ϕ]3

∧E
ϕ → ¬ϕ

→ E
¬ϕ [ϕ]2

→ E
⊥

→ I2
¬ϕ

→ E
⊥

→ I3
¬(ϕ ↔ ¬ϕ)

The examples show us that derivations have the form of trees. We show
the trees below:

I

�

�

�

�

�

�

�
�

�
�

III

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�
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II

�

�

�

� �

�
�

�
�

IV

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

One can just as well present derivations as (linear) strings of propositions: we
will stick, however, to the tree form, the idea being that what comes naturally
in tree form should not be put in a linear straight-jacket.

We now shave to define the notion of derivation in general. We will use an
inductive definition to produce trees.

Notation

if
D
ϕ

,
D′

ϕ′ are derivations with conclusions ϕ,ϕ′, then
D
ϕ
ψ

,
D D′

ϕ ϕ′

ψ
are derivations obtained by applying a derivation rule to ϕ (and ϕ and ϕ′).

The cancellation of a hypothesis is indicated as follows: if
ψ
D
ϕ

is a derivation

with hypothesis ψ, then

[ψ]
D
ϕ
σ

is a derivation with ψ cancelled.

With respect to the cancellation of hypotheses, we note that one does
not necessarily cancel all occurrences of such a proposition ψ. This clearly
is justified, as one feels that adding hypotheses does not make a proposition
underivable (irrelevant information may always be added). It is a matter of
prudence, however, to cancel as much as possible. Why carry more hypotheses
than necessary?

Furthermore one may apply (→ I) if there is no hypothesis available for

cancellation e.g.
ϕ → I

ψ → ϕ
is a correct derivation, using just (→ I). To sum

it up: given a derivation tree of ψ (or ⊥), we obtain a derivation tree of ϕ→ ψ
(or ϕ) at the bottom of the tree and striking out some (or all) occurrences, if
any, of ϕ (or ¬ϕ) on top of a tree.

A few words on the practical use of natural deduction: if you want to give a
derivation for a proposition it is advisable to devise some kind of strategy, just



1.4 Natural Deduction 35

like in a game. Suppose that you want to show [ϕ∧ψ → σ] → [ϕ→ (ψ → σ)]
(Example III), then (since the proposition is an implicational formula) the
rule (→ I) suggests itself. So try to derive ϕ→ (ψ → σ) from ϕ ∧ ψ → σ.

Now we know where to start and where to go to. To make use of ϕ∧ψ → σ
we want ϕ∧ψ (for (→ E)), and to get ϕ→ (ψ → σ) we want to derive ψ → σ
from ϕ. So we may add ϕ as a hypothesis and look for a derivation of ψ → σ.
Again, this asks for a derivation of σ from ψ, so add ψ as a hypothesis and
look for a derivation of σ. By now we have the following hypotheses available:
ϕ ∧ ψ → σ, ϕ and ψ. Keeping in mind that we want to eliminate ϕ ∧ ψ it is
evident what we should do. The derivation III shows in detail how to carry
out the derivation. After making a number of derivations one gets the practi-
cal conviction that one should first take propositions apart from the bottom
upwards, and then construct the required propositions by putting together
the parts in a suitable way. This practical conviction is confirmed by the Nor-
malization Theorem, to which we will return later. There is a particular point
which tends to confuse novices:

[ϕ]
.
.
.
⊥
¬ϕ → I

and

[¬ϕ]
.
.
.
⊥
ϕ

RAA

look very much alike. Are they not both cases of Reductio ad absurdum? As a
matter of fact the leftmost derivation tells us (informally) that the assumption
of ϕ leads to a contradiction, so ϕ cannot be the case. This is in our termi-
nology the meaning of “not ϕ”. The rightmost derivation tells us that the
assumption of ¬ϕ leads to a contradiction, hence (by the same reasoning) ¬ϕ
cannot be the case. So, on account of the meaning of negation, we only would
get ¬¬ϕ. It is by no means clear that ¬¬ϕ is equivalent to ϕ (indeed, this
is denied by the intuitionists), so it is an extra property of our logic. (This
is confirmed in a technical sense: ¬¬ϕ → ϕ is not derivable in the system
without RAA.

We now return to our theoretical notions.

Definition 1.4.1 The set of derivations is the smallest set X such that
(1) The one element tree ϕ belongs to X for all ϕ ∈PROP.

(2∧) If
D
ϕ

,
D′

ϕ′ ∈ X, then

D
ϕ

D′

ϕ′

ϕ ∧ ϕ′
∈ X.
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If
D

ϕ ∧ ψ ∈ X, then

D
ϕ ∧ ψ
ϕ

,

D
ϕ ∧ ψ
ψ

∈ X.

(2→) If

ϕ

D
ψ

∈ X, then

[ϕ]

D
ψ

ϕ→ ψ

∈ X.

If
D
ϕ

,
D′

ϕ→ ψ
∈ X, then

D
ϕ

D′

ϕ→ ψ

ψ

∈ X.

(2⊥) If
D
⊥
∈ X, then

D
⊥
ϕ

∈ X.

If

¬ϕ
D
⊥
∈ X, then

[¬ϕ]

D
⊥
ϕ

∈ X.

The bottom formula of a derivation is called its conclusion . Since the class
of derivations is inductively defined, we can mimic the results of section 1.1.

E.g. we have a principle of induction on D: let A be a property. If A(D)
holds for one element derivations and A is preserved under the clauses (2∧),
(2 →) and (2 ⊥), then A(D) holds for all derivations. Likewise we can define
mappings on the set of derivations by recursion (cf. Exercises 6, 7, 9).

Definition 1.4.2 The relation Γ � ϕ between sets of propositions and propo-
sitions is defined by: there is a derivation with conclusion ϕ and with all
(uncancelled) hypotheses in Γ . (See also exercise 6).

We say that ϕ is derivable from Γ . Note that by definition Γ may contain
many superfluous “hypotheses”. The symbol � is called turnstile .

If Γ = ∅, we write � ϕ, and we say that ϕ is a theorem.
We could have avoided the notion of ‘derivation’ and taken instead the

notion of ‘derivability’ as fundamental, see Exercise 10. The two notions, how-
ever, are closely related.
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Lemma 1.4.3 (a) Γ � ϕ if ϕ ∈ Γ,
(b) Γ � ϕ, Γ ′ � ψ ⇒ Γ ∪ Γ ′ � ϕ ∧ ψ,
(c) Γ � ϕ ∧ ψ ⇒ Γ � ϕ and Γ � ψ,
(d) Γ ∪ ϕ � ψ ⇒ Γ � ϕ→ ψ,
(e) Γ � ϕ, Γ ′ � ϕ→ ψ ⇒ Γ ∪ Γ ′ � ψ,
(f) Γ � ⊥ ⇒ Γ � ϕ,
(g) Γ ∪ {¬ϕ} � ⊥ ⇒ Γ � ϕ.

Proof. Immediate from the definition of derivation. �
We now list some theorems. ¬ and ↔ are used as abbreviations.

Theorem 1.4.4 (1) � ϕ→ (ψ → ϕ),
(2) � ϕ→ (¬ϕ→ ψ),
(3) � (ϕ→ ψ)→ [(ψ → σ) → (ϕ→ σ)],
(4) � (ϕ→ ψ)↔ (¬ψ → ¬ϕ),
(5) � ¬¬ϕ↔ ϕ,
(6) � [ϕ→ (ψ → σ)] ↔ [ϕ ∧ ψ → σ],
(7) � ⊥ ↔ (ϕ ∧ ¬ϕ).

Proof.

1.

[ϕ]1 → I
ψ → ϕ → I1

ϕ→ (ψ → ϕ)

2.

[ϕ]2 [¬ϕ]1 → E⊥ ⊥
ψ → I1¬ϕ→ ψ → I2

ϕ→ (¬ϕ→ ψ)

3.

[ϕ]1 [ϕ→ ψ]3 → E
ψ [ψ → σ]2 → E

σ → I1
ϕ→ σ → I2

(ψ → σ) → (ϕ→ σ) → I3
(ϕ→ ψ) → ((ψ → σ)→ (ϕ→ σ))

4. For one direction, substitute ⊥ for σ in 3, then � (ϕ→ ψ) → (¬ψ → ¬ϕ).
Conversely:
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[¬ψ]1 [¬ψ → ¬ϕ]3 → E¬ϕ [ϕ]2 → E⊥
RAA1

ψ → I2
ϕ→ ψ → I3

(¬ψ → ¬ϕ) → (ϕ→ ψ)

So now we have

D
(ϕ→ ψ)→ (¬ψ → ¬ϕ)

D′

(¬ψ → ¬ϕ) → (ϕ→ ψ) ∧I
(ϕ→ ψ)↔ (¬ψ → ¬ϕ)

5. We already proved ϕ→ ¬¬ϕ as an example. Conversely:

[¬ϕ]1 [¬¬ϕ]2 → E⊥
RAA1

ϕ → I2¬¬ϕ→ ϕ

The result now follows. The numbers 6 and 7 are left to the reader. �
The system, outlined in this section, is called the “calculus of natural

deduction” for a good reason. That is: its manner of making inferences corre-
sponds to the reasoning we intuitively use. The rules present means to take
formulas apart, or to put them together. A derivation then consists of a skilful
manipulation of the rules, the use of which is usually suggested by the form
of the formula we want to prove.

We will discuss one example in order to illustrate the general strategy of
building derivations. Let us consider the converse of our previous example III.

To prove (ϕ ∧ ψ → σ) → [ϕ → (ψ → σ)] there is just one initial step:
assume ϕ∧ψ → σ and try to derive ϕ→ (ψ → σ). Now we can either look at
the assumption or at the desired result. Let us consider the latter one first: to
show ϕ→ (ψ → σ), we should assume ϕ and derive ψ → σ, but for the latter
we should assume ψ and derive σ.

So, altogether we may assume ϕ∧ψ → σ and ϕ and ψ. Now the procedure
suggests itself: derive ϕ ∧ ψ from ϕ and ψ, and σ from ϕ ∧ ψ and ϕ ∧ ψ → σ.

Put together, we get the following derivation:
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[ϕ]2 [ψ]1 ∧I
ϕ ∧ ψ [ϕ ∧ ψ → σ]3 → E

σ → I1
ψ → σ → I2

ϕ→ (ψ → σ) → I3
(ϕ ∧ ψ → σ) → (ϕ→ (ψ → σ))

Had we considered ϕ ∧ ψ → σ first, then the only way to proceed is to
add ϕ ∧ ψ and apply → E. Now ϕ ∧ ψ either remains an assumption, or it is
obtained from something else. It immediately occurs to the reader to derive
ϕ ∧ ψ from ϕ and ψ. But now he will build up the derivation we obtained
above.

Simple as this example seems, there are complications. In particular the
rule of reductio ad absurdum is not nearly as natural as the other ones. Its
use must be learned by practice; also a sense for the distinction between
constructive and non-constructive will be helpful when trying to decide on
when to use it.

Finally, we recall that 
 is an abbreviation for ¬⊥ (i.e. ⊥ → ⊥).

Exercises

1. Show that the following propositions are derivable.
(a) ϕ→ ϕ, (d) (ϕ→ ψ)↔ ¬(ϕ ∧ ¬ψ),
(b) ⊥→ ϕ, (e) (ϕ ∧ ψ)↔ ¬(ϕ→ ¬ψ),
(c) ¬(ϕ ∧ ¬ϕ), (f) ϕ→ (ψ → (ϕ ∧ ψ)).

2. Idem for (a) (ϕ→ ¬ϕ) → ¬ϕ,
(b) [ϕ→ (ψ → σ] ↔ [ψ → (ϕ→ σ],
(c) (ϕ→ ψ) ∧ (ϕ→ ¬ψ) → ¬ϕ,
(d) (ϕ→ ψ) → [(ϕ→ (ψ → σ)) → (ϕ→ σ)].

3. Show (a) ϕ � ¬(¬ϕ ∧ ψ), (d) � ϕ⇒ � ψ → ϕ,
(b) ¬(ϕ ∧ ¬ψ), ϕ � ψ, (e) ¬ϕ � ϕ→ ψ.
(c) ¬ϕ � (ϕ→ ψ) ↔ ¬ϕ,

4. Show � [(ϕ→ ψ)→ (ϕ→ σ)] → [(ϕ→ (ψ → σ))],
� ((ϕ→ ψ) → ϕ) → ϕ.

5. Show Γ � ϕ⇒ Γ ∪∆ � ϕ,
Γ � ϕ;∆,ϕ � ψ ⇒ Γ ∪∆ � ψ.
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6. Give a recursive definition of the function Hyp which assigns to each
derivation D its set of hypotheses Hyp(D) (this is a bit stricter than the
notion in definition 1.4.2, since it the smallest set of hypotheses, i.e. hy-
potheses without ‘garbage’).

7. Analogous to the substitution operator for propositions we define a sub-
stitution operator for derivations. D[ϕ/p] is obtained by replacing each
occurrence of p in each proposition in D by ϕ. Give a recursive defini-
tion of D[ϕ/p]. Show that D[ϕ/p] is a derivation if D is one, and that
Γ � σ ⇒ Γ [ϕ/p] � σ[ϕ/p]. Remark: for several purposes finer notions of
substitution are required, but this one will do for us.

8. (Substitution Theorem) � (ϕ1 ↔ ϕ2)→ (ψ[ϕ1/p]↔ ψ[ϕ2/p]).
Hint: use induction on ψ; the theorem will also follow from the Substitu-
tion Theorem for |=, once we have established the Completeness Theorem.

9. The size, s(D), of a derivation is the number of proposition occurrences
in D. Give an inductive definition of s(D). Show that one can prove prop-
erties of derivations by it induction on the size.

10. Give an inductive definition of the relation � (use the list of Lemma 1.4.3),
show that this relation coincides with the derived relation of Defini-
tion 1.4.2. Conclude that each Γ with Γ � ϕ contains a finite ∆, such
that also ∆ � ϕ

11. Show (a) � 
,
(b) � ϕ⇔ � ϕ↔ 
,
(c) � ¬ϕ⇔ � ϕ↔⊥ .

1.5 Completeness

In the present section we will show that “truth” and “derivability” coincide, to
be precise: the relations “|= ” and “�” coincide. The easy part of the claim is:
“derivability” implies “truth”; for derivability is established by the existence
of a derivation. The latter motion is inductively defined, so we can prove the
implication by induction on the derivation.

Lemma 1.5.1 (Soundness) Γ � ϕ⇒ Γ |= ϕ.

Proof. Since, by definition 1.4.2, Γ � ϕ iff there is a derivation D with all its
hypotheses in Γ , it suffices to show: for each derivation D with conclusion ϕ
and hypotheses in Γ we have Γ |= ϕ. We now use induction on D.
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(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis:
D
ϕ

and
D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ
ψ

. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ→ ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ→ ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ �|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.
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(RAA). Induction hypothesis: for each Γ containing all hypotheses of

¬ϕ
D
⊥

, we have Γ |= ⊥. Let Γ ′ contain all hypotheses of

[¬ϕ]
D
⊥
ϕ

and suppose

Γ ′ �|= ϕ, then there exists a valuation such that [[ψ]] = 1 for all ψ ∈ Γ ′

and [[ϕ]] = 0, i.e. [[¬ϕ]] = 1. But Γ ′′ = Γ ′ ∪ {¬ϕ} contains all hypotheses
of the first derivation and [[ψ]] = 1 for all ψ ∈ Γ ′′. This is impossible since
Γ ′′ |=⊥. Hence Γ ′ |= ϕ. �

This lemma may not seem very impressive, but it enables us to show that
some propositions are not theorems, simply by showing that they are not tau-
tologies. Without this lemma that would have been a very awkward task. We
would have to show that there is no derivation (without hypotheses) of the
given proposition. In general this requires insight in the nature of derivations,
something which is beyond us at the moment.
Examples . �� p0, �� (ϕ→ ψ)→ ϕ ∧ ψ.

In the first example take the constant 0 valuation. [[p0]] = 0, so �|= p0 and
hence �� p0. In the second example we are faced with a meta proposition (a
schema); strictly speaking it cannot be derivable (only real propositions can
be). By � (ϕ→ ψ) → ϕ ∧ ψ we mean that all propositions of that form (ob-
tained by substituting real propositions for ϕ and ψ, if you like) are derivable.
To refute it we need only one instance which is not derivable. Take ϕ = ψ = p0.
In order to prove the converse of Lemma 1.5.1 we need a few new notions.
The first one has an impressive history; it is the notion of freedom from con-
tradiction or consistency. It was made the cornerstone of the foundations of
mathematics by Hilbert.

Definition 1.5.2 A set Γ of propositions is consistent if Γ ��⊥.

In words: one cannot derive a contradiction from Γ . The consistency of Γ
can be expressed in various other forms:

Lemma 1.5.3 The following three conditions are equivalent:
(i) Γ is consistent,
(ii) For no ϕ, Γ � ϕ and Γ � ¬ϕ,
(iii) There is at least one ϕ such that Γ �� ϕ

Proof. Let us call Γ inconsistent if Γ �⊥, then we can just as well prove the
equivalence of

(iv) Γ is inconsistent,
(v) There is a ϕ such that Γ � ϕ and Γ � ¬ϕ,
(vi) Γ � ϕ for all ϕ.
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(iv) ⇒ (vi) Let Γ �⊥, i.e. there is a derivation D with conclusion ⊥ and
hypotheses in Γ . By (⊥) we can add one inference, ⊥ � ϕ, to D, so that Γ � ϕ.
This holds for all ϕ.

(vi) ⇒ (v) Trivial.
(v) ⇒(iv) Let Γ � ϕ and Γ � ¬ϕ. From the two associated derivations one

obtains a derivation for Γ �⊥ by (→ E). �
Clause (vi) tells us why inconsistent sets (theories) are devoid of mathe-

matical interest. For, if everything is derivable, we cannot distinguish between
“good” and “bad” propositions. Mathematics tries to find distinctions, not to
blur them.

In mathematical practice one tries to establish consistency by exhibiting
a model (think of the consistency of the negation of Euclid’s fifth postulate
and the non-euclidean geometries). In the context of propositional logic this
means looking for a suitable valuation.

Lemma 1.5.4 If there is a valuation such that [[ψ]]v = 1 for all ψ ∈ Γ , then
Γ is consistent.

Proof. Suppose Γ �⊥, then by Lemma 1.5.1 Γ |=⊥, so for any valuation v
[[(ψ)]]v = 1 for all ψ ∈ Γ ⇒ [[⊥]]v = 1. Since [[⊥]]v = 0 for all valuations,
there is no valuation with [[ψ]]v = 1 for all ψ ∈ Γ . Contradiction. Hence Γ is
consistent.

�
Examples.

1. {p0,¬p1, p1 → p2} is consistent. A suitable valuation is one satisfying
[[p0]] = 1, [[p1]] = 0.

2. {p0, p1, . . .} is consistent. Choose the constant 1 valuation.

Clause (v) of Lemma 1.5.3 tells us that Γ ∪ {ϕ,¬ϕ} is inconsistent. Now,
how could Γ ∪ {¬ϕ} be inconsistent? It seems plausible to blame this on the
derivability of ϕ. The following confirms this.

Lemma 1.5.5 (a) Γ ∪ {¬ϕ} is inconsistent ⇒ Γ � ϕ,
(b) Γ ∪ {ϕ} is inconsistent ⇒ Γ � ¬ϕ.

Proof. The assumptions of (a) and (b) yield the two derivations below: with
conclusion ⊥. By applying (RAA), and (→ I), we obtain derivations with
hypotheses in Γ , of ϕ, resp. ¬ϕ.

[¬ϕ]

D
⊥

RAA
ϕ

[ϕ]

D′

⊥ → I¬ϕ �
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Definition 1.5.6 A set Γ is maximally consistent iff
(a) Γ is consistent,
(b) Γ ⊆ Γ ′ and Γ ′ consistent ⇒ Γ = Γ ′.

Remark. One could replace (b) by (b’): if Γ is a proper subset of Γ ′, then Γ ′

is inconsistent. I.e., by just throwing in one extra proposition, the set becomes
inconsistent.

Maximally consistent sets play an important role in logic. We will show
that there are lots of them.

Here is one example: Γ = {ϕ|[[ϕ]] = 1} for a fixed valuation. By
Lemma 1.5.4 Γ is consistent. Consider a consistent set Γ ′ such that Γ ⊆ Γ ′.
Now let ψ ∈ Γ ′ and suppose [[ψ]] = 0, then [[¬ψ]] = 1, and so ¬ψ ∈ Γ .

But since Γ ⊆ Γ ′ this implies that Γ ′ is inconsistent. Contradiction.
Therefore [[ψ]] = 1 for all ψ ∈ Γ ′, so by definition Γ = Γ ′. From the proof
of Lemma 1.5.11 it follows moreover, that this basically is the only kind of
maximally consistent set we may expect.

The following fundamental lemma is proved directly. The reader may
recognise in it an analogue of the Maximal Ideal Existence Lemma from ring
theory (or the Boolean Prime Ideal Theorem), which is usually proved by an
application of Zorn’s Lemma.

Lemma 1.5.7 Each consistent set Γ is contained in a maximally consistent
set Γ ∗.

Proof. There are countably many propositions, so suppose we have a list
ϕ0, ϕ1, ϕ2, ..... of all propositions (cf. Exercise 5). We define a non-decreasing
sequence of sets Γi such that the union is maximally consistent.

Γ0 = Γ,

Γn+1 =
{
Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent,
Γn else.

Γ ∗ =
⋃{Γn | n ≥ 0}.

(a) Γn is consistent for all n.
Immediate, by induction on n.

(b) Γ ∗ is consistent.
Suppose Γ ∗ �⊥ then, by the definition of ⊥ there is derivation D of ⊥
with hypotheses in Γ ∗; D has finitely many hypotheses ψ0, . . . , ψk. Since
Γ ∗ =

⋃{Γn|n ≥ 0}, we have for each i ≤ k ψi ∈ Γni for some ni. Let
n be max{ni|i ≤ k}, then ψ0, . . . , ψk ∈ Γn and hence Γn �⊥. But Γn is
consistent. Contradiction.

(c) Γ ∗ is maximally consistent. Let Γ ∗ ⊆ ∆ and ∆ consistent. If ψ ∈ ∆, then
ψ = ϕm for some m. Since Γm ⊆ Γ ∗ ⊆ ∆ and ∆ is consistent, Γm ∪{ϕm}
is consistent. Therefore Γm+1 = Γm ∪ {ϕm}, i.e. ϕm ∈ Γm+1 ⊆ Γ ∗. This
shows Γ ∗ = ∆. �
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Lemma 1.5.8 If Γ is maximally consistent, then Γ is closed under derivabil-
ity (i.e. Γ � ϕ⇒ ϕ ∈ Γ ).

Proof. Let Γ � ϕ and suppose ϕ �∈ Γ . Then Γ ∪ {ϕ} must be inconsistent.
Hence Γ � ¬ϕ, so Γ is inconsistent. Contradiction. �

Lemma 1.5.9 Let Γ be maximally consistent; then
(a) for all ϕ either ϕ ∈ Γ , or ¬ϕ ∈ Γ ,
(b) for all ϕ, ψ ϕ→ ψ ∈ Γ ⇔ (ϕ ∈ Γ ⇒ ψ ∈ Γ ).

Proof. (a) We know that not both ϕ and ¬ϕ can belong to Γ . Consider Γ ′ =
Γ ∪{ϕ}. If Γ ′ is inconsistent, then, by 1.5.5, 1.5.8, ¬ϕ ∈ Γ . If Γ ′ is consistent,
then ϕ ∈ Γ by the maximality of Γ .

(b) Let ϕ→ ψ ∈ Γ and ϕ ∈ Γ . To show: ψ ∈ Γ . Since ϕ,ϕ→ ψ ∈ Γ and
since Γ is closed under derivability (Lemma 1.5.8), we get ψ ∈ Γ by → E.

Conversely: let ϕ ∈ Γ ⇒ ψ ∈ Γ . If ϕ ∈ Γ then obviously Γ � ψ, so
Γ � ϕ→ ψ. If ϕ �∈ Γ , then ¬ϕ ∈ Γ , and hence Γ � ¬ϕ. Therefore Γ � ϕ→ ψ.

�
Note that we automatically get the following:

Corollary 1.5.10 If Γ is maximally consistent, then ϕ ∈ Γ ⇔ ¬ϕ �∈ Γ ,
and ¬ϕ ∈ Γ ⇔ ϕ �∈ Γ .

Lemma 1.5.11 If Γ is consistent, then there exists a valuation such that
[[ψ]] = 1 for all ψ ∈ Γ .

Proof.(a) By 1.5.7 Γ is contained in a maximally consistent Γ ∗

(b) Define v(pi) =
{

1 if pi ∈ Γ ∗

0 else

and extend v to the valuation [[ ]]v.

Claim: [[ϕ]] = 1 ⇔ ϕ ∈ Γ ∗. Use induction on ϕ.

1. For atomic ϕ the claim holds by definition.
2. ϕ = ψ ∧ σ. [[ϕ]]v = 1 ⇔ [[ψ]]v = [[σ]]v = 1 ⇔ (induction hypothesis)

ψ, σ ∈ Γ ∗ and so ϕ ∈ Γ ∗. Conversely ψ ∧ σ ∈ Γ ∗ ⇔ ψ, σ ∈ Γ ∗

(1.5.8). The rest follows from the induction hypothesis.
3. ϕ = ψ → σ. [[ψ → σ]]v = 0 ⇔ [[ψ]]v = 1 and [[σ]]v = 0 ⇔ (induction

hypothesis) ψ ∈ Γ ∗ and σ �∈ Γ ∗ ⇔ ψ → σ �∈ Γ ∗ (by 1.5.9).

(c) Since Γ ⊆ Γ ∗ we have [[ψ]]v = 1 for all ψ ∈ Γ . �

Corollary 1.5.12 Γ �� ϕ ⇔ there is a valuation such that [[ψ]] = 1 for all
ψ ∈ Γ and [[ϕ]] = 0.
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Proof. Γ �� ϕ⇔ Γ ∪{¬ϕ} consistent ⇔ there is a valuation such that [[ψ]] = 1
for all ψ ∈ Γ ∪ {¬ϕ}, or [[ψ]] = 1 for all ψ ∈ Γ and [[ϕ]] = 0. �

Theorem 1.5.13 (Completeness Theorem) Γ � ϕ⇔ Γ |= ϕ.

Proof. Γ �� ϕ⇒ Γ �|= ϕ by 1.5.12. The converse holds by 1.5.1. �
In particular we have � ϕ⇔ |= ϕ, so the set of theorems is exactly the set

to tautologies.
The Completeness Theorem tells us that the tedious task of making deriva-

tions can be replaced by the (equally tedious, but automatic) task of checking
tautologies. This simplifies, at least in theory, the search for theorems consid-
erably; for derivations one has to be (moderately) clever, for truth tables one
has to possess perseverance.

For logical theories one sometimes considers another notion of complete-
ness: a set Γ is called complete if for each ϕ, either Γ � ϕ, or Γ � ¬ϕ. This
notion is closely related to “maximally consistent”. From Exercise 6 it fol-
lows that Cons(Γ ) = {σ|Γ � σ} (the set of consequences of Γ ) is maximally
consistent if Γ is a complete set. The converse also holds (cf. Exercise 10).
Propositional logic itself (i.e. the case Γ = ∅) is not complete in this sense,
e.g. �� p0 and �� ¬p0.

There is another important notion which is traditionally considered in
logic: that of decidability. Propositional logic is decidable in the following
sense: there is an effective procedure to check the derivability of propositions
ϕ. Put otherwise: there is an algorithm that for each ϕ tests if � ϕ.
The algorithm is simple: write down the complete truth table for ϕ and check
if the last column contains only 1’s. If so, then |= ϕ and, by the Completeness
Theorem, � ϕ. If not, then �|= ϕ and hence �� ϕ. This is certainly not the
best possible algorithm, one can find more economical ones. There are also
algorithms that give more information, e.g. they not only test � ϕ, but also
yield a derivation, if one exists. Such algorithms require, however, a deeper
analysis of derivations. This falls outside the scope of the present book.

There is one aspect of the Completeness Theorem that we want to discuss
now. It does not come as a surprise that truth follows from derivability. After
all we start with a combinatorial notion, defined inductively, and we end up
with ‘being true for all valuations’. A simple inductive proof does the trick.

For the converse the situation is totally different. By definition Γ |= ϕ
means that [[ϕ]]v = 1 for all valuations v that make all propositions of Γ true.
So we know something about the behaviour of all valuations with respect to
Γ and ϕ. Can we hope to extract from such infinitely many set theoretical
facts the finite, concrete information needed to build a derivation for Γ � ϕ?
Evidently the available facts do not give us much to go on. Let us therefore sim-
plify matters a bit by cutting down the Γ ; after all we use only finitely many
formulas of Γ in a derivation, so let us suppose that those formulas ψ1, . . . , ψn
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are given. Now we can hope for more success, since only finitely many atoms
are involved, and hence we can consider a finite “part” of the infinitely many
valuations that play a role. That is to say only the restrictions of the valuations
to the set of atoms occurring in ψ1, . . . , ψn, ϕ are relevant. Let us simplify the
problem one more step. We know that ψ1, . . . , ψn � ϕ (ψ1, . . . , ψn |= ϕ) can
be replaced by � ψ1 ∧ . . . ∧ ψn → ϕ(|= ψ1 ∧ . . . ∧ ψn → ϕ), on the ground of
the derivation rules (the definition of valuation). So we ask ourselves: given
the truth table for a tautology σ, can we effectively find a derivation for σ?
This question is not answered by the Completeness Theorem, since our proof
of it is not effective (at least not prima facie so). It has been answered posi-
tively, e.g. by Post, Bernays and Kalmar (cf. [Kleene 1952] IV, §29) and it is
easily treated by means of Gentzen techniques, or semantic tableaux. We will
just sketch a method of proof: we can effectively find a conjunctive normal
form σ∗ for σ such that � σ ↔ σ∗. It is easily shown that σ∗ is a tautology
iff each conjunct contains an atom and its negation, or ¬ ⊥, and glue it all
together to obtain a derivation of σ∗, which immediately yields a derivation
of σ.

Exercises

1. Check which of the following sets are consistent.
(a) {¬p1 ∧ p2 → p0, p1 → (¬p1 → p2), p0 ↔ ¬p2},
(b) {p0 → p1, p1 → p2, p2 → p3, p3 → ¬p0},
(c) {p0 → p1, p0 ∧ p2 → p1 ∧ p3, p0 ∧ p2 ∧ p4 → p1 ∧ p3 ∧ p5, . . .}.

2. Show that the following are equivalent:
(a) {ϕ1, . . ., ϕn} is consistent.
(b) �� ¬(ϕ1 ∧ ϕ2 ∧ . . . ϕn).
(c) �� ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn−1 → ¬ϕn.

3. ϕ is independent from Γ if Γ �� ϕ and Γ �� ¬ϕ. Show that: p1 → p2 is
independent from {p1 ↔ p0 ∧ ¬p2, p2 → p0}.

4. A set Γ is independent if for each ϕ ∈ Γ Γ − {ϕ} �� ϕ.
(a) Show that each finite set Γ has an independent subset ∆ such that

∆ � ϕ for all ϕ ∈ Γ .
(b) Let Γ = {ϕ0, ϕ1, ϕ2, . . .}. Find an equivalent set Γ ′ = {ψ0, ψ1, . . .}

(i.e. Γ � ψi and Γ ′ � ϕi for all i) such that � ψn+1 → ψn, but
�� ψn → ψn+1. Note that Γ ′ may be finite.

(c) Consider an infinite Γ ′ as in (b). Define σ0 = ψ0, σn+1 = ψn → ψn+1.
Show that ∆ = {σ0, σ1, σ2, . . .} is independent and equivalent to Γ ′.

(d) Show that each set Γ is equivalent to an independent set ∆.
(e) Show that ∆ need not be a subset of Γ (consider {p0, p0 ∧ p1,

p0 ∧ p1 ∧ p2, . . .}).
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5. Find an effective way of enumerating all propositions (hint: consider sets
Γn of all propositions of rank ≤ n with atoms from p0, . . . , pn).

6. Show that a consistent set Γ is maximally consistent if either ϕ ∈ Γ or
¬ϕ ∈ Γ for all ϕ.

7. Show that {p0, p1, p2, . . . , pn, . . .} is complete.

8. (Compactness Theorem). Show : there is a v such that [[ψ]]v = 1 for all
ψ ∈ Γ ⇔ for each finite subset ∆ ⊆ Γ there is a v such that [[σ]]v = 1 for
all σ ∈ ∆.
Formulated in terms of Exercise 13 of 1.3: [[Γ ]] �= ∅ if [[∆]] �= ∅ for all finite
∆ ⊆ Γ .

9. Consider an infinite set {ϕ1, ϕ2, ϕ3, . . .}. If for each valuation there is an
n such that [[ϕn]] = 1, then there is an m such that � ϕ1 ∨ . . .∨ϕm. (Hint:
consider the negations ¬ϕ1,¬ϕ2 . . . and apply Exercise 8) .

10. Show: Cons(Γ ) = {σ|Γ � σ} is maximally consistent ⇔ Γ is complete.

11. Show: Γ is maximally consistent ⇔ there is a unique valuation such that
[[ψ]] = 1 for all ψ ∈ Γ , where Γ is a theory, i.e. Γ is closed under �
(Γ � σ ⇒ σ ∈ Γ ) .

12. Let ϕ be a proposition containing the atom p. For convenience we write
ϕ(σ) for ϕ[σ/p]. As before we abbreviate ¬ ⊥ by 
.
Show: (i) ϕ(
) � ϕ(
)↔ 
 and ϕ(
) � ϕ(ϕ(
)).

(ii) ¬ϕ(
) � ϕ(
) ↔⊥,
ϕ(p),¬ϕ(
) � p↔⊥,
ϕ(p),¬ϕ(
) � ϕ(ϕ(
)).

(iii) ϕ(p) � ϕ(ϕ(
)).

13. If the atoms p and q do not occur in ψ and ϕ respectively, then
|= ϕ(p)→ ψ ⇒ |= ϕ(σ) → ψ for all σ,
|= ϕ→ ψ(q) ⇒ |= ϕ→ ψ(σ) for all σ.

14. Let � ϕ→ ψ. We call σ an interpolant if � ϕ→ σ and � σ → ψ, and more-
over σ contains only atoms common to ϕ and ψ. Consider ϕ(p, r), ψ(r, q)
with all atoms displayed. Show that ϕ(ϕ(
, r), r) is an interpolant (use
Exercise 12, 13).

15. Prove the general Interpolation Theorem (Craig): For any ϕ, ψ with � ϕ→
ψ there exists an interpolant (iterate the procedure of Exercise 13).
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1.6 The Missing Connectives

The language of section 1.4 contained only the connectives ∧,→ and ⊥. We
already know that, from the semantical point of view, this language is suffi-
ciently rich, i.e. the missing connectives can be defined. As a matter of fact we
have already used the negation as a defined notion in the preceding sections.

It is a matter of sound mathematical practice to introduce new notions if
their use simplifies our labour, and if they codify informal existing practice.
This, clearly, is a reason for introducing ¬,↔ and ∨.

Now there are two ways to proceed: one can introduce the new connectives
as abbreviations (of complicated propositions), or one can enrich the language
by actually adding the connectives to the alphabet, and providing rules of
derivation.

The first procedure was adopted above; it is completely harmless, e.g.
each time one reads ϕ ↔ ψ, one has to replace it by (ϕ → ψ) ∧ (ψ → ϕ).
So it is nothing but a shorthand, introduced for convenience. The second
procedure is of a more theoretical nature. The language is enriched and the set
of derivations is enlarged. As a consequence one has to review the theoretical
results (such as the Completeness Theorem) obtained for the simpler language.

We will adopt the first procedure and also outline the second approach.

Definition 1.6.1 ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),
¬ϕ := ϕ→⊥,

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) .

N.B. This means that the above expressions are not part of the language, but
abbreviations for certain propositions.

The properties of ∨,¬ and ↔ are given in the following:

Lemma 1.6.2 (i) ϕ � ϕ ∨ ψ, ψ � ϕ ∨ ψ,
(ii) Γ, ϕ � σ and Γ, ψ � σ ⇒ Γ, ϕ ∨ ψ � σ,
(iii)ϕ,¬ϕ �⊥,
(iv) Γ, ϕ �⊥⇒ Γ � ¬ϕ,
(v) ϕ↔ ψ, ϕ � ψ and ϕ↔ ψ, ψ � ϕ,
(vi) Γ, ϕ � ψ and Γ, ψ � ϕ⇒ Γ � ϕ↔ ψ.

Proof. The only non-trivial part is (ii). We exhibit a derivation of σ from Γ
and ϕ ∨ ψ (i.e. ¬(¬ϕ ∧ ¬ψ)), given derivations D1 and D2 of Γ, ϕ � σ and
Γ, ψ � σ.
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[ϕ]1

D1

σ [¬σ]3 → E⊥ → I1¬ϕ

[ψ]2

D2

σ [¬σ]3 → E⊥ → I2¬ψ ∧I¬ϕ ∧ ¬ψ ¬(¬ϕ ∧ ¬ψ) → E⊥
RAA3

σ

The remaining cases are left to the reader. �

Note that (i) and (ii) read as introduction and elimination rules for ∨, (iii)
and (iv) as ditto for ¬, (vi) and (v) as ditto for ↔.

They legalise the following shortcuts in derivations:

ϕ ∨I
ϕ ∨ ψ

ψ ∨I
ϕ ∨ ψ ϕ ∨ ψ

[ϕ]

...

σ

[ψ]

...

σ ∨E
σ

[ϕ]

...

⊥ ¬I¬ϕ

ϕ ¬ϕ ¬E⊥

[ϕ]

...

ψ

[ψ]

...

ϕ↔ I
ϕ↔ ψ

ϕ ϕ↔ ψ

ψ

ψ ϕ↔ ψ ↔ E
ϕ
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Consider for example an application of ∨E

D0

ϕ ∨ ψ

[ϕ]

D1

σ

[ψ]

D2

σ ∨E
σ

This is a mere shorthand for

D0

¬(¬ϕ ∧ ¬ψ)

[ϕ]1

D1

σ [¬σ]3

⊥
1¬ϕ

[ψ]2

D2

σ [¬σ]3

⊥
2¬ψ

¬ϕ ∧ ¬ψ
1⊥

3
σ

The reader is urged to use the above shortcuts in actual derivations, when-
ever convenient. As a rule, only ∨I and ∨E are of importance, the reader has
of course recognised the rules for ¬ and ↔ as slightly eccentric applications
of familiar rules.

Examples. � (ϕ ∧ ψ) ∨ σ ↔ (ϕ ∨ σ) ∧ (ψ ∨ σ).

(ϕ ∧ ψ) ∨ σ

[ϕ ∧ ψ]1

ϕ

ϕ ∨ σ
[σ]1

ϕ ∨ σ
1

ϕ ∨ σ
(ϕ ∧ ψ) ∨ σ

[ϕ ∧ ψ]2

ψ

ψ ∨ σ
[σ]2

ψ ∨ σ
2

ψ ∨ σ
(ϕ ∨ σ) ∧ (ψ ∨ σ)

(1)
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Conversely

(ϕ ∨ σ) ∧ (ψ ∨ σ)

ϕ ∨ σ

(ϕ ∨ σ) ∧ (ψ ∨ σ)

ψ ∨ σ

[ϕ]2 [ψ]1

ϕ ∧ ψ

(ϕ ∧ ψ) ∨ σ

[σ]1

(ϕ ∧ ψ) ∨ σ
1

(ϕ ∧ ψ) ∨ σ

[σ]2

(ϕ ∧ ψ) ∨ σ
2

(ϕ ∧ ψ) ∨ σ
(2)

Combining (1) and (2) we get one derivation:

[(ϕ ∧ ψ) ∨ σ]

D
(ϕ ∨ σ) ∧ (ψ ∨ σ)

[(ϕ ∨ σ) ∧ (ψ ∨ σ)]

D′

(ϕ ∧ ψ) ∨ σ ↔ I
(ϕ ∧ ψ) ∨ σ ↔ (ϕ ∨ σ) ∧ (ψ ∨ σ)

� ϕ ∨ ¬ϕ [ϕ]1 ∨I
ϕ ∨ ¬ϕ [¬(ϕ ∨ ¬ϕ)]2 → E⊥ → I1¬ϕ ∨I

ϕ ∨ ¬ϕ [¬(ϕ ∨ ¬ϕ)]2 → E⊥
RAA2

ϕ ∨ ¬ϕ
� (ϕ→ ψ) ∨ (ψ → ϕ)

[ϕ]1

→ I1
ψ → ϕ

∨I
(ϕ→ ψ) ∨ (ψ → ϕ) [¬((ϕ→ ψ) ∨ (ψ → ϕ))]2

→ E
⊥

⊥
ψ

→ I1
ϕ → ψ

∨I
(ϕ→ ψ) ∨ (ψ → ϕ) [¬((ϕ→ ψ) ∨ (ψ → ϕ))]2

→ E
⊥

RAA2

(ϕ → ψ) ∨ (ψ → ϕ)
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� ¬(ϕ ∧ ψ) → ¬ϕ ∨ ¬ψ

[¬(ϕ ∧ ψ)]

[¬(¬ϕ ∨ ¬ψ)]

[¬ϕ]

¬ϕ ∨ ¬ψ
⊥
ϕ

[¬(¬ϕ ∨ ¬ψ)]

[¬ψ]

¬ϕ ∨ ¬ψ
⊥
ψ

ϕ ∧ ψ
⊥

¬ϕ ∨ ¬ψ
¬(ϕ ∧ ψ)→ ¬ϕ ∨ ¬ψ

�

We now give a sketch of the second approach. We add ∨,¬ and ↔ to
the language, and extend the set of propositions correspondingly. Next we
add the rules for ∨,¬ and ↔ listed above to our stock of derivation rules. To
be precise we should now also introduce a new derivability sign, we will how-
ever stick to the trusted � in the expectation that the reader will remember
that now we are making derivations in a larger system. The following holds:

Theorem 1.6.3 � ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ).
� ¬ϕ↔ (ϕ→⊥).
� (ϕ↔ ψ)↔ (ϕ→ ψ) ∧ (ψ → ϕ).

Proof. Observe that by Lemma 1.6.2 the defined and the primitive (real) con-
nectives obey exactly the same derivability relations (derivation rules, if you
wish). This leads immediately to the desired result. Let us give one example.
ϕ � ¬(¬ϕ ∧ ¬ψ) and ψ � ¬(¬ϕ ∧ ¬ψ) (1.6.2 (i)), so by ∨E we get

ϕ ∨ ψ � ¬(¬ϕ ∧ ¬ψ) . . . (1)
Conversely ϕ � ϕ ∨ ψ (by ∨I), hence by 1.6.2 (ii)

¬(¬ϕ ∧ ¬ψ) � ϕ ∨ ψ . . . (2)
Apply ↔ I, to (1) and (2), then � ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ). The rest is left to
the reader. �

For more results the reader is directed to the exercises.
The rules for ∨,↔, and ¬ capture indeed the intuitive meaning of those

connectives. Let us consider disjunction: (∨I) : If we know ϕ then we certainly
know ϕ ∨ ψ (we even know exactly which disjunct). The (∨E)-rule captures
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the idea of “proof by cases”: if we know ϕ ∨ ψ and in each of both cases
we can conclude σ, then we may outright conclude σ. Disjunction intuitively
calls for a decision: which of the two disjuncts is given or may be assumed?
This constructive streak of ∨ is crudely but conveniently blotted out by the
identification of ϕ ∨ψ and ¬(¬ϕ ∧ ¬ψ). The latter only tells us that ϕ and ψ
cannot both be wrong, but not which one is right. For more information on this
matter of constructiveness, which plays a role in demarcating the borderline
between two-valued classical logic and effective intuitionistic logic, the reader
is referred to Chapter 5.

Note that with ∨ as a primitive connective some theorems become harder
to prove. E.g. � ¬(¬¬ϕ ∧ ¬ϕ) is trivial, but � ϕ ∨ ¬ϕ is not. The following
rule of the thumb may be useful: going from non-effective (or no) premises to
an effective conclusion calls for an application of RAA.

Exercises

1. Show � ϕ ∨ ψ → ψ ∨ ϕ , � ϕ ∨ ϕ↔ ϕ.

2. Consider the full language L with the connectives ∧,→,⊥,↔ ∨ and the
restricted language L′ with connectives ∧,→,⊥. Using the appropriate
derivation rules we get the derivability notions � and �′. We define an
obvious translation from L into L′:

ϕ+ := ϕ for atomic ϕ
(ϕ�ψ)+ := ϕ+�ψ+ for � = ∧,→,

(ϕ ∨ ψ)+ := ¬(¬ϕ+ ∧ ¬ϕ+),where¬ is an abbreviation,
(ϕ↔ ψ)+ := (ϕ+ → ψ+) ∧ (ψ+ → ϕ+),

(¬ϕ)+ := ϕ+ →⊥ .

Show (i) � ϕ↔ ϕ+,
(ii) � ϕ⇔ �′ ϕ+,
(iii) ϕ+ = ϕforϕ ∈ L′.
(iv) Show that the full logic, is conservative over the restricted

logic, i.e. forϕ ∈ L′ � ϕ⇔ �′ ϕ.

3. Show that the Completeness Theorem holds for the full logic. Hint: use
Exercise 2.

4. Show (a) � 
 ∨ ⊥ .
(b) � (ϕ↔ 
) ∨ (ϕ↔⊥).
(c) � ϕ↔ (ϕ↔ 
).



1.6 The Missing Connectives 55

5. Show � (ϕ ∨ ψ)↔ ((ϕ→ ψ) → ψ).

6. Show (a) Γ is complete ⇔ (Γ � ϕ ∨ ψ ⇔ Γ � ϕ or Γ � ψ, for all ϕ, ψ),
(b) Γ is maximally consistent ⇔ Γ is a consistent theory and for

all ϕ, ψ (ϕ ∨ ψ ∈ Γ ⇔ ϕ ∈ Γ or ψ ∈ Γ ).

7. Show in the system with ∨ as a primitive connective
� (ϕ→ ψ) ↔ (¬ϕ ∨ ψ),
� (ϕ→ ψ) ∨ (ψ → ϕ).
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2

Predicate Logic

2.1 Quantifiers

In propositional logic we used large chunks of mathematical language, namely
those parts that can have a truth value. Unfortunately this use of language
is patently insufficient for mathematical practice. A simple argument, such
as “all squares are positive, 9 is a square, therefore 9 is positive” cannot be
dealt with. From the propositional point of view the above sentence is of the
form ϕ ∧ ψ → σ, and there is no reason why this sentence should be true,
although we obviously accept it as true. The moral is that we have to extend
the language, in such a way as to be able to discuss objects and relations. In
particular we wish to introduce means to talk about all objects of the domain
of discourse, e.g. we want to allow statements of the form “all even numbers
are a sum of two odd primes”. Dually, we want a means of expressing “there
exists an object such that . . . ”, e.g. in “there exists a real number whose
square is 2”.

Experience has taught us that the basic mathematical statements are of
the form “a has the property P” or “a and b are in the relation R”, etc. Exam-
ples are: “n is even”, “f is differentiable”, “3 = 5”, “7 < 12”, “B is between
A and C”. Therefore we build our language from symbols for properties, re-
lations and objects. Furthermore we add variables to range over objects (so
called individual variables), and the usual logical connectives now including
the quantifiers ∀ and ∃ (for “for all” and “there exists”).

We first give a few informal examples.

∃xP (x) − there is an x with propertyP,
∀yP (y) − for all y P holds (all y have the

property P ),
∀x∃y(x = 2y) − for all x there is a y such that x is

two times y,
∀ε(ε > 0→ ∃n( 1

n < ε)) − for all positive ε there is an n such
that 1

n < ε,
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x < y → ∃z(x < z ∧ z < y) − if x < y, then there is a z such that
x < z and z < y,

∀x∃y(x.y = 1) − for each x there exists an inverse y.

We know from elementary set theory that functions are a special kind of
relations. It would, however, be in flagrant conflict with mathematical practice
to avoid functions (or mappings). Moreover, it would be extremely cumber-
some. So we will incorporate functions in our language.

Roughly speaking the language deals with two categories of syntactical en-
tities: one for objects - the terms, one for statements - the formulas. Examples
of terms are: 17, x, (2 + 5)− 7, x3y+1.

What is the subject of predicate logic with a given language? Or, to put it
differently, what are terms and formulas about? The answer is: formulas can
express properties concerning a given set of relations and functions on a fixed
domain of discourse. We have already met such situations in mathematics;
we talked about structures, e.g. groups, rings, modules, ordered sets (see any
algebra text). We will make structures our point of departure and we will get
to the logic later.

In our logic we will speak about “all numbers” or “all elements”, but
not about “all ideals” or “all subsets”, etc. Loosely speaking, our variables
will vary over elements of a given universe (e.g. the n × n matrices over the
reals), but not over properties or relations, or properties of properties, etc.
For this reason the predicate logic of this book is called first-order logic, or
also elementary logic. In everyday mathematics, e.g. analysis, one uses higher
order logic. In a way it is a surprise that first-order logic can do so much for
mathematics, as we will see. A short introduction to second-order logic will
be presented in chapter 4.

2.2 Structures

A group is a (non-empty) set equipped with two operations, a binary one and
a unary one, and with a neutral element (satisfying certain laws). A partially
ordered set is a set, equipped with a binary relation (satisfying certain laws).

We generalize this as follows:

Definition 2.2.1 A structure is an ordered sequence
〈A,R1, . . . , Rn, F1, . . . , Fm, {ci|i ∈ I}〉, where A is a non-empty set. R1, . . . , Rn
are relations on A, F1, . . . , Fm are functions on A, the ci (i ∈ I) are elements
of A (constants).

Warning. The functions Fi are total, i.e. defined for all arguments; this calls
sometimes for tricks, as with 0−1 (cf. p. 87).
Examples. 〈R,+, ·,−1 , 0, 1〉 – the field of real numbers,

〈N, <〉 – the ordered set of natural numbers.
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We denote structures by Gothic capitals: A,B,C,D, . . .. The script letters
are shown on page 56.

If we overlook for a moment the special properties of the relations and
operations (e.g. commutativity of addition on the reals), then what remains
is the type of a structure, which is given by the number of relations, functions
(or operations), and their respective arguments, plus the number (cardinality)
of constants.

Definition 2.2.2 The similarity type of a structure A = 〈A,R1, . . . , Rn, F1,
. . . , Fm, {ci|i ∈ I}〉 is a sequence, 〈r1, . . . , rn; a1, . . . , am;κ〉, where Ri ⊆ Ari ,
Fj : Aaj → A, κ = |{ci |i ∈ I}| (cardinality of I).

The two structures in our example have (similarity) type 〈−; 2, 2, 1; 2〉
and 〈2;−; 0〉. The absence of relations, functions is indicated by −. There
is no objection to extending the notion of structure to contain arbitrarily
many relations or functions, but the most common structures have finite types
(including finitely many constants).

It would, of course, have been better to use similar notations for our struc-
tures, i.e. 〈A;R1, . . . , Rn;F1, . . . , Fm; ci|i ∈ I〉, but that would be too pedantic.

If R ⊆ A, then we call R a property (or unary relation), if R ⊆ A2, then
we call R a binary relation, if R ⊆ An, then we call R an n-ary relation.

The set A is called universe of A. Notation. A = |A|. A is called (in)finite
if its universe is (in)finite. We will mostly commit a slight abuse of language
by writing down the constants instead of the set of constants, in the example
of the field of real numbers we should have written: 〈R,+, ·,−1 , {0, 1}〉, but
〈R,+, ·,−1 , 0, 1〉 is more traditional. Among the relations one finds in struc-
tures, there is a very special one: the identity (or equality) relation.

Since mathematical structures, as a rule, are equipped with the identity
relation, we do not list the relation separately. It does, therefore, not occur in
the similarity type. We henceforth assume all structures to possess an iden-
tity relation and we will explicitly mention any exceptions. For purely logical
investigations it makes, of course, perfect sense to consider a logic without
identity, but the present book caters for readers from the mathematics or
computer science community.

One also considers the “limiting cases” of relations and functions, i.e. 0-ary
relations and functions. An 0-ary relation is a subset of A∅. Since A∅ = {∅}
there are two such relations: ∅ and {∅} (considered as ordinals: 0 and 1). 0-ary
relations can thus be seen as truth values, which makes them play the role
of the interpretations of propositions. In practice 0-ary relations do not crop
up, e.g. they have no role to play in ordinary algebra. Most of the time the
reader can joyfully forget about them, nonetheless we will allow them in our
definition because they simplify certain considerations. A 0-ary function is a
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mapping from A∅ into A, i.e. a mapping from {∅} into A. Since the mapping
has a singleton as domain, we can identify it with its range.

In this way 0-ary functions can play the role of constants. The advantage
of the procedure is, however, negligible in the present context, so we will keep
our constants.

Exercises

1. Write down the similarity type for the following structures:
(i) 〈Q, <, 0〉
(ii) 〈N,+, ·, S, 0, 1, 2, 3, 4, . . . , n, . . .〉,whereS(x) = x+ 1,
(iii) 〈P(N),⊆,∪,∩,c , ∅〉,
(iv) 〈Z/(5),+, ·,−,−1 , 0, 1, 2, 3, 4〉,
(v) 〈{0, 1},∧,∨,→,¬, 0, 1〉 , where ∧,∨,→,¬ operate according to

the ordinary truth tables,
(vi) 〈R, 1〉,
(vii) 〈R〉,
(viii) 〈R,N, <, T, 2, | |,−〉, where T (a, b, c) is the relation‘b is between

a and c’,2is the square function, − is the subtraction function
and | | the absolute value.

2. Give structures with type 〈1, 1;−; 3〉, 〈4;−; 0〉.

2.3 The Language of a Similarity Type

The considerations of this section are generalizations of those in section 1.1.1.
Since the arguments are rather similar, we will leave a number of details
to the reader. For convenience we fix the similarity type in this section:
〈r1, . . . , rn; a1, . . . , am;κ〉, where we assume ri ≥ 0, aj > 0.
The alphabet consists of the following symbols:

1. Predicate symbols: P1, . . . , Pn,
.=

2. Function symbols: f1, . . . , fm
3. Constant symbols: ci for i ∈ I
4. Variables: x0, x1, x2, . . .(countably many)
5. Connectives: ∨,∧,→,¬,↔,⊥ ∀, ∃
6. Auxiliary symbols: (, ),

∀ and ∃ are called the universal and existential quantifier. The curiously look-
ing equality symbol has been chosen to avoid possible confusion, there are in
fact a number of equality symbols in use: one to indicate the identity in the
models, one to indicate the equality in the meta language and the syntactic
one introduced above. We will, however, practice the usual abuse of language,
and use these distinctions only if it is really necessary . As a rule the reader
will have no difficulty in recognising the kind of identity involved.
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Next we define the two syntactical categories.

Definition 2.3.1 TERM is the smallest set X with the properties
(i) ci ∈ X(i ∈ I) and xi ∈ X(i ∈ N),
(ii) t1, . . . , tai ∈ X ⇒ fi(t1, . . . , tai) ∈ X, for 1 ≤ i ≤ m

TERM is our set of terms.

Definition 2.3.2 FORM is the smallest set X with the properties:
(i) ⊥∈ X ;Pi ∈ X if ri = 0; t1, . . . , tri ∈ TERM ⇒

Pi(t1, . . . , tri) ∈ X ; t1, t2 ∈ TERM ⇒ t1 = t2 ∈ X,
(ii) ϕ, ψ ∈ X ⇒ (ϕ�ψ) ∈ X, where � ∈ {∧,∨,→,↔},
(iii) ϕ ∈ X ⇒ (¬ϕ) ∈ X,
(iv) ϕ ∈ X ⇒ ((∀xi)ϕ), ((∃xi)ϕ) ∈ X.

FORM is our set of formulas. We have introduced t1 = t2 separately, but
we could have subsumed it under the first clause. If convenient, we will not
treat equality separately. The formulas introduced in (i) are called atoms. We
point out that(i) includes the case of 0-ary predicate symbols, conveniently
called proposition symbols.

A proposition symbol is interpreted as a 0-ary relation, i.e. as 0 or 1 (cf.
2.2.2). This is in accordance with the practice of propositional logic to in-
terpret propositions as true or false. For our present purpose propositions
are a luxury. In dealing with concrete mathematical situations (e.g. groups
or posets) one has no reason to introduce propositions (things with a fixed
truth value). However, propositions are convenient (and even important) in
the context of Boolean-valued logic or Heyting-valued logic, and in syntactical
considerations.

We will, however, allow a special proposition: ⊥, the symbol for the false
proposition (cf. 1.2).

The logical connectives have, what one could call ‘a domain of action’,
e.g. in ϕ → ψ the connective → yields the new formula ϕ → ψ from formu-
las ϕ and ψ, and so → bears on ϕ, ψ and all their parts. For propositional
connectives this is not terribly interesting, but for quantifiers (and variable-
binding operators in general) it is. The notion goes by the name of scope .
So in ((∀x)ϕ) and ((∃x)ϕ), ϕ is the scope of the quantifier. By locating the
matching brackets one can easily effectively find the scope of a quantifier. If
a variable, term or formula occurs in ϕ, we say that it is in the scope of the
quantifier in ∀xϕ or ∃xϕ.

Just as in the case of PROP, we have induction principles for TERM and
FORM.

Lemma 2.3.3 Let A(t) be a property of terms. If A(t) holds for t a variable or
a constant, and if A(t1), A(t2), . . . , A(tn) ⇒ A(f(t1, . . . , tn)), for all function
symbols f , then A(t) holds for all t ∈ TERM.
Proof. cf. 1.1.3. �



62 2 Predicate Logic

Lemma 2.3.4 Let A(ϕ) be a property of formulas. If
(i) A(ϕ) for atomic ϕ,
(ii) A(ϕ), A(ψ) ⇒ A(ϕ�ψ),
(iii) A(ϕ) ⇒ A(¬ϕ),
(iv) A(ϕ) ⇒ A((∀xi)ϕ), A((∃xi)ϕ) for all i, then A(ϕ) holds for all
ϕ ∈ FORM.

Proof. cf. 1.1.3. �
We will straight away introduce a number of abbreviations. In the first

place we adopt the bracket conventions of propositional logic. Furthermore
we delete the outer brackets and the brackets round ∀x and ∃x, whenever
possible. We agree that quantifiers bind more strongly than binary connec-
tives. Furthermore we join strings of quantifiers, e.g. ∀x1x2∃x3x4ϕ stands
for ∀x1∀x2∃x3∃x4ϕ. For better readability we will sometimes separate the
quantifier and the formula by a dot: ∀x · ϕ. We will also assume that n in
f(t1, . . . , tn), P (t1, . . . , tn) always indicates the correct number of arguments.

A word of warning: the use of = might confuse a careless reader. The sym-
bol ‘=’ is used in the language L, where it is a proper syntactic object. It
occurs in formulas such as x0 = x7, but it also occurs in the meta-language,
e.g. in the form x = y, which must be read “x and y are one and the same
variable”. However, the identity symbol in x = y can just as well be the le-
gitimate symbol from the alphabet, i.e. x = y is a meta-atom, which can be
converted into a proper atom by substituting genuine variable symbols for x
and y. Some authors use ≡ for “syntactically identical”, as in “x and y are the
same variable”. We will opt for “=” for the equality in structures (sets) and
“ .=” for the identity predicate symbol in the language. We will use .= a few
times, butweprefer to stick to a simple “ = ” trusting the alertness of the reader.

Example 2.3.5 Example of a language of type 〈2; 2, 1; 1〉.
predicate symbols: L, .=
function symbols: p, i
constant symbol: e

Some terms: t1 := x0; t2 := p(x1, x2); t3 := p(e, e); t4 := i(x7); t5 :=
p(i(p(x2, e)), i(x1)).

Some formulas:

ϕ1 := x0
.= x2, ϕ4 := (x0

.= x1 → x1
.= x0),

ϕ2 := t3
.= t4, ϕ5 := (∀x0)(∀x1)(x0

.= x1

ϕ3 := L(i(x5), e), ϕ6 := (∀x0)(∃x1)(p(x0, x1)
.= e),

ϕ7 := (∃x1)(¬x1
.= e ∧ p(x1, x1)

.= e).

(We have chosen a suggestive notation; think of the language of ordered
groups: L for “less than”, p, i for “product” and “inverse”). Note that the
order in which the various symbols are listed is important. In our example p
has 2 arguments and i has 1.
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In mathematics there are a number of variable binding operations, such
as summation,integration, abstraction: consider, for example, integration, in
∫ 1

0 sinxdx the variable plays an unusual role for a variable. For x cannot
“vary”; we cannot (without writing nonsense) substitute any number we like
for x. In the integral the variable x is reduced to a tag. We say that the vari-
able x is bound by the integration symbol. Analogously we distinguish in logic
between free and bound variables.

A variable may occur in a formula more than once. It is quite often useful
to look at a specific instance at a certain place in the string that makes up
the formula. We call these occurrences of the variable, and we use expressions
like ‘x occurs in the subformula ψ of ϕ.’ In general we consider occurrences
of formulas, terms, quantifiers, and the like.

In defining various syntactical notions we again freely use the principle of
definition by recursion (cf. 1.1.6). The justification is immediate: the value of
a term (formula) is uniquely determined by the values of its parts. This allows
us to find the value of H(t) in finitely many steps.

Definition by Recursion on TERM: Let H0 : V ar ∪ Const → A (i.e.H0

is defined on variables and constants), Hi : Aai → A, then there is a unique
mapping H : TERM → A such that

{
H(t) = H0(t) for t a variable or a constant,
H(fi(t1, . . . , tai)) = Hi(H(t1), . . . , H(tai)).

Definition by Recursion on FORM:
Let Hat : At→ A (i.e.Hat is defined on atoms),

H� : A2 → A, (� ∈ {∨,∧,→,↔})
H¬ : A→ A,
H∀ : A×N → A,
H∃ : A×N → A.

then there is a unique mapping H : FORM → A such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(ϕ) = Hat(ϕ) for atomice ϕ,
H(ϕ�ψ) = H�(H(ϕ), H(ψ)),
H(¬ϕ) = H¬(H(ϕ)),
H(∀xiϕ) = H∀(H(ϕ), i),
H(∃xi(ϕ) = H∃(H(ϕ), i).

Definition 2.3.6 The set FV (t) of free variables of t is defined by
(i) FV (xi) := {xi},

FV (ci) := ∅
(ii) FV (f(t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn).

Remark. To avoid messy notation we will usually drop the indices and
tacitly assume that the number of arguments is correct. The reader can easily
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provide the correct details, should he wish to do so.

Definition 2.3.7 The set FV (ϕ) of free variables of ϕ is defined by
(i) FV (P (t1, . . . , tp)) := FV (t1) ∪ . . . ∪ FV (tp),

FV (t1 = t2) := FV (t1) ∪ FV (t2),
FV (⊥) = FV (P ) := ∅ for P a proposition symbol,

(ii) FV (ϕ�ψ) := FV (ϕ) ∪ FV (ψ),
FV (¬ϕ) := FV (ϕ),

(iii) FV (∀xiϕ) := FV (∃xiϕ) := FV (ϕ)− {xi}.
.

Definition 2.3.8 t or ϕ is called closed if FV (t) = ∅, resp. FV (ϕ) = ∅.
A closed formula is also called a sentence. A formula without quantifiers is
called open. TERMc denotes the set of closed terms; SENT denotes the set
of sentences.

It is left to the reader to define the set BV (ϕ) of bound variables of ϕ.
Continuation of Example 2.3.5.
FV (t2) = {x1, x2};FV (t3) = ∅; FV (ϕ2) = FV (t3) ∪ FV (t4) = {x7};
FV (ϕ7) = ∅; BV (ϕ4) = ∅; BV (ϕ6) = {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.
Warning. FV (ϕ) ∩ BV (ϕ) need not be empty, in other words, the same
variable may occur free and bound. To handle such situations one considers
free (resp. bound) occurrences of variables. When necessary we will make in-
formally use of occurrences of variables; see also p. 63
Example. ∀x1(x1 = x2) → P (x1) contains x1 both free and bound, for the
occurrence of x1 in P (x1) is not within the scope of the quantifier

In predicate calculus we have substitution operators for terms and for for-
mulas.

Definition 2.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{
y if y �≡ x
t if y ≡ x

c[t/x] := c
(ii) f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 2.3.10 ϕ[t/x] is defined by:
(i) ⊥ [t/x] := ⊥,

P [t/x] := P for propositions P,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],
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(ii) (ϕ�ψ)[t/x] := ϕ[t/x]�ψ[t/x],
(¬ϕ)[t/x] := ¬ϕ[t/x]

(iii) (∀yϕ)[t/x] :=
{∀yϕ[t/x] if x �≡ y
∀yϕ if x ≡ y

(∃yϕ)[t/x] :=
{∃yϕ[t/x] if x �≡ y
∃yϕ if x ≡ y

Substitution of formulas is defined as in the case of propositions, for con-
venience we use ‘$’ as a symbol for the propositional symbol (0-ary predicate
symbol) that acts as a ‘place holder’.

Definition 2.3.11 σ[ϕ/$] is defined by:

(i) σ[ϕ/$] :=
{
σ if σ �≡ $
ϕ if σ ≡ $ for atomic σ,

(ii) (σ1�σ2)[ϕ/$] := σ1[ϕ/$]�σ2[ϕ/$]
(¬σ1)[σ/$] := ¬σ1[ϕ/$]
(∀yσ)[ϕ/$] := ∀y.σ[ϕ/$]
(∃yσ)[ϕ/$] := ∃y.σ[ϕ/$].

Continuation of Example 2.3.5.

t4[t2/x1] = i(x7); t4[t2/x7] = i(p(x1, x2));
t5[x2/x1] = p(i(p(x2, e), i(x2)),
ϕ1[t3/x0] = p(e, e) .= x2; ϕ5[t3/x0] = ϕ5.

We will sometimes make simultaneous substitutions, the definition is a
slight modification of definitions 2.3.9, 2.3.10 and 2.3.11. The reader is asked
to write down the formal definitions. We denote the result of a simultaneous
substitution of t1, . . . , tn for y1, . . . , yn in t by t[t1, . . . , tn/y1, . . . , yn] (similarly
for ϕ).
Note that a simultaneous substitution is not the same as its corresponding
repeated substitution.
Example. (x0

.= x1)[x1, x0/x0, x1] = (x1
.= x0),

but ((x0
.= x1)[x1/x0])[x0/x1] = (x1

.= x1)[x0/x1] = (x0
.= x0).

The quantifier clause in definition 2.3.10 forbids substitution for bound
variables. There is, however, one more case we want to forbid: a substitution,
in which some variable after the substitution becomes bound. We will give
an example of such a substitution; the reason why we forbid it is that it can
change the truth value in an absurd way. At this moment we do not have a
truth definition, so the argument is purely heuristic.
Example. ∃x(y < x)[x/y] = ∃x (x < x).

Note that the right-hand side is false in an ordered structure, whereas
∃x(y < x) may very well be true. We make our restriction precise:
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Definition 2.3.12 t is free for x in ϕ if
(i) ϕ is atomic,
(ii) ϕ := ϕ1�ϕ2 (or ϕ := ¬ϕ1) and t is free for x in ϕ1 and ϕ2 (resp.ϕ1),
(iii) ϕ := ∃yψ (or ϕ := ∀yψ) and if x ∈ FV (ϕ), then y �∈ FV (t) and t

is free for x in ψ.

Examples.

1. x2 is free for x0 in ∃x3P (x0, x3),
2. f(x0, x1) is not free for x0 in ∃x1P (x0, x3),
3. x5 is free for x1 in P (x1, x3)→ ∃x1Q(x1, x2).

For all practical purposes the use of “t is free for x in ϕ” consists of the fact
that the (free) variables of t are not going to be bound after substitution in ϕ.

Lemma 2.3.13 t is free for x in ϕ ⇔ the variables of t in ϕ[t/x] are not
bound by a quantifier.

Proof. Induction on ϕ.

– For atomic ϕ the lemma is evident.
– ϕ = ϕ1�ϕ2. t is free for x in ϕ

def.⇔ t is free for x in ϕ1 and t is free for x in
ϕ2

i.h.⇔ the variables of t in ϕ1[t/x] are not bound by a quantifier and the
variables of t in ϕ2[t/x] are not bound by a quantifier ⇔ the variables of
t in (ϕ1�ϕ2)[t/x] are not bound by a quantifier.

– ϕ = ¬ϕ1, similar.
– ϕ = ∃yψ. It suffices to consider the case x ∈ FV (ϕ). t is free for x in

ϕ
def.⇔ y �∈ FV (t) and t is free for x in ψ

i.h.⇔ the variables of t are not in
the scope of ∃y and the variables of t in ψ[t/x] are not bound by (another)
quantifier ⇔ the variables of t in ϕ[t/x] are not bound by a quantifier. �

There is an analogous definition and lemma for the substitution of formulas.

Definition 2.3.14 ϕ is free for $ in σ if:
(i) σ is atomic,
(ii) σ := σ1�σ2 (or ¬σ1) and ϕ is free for $ in σ1 and in σ2 (or in σ1),
(iii) σ := ∃yτ (or ∀yτ) and if $ occurs in σ then y �∈ FV (ϕ) and ϕ is

free for $ in τ .

Lemma 2.3.15 ϕ is free for $ in σ ⇔ the free variables of ϕ are in σ[ϕ/$]
not bound by a quantifier.
Proof. As for Lemma 2.3.13. �

From now on we tacitly suppose that all our substitutions are “free for”.
For convenience we introduce an informal notation that simplifies reading and
writing:

Notation. In order to simplify the substitution notation and to conform to
an ancient suggestive tradition we will write down (meta-) expressions like
ϕ(x, y, z), ψ(x, x), etc. This neither means that the listed variables occur free
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nor that no other ones occur free. It is merely a convenient way to handle
substitution informally: ϕ(t) is the result of replacing x by t in ϕ(x);ϕ(t) is
called a substitution instance of ϕ(x).

We use the languages introduced above to describe structures, or classes
of structures of a given type. The predicate symbols, function symbols and
constant symbols act as names for various relations, operations and constants.
In describing a structure it is a great help to be able to refer to all elements
of |A| individually, i.e. to have names for all elements (if only as an auxiliary
device). Therefore we introduce:

Definition 2.3.16 The extended language, L(A), of A is obtained from the
language L, of the type of A, by adding constant symbols for all elements of
A. We denote the constant symbol, belonging to a ∈ |A|, by a.

Example. Consider the language L of groups; then L(A), for A the additive
group of integers, has (extra) constant symbols 0, 1, 2, . . ., −1, −2, −3, . . . ..
Observe that in this way 0 gets two names: the old one and one of the new
ones. This is no problem, why should not something have more than one name?

Exercises

1. Write down an alphabet for the languages of the types given in Exercise
1 of section 2.2

2. Write down five terms of the language belonging to Exercise, 1 (iii), (viii),
Write down two atomic formulas of the language belonging to Exercise 1,
(vii) and two closed atoms for Exercise 1, (iii), (vi).

3. Write down an alphabet for languages of types 〈3; 1, 1, 2; 0〉, 〈−; 2; 0〉 and
〈1;−; 3〉.

4. Check which terms are free in the following cases, and carry out the sub-
stitution:
(a) x for x in x = x, (f) x+ w for z in ∀w(x + z = 0),
(b) y for x in x = x, (g) x+ y for z in ∀w(x + z = 0) ∧
(c) x+ y for y in z = 0, ∃y(z = x),
(d) 0 + y for y in ∃x(y = x), (h) x+ y for z in ∀u(u = v)→
(e) x+ y for z in ∀z(z = y).

∃w(w + x = 0),
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2.4 Semantics

The art of interpreting (mathematical) statements presupposes a strict sepa-
ration between “language” and the mathematical “universe” of entities. The
objects of language are symbols, or strings of symbols, the entities of mathe-
matics are numbers, sets, functions, triangles, etc. It is a matter for the phi-
losophy of mathematics to reflect on the universe of mathematics; here we will
simply accept it as given to us. Our requirements concerning the mathemat-
ical universe are, at present, fairly modest. For example, ordinary set theory
will do very well for us. Likewise our desiderata with respect to language are
modest. We just suppose that there is an unlimited supply of symbols.

The idea behind the semantics of predicate logic is very simple. Following
Tarski, we assume that a statement σ is true in a structure, if it is actually
the case that σ applies (the sentence “Snow is white” is true if snow actually
is white). A mathematical example: “2 + 2 = 4” is true in the structure of
natural numbers (with addition) if 2 + 2 = 4 (i.e. if addition of the numbers
2 and 2 yields the number 4). Interpretation is the art of relating syntactic
objects (strings of symbols) and states of affairs “in reality”.

We will start by giving an example of an interpretation in a simple case.
We consider the structure A = (Z, <,+,−, 0), i.e. the ordered group of inte-
gers.
The language has in its alphabet:

predicate symbols : .=, L
function symbols : P,M
constant symbol : 0

L(A) has, in addition to all that, constant symbols m for all m ∈ Z. We first
interpret the closed terms of L(A); the interpretation tA of a term t is an
element of Z.

t tA

m m
P (t1, t2) tA1 + tA2
M(t) −tA

Roughly speaking, we interpret m as “its number”, P as plus, M as minus.
Note that we interpret only closed terms. This stands to reason, how should
one assign a definite integer to x?

Next we interpret sentences of L(A) by assigning one of the truth values
0 or 1. As far as the propositional connectives are concerned, we follow the
semantics for propositional logic.
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v(⊥) = 0,

v(t .= s) =
{

1 if tA = sA

0 else,

v(L(t, s)) =
{

1 if tA < sA

0 else
v(ϕ�ψ)
v(¬ϕ) as in 1.2.1

v(∀xϕ) = min{v(ϕ[n/x]) | n ∈ Z}
v(∃xσ) = max{v(ϕ[n/x]) | n ∈ Z}

A few remarks are in order.

1. In fact we have defined a function v by recursion on ϕ.
2. The valuation of a universally quantified formula is obtained by taking the

minimum of all valuations of the individual instances, i.e. the value is 1
(true) iff all instances have the value 1. In this respect ∀ is a generalization
of ∧. Likewise ∃ is a generalization of ∨.

3. v is uniquely determined by A, hence vA would be a more appropriate
notation. For convenience we will, however, stick to just v.

4. As in the semantics of propositional logic, we will write [[ϕ]]A for vA(ϕ),
and when no confusion arises we will drop the subscript A.

5. It would be tempting to make our notation really uniform by writing
[[t]]A for tA. We will, however, keep both notations and use whichever is
the most readable. The superscript notation has the drawback that it re-
quires more brackets, but the [[ ]]-notation does not improve readability.

Examples.

1. (P (P (2, 3),M(7)))A = P (2, 3)A +M(7)A = (2A + 3A) + (−7A) = 2 + 3 +
(−7) = −2,

2. [[2 .= −1]] = 0, since 2 �= −1,
3. [[0 .= 1 → L(25, 10)]] = 1, since [[0 = 1]] = 0 and [[L(25, 10)]] = 0; by the

interpretation of the implication the value is 1,
4. [[∀x∃y(L(x, y))]] = minn(maxm[[L(n,m))]]

[[(n,m)]] = 1 for m > n, so for fixed n, maxm[[L(n,m)]] = 1, and hence
minn maxm[[L(n,m)]] = 1.

Let us now present a definition of interpretation for the general case. Con-
sider A = 〈A,R1, . . . , Rn, F1, . . . , Fm, {ci|i ∈ I}〉 of a given similarity type
〈r1, . . . , rn; a1, . . . , am; |I|〉.

The corresponding language has predicate symbols R1, . . . , Rn, function
symbols F 1, . . . , Fm and constant symbols ci. L(A), moreover, has constant
symbols a for all a ∈ |A|.
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Definition 2.4.1 An interpretation of the closed terms of L(A) in A, is a
mapping (.)A : TERMc → |A| satisfying:
(i) ciA = ci (= [[ci]]A)

aA = a, (= [[a]]A)
(ii) (F i(t1, . . . , tp))A = Fi(tA1 , . . . , tAp ), (= [[Fi(t1, . . . , tp))]]A

where p = ai = Fi([[t1]]A, . . . , [[tp]]A) )

There is also a valuation notation using Scott-brackets; we have indicated in
the above definition how these brackets are to be used. The now following
definition is exclusively in terms of valuations.

Definition 2.4.2 An interpretation of the sentences ϕ of L(A) in A, is a
mapping [[.]]A : SENT → {0, 1}, satisfying:
(i) [[⊥]]A := 0,

[[R]]A := R (i.e. 0 or 1).

(ii) [[Ri(t1, . . . , tp)]]A :=
{
1 if 〈tA1 , . . . , tAp 〉 ∈ Ri, where p = ri,
0 else.

[[t1 = t2]]A, :=
{
1 if tA1 = tA2
0 else.

(iii) [[ϕ ∧ ψ]]A := min([[ϕ]]A, [[ψ]]A),
[[ϕ ∨ ψ]]A := max([[ϕ]]A, [[ψ]]A),
[[ϕ→ ψ]]A := max(1− [[ϕ]]A, [[ψ]]A),
[[ϕ↔ ψ]]A := 1− |[[ϕ]]A − [[ψ]]A|,
[[¬ϕ]]A := 1− [[ϕ]]A.

(iv) [[∀xϕ]]A := min{[[ϕ[a/x]]]A| a ∈ |A|},
[[∃xϕ]]A := max{[[ϕ[a/x]]]A| a ∈ |A|}.

Convention: from now on we will assume that all structures and languages
have the appropriate similarity type, so that we don’t have to specify the
types all the time.

In predicate logic there is a popular and convenient alternative for the
valuation-notation:

A |= ϕ stands for [[ϕ]]A = 1. We say that “ϕ is true, valid, in A” if A |= ϕ.
The relation |= is called the satisfaction relation.
Note that the same notation is available in propositional logic — there the
role of A is taken by the valuation, so one could very well write v |= ϕ for
[[ϕ]]v = 1

So far we have only defined truth for sentences of L(A). In order to extend
|= to arbitrary formulas we introduce a new notation.

Definition 2.4.3 Let FV (ϕ) = {z1, . . . , zk}, then Cl (ϕ) := ∀z1 . . . zkϕ is the
universal closure of ϕ (we assume the order of variables zi to be fixed in some
way).
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Definition 2.4.4 (i) A |= ϕ iff A |= Cl(ϕ),
(ii) |= ϕ iff A |= ϕ for all A (of the appropriate type),
(iii) A |= Γ iff A |= ψ for all ψ ∈ Γ ,
(iv) Γ |= ϕ iff (A |= Γ ⇒ A |= ϕ), where Γ ∪ {ϕ} consists of sentences.

If A |= σ, we call A a model of σ. In general: if A |= Γ , we call A a model
of Γ . We say that ϕ is true if |= ϕ, ϕ is a semantic consequence of Γ if Γ |= ϕ
i.e. ϕ holds in each model of Γ . Note that this is all a straight-forward gener-
alization of 1.2.4.

If ϕ is a formula with free variables, say FV (ϕ) = {z1, . . . , zk}, then we say
that ϕ is satisfied by a1, . . . , ak ∈ |A| if A |= ϕ[a1, . . . , ak/z1, . . . , zk], ϕ is called
satisfiable in A if there are a1, . . . , ak such that ϕ is satisfied by a1, . . . , ak and
ϕ is called satisfiable if it is satisfiable in some A. Note that ϕ is satisfiable in
A iff A |= ∃z1 . . . zkϕ.

The properties of the satisfaction relation are in understandable and con-
venient correspondence with the intuitive meaning of the connectives.

Lemma 2.4.5 If we restrict ourselves to sentences, then
(i) A |= ϕ ∧ ψ ⇔ A |= ϕ and A |= ψ,
(ii) A |= ϕ ∨ ψ ⇔ A |= ϕ or A |= ψ
(iii) A |= ¬ϕ⇔ A �|= ϕ,
(iv) A |= ϕ→ ψ ⇔ (A |= ϕ⇒ A |= ψ),
(v) A |= ϕ↔ ψ ⇔ (A |= ϕ⇔ A |= ψ),
(vi) A |= ∀xϕ⇔ A |= ϕ[a/x], for all a ∈ |A|,
(vii) A |= ∃xϕ⇔ A |= ϕ[a/x], for some a ∈ |A|.

Proof. Immediate from Definition 2.4.2. We will do two cases.

(iv) A |= ϕ→ ψ ⇔ [[ϕ → ψ]]A = max(1 − [[ϕ]]A, [[ψ]]A) = 1. Suppose A |= ϕ,
i.e. [[ϕ]]A = 1, then clearly [[ψ]]A = 1, or A |= ψ.
Conversely, let A |= ϕ ⇒ A |= ψ, and suppose A �|= ϕ → ψ, then
[[ϕ → ψ]]A = max(1 − [[ϕ]]A, [[ψ]]A) = 0. Hence [[ψ]]A = 0 and [[ϕ]]A = 1.
Contradiction.

(vii) A |= ∃xϕ(x) ⇔ max{([[ϕ(a)]]A|a ∈ |A|} = 1 ⇔ there is an a ∈ |A| such
that [[ϕ(a)]]A = 1⇔ there is an a ∈ |A| such that A |= ϕ(a). �

Lemma 2.4.5 tells us that the interpretation of sentences in A runs paral-
lel to the construction of the sentences by means of the connectives. In other
words, we replace the connectives by their analogues in the meta-language
and interpret the atoms by checking the relations in the structure.

For example, consider our example of the ordered additive group of
integers:A |= ¬∀x∃y(x .= P (y, y)) ⇔ It is not the case that for each num-
ber n there exists an m such that n = 2m⇔ not every number can be halved
in A. This clearly is correct, take for instance n = 1.

Let us reflect for a moment on the valuation of proposition symbols; an
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0-ary relation is a subset of A∅ = {∅}, i.e. it is ∅ or {∅} and these are, consid-
ered as ordinals, 0 or 1. So [[P ]]A = P , and P is a truth value. This makes our
definition perfectly reasonable. Indeed, without aiming for a systematic treat-
ment, we may observe that formules correspond to subsets of Ak, where k is
the number of free variables. E.g. let FV (ϕ) = {z1, . . . , zk}, then we could put
[[ϕ]]A = {〈a1, . . . , ak〉|A |= ϕ(a1, . . . , ak)}(= {〈a1, . . . , an〉|[[ϕ(a1, . . . , ak)]]A =
1}), thus stretching the meaning of [[ϕ]]A a bit. It is immediately clear that ap-
plying quantifiers to ϕ reduces the “dimension”. For example, [[∃xP (x, y)]]A =
{a|A |= P (b, a) for some b}, which is the projection of [[P (x, y)]]A onto the y-
axis.

Exercises

1. Let N = 〈N,+, ·, S, 0〉, and L a language of type 〈−; 2, 2, 1; 1〉.
(i) Give two distinct terms t in L such that tN = 5,
(ii) Show that for each natural number n ∈ N there is a term t such

that tN = n,
(iii) Show that for each n ∈ N there are infinitely many terms t such

that tN = n.

2. Let A be the structure of exercise 1 (v) of section 2.2. Evaluate
(((1 → 0)→ ¬0) ∧ (¬0)→ (1 → 0))A, (1 ← ¬(¬0 ∨ 1))A.

3. Let A be the structure of exercise 1 (viii) of section 2.2. Evaluate (|(√3)2−
−5|)A,
(1− (|(−2)| − (5− (−2)))A.

4. Which cases of Lemma 2.4.5 remain correct if we consider formulas in
general?

5. For sentences σ we have A |= σ or A |= ¬σ. Show that this does not hold
for ϕ with FV (ϕ) �= ∅. Show that not even for sentences |= σ or |= ¬σ
holds.

6. Show for closed terms t and formulas ϕ (in L(A)):
A |= t = [[t]]A,
A |= ϕ(t) ↔ ϕ([[t]]A) (We will also obtain this as a corollary to the

Substitution Theorem, 2.5.9).

7. Show that A |= ϕ ⇒ A |= ψ for all A, implies |= ϕ ⇒ |= ψ, but not vice
versa.
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2.5 Simple Properties of Predicate Logic

Our definition of validity (truth) was a straightforward extension of the
valuation-definition of propositional logic. As a consequence formulas which
are instances of tautologies are true in all structures A (exercise 1). So we can
copy many results from sections 1.2 and 1.3. We will use these results with a
simple reference to propositional logic.

The specific properties concerning quantifiers will be treated in this sec-
tion. First we consider the generalizations of De Morgan’s laws .

Theorem 2.5.1 (i) |= ¬∀xϕ↔ ∃x¬ϕ
(ii) |= ¬∃xϕ↔ ∀x¬ϕ
(iii) |= ∀xϕ↔ ¬∃x¬ϕ
(iv) |= ∃xϕ↔ ¬∀x¬ϕ

Proof. If there are no free variables involved, then the above equivalences are
almost trivial. We will do one general case.

(i) Let FV (∀xϕ) = {z1, . . . , zk}, then we must show
A |= ∀z1 . . . zk(¬∀xϕ(x, z1, . . . , zk) ↔ ∃x¬ϕ(x, z1, . . . , zk)), for all A.
So we have to show A |= ¬∀xϕ(x, a1, . . . , ak)↔ ∃x¬ϕ(x, a1, . . . , ak) for ar-
bitrary a1, . . . , ak ∈ |A|. We apply the properties of |= as listed in Lemma
2.4.5:
A |= ¬∀xϕ(x, a1, . . . , ak) ⇔ A �|= ∀xϕ(x, a1, . . . , ak) ⇔ not for all
b ∈ |A| A |= ϕ(b, a1, . . . , ak) ⇔ there is a b ∈ |A| such that
A |= ¬ϕ(b, a1, . . . , ak) ⇔ A |= ∃x¬ϕ(x, a1, . . . , an).

(ii) is similarly dealt with,
(iii) can be obtained from (i), (ii),
(iv) can be obtained from (i), (ii). �

The order of quantifiers of the same sort is irrelevant, and quantification
over a variable that does not occur can be deleted.

Theorem 2.5.2 (i) |= ∀x∀yϕ↔ ∀y∀xϕ,
(ii) |= ∃x∃yϕ↔ ∃y∃xϕ,
(iii) |= ∀xϕ↔ ϕ if x �∈ FV (ϕ),
(iv) |= ∃xϕ↔ ϕ if x �∈ FV (ϕ).

Proof. Left to the reader. �
We have already observed that ∀ and ∃ are, in a way, generalizations of

∧ and ∨. Therefore it is not surprising that ∀ (resp. ∃) distributes over ∧
(resp.∨). ∀ (and ∃) distributes over ∨ (resp. ∧) only if a certain condition is
met.
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Theorem 2.5.3 (i) |= ∀x(ϕ ∧ ψ) ↔ ∀xϕ ∧ ∀xψ,
(ii) |= ∃x(ϕ ∨ ψ) ↔ ∃xϕ ∨ ∃xψ,
(iii) |= ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x �∈ FV (ψ),
(iv) |= ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x �∈ FV (ψ).

Proof. (i) and (ii) are immediate.

(iii) Let FV (∀x(ϕ(x) ∨ ψ)) = {z1, . . . , zk}. We must show that
A |= ∀z1 . . . zk[∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ] for all A, so we show, us-
ing Lemma 2.4.5, that A |= ∀x[ϕ(x, a1, . . . , ak)) ∨ ψ(a1, . . . , ak)] ⇔ A |=
∀xϕ(x, a1, . . . , ak) ∨ ψ(a1, . . . , ak) for all A and all a1, . . . , ak ∈ |A|.
Note that in the course of the argument a1, . . . , ak remain fixed, so in the
future we will no longer write them down.

⇐ : A |= ∀xϕ(x, ) ∨ ψ( ) ⇔ A |= ∀xϕ(x, ) or A |= ψ( )⇔
A |= ϕ(b, ) for all b or A |= ψ( ).
If A |= ψ( ), then also A |= ϕ(b, ) ∨ ψ( ) for all b, and so
A |= ∀xϕ(x, ) ∨ ψ( ). If for all b A |= ϕ(b, ) then
A |= ϕ(b, )∨ψ( ) for all b, so A |= ∀x(ϕ(x, )∨ψ( )). In
both cases we get the desired result.

⇒ : We know that for each b ∈ |A| A |= ϕ(b, ) ∨ ψ( ).
If A |= ψ( ), then also A |= ∀xϕ(x, ) ∨ ψ( ), so we are done.
If A �|= ψ( ) then necessarily A |= ϕ(b, ) for all b, so
A |= ∀xϕ(x, ) and hence A |= ∀xϕ(x, ) ∨ ψ( ).

(iv) is similar. �
In the proof above we have demonstrated a technique for dealing with the
extra free variables z1, . . . , zk, that do not play an actual role. One chooses
an arbitrary string of elements a1, . . . , ak to substitute for the zi’s and keeps
them fixed during the proof. So in future we will mostly ignore the extra
variables.

WARNING. ∀x(ϕ(x) ∨ ψ(x)) → ∀xϕ(x) ∨ ∀xψ(x), and
∃xϕ(x) ∧ ∃xψ(x) → ∃x(ϕ(x) ∧ ψ(x)) are not true.

One of the Cinderella tasks in logic is the bookkeeping of substitution,
keeping track of things in iterated substitution, etc. We will provide a number
of useful lemmas, none of them is difficult - it is a mere matter of clerical
labour.
A word of advice to the reader: none of these syntactical facts are hard to
prove, nor is there a great deal to be learned from the proofs (unless one is
after very specific goals, such as complexity of certain predicates); the best
procedure is to give the proofs directly and only to look at the proofs in the
book in case of emergency.

Lemma 2.5.4 (i) Let x and y be distinct variables such that x �∈ FV (r), then
(t[s/x])[r/y] = (t[r/y])[s[r/y]/x],
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(ii) let x and y be distinct variables such that x �∈ FV (s) and let t and s be
free for x and y in ϕ, then (ϕ[t/x])[s/y] = (ϕ[s/y])[t[s/y]/x],
(iii) let ψ be free for $ in ϕ, and let t be free for x in ϕ and ψ, then

(ϕ[ψ/$])[t/x] = (ϕ[t/x])[ψ[t/x]/$],
(iv) Let ϕ, ψ be free for $1, $2 in σ,let ψ be free for $2 in ϕ, and let $1 not

occur in ψ, then (σ[ϕ/$1])[ψ/$2] = (σ[ψ/$2])[ϕ[ψ/$2]/$1].

Proof. (i) Induction on t.

– t = c, trivial.
– t = x. Then t[s/x] = s and (t[s/x])[r/y] = s[r/y]; (t[r/y])[s[r/y]/x] =
x[s[r/y]/x] = s[r/y].

– t = y. Then (t[s/x])[r/y] = y[r/y]=r and (t[r/y])[s[r/y]/x]=r(s[r/y]/x]=r,
since x �∈ FV (r).

– t = z, where z �= x, y, trivial.
– t = f(t1, . . . , tn). Then (t[s/x])[r/y] = (f(t1[s/x], . . .)[r/y] =
f((t1[s/x])[r/y], . . .)

i.h= f((t1[r/y])[s[r/y]/x], . . .) =
f(t1[r/y], . . .)[s[r/y]/x] = (t[r/y])[s[r/y]/x]. 1

(ii) Induction on ϕ. Left to the reader.
(iii) Induction on ϕ.

– ϕ =⊥ or P distinct from $. Trivial.
– ϕ = $. Then ($[ψ/$])[t/x] = ψ[t/x] and ($[t/x])[ψ[t/x]/$] =

$[ψ[t/x]/$] = ψ[t/x].
– ϕ = ϕ1�ϕ2,¬ϕ1. Trivial.
– ϕ = ∀yϕ1. Then (∀y · ϕ1[ψ/$])[t/x] = (∀y · ϕ1[ψ/$])[t/x] =
∀y · ((ϕ1[ψ/$])[t/x]) i.h.= ∀y((ϕ1[t/x])[ψ[t/x]/$]) =
((∀yϕ1)[t/x])[ψ[t/x]/$].
ϕ = ∃yϕ1. Idem.

(iv) Induction on σ. Left to the reader. �

We immediately get

Corollary 2.5.5 (i) If z �∈ FV (t), then t[a/x] = (t[z/x])[a/z],
(ii) If z �∈ FV (ϕ) and z free for x in ϕ, then

ϕ[a/x] = (ϕ[z/x])[a/z].

It is possible to pull out quantifiers from formula. The trick is well-
known in analysis: the bound variable in an integral may be changed. E.g.∫
xdx +

∫
sin ydy =

∫
xdx +

∫
sinxdx =

∫
(x + sinx)dx. In predicate logic we

have a similar phenomenon.

1 ‘i.h.’ indicates the use of the induction hypothesis
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Theorem 2.5.6 (Change of Bound Variables) If x, y are free for z in ϕ
and x, y �∈ FV (ϕ), then |= ∃xϕ[x/z] ↔ ∃yϕ[y/z],

|= ∀xϕ[x/z]↔ ∀yϕ[y/z].

Proof. It suffices to consider ϕ with FV (ϕ) ⊆ {z}. We have to show
A |= ∃xϕ[x/z] ⇔ A |= ∃yϕ[y/z] for any A.

A |= ∃xϕ[x/z]⇔ A |= (ϕ[x/z])[a/x] for some a
⇔ A |= ϕ[a/z] for some a ⇔ A |= (ϕ[y/z])[a/y] for some a ⇔ A |= ∃yϕ[y/z].

The universal quantifier is handled completely similarly. �
The upshot of this theorem is that one can always replace a bound variable

by a “fresh” one, i.e. one that did not occur in the formule. Now one easily
concludes

Corollary 2.5.7 Every formula is equivalent to one in which no variable
occurs both free and bound.

We now can pull out quantifiers: ∀xϕ(x)∨∀xψ(x) ↔ ∀xϕ(x)∨∀yψ(y) and
∀xϕ(x) ∨ ∀yψ(y)↔ ∀xy(ϕ(x) ∨ ψ(y)), for a suitable y.

In order to handle predicate logic in an algebraic way we need the tech-
nique of substituting equivalents for equivalents.

Theorem 2.5.8 (Substitution Theorem)
(i) |= t1 = t2 → s[t1/x] = s[t2/x]
(ii) |= t1 = t2 → ϕ[t1/x] ↔ ϕ[t2/x])
(iii) |= (ϕ↔ ψ)→ (σ[ϕ/$]↔ σ[ψ/$])

Proof. It is no restriction to assume that the terms and formulas are closed.
We tacitly assume that the substitutions satisfy the “free for” conditions.

(i) Let A |= t1 = t2, i.e. tA1 = tA2 . Now use induction on s.
– s is a constant or a variable. Trivial.
– s = F (s1, . . . , sk). Then s[ti/x] = F (s1[ti/x], . . .) and (s[ti/x])A =
F ((s1[ti])A/x, . . .). Induction hypothesis: (sj [t1/x])A = (sj [t2/x])A,
1 ≤ j ≤ k. So (s[t1/x])A = F ((s1[t1/x])A, . . .) =
F ((s1[t2/x])A, . . .) = (s[t2/x])A. Hence A |= s[t1/x] = s[t2/x].

(ii) Let A |= t1 = t2, so tA1 = tA2 . We show A |= ϕ[t1/x] ⇔ A |= ϕ[t2/x] by
induction on ϕ.
– ϕ is atomic. The case of a propositional symbol (including ⊥) is

trivial. So consider ϕ = P (s1, . . . , sk). A |= P (s1, . . . , sk)[t1/x] ⇔
A |= P (s1[t1/x], . . .) ⇔ 〈(s1[t1/x])A, . . . , (sk[t1/x])A ∈ P . By (i)
(sj [t1/x])A = (sj [t2/x])A, j = 1, . . . , k.
So we get 〈(s1[t1/x])A, . . .〉
∈ P ⇔ . . .⇔ A |= P (s1, . . .)[t2/x].

– ϕ = ϕ1∨ϕ2, ϕ1∧ϕ2, ϕ1 → ϕ2, ¬ϕ1. We consider the disjunction: A |=
(ϕ1 ∨ ϕ2)[t1/x] ⇔ A |= ϕ1[t1/x] or A |= ϕ2[t1/x]

i.h.⇔ . A |= ϕ1[t2/x] or
A |= ϕ2[t2/x] ⇔ A |= (ϕ1 ∨ ϕ2)[t2/x].
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The remaining connectives are treated similarly.
– ϕ = ∃yψ, ϕ = ∀yψ.

We consider the existential quantifier. A |= (∃yψ)[t1/x]⇔
A |= ∃y(ψ[t1/x])⇔ A |= ψ[t1/x][a/y] for some a.
By 2.5.4 A |= ψ[t1/x][a/y] ⇔ A |= (ψ[a/y])[t1[a/y]/x]. Apply the
induction hypothesis to ψ[a/y] and the terms t1[a/y], t2[a/y]. Observe
that t1 and t2 are closed, so t1[a/y] = t1 and t2 = t2[a/y]. We get
A |= ψ[t2/x][a/y], and hence A |= ∃yψ[t2/x]. The other implication is
similar, so is the case of the universal quantifier.

(iii) Let A |= ϕ⇔ A |= ψ. We show A |= σ[ϕ/$]⇔ A |= σ[ψ/$] by induction
on σ.
– σ is atomic. Both cases σ = $ and σ �= $ are trivial.
– σ = σ1�σ2 (or ¬σ1). Left to the reader.
– σ = ∀x · τ . Observe that ϕ and ψ are closed, but even if they were not

then x could not occur free in ϕ, ψ.
A |= (∀x · τ)[ϕ/$] ⇔ A |= ∀x(τ [ϕ/$]). Pick an a ∈ |A|, then A |=
(τ [ϕ/$])[a/x] 2.5.4⇔ A |= (τ [a/x])[ϕ[a/x]/$] ⇔ A |= (τ [a/x])[ϕ/$] i.h.⇔
A |= τ [a/x][ψ/$] ⇔ A |= τ [a/x][ψ[a/x]/$] ⇔ A |= (τ [ψ/$])[a/x].
Hence A |= σ[ϕ/$]⇔ A |= σ[ψ/$].
The existential quantifier is treated similarly. �

Observe that in the above proof we have applied induction to “σ[ϕ/$] for
all ϕ”, because the substitution formula changed during the quantifier case.

Note that also the σ changed, so properly speaking we are applying induc-
tion to the rank (or we have to formulate the induction principle 2.3.4 a bit
more liberal).

Corollary 2.5.9 (i) [[s[t/x]]] = [[s[[[t]]/x]]]
(ii) [[ϕ[t/x]]] = [[ϕ[[[t]]/x]]]

Proof We apply the Substitution Theorem. Consider an arbitrary A. Note that
[[[[t]]]] = [[t]] (by definition), so A |= [[t]] = t. Now (i) and (ii) follow immediately.
�

In a more relaxed notation, we can write (i) and (ii) as
[[s(t)]] = [[s([[t]])]], or A |= s(t) = s([[t]]) and [[ϕ(t)]] = [[ϕ([[t]])]], or
A |= ϕ(t) ↔ ϕ([[t]]).

Observe that [[t]](= [[t]]A) is just another way to write tA.
Proofs involving detailed analysis of substitution are rather dreary but,

unfortunately, unavoidable. The reader may simplify the above and other
proofs by supposing the formulas involved to be closed. There is no real loss
in generality, since we only introduce a number of constants from L(A) and
check that the result is valid for all choices of constants.

We now really can manipulate formulae in an algebraic way. Again, write
ϕ ≈ ψ for |= ϕ↔ ψ.
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Examples.

1. ∀xϕ(x) → ψ ≈ ¬∀xϕ(x) ∨ ψ ≈ ∃x(¬ϕ(x)) ∨ ψ ≈ ∃x(¬ϕ(x) ∨ ψ) ≈
∃x(ϕ(x) → ψ), where x �∈ FV (ψ).

2. ∀xϕ(x) → ∃xϕ(x) ≈ ¬∀xϕ(x)∨∃xϕ(x) ≈ ∃x(¬ϕ(x)∨ϕ(x)). The formula
in the scope of the quantifier is true (already by propositional logic), so
the formula itself is true.

Definition 2.5.10 A formula ϕ is in prenex (normal) form if ϕ consists of a
(possibly empty) string of quantifiers followed by an open (i.e. quantifier free)
formula. We also say that ϕ is a prenex formula.

Examples. ∃x∀y∃z∃v(x = z ∨ y = z → v < y), ∀x∀y∃z(P (x, y) ∧Q(y, x)→
P (z, z)).

By pulling out quantifiers we can reduce each formula to a formula in
prenex form.

Theorem 2.5.11 For each ϕ there is a prenex formula ψ such that |= ϕ↔ ψ.

Proof. First eliminate → and ↔. Use induction on the resulting formula ϕ′.
For atomic ϕ′ the theorem is trivial. If ϕ′ = ϕ1 ∨ϕ2 and ϕ1, ϕ2 are equiv-

alent to prenex ψ1, ψ2 then
ψ1 = (Q1y1) . . . (Qnyn)ψ1,
ψ2 = (Q

′
1z1) . . . (Q

′
mzm)ψ2,

where Qi, Q
′
j are quantifiers and ψ1, ψ2 open. By Theorem 2.5.6 we can choose

all bound variables distinct, taking care that no variable is both free and
bound. Applying Theorem 2.5.3 we find
|= ϕ′ ↔ (Q1y1) . . . (Qnyn)(Q′

1z1) . . . (Q
′
mzm)(ψ1 ∨ ψ2),

so we are done.
The remaining cases are left to the reader. �
In ordinary mathematics it is usually taken for granted that the benev-

olent reader can guess the intentions of the author, not only the explicit
ones, but also the ones that are tacitly handed down generations of math-
ematicians. Take for example the definition of convergence of a sequence:
∀ε > 0∃n∀m(|an − an+m| < ε). In order to make sense out of this expression
one has to add: the variables n,m range over natural numbers. Unfortunately
our syntax does not allow for variables of different sorts. So how do we incor-
porate expressions of the above kind? The answer is simple: we add predicates
of the desired sort and indicate inside the formula the “nature” of the variable.

Example. Let A = 〈R,Q,<〉 be the structure of the reals with the set of
rational numbers singled out, provided with the natural order. The sentence
σ := ∀xy(x < y → ∃z(Q(z)∧x < z ∧ z < y)) can be interpreted in A : A |= σ,
and it tells us that the rationals are dense in the reals (in the natural ordering).



2.5 Simple Properties of Predicate Logic 79

We find this mode of expression, however, rather cumbersome. Therefore we
introduce the notion of relativised quantifiers. Since it does not matter whether
we express informally “ x is rational” by x ∈ Q or Q(x), we will suit ourselves
and any time choose the notation which is most convenient. We use (∃x ∈ Q)
and (∀x ∈ Q) as informal notation for “there exists an x in Q” and “for all
x in Q”. Now we can write σ as ∀xy(x < y → ∃z ∈ Q(x < z ∧ z < y)). Note
that we do not write (∀xy ∈ R)( ), since: (1) there is no relation R in A,
(2) variables automatically range over |A| = R.

Let us now define the relativisation of a quantifier properly:

Definition 2.5.12 If P is a unary predicate symbol, then (∀x ∈ P )ϕ :=
∀x(P (x) → ϕ), (∃x ∈ P )ϕ := (∃x)(P (x) ∧ ϕ).

This notation has the intended meaning, as appears from
A |= (∀x ∈ P )ϕ⇔ for all a ∈ PA A |= ϕ[a/x], A |= (∃x ∈ P )ϕ⇔ there exists
an a ∈ PA such that A |= ϕ[a/x]. The proof is immediate. We will often use
informal notations, such as (∀x > 0) or (∃y �= 1), which can be cast into the
above form. The meaning of such notations will always be evident. One can
restrict all quantifiers to the same set (predicate), this amounts to passing to
a restricted universe (cf. Exercise 11).

It is a common observation that by strengthening a part of a conjunction
(disjunction) the whole formula is strengthened, but that by strengthening
ϕ in ¬ϕ the whole formula is weakened. This phenomenon has a syntactic
origin, and we will introduce a bit of terminology to handle it smoothly. We
inductively define that a subformula occurrence ϕ is positive (negative) in σ:

Definition 2.5.13 Sub+ and Sub− are defined simultaneously by
Sub+(ϕ) = {ϕ}
Sub−(ϕ) = ∅ for atomic ϕ
Sub+(ϕ1�ϕ2) = Sub+(ϕ1) ∪ Sub+(ϕ2) ∪ {ϕ1�ϕ2}
Sub−(ϕ1�ϕ2) = Sub−(ϕ1) ∪ Sub−(ϕ2) for � ∈ {∧,∨}
Sub+(ϕ1 → ϕ2) = Sub+(ϕ2) ∪ Sub−(ϕ1) ∪ {ϕ1 → ϕ2}
Sub−(ϕ1 → ϕ2) = Sub+(ϕ1) ∪ Sub−(ϕ2)
Sub+(Qx.ϕ) = Sub+(ϕ) ∪ {Qx.ϕ}
Sub−(Qx.ϕ) = Sub−(ϕ) for Q ∈ {∀, ∃}

If ϕ ∈ Sub+(ψ), then we say that ϕ occurs positively in ψ (similarly for
negative occurrences).

We could have restricted ourselves to ∧,→ and ∀, but it does not ask much
extra space to handle the other connectives. For convenience we consider ↔
not as primitive. Note that Sub+ ∩ Sub− need not be empty.

The following theorem makes the basic intuition clear: if a positive part
of a formula increases in truth value then the formula increases in truth value
(better: does not decrease in truth value). We express this role of positive and
negative subformules as follows:
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Theorem 2.5.14 Let ϕ (ψ) not occur negatively (not positively) in σ, then:
(i) [[ϕ1]] ≤ [[ϕ2]] ⇒ [[σ[ϕ1/ϕ]]] ≤ [[σ[ϕ2/ϕ]]]
(ii) [[ψ1]] ≤ [[ψ2]] ⇒ [[σ[ψ1/ψ]]] ≥ [[σ[ψ2/ψ]]]
(iii) A |= (ϕ1 → ϕ2)→ (σ[ϕ1/ϕ]→ σ[ϕ2/ϕ])
(iv) A |= (ψ1 → ψ2)→ (σ[ψ2/ψ]→ σ[ψ1/ψ]).

Proof. Induction on σ. �

Exercises

1. Show that all propositional tautologies are true in all structures (of the
right similarity type).

2. Let x �∈ FV (ψ). Show (i) |= (∀xϕ→ ψ)↔ ∃x(ϕ→ ψ),
(ii) |= (∃xϕ→ ψ)↔ ∀x(ϕ→ ψ),
(iii) |= (ψ → ∃xϕ) ↔ ∃x(ψ → ϕ),
(iv) |= (ψ → ∀xϕ) ↔ ∀x(ψ → ϕ).

3. Show that the condition on FV (ψ) in exercise 2 is necessary.

4. Show �|= ∀x∃yϕ↔ ∃y∀xϕ.

5. Show |= ϕ⇒ |= ∀xϕ and |= ∃xϕ.

6. Show �|= ∃xϕ→ ∀xϕ.

7. Show �|= ∃xϕ ∧ ∃xψ → ∃x(ϕ ∧ ψ).

8. Show that the condition on x, y in Theorem 2.5.6 is necessary.

9. Show (i) |= ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ);
(ii) |= (∃xϕ→ ∃xψ) → ∃x(ϕ→ ψ);

(iii) |= ∀x(ϕ↔ ψ)→ (∀xϕ↔ ∀xψ);
(iv) |= (∀xϕ→ ∃xψ) ↔ ∃x(ϕ→ ψ);
(v) |= (∃xϕ→ ∀xψ) → ∀x(ϕ→ ψ).

10. Show that the converses of exercise 9(i) - (iii) and (v) do not hold.

11. Let L have a unary predicate P . Define the relativisation σP of σ by
σP := σ for atomic ϕ,

(ϕ�ψ)P := ϕP�ψP ,
(¬ϕ)P := ¬ϕP ,

(∀xϕ)P := ∀x(P (x) → ϕP ),
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(∃xϕ)P := ∃x(P (x) ∧ ϕP ).

Let A be a structure without functions and constants. Consider the struc-
ture B with universe PA and relations which are restrictions of the rela-
tions of A, where PA �= ∅. Show A |= σP ⇔ B |= σ for sentences σ. Why
are only relations allowed in A?

12. Let S be a binary predicate symbol. Show |= ¬∃y∀x(S(y, x) ↔ ¬S(x, x)).
(Think of “y shaves x” and recall Russell’s barber’s paradox).

13. (i) Show that the “free for” conditions cannot be dropped from 2.5.8.
(ii) Show |= t = s⇒|= ϕ[t/x] ↔ ϕ[s/x] .
(iii) Show |= ϕ↔ ψ ⇒|= σ[ϕ/$]↔ σ[ψ/$] .

14. Find prenex normal forms for
(a) ¬((¬∀xϕ(x) ∨ ∀xψ(x)) ∧ (∃xσ(x) → ∀xτ(x))),
(b) ∀xϕ(x) ↔ ∃xψ(x),
(c) ¬(∃xϕ(x, y) ∧ (∀yψ(y)→ ϕ(x.x)) → ∃x∀yσ(x, y)),
(d) ((∀xϕ(x) → ∃yψ(x, y)) → ψ(x, x)) → ∃x∀yσ(x, y).

15. Show |= ∃x(ϕ(x) → ∀yϕ(y)). (It is instructive to think of ϕ(x) as ‘x
drinks’).

2.6 Identity

We have limited ourselves in this book to the consideration of structures with
identity, and hence of languages with identity . Therefore we classified ‘=’
as a logical symbol, rather than a mathematical one. We can, however, not
treat = as just some binary predicate, since identity satisfies a number of
characteristic axioms, listed below.

I1 ∀x(x = x),
I2 ∀xy(x = y → y = x),
I3 ∀xyz(x = y ∧ y = z → x = z),
I4 ∀x1 . . . xny1 . . . yn(

∧∧

i≤n
xi = yi → t(x1, . . . , xn) = t(y1, . . . , yn)),

∀x1 . . . xny1 . . . yn(
∧∧

i≤n
xi = yi → (ϕ(x1, . . . , xn)→ ϕ(y1, . . . , yn))).

One simply checks that I1, I2, I3 are true, in all structures A. For I4, ob-
serve that we can suppose the formulas to be closed. Otherwise we add quan-
tifiers for the remaining variables and add dummy identities, e.g.
∀z1 . . . zkx1 . . . xny1 . . . yn(

∧∧

i≤n
xi = yi ∧

∧∧

i≤k
zk = zk → t(x1, . . . , xn) =

t(y1, . . . , yn)). Now (t(a1, . . . , an))A defines a function tA on |A|n, obtained
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from the given functions of A by various substitutions, hence ai = bi(i ≤ n)⇒
(t(a1, . . . , an))A = t(b1, . . . , bn))A. This establishes the first part of I4.

The second part is proved by induction on ϕ (using the first part): e.g.
consider the universal quantifier case and let ai = bi for all i ≤ n.
A |= ∀uϕ(u, a1, . . . , an) ⇔ A |= ϕ(c, a1, . . . , an) for all c i.h.⇔
A |= ϕ(c, b1, . . . , bn) for all c⇔ A |= ∀uϕ(u, b1, . . . , bn).
So A |= (

∧∧

i≤n
ai = bi)⇒ A |= ∀uϕ(u, a1, . . . , an) → ∀uϕ(u, b1, . . . bn))

This holds for all a1, . . ., an, b1, . . ., bn, hence A |= ∀x1, . . . xny1 . . . yn(
∧∧

i≤n
xi =

yi →
(∀uϕ(u, x1, . . . , xn) → ∀uϕ(u, y1, . . . , yn)).

Note that ϕ (respectively t), in I4 can be any formula (respectively term),
so I4 stands for infinitely many axioms. We call such an “instant axiom” an
axiom schema .

The first three axioms state that identity is an equivalence relation. I4
states that identity is a congruence with respect to all (definable) relations.

It is important to realize that from the axioms alone, we cannot determine
the precise nature of the interpreting relation. We explicitly adopt the con-
vention that “=” will always be interpreted by real equality.

Exercises

1. Show |= ∀x∃y(x = y).

2. Show |= ∀x(ϕ(x) ↔ ∃y(x = y ∧ ϕ(y))) and
|= ∀x(ϕ(x) ↔ ∀y(x = y → ϕ(y))), where y does not occur in ϕ(x).

3. Show that |= ϕ(t) ↔ ∀x(x = t→ ϕ(x)) if x �∈ FV (t).

4. Show that the conditions in exercises 2 and 3 are necessary.

5. Consider σ1 = ∀x(x ∼ x), σ2 = ∀xy(x ∼ y → y ∼ x), σ3 = ∀xyz(x ∼
y ∧ y ∼ z → x ∼ z). Show that if A |= σ1 ∧ σ2 ∧ σ3, where A = 〈A,R〉,
then R is an equivalence relation. N.B. x ∼ y is a suggestive notation for
the atom R(x, y).

6. Let σ4 = ∀xyz(x ∼ y ∧ x ∼ z → y ∼ z). Show that σ1, σ4 |= σ2 ∧ σ3.

7. Consider the schema σ5 : x ∼ y → (ϕ[x/z] → ϕ[y/z]). Show that
σ1, σ5 |= σ2 ∧ σ3. N.B. if σ is a schema, then ! ∪ {σ} |= ϕ stands for
!∪Σ |= ϕ, where Σ consists of all instances of σ.

8. Derive the term-version of I4 from the formula version.
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2.7 Examples

We will consider languages for some familiar kinds of structures. Since all
languages are built in the same way, we shall not list the logical symbols. All
structures are supposed to satisfy the identity axioms I1 − I4.
For a refinement see 2.10.2.
1. The language of identity. Type: 〈−;−; 0〉.

Alphabet.
Predicate symbol : =

The structures of this type are of the form A = 〈A〉, and satisfy I1, I2, I3. (In
this language I4 follows from I1, I2, I3, cf. 2.10 Exercise 5).

In an identity structure there is so little “structure”, that all one can vir-
tually do is look for the number of elements (cardinality). There are sentences
λn and µn saying that there are at least (or at most) n elements (Exercise 3,
section 3.1)

λn := ∃y1 . . . yn
∧∧

i
=j
yi �= yj , (n > 1),

µn := ∀y0 . . . yn
∨∨

i
=j
yi = yj , (n > 0).

So A |= λn ∧ µn iff |A| has exactly n elements. Since universes are not empty
|= ∃x(x = x) always holds.

We can also formulate “there exists a unique x such that . . .”.

Definition 2.7.1 ∃!xϕ(x) := ∃x(ϕ(x)∧∀y(ϕ(y) → x = y)), where y does not
occur in ϕ(x).

Note that ∃!xϕ(x) is an (informal) abbreviation.

2. The language of partial order. Type: 〈2;−; 0〉.

Alphabet.
Predicate symbols : =,≤ .

Abbreviations x �= y := ¬x = y, x < y := x ≤ y ∧ x �= y,
x > y := y < x, x ≥ y := y ≤ x,
x ≤ y ≤ z := x ≤ y ∧ y ≤ z.

Definition 2.7.2 A is a partially ordered set(poset) if A is a model of
∀xyz(x ≤ y ≤ z → x ≤ z),
∀xy(x ≤ y ≤ x↔ x = y).
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The notation may be misleading, since one usually introduces the relation
≤ (e.g. on the reals) as a disjunction: x < y or x = y. In our alphabet the
relation is primitive, another symbol might have been preferable, but we chose
to observe the tradition. Note that the relation is reflexive: x ≤ x.

Partially ordered sets are very basic in mathematics, they appear in many
guises. It is often convenient to visualize posets by means of diagrams, where
a ≤ b is represented as equal or above (respectively to the right). One of the
traditions in logic is to keep objects and their names apart. Thus we speak of
function symbols which are interpreted by functions, etc. However, in practice
this is a bit cumbersome. We prefer to use the same notation for the syntactic
objects and their interpretations, e.g if R = 〈R,≤〉) is the partially ordered
set of reals, then R |= ∀x∃y(x ≤ y), whereas it should be something like
∀x∃y(x≤y) to distinguish the symbol from the relation.

The ‘≤’ in R stands for the actual relation and the ‘≤’ in the sentence
stands for the predicate symbol. The reader is urged to distinguish symbols
in their various guises.

We show some diagrams of posets.
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From the diagrams we can easily read off a number of properties. E.g.
A1 |= ∃x∀y(x ≤ y)(Ai is the structure with the diagram of figure i), i.e.
A1 has a least element (a minimum). A3 |= ∀x¬∃y(x < y). i.e. in A3 no ele-
ment is strictly less than another element.

Definition 2.7.3 (i) A is a (linearly or totally) ordered set if it is a poset
and A |= ∀xy(x ≤ y ∨ y ≤ x) (each two elements are comparable).

(ii) A is densely ordered if A |= ∀xy(x < y → ∃z(x < z ∧ z < y)) (between
any two elements there is a third one).

It is a moderately amusing exercise to find sentences that distinguish be-
tween structures and vice versa. E.g. we can distinguish A3 and A4 (from
the diagram above) as follows: in A4 there is precisely one element that is
incomparable with all other elements, in A3 there are more such elements.
Put σ(x) := ∀y(y �= x→ ¬y ≤ x ∧ ¬x ≤ y). Then
A4 |= ∀xy(σ(x) ∧ σ(y) → x = y), but A3 |= ¬∀xy(σ(x) ∧ σ(y) → x = y).
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3. The language of groups. Type: 〈−; 2, 1; 1〉.
Alphabet.
Predicate symbol: =
Function symbols: ·,−1

Constant symbol: e

Notation: In order to conform with practice we write t · s and t−1 instead of
·(t, s) and −1(t).

Definition 2.7.4 A is a group if it is a model of
∀xyz((x · y) · z = x · (y · z)),
∀x(x · e = x ∧ e · x = x),
∀x(x · x−1 = e ∧ x−1 · x = e).

When convenient, we will write ts for t.s; we will adopt the bracket conventions
from algebra. A group A is commutative or abelian if A |= ∀xy(xy = yx).

Commutative groups are often described in the language of additive groups,
which have the following alphabet:

Predicate symbol: =
Function symbols: +, -
Constant symbol: 0

4. The language of plane projective geometry. Type: 〈2;−; 0〉
The structures one considers are projective planes, which are usually taken

to consist of points and lines with an incidence relation. In this approach the
type would be 〈1, 1, 2;−; 0〉. We can, however, use a more simple type, since
a point can be defined as something that is incident with a line, and a line as
something for which we can find a point which is incident with it. Of course
this requires a non-symmetric incidence relation.

We will now list the axioms, which deviate somewhat from the traditional
set. It is a simple exercise to show that the system is equivalent to the standard
sets.

Alphabet.
Predicate symbols: I,=.

We introduce the following abbreviations:
Π(x) := ∃y(xIy), Λ(y) := ∃x(xIy).

Definition 2.7.5 A is a projective plane if it satisfies
γ0 : ∀x(Π(x) ↔ ¬Λ(x)),
γ1 : ∀xy(Π(x) ∧Π(y)→ ∃z(xIz ∧ yIz)
γ2 : ∀uv(Λ(u) ∧ Λ(v)→ ∃x(xIu ∧ xIv)),
γ3 : ∀xyuv(xIu ∧ yIu ∧ xIv ∧ yIv → x = y ∨ u = v),
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γ4 : ∃x0x1x2x3u0u1u2u3(
∧∧

xiIui∧
∧∧

j=i−1(mod3)

xiIuj∧
∧∧

j �=i−1(mod3)
i
=j

¬xiIuj).

γ0 tells us that in a projective plane everything is either a point, or a line, γ1

and γ2 tell us that “any two lines intersect in a point” and “ any two points
can be joined by a line”, by γ3 this point (or line) is unique if the given lines
(or points) are distinct. Finally γ4 makes projective planes non-trivial, in the
sense that there are enough points and lines.

ΠA = {a ∈ |A||A |= Π(a)} and ΛA = {b ∈ |A||A |= Λ(b)} are the sets of
points and lines of A; IA is the incidence relation on A.

The above formalization is rather awkward. One usually employs a two-
sorted formalism, with P,Q,R, . . . varying over points and �,m, n . . . varying
over lines. The first axiom is then suppressed by convention. The remaining
axioms become

γ
′
1 : ∀PQ∃�(PI� ∧QI�),
γ

′
2 : ∀�m∃P (PI� ∧ PIm),
γ

′
3 : ∀PQ�m(PI� ∧QI� ∧ PIm ∧QIm→ P = Q ∨ � = m),
γ

′
4 : ∃P0P1P2P3�0�1�2�3(

∧∧
PiI�i ∧

∧∧

j=i−1(mod3)

PiI�j ∧
∧∧

j �=i−1(mod3)
i
=j

¬PiI�j).

The translation from one language to the other presents no difficulty. The
above axioms are different from the ones usually given in the course in pro-
jective geometry. We have chosen these particular axioms because they are
easy to formulate and also because the so-called Duality principle follows im-
mediately. (cf. 2.10, Exercise 8). The fourth axiom is an existence axiom, it
merely says that certain things exist; it can be paraphrased diffently: there are
four points no three of which are collinear (i.e. on a line). Such an existence
axiom is merely a precaution to make sure that trivial models are excluded.
In this particular case, one would not do much geometry if there was only one
triangle!

5. The language of rings with unity. Type: 〈−; 2, 2, 1; 2〉
Alphabet.
Predicate symbol: =
Function symbols: +, ·,−
Constant symbols: 0, 1

Definition 2.7.6 A is a ring (with unity) if it is a model of

∀xyz((x+ y) + z = x+ (y + z)),
∀xy(x + y = y + x),
∀xyz((xy)z = x(yz)),
∀xyz(x(y + z) = xy + xz),
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∀xyz((x+ y)z = xz + yz),
∀x(x + 0 = x),
∀x(x + (−x) = 0),
∀x(1 · x = x ∧ x · 1 = x),
0 �= 1

A ring A is commutative if A |= ∀xy(xy = yx).
A ring A is a division ring if A |= ∀x(x �= 0→ ∃y(xy = 1)).
A commutative division ring is called a field .

Actually it is more convenient to have an inverse-function symbol available
in the language of fields, which therefore has type 〈−; 2, 2, 1, 1; 2〉.
Therefore we add to the above list the sentences
∀x(x �= 0→ x · x−1 = 1 ∧ x−1 · x = 1) and 0−1 = 1.

Note that we must somehow “fix the value of 0−1”, the reason will appear
in 2.10, Exercise 2 .

6. The language of arithmetic . Type 〈−; 2, 2, 1; 1〉.

Alphabet.
Predicate symbol: =
Function symbols: +, ·, S
Constant symbol: 0
(S stands for the successor function n "→ n+ 1).

Historically, the language of arithmetic was introduced by Peano with the
intention to describe the natural numbers with plus, times and successor up
to an isomorphism. This in contrast to, e.g. the theory of groups, in which one
tries to capture a large class of non-isomorphic structures. It has turned out,
however, that Peano’s axioms characterise a large class of structures, which
we will call (lacking a current term) Peano structures. Whenever confusion
threatens we will use the official notation for the zero-symbol: 0, but mostly
we will trust the good sense of the reader.

Definition 2.7.7 A Peano structure A is a model of
∀x(0 �= S(x)),
∀xy(S(x) = S(y)→ x = y),
∀x(x + 0 = x),
∀xy(x + S(y) = S(x+ y)),
∀x(x · 0 = 0),
∀xy(x · S(y) = x · y + x),
ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x))) → ∀xϕ(x).

The last axiom schema is called the induction schema or the principle of
mathematical induction.
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It will prove convenient to have some notation. We define:
1 := S(0), 2 := S(1), and in general n+ 1 := S(n),
x < y := ∃z(x+ Sz = y),
x ≤ y := x < y ∨ x = y.

There is one particular Peano structure which is the intended model of arith-
metic, namely the structure of the ordinary natural numbers, with the or-
dinary addition, multiplication and successor (e.g. the finite ordinals in set
theory). We call this Peano structure the standard model N, and the ordinary
natural numbers are called the standard numbers.

One easily checks that nN = n and N |= n < m⇔ n < m: by definition of
interpretation we have 0N = 0. Assume nN = n, n+ 1N = (S(n))N = nN+1 =
n+1. We now apply mathematical induction in the meta-language, and obtain
nN = n for all n. For the second claim see Exercise 13. In N we can define all
kinds of sets, relations and numbers. To be precise we say that a k-ary relation
R in N is defined by ϕ if 〈a1, . . . , ak〉 ∈ R ⇔ N |= ϕ(a1, . . . , ak). An element
a ∈ |N| is defined in N by ϕ if N |= ϕ(b) ⇔ b = a, or N |= ∀x(ϕ(x) ↔ x = a).

Examples. (a) The set of even numbers is defined by E(x) := ∃y(x = y + y).
(b) The divisibility relation is defined by x|y := ∃z(xz = y). (c) The set of
prime numbers is defined by P (x) := ∀yz(x = yz → y = 1∨ z = 1) ∧ x �= 1.
We say that we have introduced predicates E, | and P by (explicit) definition.

7. The language of graphs.
We usually think of graphs as geometric figures consisting of vertices and

edges connecting certain of the vertices. A suitable language for the theory
of graphs is obtained by introducing a predicate R which expresses the fact
that two vertices are connected by an edge. Hence, we don’t need variables or
constants for edges.

Alphabet.
Predicate symbols: R,= .

Definition 2.7.8 A graph is a structure A = 〈A,R〉 satisfying the following
axioms: ∀xy(R(x, y) → R(y, x))

∀x¬R(x, x)

This definition is in accordance with the geometric tradition. There are ele-
ments, called vertices, of which some are connected by edges. Note that two
vertices are connected by at most one edge. Furthermore there is no (need for
an) edge from a vertex to itself. This is geometrically inspired, however, from
the point of view of the numerous applications of graphs it appears that more
liberal notions are required.
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Examples.
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We can also consider graphs in which the edges are directed. A directed graph
A = 〈A,R〉 satisfies only ∀x¬R(x, x).
Examples.
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If we drop the condition of irreflexivity then a “graph” is just a set with a
binary relation. We can generalize the notion even further, so that more edges
may connect a pair of vertices.

In order to treat those generalized graphs we consider a language with two
unary predicates V,E and one ternary predicate C. Think of V (x) as “x is
a vertex”. E(x) as “x is an edge”, and C(x, z, y) as “z connects x and y”.
A directed multigraph is a structure = 〈A, V,E,C〉 satisfying the following
axioms: ∀x(V (x) ↔ ¬E(x)),

∀xyz(C(x, z, y)→ V (x) ∧ V (y) ∧ E(z)).
The edges can be seen as arrows. By adding the symmetry condition,

∀xyz(C(x, z, y)→ C(y, z, x)) one obtains plain multigraphs.

Examples.
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Remark: The nomenclature in graph theory is not very uniform. We have
chosen our formal framework such that it lends itself to treatment in first-order
logic.

For the purpose of describing multigraphs a two-sorted language (cf. geom-
etry) is well-suited. The reformulation is left to the reader.

Exercises

1. Consider the language of partial order. Define predicates for (a) x is the
maximum; (b) x is maximal; (c) there is no element between x and y;
(d) x is an immediate successor (respectively predecessor) of y; (e) z is the
infimum of x and y.

2. Give a sentence σ such that A2 |= σ and A4 |= ¬σ (for Ai associated to
the diagrams of p.84).

3. Let A1 = 〈N,≤〉 and A2 = 〈Z,≤〉 be the ordered sets of natural, respec-
tively integer, numbers. Give a sentence σ such that A1 |= σ and A2 |= ¬σ.
Do the same for A2 and B = 〈Q,≤〉 (the ordered set of rationals). N.B. σ is
in the language of posets; in particular, you may not add extra constants,
function symbols, etc., defined abbreviations are of course harmless.

4. Let σ = ∃x∀y(x ≤ y ∨ y ≤ x). Find posets A and B such that A |= σ and
B |= ¬σ.

5. Do the same for σ = ∀xy∃z[(x ≤ z ∧ y ≤ z) ∨ (z ≤ x ∧ z ≤ y)].

6. Using the language of identity structures give an (infinite) set Γ such that
A is a model of Γ iff A is infinite.

7. Consider the language of groups. Define the properties: (a) x is idempo-
tent; (b) x belongs to the centre.

8. Let A be a ring, give a sentence σ such that A |= σ ⇔ A is an integral
domain (has no divisors of zero).

9. Give a formula σ(x) in the language of rings such that A |= σ(a) ⇔ the
principal ideal (a) is prime (in A).

10. Define in the language of arithmetic: (a) x and y are relatively prime; (b)
x is the smallest prime greater than y; (c) x is the greatest number with
2x < y.
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11. σ := ∀x1 . . . xn∃y1 . . . ymϕ and τ := ∃y1 . . . ymψ are sentences in a lan-
guage without identity, function symbols and constants, where ϕ and ψ
are quantifier free. Show: |= σ ⇔ σ holds in all structures with n elements.
|= τ ⇔ τ holds in all structures with 1 element.

12. Monadic predicate calculus has only unary predicate symbols (no identity).
Consider A = 〈A,R1, . . . , Rn〉 where all Ri are sets. Define a ∼ b := a ∈
Ri ⇔ b ∈ Ri for all i ≤ n. Show that ∼ is an equivalence relation and that
∼ has at most 2n equivalence classes. The equivalence class of a is denoted
by [a]. Define B = A/ ∼ and [a] ∈ Si ⇔ a ∈ Ri,B = 〈B,S1, . . . , Sn〉.
Show A |= σ ⇔ B |= σ for all σ in the corresponding language. For such
σ show |= σ ⇔ A |= σ for all A with at most 2n elements. Using this fact,
outline a decision procedure for truth in monadic predicate calculus.

13. Let N be the standard model of arithmetic. Show N |= n < m⇔ n < m.

14. Let A = 〈N, <〉 and B = 〈N,!〉, where n!m iff (i) n < m and n, m both
even or both odd, or (ii) if n is even and m odd. Give a sentence σ such
that A |= σ and L |= ¬σ.

15. If 〈A,R〉 is a projective plane, then 〈A, R̆〉 is also a projective plane (the
dual plane), where R̆ is the converse of the relation R. Formulated in
the two sorted language: if 〈AP , AL, I〉 is a projective plane, then so is
〈AL, AP , Ĭ〉).

2.8 Natural Deduction

We extend the system of section 1.5 to predicate logic. For reasons similar
to the ones mentioned in section 1.5 we consider a language with connectives
∧,→,⊥ and ∀. The existential quantifier is left out, but will be considered
later.

We adopt all the rules of propositional logic and we add

∀I ϕ(x)
∀xϕ(x) ∀E ∀xϕ(x)

ϕ(t)

where in ∀I the variable x may not occur free in any hypothesis on which
ϕ(x) depends, i.e. an uncancelled hypothesis in the derivation of ϕ(x). In ∀E
we, of course, require t to be free for x.

∀I has the following intuive explanation: if an arbitrary object x has the
property ϕ, then every object has the property ϕ. The problem is that none of
the objects we know in mathematics can be considered “arbitrary”. So instead
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of looking for the “arbitrary object” in the real world (as far as mathemat-
ics is concerned), let us try to find a syntactic criteria. Consider a variable
x (or a constant) in a derivation, are there reasonable grouns for calling x
“arbitrary” ? Here is a plausible suggestion: in the context of the derivations
we shall call x arbitrary if nothing has been assumed concerning x. In more
technical terms, x is arbitrary at its particular occurrence in a derivation if
the part of the derivation above it contains no hypotheses containing x free.

We will demonstrate the necessity of the above restrictions, keeping in
mind that the system at least has to be sound, i.e. that derivable statements
should be true.

Restriction on ∀I: [x = 0]
∀x(x = 0)

x = 0 → ∀x(x = 0)
∀x(x = 0→ ∀x(x = 0))

0 = 0 → ∀x(x = 0)

The ∀ introduction at the first step was illegal.
So � 0 = 0 → ∀x(x = 0), but clearly �|= 0 = 0 → ∀x(x = 0) (take any

structure containing more than just 0).
Restriction on ∀E: [∀x¬∀y(x = y)]

¬∀y(y = y)
∀x¬∀y(x = y)→ ¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly
not true in structures with at least two elements.

We now give some examples of derivations. We assume that the reader has
by now enough experience in cancelling hypotheses, so that we will not longer
indicate the cancellations by encircled numbers.

[∀x∀yϕ(x, y)] ∀E∀yϕ(x, y) ∀E
ϕ(x, y) ∀I∀xϕ(x, y) ∀I∀y∀x(ϕ(x, y) → I∀x∀yϕ(x, y) → ∀y∀xϕ(x, y)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x) ∧ ψ(x))]

ϕ(x) ∧ ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x) ∧ ∀xψ(x)

∀x(ϕ ∧ ψ)→ ∀xϕ ∧ ∀xψ
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Let x �∈ FV (ϕ)

[∀x(ϕ→ ψ(x))] ∀E
ϕ→ ψ(x) [ϕ] → E

ψ(x) ∀I∀xψ(x) → I
ϕ→ ∀xψ(x)

∀x(ϕ→ ψ(x)) → (ϕ→ ∀x(ψ(x))

[ϕ] ∀I∀xϕ
[∀xϕ] ∀E
ϕ

ϕ↔ ∀xϕ

In the righthand derivation ∀I is allowed, since x �∈ FV (ϕ), and ∀E is ap-
plicable.

Note that ∀I in the bottom left derivation is allowed because x �∈ FV (ϕ),
for at that stage ϕ is still (part of) a hypothesis.

The reader will have grasped the technique behind the quantifier rules: re-
duce a ∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the
following step: to show “ for all x . . . x . . . ” it suffices to show “. . . x . . . ” for an
arbitrary x. The latter statement is easier to handle. Without going into fine
philosophical distinctions, we note that the distinction “for all x . . . x . . . ” –
“for an arbitrary x . . . x . . . ” is embodied in our system by means of the
distinction. “quantified statement” – “ free variable statement”.

The reader will also have observed that under a reasonable derivation strat-
egy, roughly speaking, elimination precedes introduction. There is a sound
explanation for this phenomenon, its proper treatment belongs to proof theory,
where normal derivations (derivations without superfluous steps) are consid-
ered. See Ch. 6. For the moment the reader may accept the above mentioned
fact as a convenient rule of thumb.

We can formulate the derivability properties of the universal quantifier in
terms of the relation �:

Γ � ϕ(x) ⇒ Γ � ∀xϕ(x) if x �∈ FV (ψ) for all ψ ∈ Γ
Γ � ∀xϕ(x) ⇒ Γ � ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I) and (∀E).

Our next goal is the correctness of the system of natural deduction for
predicate logic. We first extend the definition of |=.
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Definition 2.8.1 Let Γ be a set of formulae and let {xi1 , xi2 , . . .} =⋃{FV (ψ)|ψ ∈ Γ ∪{σ}}. If a is a sequence (a1, a2, . . .) of elements (repetitions
allowed) of |A|, then Γ (a) is obtained from Γ by replacing simultaneously in
all formulas of Γ the xij by aj(j ≥ 1) (for Γ = {ψ} we write ψ(a)). We now
define

(i) A |= Γ (a) if A |= ψ for all ψ ∈ Γ (a)
(ii) Γ |= σ if A |= Γ (a)⇒ A |= σ(a) for all A,a.

In case only sentences are involved, the definition can be simplified:
Γ |= σ if A |= Γ ⇒ A |= σ for all A.
If Γ = ∅, we write |= σ.

We can paraphrase this definition as : Γ |= σ, if for all structures A and all
choices of a, σ(a) is true in A if all hypotheses of Γ (a) are true in A.

Now we can formulate

Lemma 2.8.2 (Soundness) Γ � σ ⇒ Γ |= σ.

Proof. By definition of Γ � σ is suffices to show that for each derivation D
with hypothesis set Γ and conclusion σ Γ |= σ. We use induction on D (cf.
1.5.1 and exercise 2).

Since we have cast our definition of satisfaction in terms of valuations,
which evidently contains the propositional logic as a special case, we can copy
the cases of (1) the one element derivation, (2) the derivations with a propo-
sitional rule at last step, from Lemma 1.6.1 (please check this claim).

So we have to treat derivations with (∀I) or (∀E) as the final step.

(∀I) D D has its hypotheses in Γ and x is not free in Γ.
ϕ(x) Induction hypothesis: Γ |= ϕ(x), i.e. A |= Γ (a) ⇒
∀xϕ(x) A |= (ϕ(x))(a) for all A and all a.

It is no restriction to suppose that x is the first of the free variables involved
(why?). So we can substitute a1 for x in ϕ. Put a = (a1, a′).Now we have:

for all a1 and a′ = (a2, . . .) A |= Γ (a′)⇒ A |= ϕ(a1)(a′), so
for all a′ A |= Γ (a′) ⇒ (A |= (ϕ(a1))(a′) for all a1 , so
for all a′ A |= Γ (a′) ⇒ A |= (∀xϕ(x))(a′).

This shows Γ |= ∀xϕ(x). (Note that in this proof we used ∀x(σ → τ(x)) →
(σ → ∀xτ(x)), where x �∈ FV (σ), in the metalanguage. Of course we may use
sound principles on the metalevel).

(∀E) D Induction hypothesis: Γ |= ∀xϕ(x),
∀xϕ(x) i.e.A |= Γ (a)⇒ A |= (∀xϕ(x))(a),
ϕ(t) for all a and A.
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So let A |= Γ (a), then A |= ϕ(b)(a) for all b ∈ |A|. In particular we may
take t[a/z] for b, where we slightly abuse the notation; since there are finitely
many variables z1, . . . , zn, we only need finitely many of the ai’s, and we con-
sider it therefore an ordinary simultaneous substitution.
A |= (ϕ[a/z])[t[a/z]/x], hence by Lemma 2.5.4, A |= (ϕ[t/x])[a/z], or A |=
(ϕ(t))(a). �

Having established the soundness of our system, we can easily get non-
derivability results.
Examples.

1. �� ∀x∃yϕ→ ∃y∀xϕ.
Take A = 〈{0, 1}, {〈0, 1〉, 〈1, 0〉}〉 (type 〈2;−; 0〉) and consider
ϕ := P (x, y), the predicate interpreted in A.
A |= ∀x∃yP (x, y), since for 0 we have 〈0, 1〉 ∈ P and for l we have
〈1, 0〉 ∈ P .
But, A �|= ∃y∀xP (x, y), since for 0 we have 〈0, 0〉 �∈ P and for 1 we have
〈1, 1〉 �∈ P .

2. ∀xϕ(x, x), ∀xy(ϕ(x, y) → ϕ(y, x))) �� ∀xyz(ϕ(x, y) ∧ ϕ(y, z)→ ϕ(x, z)).
Consider B = 〈R, P 〉 with P = {〈a, b〉 | |a− b| ≤ 1}.

Although variables and constants are basically different, they share some
properties. Both constants and free variables may be introduced in deriva-
tions through ∀E, but only free variables can be subjected to ∀I, – that is
free variables can disappear in derivations by other than propositional means.
It follows that a variable can take the place of a constant in a derivation but
in general not vice versa. We make this precise as follows.

Theorem 2.8.3 Let x be a variable not occurring in Γ or ϕ.
(i) Γ � ϕ⇒ Γ [x/c] � ϕ[x/c].
(ii) If c does not occur in Γ , then Γ � ϕ(c)⇒ Γ � ∀xϕ(x).

Proof. (ii) follows immediately from (i) by ∀I. (i) Induction on the derivation
of Γ � ϕ. Left to the reader. �

Observe that the result is rather obvious, changing c to x is just as harm-
less as colouring c red — the derivation remains intact.

Exercises

1. Show: (i)� ∀x(ϕ(x) → ψ(x)) → (∀xϕ(x) → ∀xψ(x)),
(ii)� ∀xϕ(x) → ¬∀x¬ϕ(x),
(iii)� ∀xϕ(x) → ∀zϕ(z) if z does not occur in ϕ(x),
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(iv)� ∀x∀yϕ(x, y) → ∀y∀xϕ(x, y),
(v)� ∀x∀yϕ(x, y) → ∀xϕ(x, x),
(vi)� ∀x(ϕ(x) ∧ ψ(x)) ↔ ∀xϕ(x) ∧ ∀xψ(x),
(vii)� ∀x(ϕ→ ψ(x)) ↔ (ϕ→ ∀xψ(x)), where x �∈ FV (ϕ).

2. Extend the definition of derivation to the present system (cf. 1.4.1).

3. Show (s(t)[a/x])A = (s((t[a/x])A)[a/x])A.

4. Show the inverse implications of 2.8.3.

5. Assign to each atom P (t1, . . . , tn) a proposition symbol, denoted by P .
Now define a translation † from the language of predicate logic into the
language of propositional logic by

P (t1, . . . , tn))† := P and ⊥†:=⊥
(ϕ�ψ)† := ϕ†�ψ†

(¬ϕ)† := ¬ϕ†

(∀xϕ)† := ϕ†

Show Γ � ϕ ⇒ Γ † �† ϕ†, where �† stands for “derivable without using
(∀I) or (∀E)” (does the converse hold?)
Conclude the consistency of predicate logic.
Show that predicate logic is conservative over propositional logic (cf. def-
inition 3.1.5).

2.9 Adding the Existential Quantifier

Let us introduce ∃xϕ as an abbreviation for ¬∀x¬ϕ (Theorem 2.5.1 tells us
that there is a good reason for doing so). We can prove the following:

Lemma 2.9.1 (i) ϕ(t) � ∃xϕ(x) (t free for x in ϕ)
(ii) Γ, ϕ(x) � ψ ⇒ Γ, ∃xϕ(x) � ψ

if x is not free in ψ or any formula of Γ.

Proof. (i) [∀x¬ϕ(x)] ∀E¬ϕ(t) ϕ(t) → E⊥ → I¬∀x¬ϕ(x)

so ϕ(t) � ∃xϕ(x)
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(ii)

¬∀x¬ϕ(x)

[ϕ(x)]

D
ψ [¬ψ] → E⊥ → I¬ϕ(x) ∀I∀x¬ϕ(x) → E⊥

RAA
ψ �

Explanation. The subderivation top left is the given one; its hypotheses are
in Γ ∪ {ϕ(x)} (only ϕ(x) is shown). Since ϕ(x) (that is, all occurrences of it)
is cancelled and x does not occur free in Γ or ψ, we may apply ∀I. From the
derivation we conclude that Γ, ∃xϕ(x) � ψ.

We can compress the last derivation into an elimination rule for ∃:
[ϕ]
...

∃xϕ(x) ψ
ψ

∃E

with the conditions: x is not free in ψ, or in a hypothesis of the subderivation
of ψ, other than ϕ(x).

This is easily seen to be correct since we can always fill in the missing
details, as shown in the preceding derivation.

By (i) we also have an introduction rule:
ϕ(t) ∃I∃x ϕ(x)

for t free for x in ϕ.

Examples of derivations.

[∃xϕ(x)]2

[∀x(ϕ(x) → ψ)]3 ∀E
ϕ(x) → ψ [ϕ(x)]1 → E

ψ ∃E1
ψ → I2∃xϕ(x) → ψ → I3∀x(ϕ(x) → ψ)→ (∃xϕ(x) → ψ)

x �∈ FV (ψ)
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[∃x(ϕ(x) ∨ ψ(x))]3

[ϕ(x) ∨ ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)
∨E1∃xϕ(x) ∨ ∃xψ(x)

∃E2∃xϕ(x) ∨ ∃xψ(x)
→ I3∃x(ϕ(x) ∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 2.9.2 Consider predicate logic with the full language and rules for
all connectives, then � ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Proof. Compare 1.6.3. �

It is time now to state the rules for ∀ and ∃ with more precision. We want
to allow substitution of terms for some occurrences of the quantified variable
in (∀E) and (∃E). The following example motivates this.

∀x(x = x) ∀E
x = x ∃I∃y(x = y))

The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I ϕ
∀xϕ ∀E ∀xϕ

ϕ[t/x]

∃I ϕ[t/x]
∃xϕ ∃E

[ϕ]
.
.

∃xϕ ψ
ψ

with the appropriate restrictions.

Exercises

1. � ∃x(ϕ(x) ∧ ψ) ↔ ∃xϕ(x) ∧ ψ if x �∈ FV (ψ),
2. � ∀x(ϕ(x) ∨ ψ) ↔ ∀xϕ(x) ∨ ψ if x �∈ FV (ψ),
3. � ∀xϕ(x) ↔ ¬∃x¬ϕ(x),
4. � ¬∀xϕ(x) ↔ ∃x¬ϕ(x),
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5. � ¬∃xϕ(x) ↔ ∀x¬ϕ(x),
6. � ∃x(ϕ(x) → ψ) ↔ (∀xϕ(x) → ψ) if x �∈ FV (ψ),
7. � ∃x(ϕ→ ψ(x)) ↔ (ϕ→ ∃xψ(x)) if x �∈ FV (ϕ) ,
8. � ∃x∃yϕ↔ ∃y∃xϕ,
9. � ∃xϕ↔ ϕ if x �∈ FV (ϕ).

2.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of section 2.6.

RI1
x = x

x = y
RI2

y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t(x1, . . . , xn) = t(y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow sub-
stitution of the variable yi(i ≤ n) for some and not necessarily all occurrences
of the variable xi. We can express this by formulating RI4 in the precise terms
of the simultaneous substitution operator:

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]

x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]

Example.

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y
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x = y x2 + y2 > 12x

2y2 > 12y

The above are three legitimate applications of RI4 having three different con-
clusions.

The rule RI1 has no hypotheses, which may seem surprising, but which
certainly is not forbidden.

The rules RI4 have many hypotheses, as a consequence the derivation trees
can look a bit more complicated. Of course one can get all the benefits from
RI4 by a restricted rule, allowing only one substitution at the time.

Lemma 2.10.1 � Ii for i = 1, 2, 3, 4.

Proof. Immediate. �
We can weaken the rules RI4 slightly by considering only the simplest

terms and formulae.

Lemma 2.10.2 Let L be of type 〈r1, . . . , rn; a1, . . . , am; k〉. If the rules

x1 = y1, . . . , xri = yri P1(x1, . . . , xri)
for all i ≤ n

P1(y1, . . . , yri)

and
x1 = y1, . . . , xaj = yaj

for all j ≤ m
fj(x1, . . . , xaj ) = fj(y1, . . . , yaj )

are given, then the rules RI4 are derivable.

Proof. We consider a special case. Let L have one binary predicate symbol
and one unary function symbol.

(i) We show x = y � t(x) = t(y) by induction on t.
(a) t(x) is a variable or a constant. Immediate.
(b) t(x) = f(s(x)). Induction hypothesis: x = y � s(x) = s(y)

[x = y]

f(x) = f(y) ∀I 2×∀xy(x = y → f(x) = f(y))

s(x) = s(y)→ f(s(x)) = f(s(y))

x = y

D
s(x) = s(y)

f(s(x)) = f(s(y))
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This shows x = y � f(s(x)) = f(s(y)).

(ii) We show �x = �y, ϕ(�x) � ϕ(�y)
(a) ϕ is atomic, then ϕ = P (t, s). t and s may (in this example) contain
at most one variable each. So it suffices to consider
x1 = y1, x2 = y2, P (t(x1, x2), s(x1, x2)) � P (t(y1, y2), s(y1, y2)),
(i.e.P (t[x1, x2/z1, z2], . . .).

Now we get, by applying → E twice, from

[x1 = y1] [x2 = y2] [P (x1, x2)]

P (y1, y2) → I 3×
x1 = x2 → (x2 = y2 → (P (x1, x2) = P (y1, y2))) ∀I∀x1x2y1y2(x1 = x2 → (x2 = y2 → (P (x1, x2) = P (y1, y2)))) ∀E

s(x1, x2) = s(y1, y2) → (t(x1, x2) = t(y1, y2)→ (P (sx, tx) = P (sy, ty)))

and the following two instances of (i)

x1 = y1 x2 = y2

D
s(x1, x2) = s(y1, y2)

and

x1 = y1 x2 = y2

D′

t(x1, x2) = t(y1, y2)

,

the required result, (P (sx, tx) = P (sy, ty)).

So x1 = y1, x2 = y2 � P (sx, tx)→ P (sy, ty)
where sx = s(x1, x2), sy = s(y1, y2)

tx = t(x1, x2), ty = t(y1, y2).

(b) ϕ = σ → τ .

Induction hypotheses: �x = �y, σ(�y) � σ(�x)
�x = �y, τ(�x) � τ(�y)

σ(�x)→ τ(�x)

�x = �y [σ(�y)]

D
σ(�x)

τ(�x) �x = �y

D′

τ(�y)

σ(�y) → τ(�y)
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So �x = �y, σ(�x)→ τ(�x) � σ(�y)→ τ(�y).

(c) ϕ = σ ∧ τ , left to the reader.

(d) ϕ = ∀zψ(z, �x)

Induction hypothesis: �x = �y, ψ(z, �x) � ψ(z, �y)

∀zψ(z, �x)

ψ(z, �x) �x = �y

D
ψ(z, �y)

∀zψ(z, �y)

So �x = �y, ∀zψ(z, �x) � ∀zψ(z, �y).
This establishes, by induction, the general rule. �

Exercises

1. Show that ∀x(x = x), ∀xyz(x = y ∧ z = y → x = z) � I2 ∧ I3 (using
predicate logic only).

2. Show � ∃x(t = x) for any term t. Explain why all functions in a structure
are total (i.e. defined for all arguments); what is 0−1?

3. Show � ∀z(z = x→ z = y)→ x = y.
4. Show � ∀xyz(x �= y → x �= z ∨ y �= z).
5. Show that in the language of identity I1, I2, I3 � I4.
6. Show ∀x(x = a ∨ x = b ∨ x = c) � ∀xϕ(x) ↔ (ϕ(a) ∧ ϕ(b) ∧ ϕ(c)), where
a, b, c, are constants.

7. Show (i) ∀xy(f(x) = f(y)→ x = y), ∀xy(g(x) = g(y)→ x = y) �
∀xy(f(g(x)) = f(g(y))→ x = y),

(ii)∀y∃x(f(x) = y), ∀y∃x(g(x) = y) � ∀y∃x(f(g(x)) = y).
Which properties are expressed by this exercise?

8. Prove the following Duality Principle for projective geometry (cf. defini-
tion 2.7.5): If Γ � ϕ then also Γ � ϕd, where Γ is the set of axioms of
projective geometry and ϕd is obtained from ϕ by replacing each atom
xIy by yIx. (Hint: check the effect of the translation d on the derivation
of ϕ from Γ ).
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Completeness and Applications

3.1 The Completeness Theorem

Just as in the case of propositional logic we shall show that ‘derivability’ and
‘semantical consequence’ coincide. We will do quite a bit of work before we
get to the theorem. Although the proof of the completeness theorem is not
harder than, say, some proofs in analysis, we would advise the reader to read
the statement of the theorem and to skip the proof at the first reading and to
return to it later. It is more instructive to go to the applications and it will
probably give the reader a better feeling for the subject.

The main tool in this chapter is the

Lemma 3.1.1 (Model Existence Lemma) If Γ is a consistent set of sen-
tences, then Γ has a model.

A sharper version is

Lemma 3.1.2 Let L have cardinality κ. If Γ is a consistent set of sentences,
then Γ has a model of cardinality ≤ κ.

From 3.1.1 we immediately deduce Gödel’s

Theorem 3.1.3 (Completeness Theorem) Γ � ϕ⇔ Γ |= ϕ.

We will now go through all the steps of the proof of the completeness the-
orem. In this section we will consider sentences, unless we specifically mention
non-closed formulas. Furthermore ‘�’ will stand for ‘derivability in predicate
logic with identity’.

Just as in the case of propositional logic we have to construct a model and
the only thing we have is our consistent theory. This construction is a kind of
Baron von Münchhausen trick; we have to pull ourselves (or rather, a model)
out of the quicksand of syntax and proof rules. The most plausible idea is to
make a universe out of the closed terms and to define relations as the sets of
(tuples of) terms in the atoms of the theory. There are basically two things
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we have to take care of: (i) if the theory tells us that ∃xϕ(x), then the model
has to make ∃xϕ(x) true, and so it has to exhibit an element (which is in this
case a closed term t) such that ϕ(t) is true. This means that the theory has
to prove ϕ(t) for a suitable closed term t. This problem is solved in so-called
Henkin theories. (ii) A model has to decide sentences, i.e. it has to say σ or
¬σ for each sentence σ. As in propositional logic, this is handled by maximal
consistent theories.

Definition 3.1.4 (i) A theory T is a collection of sentences with the
property T � ϕ⇒ ϕ ∈ T (a theory is closed under derivability).

(ii) A set Γ such that T = {ϕ|Γ � ϕ} is called an axiom set of the theory T .
The elements of Γ are called axioms.

(iii) T is called a Henkin theory if for each sentence ∃xϕ(x) there is a constant
c such that ∃xϕ(x) → ϕ(c) ∈ T (such a c is called a witness for ∃xϕ(x)).

Note that T = {σ|Γ � σ} is a theory. For, if T � ϕ, then σ1, . . . , σk � ϕ
for certain σi with Γ � σi.
D1 D2 . . . Dk From the derivationsD1, . . . ,Dk of Γ � σ1, . . . ,
σ1 σ2 . . . σk Γ � σk and D of σ1, . . . , σk � ϕ a derivation

D of Γ � ϕ is obtained, as indicated.
ϕ

Definition 3.1.5 Let T and T ′ be theories in the languages L and L′.
(i) T ′ is an extension of T if T ⊆ T ′,
(ii) T ′ is a conservative extension of T if T ′ ∩L = T (i.e. all theorems of

T ′ in the language L are already theorems of T ).

Example of a conservative extension: Consider propositional logic P ′ in
the language L with → ,∧ ,⊥ ,↔ ,¬. Then exercise 2, section 1.6, tells us
that P ′ is conservative over P .

Our first task is the construction of Henkin extensions of a given theory
T , that is to say: extensions of T which are Henkin theories.

Definition 3.1.6 Let T be a theory with language L. The language L∗ is
obtained from L by adding a constant cϕ for each sentence of the form ∃xϕ(x),
a constant cϕ . T* is the theory with axiom set
T ∪ {∃xϕ(x) → ϕ(cϕ)| ∃xϕ(x) closed, with witness cϕ}.

Lemma 3.1.7 T* is conservative over T .

Proof. (a) Let ∃xϕ(x) → ϕ(c) be one of the new axioms. Suppose Γ, ∃xϕ(x) →
ϕ(c) � ψ, where ψ does not contain c and where Γ is a set of sentences, none
of which contains the constant c. We show Γ � ψ in a number of steps.
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1. Γ � (∃xϕ(x) → ϕ(c)) → ψ,
2. Γ � (∃xϕ(x) → ϕ(y)) → ψ, where y is a variable that does not occur in

the associated derivation. 2 follows from 1 by Theorem 2.8.3.
3. Γ � ∀y[(∃xϕ(x) → ϕ(y)) → ψ]. This application of (∀I) is correct, since c

did not occur in Γ .
4. Γ � ∃y(∃xϕ(x) → ϕ(y))→ ψ, (cf. example of section 2.9).
5. Γ � (∃xϕ(x) → ∃yϕ(y))→ ψ, (section 2.9 exercise 7).
6. � ∃xϕ(x) → ∃yϕ(y).
7. Γ � ψ, (from 5,6).

(b) Let T * � ψ for a ψ ∈ L. By the definition of derivability T ∪
{σ1, . . . , σn} � ψ, where the σi are the new axioms of the form ∃xϕ(x) →
ϕ(c). We show T � ψ by induction on n. For n = 0 we are done. Let
T ∪ {σ1, . . . , σn+1} � ψ. Put Γ ′ = T ∪ {σ1, . . . , σn}, then T ′, σn+1 � ψ
and we may apply (a). Hence T ∪ {σ1, . . . , σn} � ψ. Now by induction
hypothesis T � ψ. �

Although we have added a large number of witnesses to T , there is no
evidence that T * is a Henkin theory, since by enriching the language we also
add new existential statements ∃xτ(x) which may not have witnesses. In order
to overcome this difficulty we iterate the above process countably many times.

Lemma 3.1.8 Define T0 := T ;Tn+1 := (Tn)*; Tω := ∪{Tn|n ≥ 0}. Then Tω
is a Henkin theory and it is conservative over T .

Proof. Call the language of Tn (resp. Tω) Ln (resp. Lω).

(i) Tn is conservative over T . Induction on n.
(ii) Tω is a theory. Suppose Tω � σ, then ϕ0, . . . , ϕn � σ for certain
ϕ0, . . . , ϕn ∈ Tω. For each i ≤ n ϕi ∈ Tmi for some mi. Let m =
max{mi|i ≤ n}. Since Tk ⊆ Tk+1 for all k, we have Tmi ⊆ Tm(i ≤ n).
Therefore Tm � σ. Tm is (by definition) a theory, so σ ∈ Tm ⊆ Tω.

(iii) Tω is a Henkin theory. Let ∃xϕ(x) ∈ Lω, then ∃xϕ(x) ∈ Ln for some n.
By definition ∃xϕ(x) → ϕ(c) ∈ Tn+1 for a certain c. So ∃xϕ(x) → ϕ(c) ∈
Tω.

(iv) Tω is conservative over T . Observe that Tω � σ if Tn � σ for some n and
apply (i). �

As a corollary we get: Tω is consistent if T is so. For suppose Tω in-
consistent, then Tω �⊥. As Tω is conservative over T (and ⊥∈ L) T �⊥.
Contradiction.

Our next step is to extend Tω as far as possible, just as we did in propo-
sitional logic (1.5.7). We state a general principle:

Lemma 3.1.9 (Lindenbaum) Each consistent theory is contained in a max-
imally consistent theory.
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Proof. We give a straightforward application of Zorn’s Lemma. Let T be consis-
tent. Consider the set A of all consistent extensions T ′ of T , partially ordered
by inclusion. Claim: A has a maximal element.

1. Each chain in A has an upper bound. Let {Ti|i ∈ I} be a chain. Then
T ′ = ∪Ti is a consistent extension of T containing all Ti’s (Exercise 2).
So T ′ is an upper bound.

2. Therefore A has a maximal element Tm (Zorn’s lemma).
3. Tm is a maximally consistent extension of T . We only have to show: Tm ⊆
T ′ and T ′ ∈ A, then Tm = T ′. But this is trivial as Tm is maximal in the
sense of ⊆. Conclusion: T is contained in the maximally consistent theory
Tm. �
Note that in general T has many maximally consistent extensions. The

above existence is far from unique (as a matter of fact the proof of its existence
essentially uses the axiom of choice). Note, however, that if the language is
countable, one can mimick the proof of 1.5.7 and dispense with Zorn’s Lemma.

We now combine the construction of a Henkin extension with a maximally
consistent extension. Fortunately the property of being a Henkin theory is
preserved under taking a maximally consistent extension. For, the language
remains fixed, so if for an existential statement ∃xϕ(x) there is a witness c
such that ∃xϕ(x) → ϕ(c) ∈ T , then trivially, ∃xϕ(x) → ϕ(c) ∈ Tm. Hence

Lemma 3.1.10 An extension of a Henkin theory with the same language is
again a Henkin theory.

We now get to the proof of our main result.

Lemma 3.1.11 (Model Existence Lemma) If Γ is consistent, then Γ has
a model.

Proof. Let T = {σ|Γ � σ} be the theory given by Γ . Any model of T is, of
course, a model of Γ .

Let Tm be a maximally consistent Henkin extension of T (which exists by
the preceding lemmas), with language Lm.

We will construct a model of Tm using Tm itself. At this point the reader
should realize that a language is, after all, a set, that is a set of strings of
symbols. So, we will exploit this set to build the universe of a suitable model.

1. A = {t ∈ Lm|t is closed}.
2. For each function symbol f we define a function f̂ : Ak → A by
f̂(t1, . . . , tk) := f(t1, . . . , tk).

3. For each predicate symbol P we define a relation P̂ ⊆ Ap by 〈t1, . . . , tp〉 ∈
P̂ ⇔ Tm � P (t1, . . . , tp).

4. For each constant symbol c we define a constant ĉ := c.
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Although it looks as if we have created the required model, we have to
improve the result, because ’=’ is not interpreted as the real equality. We can
only assert that

(a) The relation t ∼ s defined by Tm � t = s for t, s ∈ A is an equivalence
relation. By lemma 2.10.1, I1, I2, I3 are theorems of Tm, so Tm � ∀x(x = x),
and hence (by ∀E) Tm � t = t, or t ∼ t. Symmetry and transitivity follow in
the same way.

(b) ti ∼ si(i ≤ p) and 〈t1, . . . , tp〉 ∈ P̂ ⇒ 〈s1, . . . , sp〉 ∈ P̂ .
ti ∼ si(i ≤ k)⇒ f̂(t1, . . . , tk) ∼ f̂(s1, . . . , sk) for all symbols P and f .

The proof is simple: use Tm � I4 (Lemma 2.10.1).
Once we have an equivalence relation, which, moreover, is a congruence

with respect to the basic relations and functions, it is natural to introduce the
quotient structure.

Denote the equivalence class of t under ∼ by [t].
Define A := 〈A/ ∼, P̃1, . . . , P̃n, f̃1, . . . , f̃m, {c̃i|i ∈ I}〉,where

P̃i := {〈[t1], . . . , [tri ]〉|〈t1, . . . , tri〉 ∈ P̂i}
f̃j([t1], . . . , [taj ]) = [f̂j(t1, . . . , taj )]
c̃i := [ĉi].

One has to show that the relations and functions on A/ ∼ are well-defined,
but that is taken care of by (b) above.

Closed terms lead a kind of double life. On the one hand they are syn-
tactical objects, on the other hand they are the stuff that elements of the
universe are made from. The two things are related by tA = [t]. This is shown
by induction on t.

(i) t = c, then tA = c̃ = [ĉ] = [t],
(ii) t = f(t1, . . . , tk), then tA = f̃(tA1 , . . . , tAk) i.h.= f̃([t1], . . . , [tk])

= [f̂(t1, . . . , tk)] = [f(t1, . . . , tk)].

Furthermore we have A |= ϕ(t) ⇔ A |= ϕ([t]), by the above and by Exercise
6 section 2.4.

Claim. A |= ϕ(t) ⇔ Tm � ϕ(t) for all sentences in the language Lm of Tm
which, by the way, is also L(A), since each element of A/ ∼ has a name in
Lm. We prove the claim by induction on ϕ.

(i) ϕ is atomic. A |= P (t1, . . . , tp)↔ 〈tA1 , . . . , tAp 〉 ∈ p̃⇔ 〈[t1], . . . , [tp]〉 ∈ P̃ ⇔
〈t1, . . . , tp〉 ∈ P̂ ⇔ Tm � P (t1, . . . , tp). The case ϕ =⊥ is trivial.

(ii) ϕ = σ ∧ τ . Trivial.
(iii) ϕ = σ → τ . We recall that, by lemma 1.5.9 Tm � σ → τ ⇔ (Tm �
σ ⇒ Tm � τ). Note that we can copy this result, since its proof only uses
propositional logic, and hence remains correct in predicate logic.
A |=ϕ→ τ ⇔ (A |= σ ⇒ A |= τ) i.h.⇔ (Tm � σ ⇒ Tm � τ) ⇔ Tm � σ → τ .

(iv) ϕ = ∀xψ(x). A |= ∀xψ(x) ⇔ A �|= ∃x¬ψ(x) ⇔ A �|= ¬ψ(a), for all
a ∈ |A| ⇔ for all a ∈ |A|(A |= ψ(a)). Assuming A |= ∀xψ(x), we get in
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particular A |= ψ(c) for the witness c belonging to ∃x¬ψ(x). By induc-
tion hypothesis: Tm � ψ(c). Tm � ∃x¬ψ(x) → ¬ψ(c), so Tm � ψ(c) →
¬∃¬ψ(x). Hence Tm � ∀xϕ(x).
Conversely: Tm � ∀xψ(x) ⇒ Tm � ψ(t), so Tm � ψ(t) for all closed t,
and therefore by induction hypothesis, A |= ψ(t) for all closed t. Hence
A |= ∀xψ(x).
Now we see that A is a model of Γ , as Γ ⊆ Tm. �

The model constructed above goes by various names, it is sometimes called
the canonical model or the (closed) term model. In logic programming the set
of closed terms of any language is called the Herbrand universe or - domain
and the canonical model is called the Herbrand model.

In order to get an estimation of the cardinality of the model we have to
compute the number of closed terms in Lm. As we did not change the language
going from Tω to Tm, we can look at the language Lω. We will indicate how to
get the required cardinalities, given the alphabet of the original language L.
We will use the axiom of choice freely, in particular in the form of absorption
laws (i.e. κ + λ = κ · λ = max(κ, λ) for infinite cardinals). Say L has type
〈r1, . . . , rn; a1, . . . , am;κ〉.
1. Define

TERM0 := {ci|i ∈ I} ∪ {xj |j ∈ N}
TERMn+1 := TERMn ∪ {fj(t1, . . . , taj )|j ≤ m,

tk ∈ TERMn for k ≤ aj}.
Then TERM =

⋃{TERMn|n ∈ N} (Exercise 5)
|TERM0| = max(κ,ℵ0) = µ.
Suppose |TERMn| = µ. Then
|{fj(t1, . . . , taj )|t1, . . . , taj ∈ TERMn}| = |TERMn|aj = µaj = µ. So
|TERMn+1| = µ+ µ+ . . .+ µ (m+ 1 times) = µ.
Finally |TERM | =

∑

n∈N
|TERMn| = ℵ0 · µ = µ.

2. Define
FORM0 := {Pi(t1, . . . , tri |i ≤ n, tk ∈ TERM} ∪ {⊥}
FORMn+1 := FORMn ∪ {ϕ�ψ | � ∈ {∧,→}, ϕ, ψ ∈ FORMn}

∪{∀xiϕ|i ∈ N,ϕ ∈ FORMn}.
Then FORM =

⋃{FORMn|n ∈ N} (Exercise 5)
As in 1. one shows |FORM | = µ.

3. The set of sentences of the form ∃xϕ(x) has cardinality µ. It trivially is
≤ µ. Consider A = {∃x (x0 = ci)| ∈ I}. Clearly |A| = κ · ℵ0 = µ. Hence
the cardinality of the existential statements is µ.

4. L1 has the constant symbols of L, plus the witnesses. By 3 the cardinality
of the set of constant symbols is µ. Using 1 and 2 we find L0 has µ terms
and µ formulas. By induction on n each Ln has µ terms and µ formulas.
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Therefore Lω has ℵ0 · µ = µ terms and formulas. Lω is also the language
of Tm.

5. Lω has at most µ closed terms. Since L1 has µ witnesses, Lω has at least
µ, and hence exactly µ closed terms.

6. The set of closed terms has ≤ µ equivalence classes under ∼, so ||A|| ≤ µ.

All this adds up to the strengthened version of the Model Existence
Lemma:

Lemma 3.1.12 Γ is consistent ↔ Γ has a model of cardinality at most the
cardinality of the language.

Note the following facts:
– If L has finitely many constants, then L is countable.
– If L has κ ≥ ℵ0 constants, then |L| = κ.

The completeness theorem for predicate logic raises the same question as
the completeness theorem for propositional logic: can we effectively find a
derivation of ϕ is ϕ is true? The problem is that we don’t have much to go on;
ϕ is true in all structures (of the right similarity type). Even though (in the
case of a countable language) we can restrict ourselves to countable structures,
the fact that ϕ is true in all those structures does not give the combinator-
ial information, necessary to construct a derivation for ϕ. The matter is at
this stage beyond us. A treatment of the problem belongs to proof theory;
Gentzen’s sequent calculus or the tableau method are more suitable to search
for derivations, than natural deduction.

In the case of predicate logic there are certain improvements on the com-
pleteness theorem. One can, for example, ask how complicated the model is
that we constructed in the model existence lemma. The proper setting for
those questions is found in recursion theory. We can, however, have a quick
look at a simple case.

Let T be a decidable theory with a countable language, i.e. we have an
effective method to test membership (or, what comes to the same, we can test
Γ � ϕ for a set of axioms of T ). Consider the Henkin theory T introduced
in 3.1.8.; σ ∈ Tω if σ ∈ Tn for a certain n. This number n can be read off
from σ by inspection of the witnesses occurring in σ. From the witnesses we
can also determine which axioms of the form ∃xϕ(x) → ϕ(c) are involved.
Let {τ1, . . . , τn} be the set of axioms required for the derivation of σ, then
T ∪{τ1, . . . , τn} � σ. By the rules of logic this reduces to T � τ1∧ . . .∧τn → σ.
Since the constants ci are new with respect to T , this is equivalent to T �
∀z1, . . . , zk(τ ′n → σ′) for suitable variables z1, . . . , zk, where τ ′1, . . . , τ

′
n, σ

′ are
obtained by substitution. Thus we see that σ ∈ Tω is decidable. The next step
is the formation of a maximal extension Tm.

Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of all sentences of Tω. We add sen-
tences to Tω in steps.



110 3 Completeness and Applications

�

�ϕ0

�ϕ1

�ϕ2 �¬ϕ2

�¬ϕ1

�¬ϕ0

� ϕ1 �¬ϕ1

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
��� ��

�
�

�
�

�
�

�
��

�
�

�
�
�� ����

step 0 : T0 =
{
Tω ∪ {ϕ0} if Tω ∪ {ϕ0} is consistent,
Tω ∪ {¬ϕ0} else.

step n+ 1 : Tn+1 =
{
Tn ∪ {ϕn+1} if Tn ∪ {ϕn+1} is consistent,
Tn ∪ {¬ϕn+1} else.

T ◦ = ∪Tn (T ◦ is given by a suitable infinite path in the tree). It is easily seen
that T ◦ is maximally consistent. Moreover, T ◦ is decidable. To test ϕn ∈ T ◦

we have to test if ϕn ∈ Tn or Tn−1 ∪ {ϕn} �⊥, which is decidable. So T ◦ is
decidable.

The model A constructed in 3.1.11 is therefore also decidable in the fol-
lowing sense: the operations and relations of A are decidable, which means
that 〈[t1], . . . , [tp]〉 ∈ P̃ and f̃([t1], . . . , [tk]) = [t] are decidable.

Summing up we say that a decidable consistent theory has a decidable
model (this can be made more precise by replacing ‘decidable’ by ‘recursive’).

Exercises

1. Consider the language of groups. T = {σ|A |= σ} , where A is a fixed
non-trivial group. Show that T is not a Henkin theory.

2. Let {Ti|i ∈ I} be a set of theories, linearly ordered by inclusion. Show
that T = ∪{Ti|i ∈ I} is a theory which extends each Ti. If each Ti is
consistent, then T is consistent.

3. Show that λn � σ ⇔ σ holds in all models with at least n elements.
µn � σ ⇔ σ holds in all models with at most n elements. λn∧µn � σ ⇔ σ
holds in all models with exactly n elements, {λn|n ∈ N} � σ ⇔ σ holds in
all infinite models, (for a definition of λn, µn cf. section 2.7).

4. Show that T = {σ|λ2 � σ} ∪ {c1 �= c2} in a language with = and two
constant symbols c1, c2, is a Henkin theory.

5. Show TERM =
⋃{TERMn|n ∈ N}, FORM =

⋃{FORMn|n ∈ N} (cf.
1.1.5).
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3.2 Compactness and Skolem-Löwenheim

Unless specified otherwise, we consider sentences in this section. From the
Model Existence Lemma we get the following:

Theorem 3.2.1 (Compactness Theorem) Γ has a model ⇔ each finite
subset ∆ of Γ has a model.

An equivalent formulation is:
Γ has no model ⇔ some finite ∆ ⊆ Γ has no model.

Proof. We consider the second version.
⇐: Trivial.
⇒: Suppose Γ has no model, then by the Model Existence Lemma Γ is incon-
sistent, i.e. Γ �⊥. Therefore there are σ1, . . . , σn ∈ Γ such that σ1, . . . , σn �⊥.
This shows that ∆ = {σ1, . . . , σn} has no model. �

Let us introduce a bit of notation: Mod(Γ ) = {A|A |= σ for all σ ∈ Γ}.
For convenience we will often write A |= Γ for A ∈ Mod(Γ ). We write
Mod(ϕ1, . . . , ϕ2) instead of Mod({ϕ1, . . . , ϕn}).

In generalMod(Γ ) is not a set (in the technical sense of set theory:Mod(Γ )
is most of the time a proper class). We will not worry about that since the
notation is only used as a abbreviation.

Conversely, let K be a class of structures (we have fixed the similarity
type), then Th(K) = {σ|A |= σ for all A ∈ K}. We call Th(K) the theory of
K.

We adopt the convention (already used in section 2.7) not to include the
identity axioms in a set Γ ; these will always be satisfied.
Examples.

1. Mod(∀xy(x ≤ y∧ ≤ y ≤ x ↔ x = y), ∀xyz(x ≤ y ∧ y ≤ z → x ≤ z)) is
the class of posets.

2. Let G be the class of all groups. Th(G) is the theory of groups.

We can consider the set of integers with the usual additive group struc-
ture, but also with the ring structure, so there are two structures A and B,
of which the first one is in a sense a part of the second (category theory uses
a forgetful functor to express this). We say that A is a reduct of B, or B is
an expansion of A .

In general

Definition 3.2.2 A is a reduct of B (B an expansion of A) if |A| = |B| and
moreover all relations, functions and constants of A occur also as relations,
functions and constants of B.
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Notation. (A, S1, . . . , Sn, g1, . . . , gm, {aj|j ∈ J}) is the expansion of A with
the indicated extras.

In the early days of logic (before “model theory” was introduced) Skolem
(1920) and Löwenheim (1915) studied the possible cardinalities of models of
consistent theories. The following generalization follows immediately from the
preceding results.

Theorem 3.2.3 (Downward Skolem-Löwenheim Theorem) Let Γ be a
set of sentences in a language of cardinality κ, and let κ < λ. If Γ has a model
of cardinality λ, then Γ has a model of cardinality κ′, with κ ≤ κ′ < λ.

Proof. Add to the language L of Γ a set of fresh constants (not occurring
in the alphabet of L) {ci|i ∈ I} of cardinality κ′, and consider Γ ′ = Γ ∪
{ci �= cj |i, j ∈ I, i �= j}. Claim: Mod(Γ ′) �= ∅.

Consider a model A of Γ of cardinality λ. We expand A to A′ by adding
κ′ distinct constants (this is possible: |A| contains a subset of cardinality
κ′). A′ ∈ Mod(Γ ) (cf. Exercise 3) and A′ |= ci �= cj(i �= j). Consequently
Mod(Γ ′) �= ∅. The cardinality of the language of Γ ′ is κ′. By the Model
Existence Lemma Γ ′ has a model B′ of cardinality ≤ κ′, but, by the axioms
ci �= cj , the cardinality is also ≥ κ′. Hence B′ has cardinality κ′. Now take
the reduct B of B′ in the language of Γ , then B ∈Mod(Γ )) (Exercise 3). �
Examples.

1. The theory of real numbers, Th(R), in the language of fields, has a count-
able model.

2. Consider Zermelo-Fraenkel’s set theory ZF . If Mod(ZF ) �= ∅, then ZF
has a countable model. This fact was discovered by Skolem. Because of
its baffling nature, it was called Skolem’s paradox. One can prove in ZF
the existence of uncountable sets (e.g. the continuum), how can ZF then
have a countable model? The answer is simple: countability as seen from
outside and from inside the model is not the same. To establish count-
ability one needs a bijection to the natural numbers. Apparently a model
can be so poor that it misses some bijections which do exist outside the
model.

Theorem 3.2.4 (Upward Skolem-Löwenheim Theorem) Let Γ have a
language L of cardinality κ, and A ∈ Mod(Γ ) with cardinality λ ≥ κ. For
each µ > λ Γ has a model of cardinality µ.

Proof. Add µ fresh constants ci, i ∈ I to L and consider Γ ′ = Γ ∪{ci �= cj |i �=
j, i, j ∈ I}. Claim: Mod(Γ ′) �= ∅. We apply the Compactness Theorem.

Let ∆ ⊆ Γ ′ be finite. Say ∆ contains new axioms with constants
ci0 , . . . , cik , then ∆ ⊆ Γ ∪ {cip �= ciq |p, q ≤ k} = Γ0. Clearly each model
of Γ0 is a model of ∆ (Exercise 1(i)).
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Now take A and expand it to A′ = (A, a1, . . . , ak), where the ai are distinct.

Then obviously A′ ∈ Mod(Γ0), so A′ ∈ Mod(∆). By the Compactness
Theorem there is a B′ ∈ Mod(Γ ′). The reduct B of A′ to the (type of the)
language L is a model of Γ . From the extra axioms in Γ ′ it follows that B′,
and hence B, has cardinality ≥ µ.

We now apply the downward Skolem-Löwenheim Theorem and obtain the
existence of a model of Γ of cardinality µ. �

We now list a number of applications.

Application I. Non-standard Models of PA.

Corollary 3.2.5 Peano’s arithmetic has non-standard models.

Let P be the class of all Peano structures. Put PA = Th(P). By the Com-
pleteness Theorem PA = {σ|Σ � σ} where Σ is the set of axioms listed
in section 2.7, Example 6. PA has a model of cardinality ℵ0 (the standard
model N), so by the upward Skolem-Löwenheim Theorem it has models of
every k > ℵ0. These models are clearly not isomorphic to N. For more see
page 121.

Application II. Finite and Infinite Models.

Lemma 3.2.6 If Γ has arbitrarily large finite models, then Γ has an infinite
model.

Proof. Put Γ ′ = Γ ∪{λn|n > 1}, where λn expresses the sentence “there are at
least n distinct elements”, cf. section 2.7, Example 1. Apply the Compactness
Theorem. Let ∆ ⊆ Γ ′ be finite, and let λm be the sentence λn in ∆ with
the largest index n. Verify that Mod(∆) ⊇ Mod(Γ ∪ {λm}). Now Γ has
arbitrarily large finite models, so Γ has a model A with at least m elements,
i.e. A ∈Mod(Γ ∪ {λm}). So Mod(∆) �= ∅.

By compactness Mod(Γ ′) �= ∅, but in virtue of the axioms λm, a model of
Γ ′ is infinite. Hence Γ ′, and therefore Γ , has an infinite model. �

We get the following simple

Corollary 3.2.7 Consider a class K of structures which has arbitrarily large
finite models. Then, in the language of the class, there is no set Σ of sentences,
such that A ∈Mod(Σ) ⇔ A is finite and A ∈ K.

Proof. Immediate. �
We can paraphrase the result as follows: the class of finite structures in

such a class K is not axiomatizable in first-order logic.
We all know that finiteness can be expressed in a language that contains

variables for sets or functions (e.g. Dedekind’s definition), so the inability to
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characterise the notion of finite is a specific defect of first-order logic. We say
that finiteness is not a first-order property.

The corollary applies to numerous classes, e.g. groups, rings, fields, posets,
sets (identity structures).

Application III. Axiomatizability and Finite Axiomatizability.

Definition 3.2.8 A class K of structures is (finitely) axiomatizable if there
is a (finite) set Γ such that K = Mod(Γ ). We say that Γ axiomatizes K; the
sentences of Γ are called it axioms (cf. 3.1.4).

Examples for the classes of posets, ordered sets, groups, rings, Peano-structures
axiom sets Γ are listed in section 2.7.

The following fact is very useful:

Lemma 3.2.9 If K = Mod(Γ ) and K is finitely axiomatizable, then K is
axiomatizable by a finite subset of Γ .

Proof. Let K = Mod(∆) for a finite ∆, then K = Mod(σ), where σ is the
conjunction of all sentences of ∆ (Exercise 4). Then σ |= ψ for all ψ ∈ Γ and
Γ |= σ, hence also Γ � σ. Thus there are finitely many ψ1, . . . , ψk ∈ Γ such
that ψ1, . . . , ψk � σ. Claim K = Mod(ψ1, . . . , ψk).
(i) {ψ1, . . . , ψk} ⊆ Γ so Mod(Γ ) ⊆Mod(ψ1, . . . , ψk).
(ii) From ψ1, . . . , ψk � σ it follows that Mod(ψ1, . . . , ψk) ⊆Mod(σ).

Using (i) and (ii) we conclude Mod(ψ1, . . . , ψk) = K. �

This lemma is instrumental in proving non-finite-axiomatizability results.
We need one more fact.

Lemma 3.2.10 K is finitely axiomatizable ⇔ K and its complement Kc are
both axiomatizable.

Proof. ⇒. Let K = Mod(ϕ1, . . . , ϕn), then K = Mod(ϕ1 ∧ . . . ∧ ϕk). A ∈ Kc
(complement of K ) ⇔ A �|= ϕ1 ∧ . . . ∧ ϕn ⇔ A |= ¬(ϕ1 ∧ . . . ϕn). So
Kc = Mod(¬(ϕ1 ∧ . . . ∧ ϕn)).
⇐. Let K = Mod(Γ ),Kc = Mod(∆). K ∩ Kc = Mod(Γ ∪ ∆) = ∅ (Exercise
1). By compactness, there are ϕ1, . . . , ϕn ∈ Γ and ψ1, . . . , ψm ∈ ∆ such that
Mod(ϕ1, . . . , ϕn, ψ1, . . . , ψm) = ∅, or
Mod(ϕ1, . . . , ϕn) ∩Mod(ψ1, . . . , ψm) = ∅, (1)
K = Mod(Γ ) ⊆Mod(ϕ1, . . . , ϕn), (2)
Kc = Mod(∆) ⊆Mod(ψ1, . . . , ψm), (3)

(1), (2), (3) ⇒ K = Mod(ϕ1, . . . , ϕn). �
We now get a number of corollaries.
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Corollary 3.2.11 The class of all infinite sets (identity structures) is axiom-
atizable, but not finitely axiomatizable.

Proof. A is infinite ⇔ A ∈Mod({λn|n ∈ N}). So the axiom set is {λn|n ∈ N}.
On the other hand the class of finite sets is not axiomatizable, so, by Lemma
3.2.10, the class of infinite sets is not finitely axiomatizable. �

Corollary 3.2.12 (i) The class of fields of characteristic p(> 0) is finitely
axiomatizable.

(ii) The class of fields of characteristic 0 is axiomatizable but not finitely
axiomatizable.

(iii) The class of fields of positive characteristic is not axiomatizable.

Proof. (i) The theory of fields has a finite set ∆ of axioms. ∆ ∪ {p = 0}
axiomatizes the class Fp of fields of characteristic p (where p stands for 1 +
1 + . . .+ 1, (p×)).

(ii) ∆ ∪ {2 �= 0, 3 �= 0, . . . , p �= 0, . . .} axiomatizes the class F0 of fields of
characteristic 0. Suppose F0 was finitely axiomatizable, then by Lemma 3.2.9
F0 was axiomatizable by Γ = ∆ ∪ {p1 �= 0, . . . , pk �= 0}, where p1, . . . , pk are
primes (not necessarily the first k ones). Let q be a prime greater than all pi
(Euclid). Then Z/(q) (the integers modulo q) is a model of Γ , but Z/(q) is
not a field of characteristic 0. Contradiction.
(iii) follows immediately from (ii) and Lemma 3.2.10. �

Corollary 3.2.13 The class Ac of all algebraically closed fields is axiomati-
zable, but not finitely axiomatizable.

Proof. Let σn = ∀y1 . . . yn∃x(xn + y1x
n−1 + . . . + yn−1x + yn = 0). Then

Γ = ∆ ∪ {σn|n ≥ 1}(∆ as in corollary 3.2.12) axiomatizes Ac. To show non-
finite axiomatizability, apply Lemma 3.2.9 to Γ and find a field in which a
certain polynomial does not factorise. �

Corollary 3.2.14 The class of all torsion-free abelian groups is axiomatiz-
able, but not finitely axiomatizable.

Proof. Exercise 15. �
Remark: In Lemma 3.2.9 we used the Completeness Theorem and in Lemma
3.2.10 the Compactness Theorem. The advantage of using only the Compact-
ness Theorem is that one avoids the notion of provability altogether. The
reader might object that this advantage is rather artificial since the Compact-
ness Theorem is a corollary to the Completeness Theorem. This is true in our
presentation; one can, however, derive the Compactness Theorem by purely
model theoretic means (using ultraproducts, cf. Chang-Keisler) , so there are
situations where one has to use the Compactness Theorem. For the moment
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the choice between using the Completeness Theorem or the Compactness
Theorem is largely a matter of taste or convenience.

By way of illustration we will give an alternative proof of Lemma 3.2.9
using the Compactness Theorem:

Again we have Mod(Γ ) = Mod(σ)(∗). Consider Γ ′ = Γ ∪ {¬σ}.
A ∈Mod(Γ ′) ⇔ A ∈Mod(Γ ) and A |= ¬σ,

⇔ A ∈ModΓ and A �∈Mod(σ).
In view of (∗) we have Mod(Γ ′) = ∅.
By the Compactness Theorem there is a finite subset ∆ of Γ ′ with

Mod(∆) = ∅. It is no restriction to suppose that ¬σ ∈ ∆, hence
Mod(ψ1, . . . , ψk,¬σ) = ∅. It now easily follows that Mod(ψ1, . . . , ψk) =
Mod(σ) = Mod(Γ ). �

Application IV. Ordering Sets.
One easily shows that each finite set can be ordered, for infinite sets this

is harder. A simple trick is presented below.

Theorem 3.2.15 Each infinite set can be ordered.

Proof. Let |X | = κ ≥ ℵ0. Consider Γ , the set of axioms for linear order
(2.7.3). Γ has a countable model, e.g. N. By the upward Skolem-Löwenheim
Theorem Γ has a model A = 〈A,<〉 of cardinality κ. Since X and A have the
same cardinality there is a bijection f : X → A. Define x < x′ := f(x) <
f(x′). Evidently, < is a linear order. �

In the same way one gets: Each infinite set can be densely ordered. The
same trick works for axiomatizable classes in general.

Exercises

1. Show: (i) Γ ⊆ ∆⇒Mod(∆) ⊆Mod(Γ ),
(ii) K1 ⊆ K2 ⇒ Th(K2) ⊆ Th(K1),
(iii) Mod(Γ ∪∆) = Mod(Γ ) ∩Mod(∆),
(iv) Th(K1 ∪ K2) = Th(K1) ∩ Th(K2),
(v) K ⊆Mod(Γ ) ⇔ Γ ⊆ Th(K),
(vi) Mod(Γ ∩∆) ⊇Mod(Γ ) ∪Mod(∆),
(vii) Th(K1 ∩ K2) ⊇ Th(K1) ∪ Th(K2).

Show that in (vi) and (vii) ⊇ cannot be replaced by =.
2. (i) Γ ⊆ Th(Mod(Γ )),

(ii) K ⊆Mod(Th(K)),
(iii) Th(Mod(Γ )) is a theory with axiom set Γ .

3. If A with language L is a reduct of B, then A |= σ ⇔ B |= σ for σ ∈ L.
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4. Mod(ϕ1, . . . , ϕn) = Mod(ϕ1 ∧ . . . ∧ ϕn).

5. Γ |= ϕ ⇒ ∆ |= ϕ for a finite subset ∆ ⊆ Γ . (Give one proof using
completeness, another proof using compactness on Γ ∪ {¬ϕ}).

6. Show that well-ordering is not a first-order notion. Suppose that Γ axiom-
atizes the class of well-orderings. Add countably many constants ci and
show that Γ ∪ {ci+1 < ci|i ∈ N} has a model.

7. If Γ has only finite models, then there is an n such that each model has
at most n elements.

8. Let L have the binary predicate symbol P . σ:=∀x¬P (x, x)∧∀xyz(P (x, y)∧
P (y, z)→ P (x, z))∧∀x∃yP (x, y). Show thatMod(σ) contains only infinite
models.

9. Show that σ ∨ ∀xy(x = y) has infinite models and a finite model, but no
arbitrarily large finite models (σ as in 8).

10. Let L have one unary function symbol.
(i) Write down a sentence ϕ such that A |= ϕ⇔ fA is a surjection.
(ii) Idem for an injection.
(iii) Idem for a bijection (permutation).
(iv) Use (ii) to formulate a sentence σ such that (a) A |= σ ⇒ A is infinite,

(b) each infinite set can be expanded to a model of σ (Dedekind).
(v) Show that each infinite set carries a permutation without fixed points

(cf. the proof of 3.2.15).

11. Show: σ holds for fields of characteristic zero ⇒ σ holds for all fields of
characteristic q > p for a certain p.

12. Consider a sequence of theories Ti such that Ti �= Ti+1 and Ti ⊆ Ti+1.
Show that ∪{Ti|i ∈ N} is not finitely axiomatizable.

13. If T1 and T2 are theories such that Mod(T1 ∪ T2) = ∅ , then there is a σ
such that T1 |= σ and T2 |= ¬σ.

14. (i) A group can be ordered ⇔ each finitely generated subgroup can be
ordered.

(ii) An abelian group A can be ordered ⇔ A is torsion free. (Hint: look
at all closed atoms of L(A) true in A.)
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15. Prove Corollary 3.2.14.

16. Show that each countable, ordered set can be embedded in the rationals.

17. Show that the class of trees cannot be axiomatizaxiomatized. Here we
define a tree as a structure 〈T,≤, t〉, where ≤ is a partial order, such that
for each a the predecessors form a finite chain a = an < an−1 < . . . <
a1 < a0 = t. t is called the top.

18. A graph (with symmetric and irreflexive R) is called k-colourable if we
can paint the vertices with k-different colours such that adjacent vertices
have distinct colours. We formulate this by adding k unary predicates
c1, . . . , ck, plus the following axioms

∀x
∨∨

i

Ci(x),
∧∧

i
=j
¬(Ci(x) ∧ Cj(x)),

∧∧

i

∀xy(ci(x) ∧Ci(y) → ¬R(x, y)).

Show that a graph is k-colourable if each finite subgraph is k-colourable
(De Bruijn-Erdös).

3.3 Some Model Theory

In model theory one investigates the various properties of models (structures),
in particular in connection with the features of their language. One could say
that algebra is a part of model theory, some parts of algebra indeed belong to
model theory, other parts only in the sense of the limiting case in which the
role of language is negligible. It is the interplay between language and models
that makes model theory fascinating. Here we will only discuss the very be-
ginnings of the topic.

In algebra one does not distinguish structures which are isomorphic; the
nature of the objects is purely accidental. In logic we have another criterion:
we distinguish between two structures by exhibiting a sentence which holds
in one but not in the other. So, if A |= σ ⇔ B |= σ for all σ, then we cannot
(logically) distinguish A and B.

Definition 3.3.1 (i) f : |A| → |B| is a homomorphism if for all Pi
〈a1, . . . , ak〉 ∈ PA

i ⇒ 〈f(a1), . . . , f(ak)〉 ∈ PB
i , if for all Fj f(FA

j (a1, . . . , ap))

= FB
j (f(a1), . . . , f(ap)) and if for all ci f(cAi ) = cBi .

(ii) f is an isomorphism if it is a homomorphism which is bijective and
satisfies 〈a1, . . . , an〉 ∈ PA

i ⇔ 〈f(a1), . . . , f(an)〉 ∈ PB
i , for all Pi.
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We write f : A → B if f is a homomorphism from A to B. A ∼= B stands
for “A is isomorphic to B”, i.e. there is an isomorphism f : A→ B.

Definition 3.3.2 A and B are elementarily equivalent if for all sentences σ
of L,A |= σ ⇔ B |= σ.

Notation. A ≡ B. Note that A ≡ B ⇔ Th(A) = Th(B).

Lemma 3.3.3 A ∼= B ⇒ A ≡ B.

Proof. Exercise 2. �

Definition 3.3.4 A is a substructure (submodel) of B (of the same type) if
|A| ⊆ |B|;PB

i ∩ |A|n = PA
i , F

B
j ↑ |A|n = FA

j and cAi = cBi (where n is the
number of arguments).

Notation. A ⊆ B. Note that it is not sufficient for A to be contained in B “as
a set”; the relations and functions of B have to be extensions of the corre-
sponding ones on A, in the specific way indicated above.
Examples. The field of rationals is a substructure of the field of reals, but not
of the ordered field of reals. Let A be the additive group of rationals, B the
multiplicative group of non-zero rationals. Although |B| ⊆ |A|, B is not a
substructure of A. The well-known notions of subgroups, subrings, subspaces,
all satisfy the above definition.

The notion of elementary equivalence only requires that sentences (which
do not refer to specific elements, except for constants) are simultaneously true
in two structures. We can sharpen the notion, by considering A ⊆ B and by
allowing reference to elements of |A|.

Definition 3.3.5 A is an elementary substructure of B (or B is an el-
ementary extension of A) if A ⊆ B and for all ϕ(x1, . . . , xn) in L and
a1, . . . , an ∈ |A|,A |= ϕ(a1, . . . , an) ⇔ B |= ϕ(a1, . . . , an).

Notation. A ≺ B.
We say that A and B have the same true sentences with parameters in A.

Fact 3.3.6 A ≺ B⇒ A ≡ B.

The converse does not hold (cf. Exercise 4).
Since we will often join all elements of |A| to A as constants, it is convenient

to have a special notation for the enriched structure: Â = (A, |A|).
If one wants to describe a certain structure A, one has to specify all the

basic relationships and functional relations. This can be done in the language
L(A) belonging to A (which, incidentally, is the language of the type of Â).
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Definition 3.3.7 The diagram, Diag(A), is the set of closed atoms and nega-
tions of closed atoms of L(A), which are true in A. The positive diagram,
Diag+(A), is the set of closed atoms ϕ of L(A) such that A |= ϕ.

Example.

1. A = 〈N〉.Diag(A) = {n = n|n ∈ N} ∪ {n �= m|n �= m;n,m ∈ N}.
2. B = 〈{1, 2, 3}, <〉. (natural order). DiagB = {1 = 1, 2 = 2, 3 = 3 =
, 1 �= 2, 2 �= 3, 2 �= 1, 3 �= 1, 3 �= 2, 1 < 2, 1 < 3, 2 < 3, ¬2 < 1,¬3 <
2, ¬3 < 1, ¬1 < 1, ¬2 < 2, ¬3 < 3}.
Diagrams are useful for lots of purposes. We demonstrate one here: We

say that A is isomorphically embedded in B if there is an isomorphism f from
A into a substructure of B.

Lemma 3.3.8 A is isomorphically embedded in B ⇔ B̂ is a model of
Diag(A).

Proof. ⇒. Let f be an isomorphic embedding of A in B, then A |= P1(a1, . . . ,
an) ⇔ B |= P1(f(a1), . . . , f(an)) and A |= t(a1, . . . , an) = s(a1, . . . , an) ⇔
B |= t(f(a1), . . .) = s(f(a1), . . .) (cf. Exercise 2.). By interpreting a as f(a)
in B̂ (i.e. aB̂ = f(a)), we immediately see B̂ |= Diag(A).
⇐: Let B̂ |= Diag(A). Define a mapping f : |A| → |B| by f(a) = (a)B. Then,
clearly, f satisfies the conditions of definition 3.3.1 on relations and functions
(since they are given by atoms and negations of atoms). Moreover if a1 �= a2

then A |= ¬a1 = a2, so B̂ |= ¬a1 = a2.
Hence aB

1 �= aB
2 , and thus f(a1) �= f(a2). This shows that f is an isomor-

phism. �

We will often identify A with its image under an isomorphic embedding
into B, so that we may consider A as a substructure of B

We have a similar criterion for elementary extension. We say that A is
elementarily embeddable in B if A ∼= A′ and A′ ≺ B for some A′. Again, we
often simplify matters by just writing A ≺ B when we mean “elementarily
embeddable”.

Lemma 3.3.9 A ≺ B ⇔ B̂ |= Th(Â).

N.B. A ≺ B holds “up to isomorphism”. B̂ is supposed to be of a similarity
type which admits at least constants for all constant symbols of L(A).

Proof. ⇒. Let ϕ(a1, . . . , an) ∈ Th(Â), then A |= ϕ(a1, . . . , an), and hence
B̂ |= ϕ(a1, . . . , an). So B̂ |= Th(Â).
⇐. By 3.3.8, A ⊆ B (up to isomorphism). The reader can easily finish the

proof now. �
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We now give some applications.

Application I. Non-standard Models of Arithmetic.

Recall that N = 〈N,+, ·, s, 0〉 is the standard model of arithmetic. We
know that it satisfies Peano’s axioms (cf. example 6, section 2.7). We use the
abbreviations introduced in section 2.7.

Let us now construct a non-standard model. Consider T = Th(N̂). By
the Skolem-Löwenheim Theorem T has an uncountable model M. Since M |=
Th(N̂), we have, by 3.3.9, N ≺M. Observe that N �∼= M (why?). We will have
a closer look at the way in which N is embedded in M.
We note that N |= ∀xyz(x < y ∧ y < z → x < z) (1)

N |= ∀xyz(x < y ∨ x = y ∨ y < x) (2)
N |= ∀x(0 ≤ x) (3)
N |= ¬∃(n < x ∧ x < n+ 1) (4)

Hence, N being an elementary substructure of M, we have (1) and (2) for
M, i.e. M is linearly ordered. From N ≺ M and (3) we conclude that 0 is the
first element of M. Furthermore, (4) with N ≺ M tells us that there are no
elements of M between the “standard natural numbers”.

As a result we see that N is an initial segment of M:

standardnumbers
︷ ︸︸ ︷. . . . ...................................

non−standardnumbers
︷ ︸︸ ︷..........................

Remark: it is important to realize that (1) - (4) are not only true in the
standard model, but even provable in PA. This implies that they hold not only
in elementary extensions of N, but in all Peano structures. The price one has
to pay is the actual proving of (1) - (4) in PA, which is more cumbersome
than the mere establishing their validity in N. However, anyone who can give
an informal proof of these simple properties will find out that it is just one
more (tedious, but not difficult) step to formalize the proof in our natural
deduction system. Step-by-step proofs are outlined in the Exercises 27, 28.

So, all elements of |M| − |N|, the non-standard numbers, come after the
standard ones. Since M is uncountable, there is at least one non-standard
number a. Note that n < a for all n, so M has a non-archimedean order
(recall that n = 1 + 1 + . . .+ 1(n×)).

We see that the successor S(n)(= n+1) of a standard number is standard.
Furthermore N |= ∀x(x �= 0 → ∃y(y + 1 = x)), so, since N ≺ M, also
M |= ∀x(x �= 0 → ∃y(y + 1 = x)), i.e. in M each number, distinct from
zero, has a (unique) predecessor. Since a is non-standard it is distinct from
zero, hence it has a predecessor, say a1. Since successors of standard numbers
are standard, a1 is non-standard. We can repeat this procedure indefinitely
and obtain an infinite descending sequence a > a1 > a2 > a3 > . . . of non-
standard numbers. Conclusion: M is not well-ordered.
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However, non-empty definable subsets of M do possess a least element.
For, such a set is of the form {b|M |= ϕ(b)}, where ϕ ∈ L(N), and we know
N |= ∃xϕ(x) → ∃x(ϕ(x) ∧ ∀y(ϕ(y) → x ≤ y)). This sentence also holds in M
and it tells us that {b|M |= ϕ(b)} has a least element if it is not empty.

The above construction not merely gave a non-standard Peano structure
(cf. 3.2.5), but also a non-standard model of true arithmetic, i.e. it is a model
of all sentences true in the standard model. Moreover, it is an elementary
extension.

The non-standard models of PA that are elementary extensions of N are
the ones that can be handled most easily, since the facts from the standard
model carry over. There are also quite a number of properties that have been
established for non-standard models in general. We treat two of them here:

Theorem 3.3.10 The set of standard numbers in a non-standard model is
not definable.

Proof. Suppose there is a ϕ(x) in the language of PA, such that: M |=
ϕ(a) ⇔ “a is a standard natural number”, then ¬ϕ(x) defines the non-
standard numbers. Since PA proves the least number principle, we have
M |= ∃x(¬ϕ(x) ∧ ∀y < xϕ(y)), or there is a least non-standard number.
However, as we have seen above, this is not the case. So there is no such def-
inition. �

A simple consequence is the

Lemma 3.3.11 (Overspill Lemma) If ϕ(n) holds in a non-standard model
for infinitely many finite numbers n, then ϕ(a) holds for at least one infinite
number a.

Proof. Suppose that for no infinite a ϕ(a) holds , then ∃y(x < y ∧ ϕ(y)) de-
fines the set of standard natural numbers in the model. This contradicts the
preceding result. �

Our technique of constructing models yields various non-standard models
of Peano’s arithmetic. We have at this stage no means to decide if all models of
PA are elementarily equivalent or not. The answer to this question is provided
by Gödel’s incompleteness theore, which states that there is a sentence γ such
that PA �� γ and PA �� ¬γ. The incompleteness of PA has been re-established
by quite different means by Paris-Kirby-Harrington, Kripke, and others. As
a result we have now examples for γ, which belong to ‘normal mathematics’,
whereas Gödel’s γ, although purely arithmetical, can be considered as slightly
artificial, cf. Barwise, Handbook of Mathematical Logic, D8. PA has a de-
cidable (recursive) model, namely the standard model. That, however, is the
only one. By the theorem of Tennenbaum all non-standard models of PA are
undecidable (not recursive).



3.3 Some Model Theory 123

Application II. Non-standard Real Numbers.

Similarly to the above application, we can introduce non-standard models
for the real number system. We use the language of the ordered field R of real
numbers, and for convenience we use the function symbol, | |, for the absolute
value function. By the Skolem-Löwenheim Theorem there is a model ∗R of
Th(R̂) such that ∗R has greater cardinality than R. Applying 3.3.9, we see
that R ≺ ∗R, so ∗R is an ordered field, containing the standard real numbers.
For cardinality reasons there is an element a ∈ |∗R| − |R|. For the element a
there are two possibilities:

(i) |a| > |r| for all r ∈ |R|,
(ii) there is an r ∈ |R| such that |a| < r.

In the second case {u ∈ |R| | u < |a|} is a bounded, non-empty set,
which therefore has a supremum s (in R). Since |a| is non-standard number,
there is no standard number between s and |a|. By ordinary algebra, there
is no standard number between 0 and | |a| − s |. Hence ||a| − s|−1 is larger
than all standard numbers. So in case (ii) there is also a non-standard number
greater than all standard numbers. Elements satisfying the condition (i) above,
are called infinite and elements satisfying (ii) are called finite (note that the
standard numbers are finite).

We now list a number of facts, leaving the (fairly simple) proofs to the
reader.

1. ∗R has a non-archimedean order.
2. There are numbers a such that for all positive standard r, 0 < |a| < r. We

call such numbers, including 0, infinitesimals.
3. a is infinitesimal ⇔ a−1 is infinite, where a �= 0.
4. For each non-standard finite number a there is a unique standard number
st(a) such that a− st(a) is infinitesimal.

Infinitesimals can be used for elementary calculus in the Leibnizian
tradition. We will give a few examples. Consider an expansion R′ of R
with a predicate for N and a function v. Let ∗R′ be the corresponding
non-standard model such that R′ ≺ ∗R′. We are actually considering two
extensions at the same time. N is contained in R′, i.e. singled out by a
special predicate N . Hence N is extended, along with R′ to ∗N . As is to be
expected ∗N is an elementary extension of N (cf. Exercise 14). Therefore
we may safely operate in the traditional manner with real numbers and
natural numbers. In particular we have in ∗R′ also infinite natural numbers
available. We want v to be a sequence, i.e. we are only interested in the
values of v for natural number arguments. The concepts of convergence,
limit, etc. can be taken from analysis.
We will use the notation of the calculus. The reader may try to give the
correct formulation.

Here is one example: ∃m∀n > m(|vn − vm| < ε) stands for ∃x(N(x) ∧
∀y(N(y) ∧ y > x → |v(y) − v(x)| < ε). Properly speaking we should



124 3 Completeness and Applications

relativise quantifiers over natural numbers (cf. 2.5.12), but it is more con-
venient to use variables of several sorts.

5. The sequence v (or (vn)) converges in R′ iff for all infinite natural numbers
n,m |vn − vm| is infinitesimal.
Proof. (vn) converges in R′ if R′ |= ∀ε > 0∃n∀m > n(|vn − vm| < ε).
Assume that (vn) converges. Choose for ε > 0 an n(ε) ∈ |R′| such that
R′ |= ∀m > n(|vn − vm| < ε). Then also ∗R′ |= ∀m > n(|vn − vm| < ε).
In particular, if m,m′ are infinite, then m,m′ > n(ε) for all ε. Hence
|vm − vm, | < 2ε for all ε. This means that |vm − vm| is infinitesi-
mal. Conversely, if |vn − vm| is infinitesimal for all infinite n,m, then
∗R |= ∀m > n(|vn − vm| < ε) where n is infinite and ε standard, pos-
itive. So ∗R′ |= ∃n∀m > n(|vn − vm| < ε), for each standard ε > 0.
Now, since R′ ≺ ∗R′, R′ |= ∃n∀m > n(|vn − vm| < ε) for ε > 0, so
R′ |= ∀ε > 0∃n∀m > n(|vn − vm| < ε). Hence (vn) converges. �

6. lim
n→∞ vn = a⇔ |a− vn| is infinitesimal for infinite n.

Proof. Similar to 5. �
We have only been able to touch the surface “non-standard analysis”. For

an extensive treatment, see e.g. Robinson, Stroyan-Luxemburg.
We can now strengthen the Skolem-Löwenheim Theorems.

Theorem 3.3.12 (Downward Skolem-Löwenheim) Let the language L
of A have cardinality κ, and suppose A has cardinality λ ≥ κ. Then there is a
structure B of cardinality κ such that B ≺ A.

Proof. See corollary 3.4.11. �

Theorem 3.3.13 (Upward Skolem-Löwenheim) Let the language L of A
have cardinality κ and suppose A has cardinality λ ≥ κ. Then for each µ > λ
there is a structure B of cardinality µ, such that A ≺ B.

Proof. Apply the old upward Skolem-Löwenheim Theorem to Th(Â). �
In the completeness proof we used maximally consistent theories. In model

theory these are called complete theories. As a rule the notion is defined with
respect to axiom sets.

Definition 3.3.14 A theory with axioms Γ in the language L, is called com-
plete if for each sentence σ in L, either Γ � σ, or Γ � ¬σ.

A complete theory leaves, so to speak, no questions open, but it does not
prima facie restrict the class of models. In the old days mathematicians tried
to find for such basic theories as arithmetic axioms that would determine up
to isomorphism one model , i.e. to give a set Γ of axioms such that
A,B ∈Mod(Γ )⇒ A ∼= B. The Skolem-Löwenheim Theorems have taught us
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that this is (barring the finite case) unattainable. There is, however, a signif-
icant notion:

Definition 3.3.15 Let κ be a cardinal. A theory is κ-categorical if it has at
least one model of cardinality κ and if any two of its models of cardinality κ
are isomorphic.

Categoricity in some cardinality is not as unusual as one might think. We
list some examples.

1. The theory of infinite sets (identity structures) is κ-categorical for all
infinite κ.

Proof. Immediate, as here “isomorphic” means “of the same cardinality”. �

2. The theory of densely ordered sets without end-points is ℵ0-categorical.

Proof. See any textbook on set-theory. The theorem was proved by Cantor
using the so-called back-and-forth method. �

3. The theory of divisible torsion-free abelian groups is κ-categorical for
κ > ℵ0.

Proof. Check that a divisible torsion-free abelian group is a vector space over
the rationals. Use the fact that vector spaces of the same dimension (over the
same field) are isomorphic. �

4. The theory of algebraically closed fields (of a fixed characteristic) is
κ-categorical for κ > ℵ0.

Proof. Use Steinitz’ Theorem: two algebraically closed fields of the same char-
acteristic and of the same uncountable transcedence degree are isomorphic.
�

The connection between categoricity and completeness, for countable lan-
guages, is given by

Theorem 3.3.16 (Vaught’s Theorem) If T has no finite models and is κ -
categorical for some κ not less than the cardinality of L, then T is complete.

Proof. Suppose T is not complete. Then there is a σ such that T �� σ and
T �� ¬σ. By the Model Existence Lemma, there are A and B in Mod(T )
such that A |= σ and B |= ¬σ. Since A and B are infinite we can apply the
Skolem-Löwenheim Theorem (upwards or downwards), so as to obtain A′ and
B′, of cardinality κ, such that A ≡ A′, and B ≡ B′. But then A′ ∼= B′, and
hence A′ ≡ B′, so A ≡ B.
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This contradicts A |= σ and B |= ¬σ. �
As a consequence we see that the following theories are complete:

1. the theory of infinite sets;
2. the theory of densely ordered sets without end-points;
3. the theory of divisible torsion-free abelian groups;
4. the theory of algebraically closed fields of fixed characteristic.

A corollary of the last fact was known as Lefschetz’ principle: if a sentence
σ, in the first-order language of fields, holds for the complex numbers, it holds
for all algebraically closed fields of characteristic zero.

This means that an “algebraic ” theorem σ concerning algebraically closed
fields of characteristic 0 can be obtained by devising a proof by whatso-
ever means (analytical, topological, . . . ) for the special case of the complex
numbers.

Decidability.

We have seen in chapter I that there is an effective method to test whether a
proposition is provable - by means of the truth table technique, since “truth
= provability”.

It would be wonderful to have such a method for predicate logic. Church
has shown, however, that there is no such method (if we identify “effective”
with “recursive”) for general predicate logic. But there might be, and indeed
there are, special theories which are decidable. A technical study of decidabil-
ity belongs to recursion theory. Here we will present a few informal consider-
ations.

If T , with language L, has a decidable set of axioms Γ , then there is an
effective method for enumerating all theorems of T .

One can obtain such a enumeration as follows:

(a) Make an effective list σ1, σ2, σ3, . . . of all axioms of T (this is possible
because Γ is decidable), and a list ϕ1, ϕ2, . . . of all formulas of L.

(b)
(1) write down all derivations of size 1, using using σ1, ϕ1, with at most

σ1 uncancelled,
(2) write down all derivations of size 2, using σ1, σ2, ϕ1ϕ2, with at most

σ1, σ2 uncancelled,
...

(n) write down all derivations of size n, using σ1, . . . , σn, ϕ, . . . , ϕn, with
at most σ1, . . . , σn uncancelled,

...

Each time we get only finitely many theorems and each theorem is eventually
derived. The process is clearly effective (although not efficient).

We now observe
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Lemma 3.3.17 If Γ and Γ c (complement of Γ ) are effectively enumerable,
then Γ is decidable.

Proof. Generate the lists of Γ and Γ c simultaneously. In finitely many steps
we will either find σ in the list for Γ or in the list for Γ c. So for each σ we
can decide in finitely many steps whether σ ∈ Γ or not. �

As a corollary we get the

Theorem 3.3.18 If T is effectively axiomatizable and complete, then T is
decidable.

Proof. Since T is complete, we have Γ � σ or Γ � ¬σ for each σ (where Γ
axiomatizes T ). So σ ∈ T c ⇔ Γ �� σ ⇔ Γ � ¬σ.
From the above sketch it follows that T and T c are effectively enumerable.
By the lemma T is decidable. �

Application. The following theories are decidable:

1. the theory of infinite sets;
2. the theory of densely ordered sets without end-points;
3. the theory of divisible, torsion-free abelian groups;
4. the theory of algebraically closed fields of fixed characteristic.

Proof. See the consequences of Vaught’s Theorem (3.3.16). The effective enu-
merating is left to the reader (the simplest case is, of course, that of a finitely
axiomatizable theory, e.g. (1), (2). �

We will finally present one more application of the non-standard approach,
by giving a non-standard proof of

Lemma 3.3.19 (König’s Lemma) An infinite, finitary tree has an infinite
path.

A finitary tree, or fan, has the property that each node has only finitely
many immediate successors (’zero successors’ is included). By contraposition
one obtains from König’s Lemma the so-called Fan Theorem (which was ac-
tually discovered first):

Theorem 3.3.20 If in a fan all paths are finite then the length of the paths
is bounded.

Note that if one considers the tree as a topological space, with its canonical
topology (basic open set “are” nodes), then König’s Lemma is the Bolzano-
Weierstrasz Theorem and the Fan Theorem states the compactness.

We will now provide a non-standard proof of König’s Lemma.
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Let T be a fan, and let T ∗ be a proper elementary extension (use 3.3.13).

(1) the relation “.... is an immediate successor of ....” can be expressed in
the language of partial order:
x <i y := x < y ∧ ∀z(x ≤ z ≤ y → x = z ∨ y = z) where, as usual,
x < y stands for x ≤ y ∧ x �= y.

(2) If a is standard, then its immediate successors in T ∗ are also standard.
Since T is finitary, we can indicate a1, . . . , an such that
T |= ∀x(x <i a↔

∨∨

1≤k≤n
ak = x). By T ≺ T ∗, we also have

T ∗ |= ∀x(x <i a ↔
∨∨

1≤k≤n
ak = x), so if b is an immediate successor of a

in T ∗, then b = ak for some k ≤ n, i.e. b is standard.
Note that a node without successors in T has no successors in T ∗ either,
for T |= ∀x(x ≤ a↔ x = a)⇔ T ∗ |= ∀x(x ≤ a↔ x = a).

(3) In T we have that a successor of a node is an immediate successor of that
node or a successor of an immediate successor, i.e.

T |= ∀xy(x < y → ∃z(x ≤ z <i y)). (∗)

This is the case since for nodes a and b with a < b, b must occur in the
finite chain of all predecessors of a. So let a = an < an−1 < . . . < ai =
b < ai−1 < . . ., then a ≤ ai+1 <i b.
Since the desired property is expressed by a first-order sentence (∗), (3)
also holds for T ∗.

(4)
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Let a∗ be a non-standard element of T ∗. We claim that
P = {a ∈ |T ||a∗ < a} is an infinite path (i.e. a chain).
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(i) P is linearly ordered since T |= ∀xyz(x ≤ y ∧ x ≤ z → y ≤ z ∨ z ≤ y)
and hence for any p, q ∈ P ⊆ |T ∗| we have p ≤ q or q ≤ p.
(ii) Suppose P is finite with last element b, then b has a successor and
hence an immediate successor in T ∗, which is a predecessor of a∗.

By (2) this immediate successor belongs to P . Contradiction. Hence P is
infinite.

This establishes that T has an infinite path. �

Quantifier Elimination .
Some theories have the pleasant property that they allow the reduction of for-
mulas to a particularly simple form: one in which no quantifiers occur. Without
going into a general theory of quantifier elimination, we will demonstrate the
procedure in a simple case: the theory DO of dense order without end points,
cf. 2.7.3(ii); ‘without end points’ is formulated as “∀x∃yz(y < x ∧ x < z)”.

Let FV (ϕ) = {y1, . . . , yn}, where all variables actually occur in ϕ. By
standard methods we obtain a prenex normal form ϕ′ of ϕ, such that
ϕ′ := Q1x1Q2x2 . . .Qmxmψ(x1, . . . , xm, y1, . . . , yn), where each Qi is one of
the quantifiers ∀, ∃. We will eliminate the quantifiers starting with the inner-
most one.

Consider the case Qm = ∃. We bring ψ into disjunctive normal form
∨∨

ψj , where each ψj is a conjunction of atoms and negations of atoms. First
we observe that the negations of atoms can be eliminated in favor of atoms,
since DO � ¬z = z′ ↔ (z < z′ ∨ z′ < z) and DO � ¬z < z′ ↔
(z = z′ ∨ z′ < z). So we may assume that the ψj ’s contain only atoms.

By plain predicate logic we can replace ∃xm
∨∨

ψj by the equivalent for-
mula

∨∨ ∃xmψj .
Notation: for the rest of this example we will use ψ ∗↔ τ as an abbreviation
for DO � σ ↔ τ .

We have just seen that it suffices to consider only formulas of the form
∃xm

∧∧
σp, where each σp is atomic. A systematic look at the conjuncts will

show us what to do.

(1) If xm does not occur in
∧∧

σp, we can delete the quantifier (cf. 2.5.2).
(2) Otherwise, collect all atoms containing xm and regroup the atoms, such

that we get
∧∧

σp
∗↔ ∧∧

i xm < ui∧
∧∧

j vj < xm∧
∧∧

k wk = xm∧χ, where
χ does not contain xm. Abbreviate this formula as τ∧χ. By predicate logic
we have ∃xm(τ ∧ χ) ∗↔ ∃xmτ ∧ χ (cf. 2.5.3). Since we want to eliminate
∃xm, it suffices to consider ∃xmτ only.
Now the matter has been reduced to bookkeeping. Bearing in mind that
we are dealing with a linear order, we will exploit the information given
by τ concerning the relative position of the ui, vj , wk’s with respect to xm.

(2a) τ :=
∧∧

xm < ui ∧
∧∧

vj < xm ∧
∧∧

wk = xm.
Then ∃xmτ ∗↔ τ ′, with τ ′ :=

∧∧
w0 < ui ∧

∧∧
vj < w0 ∧

∧∧
w0 = wk
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(where w0 is the first variable among the wk’s). The equivalence follows
immediately by a model theoretic argument (i.e. DO |= ∃xmτ ↔ τ ′).

(2b) τ :=
∧∧

xm < ui ∧
∧∧

vj < xm.
Now the properties of DO are essential. Observe that ∃xm(

∧∧
xm < ai ∧∧∧

bj < xm) holds in a densely ordered set if and only if all the ai’s lie to
the right of the bj’s. So we get (by completeness) ∃xmτ ∗↔

∧∧

i,j
vj < ui.

(2c) τ :=
∧∧

xm < ui ∧
∧∧

wk = xm.
Then ∃xmτ ∗↔ ∧∧

w0 < ui ∧
∧∧

wk = w0.
(2d) τ :=

∧∧
vj < xm ∧

∧∧
wk = xm.

Cf. (2c).
(2e) τ :=

∧∧
xm < ui.

Observe that ∃xmτ holds in all ordered sets without a left endpoint. So
we have ∃xmτ ∗↔ 
, since we work in DO.

(2f) τ :=
∧∧

vj < xm.
Cf. (2e).

(2g) τ :=
∧∧

wk = xm.
Then ∃cmτ ∗↔ ∧∧

w0 = wk.

Remarks.

(i) The cases (2b), (2e) and (2f) make essential use of DO.
(ii) It is often possible to introduce shortcuts, e.g. when a variable (other

than xm) occurs in two of the big conjuncts we have ∃xmτ ∗↔⊥.

If the innermost quantifier is universal, we reduce it to an existential one
by ∀xmϕ↔ ¬∃xm¬ϕ.
Now it is clear how to eliminate the quantifiers one by one .
Example.
∃xy(x < y ∧ ∃z(x < z ∧ z < y ∧ ∀u(u �= z → u < y ∨ u = x)))

∗↔ ∃xyz∀u[x < y ∧ x < z ∧ z < y ∧ (u = z ∨ u < y ∨ u = x)]
∗↔ ∃xyz¬∃u[¬x < y ∨ ¬x < z ∨ ¬z < y ∨ (¬u = z ∧ ¬u < y ∧ ¬u = x)]
∗↔ ∃xyz¬∃u[x = y ∨ y < x ∨ x = z ∨ z < x ∨ z = y ∨ y < z∨

((u < z ∨ z < u) ∧ (u = y ∨ y < u) ∧ (u < x ∨ x < u))]
∗↔ ∃xyz¬∃u[x = y ∨ y < x ∨ x = z ∨ z < x ∨ z = y ∨ y < z∨

(u < z ∧ u = y ∧ u < x) ∨ (u < z ∧ u = y ∧ x < u)∨
(u < z ∧ y < u ∧ u < x) ∨ (u < z ∧ y < u ∧ x < u)∨
(z < u ∧ u = y ∧ u < x) ∨ (z < u ∧ u = y ∧ x < u)∨
(z < u ∧ y < u ∧ u < x) ∨ (z < u ∧ y < u ∧ x < u)].

∗↔ ∃xyz¬[x = y ∨ y < x ∨ x = z ∨ z < x ∨ z = y ∨ y < z∨
∃u(u < z ∧ u = y ∧ u < x) ∨ ∃u(u < z ∧ u = y ∧ x < u) ∨ . . .∨
∃u(z < u ∧ y < u ∧ x < u)].
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∗↔ ∃xyz¬[x = y ∨ . . . ∨ y < z ∨ (y < z ∧ y < x) ∨ (y < z ∧ x < y)
∨(y < z ∧ y < x) ∨ (y < z ∧ x < z) ∨ (z < y ∧ y < x)
∨(z < y ∧ x < y) ∨ (z < x ∧ y < x) ∨ 
].

∗↔ ∃xyz(¬
).
∗↔ ⊥ .

Evidently the above quantifier elimination for the theory of dense order
without endpoints provides an alternative proof of its decidability. For, if ϕ is
a sentence, then ϕ is equivalent to an open sentence ϕ′. Given the language
of DO it is obvious that ϕ′ is equivalent to either 
 or ⊥. Hence, we have
an algorithm for deciding DO � ϕ. Note that we have obtained more: DO is
complete, since DO � ϕ↔⊥ or DO � ϕ↔ 
, so DO � ¬ϕ or DO � ϕ.

In general we cannot expect that much from quantifier elimination: e.g.
the theory of algebraically closed fields admits quantifier elimination, but it
is not complete (because the characteristic has not been fixed in advance);
the open sentences may contain unprovable and unrefutable atoms such as
7 = 12, 23 = 0.

We may conclude from the existence of a quantifier elimination a certain
model theoretic property, introduced by Abraham Robinson, which has turned
out to be important for applications in algebra (cf. the Handbook of Mathe-
matical Logic, A4).

Definition 3.3.21 A theory T is model complete if for A,B ∈Mod(T )
A ⊆ B ⇒ A ≺ B.

We can now immediately obtain the following:

Theorem 3.3.22 If T admits quantifier elimination, then T is model com-
plete.

Proof. Let A and B be models of T , such that A ⊆ B. We must show
that A |= ϕ(a1, . . . , an) ⇔ B |= ϕ(a1, . . . , an) for all a1, . . . , an ∈ |A|, where
FV (ϕ) = {x1, . . . , xn}.

Since T admits quantifier elimination, there is a quantifier free
ψ(x1, . . . , xn) such that Γ � ϕ↔ ψ.

Hence it suffices to show A � ψ(a1, . . . , an) ⇔ B � ψ(a1, . . . , an) for a
quantifier free ψ. A simple induction establishes this equivalence. �

Some theories T have a particular model that is, up to isomorphism, con-
tained in every model of T . We call such a model a prime model of T .

Examples.

(i) The rationals form a prime model for the theory of dense ordering without
endpoints;
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(ii) The field of the rationals is the prime model of the theory of fields of
characteristic zero;

(iii) The standard model of arithmetic is the prime model of Peano’s arith-
metic.

Theorem 3.3.23 A model complete theory with a prime model is complete.

Proof. Left to the reader. �

Exercises

1. Let A = 〈A,≤〉 be a poset. Show that Diag+(A) ∪ {a �= b | a �= b, a, b ∈
|A|} ∪ {∀xy(x ≤ y ∨ y ≤ x)} has a model. (Hint: use compactness).
Conclude that every poset can be linearly ordered by an extension of its
ordering.

2. If f : A ∼= B and FV (ϕ) = {x1, . . . , xn}, show
A � ϕ[a1, . . . , an/x1, . . . , xn]⇔ B � ϕ[f(a1), . . . , f(an)/x1, . . . , xn].
In particular, A ≡ B.

3. Let A ⊆ B. ϕ is called universal (existential) if ϕ is prenex with only
universal (existential) quantifiers.
(i) Show that for universal sentences ϕ B |= ϕ⇒ A |= ϕ.
(ii) Show that for existential sentences ϕ A |= ϕ⇒ B |= ϕ.
(Application: a substructure of a group is a group. This is one reason
to use the similarity type 〈−; 2, 1; 1〉 for groups, instead of 〈−; 2; 0〉, or
〈−; 2; 1〉, as some authors do).

4. Let A = 〈N,<〉,B = 〈N − {0}, <〉.
Show: (i) A ∼= B; (ii) A ≡ B;

(iii) B ⊆ A; (iv) not B ≺ A.

5. (Tarski). Let A ⊆ B. Show A ≺ B ⇔ for all ϕ ∈ L and a1, . . . , an ∈
|A|,B � ∃yϕ(y, a1, . . . , an) ⇒ there is an element a ∈ |A| such that
B � ϕ(a, a1, . . . , an), where FV (ϕ(y, a1, . . . , an) = {y}. Hint: for⇐ show
(i) tA(a1, . . . , an) = tB(a1, . . . , an) for t ∈ L,
(ii) A � ϕ(a1, . . . , an) ⇔ B � ϕ(a1, . . . , an) for ϕ ∈ L by induction on ϕ

(use only ∨,¬, ∃).

6. Another construction of a non-standard model of arithmetic: Add to the
language L of arithmetic a new constant c. Show Γ = Th(N̂) ∪ {c >
n|n ∈ |N|} has a model M. Show that M �∼= N. Can M be countable?
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7. Consider the ring Z of integers. Show that there is an A such that Z ≺ A
and Z �∼= A (a non-standard model of the integers). Show that A has an
“infinite prime number”, p∞.
Let (p∞) be the principal ideal in A generated by p∞ . Show that A/(p∞)
is a field F . (Hint: look at ∀x(“x not in (p∞)” → ∃yz(xy = 1 + zp∞)),
give a proper formulation and use elementary equivalence). What is the
characteristic of F? (This yields a non-standard construction of the ra-
tionals from the integers: consider the prime field).

8. Use the non-standard model of arithmetic to show that “well-ordering”
is not a first-order concept.

9. Use from the non-standard model of the reals to show that “archimedean
ordered field” is not a first-order concept.

10. Consider the language of identity with constants ci(i ∈ N)
Γ = {I1, I2, I3} ∪ {ci �= cj |i, j ∈ N, i �= j}. Show that the theory of Γ is
k-categorical for k > ℵ0, but not ℵ0-categorical.

11. Show that the condition “no finite models” in Vaughts’s Theorem is
necessary (look at the theory of identity).

12. Let X ⊆ |A|. Define X0 = X ∪ C where C is the set of constants
of A, Xn+1 = Xn ∪ {f(a1, . . . , am)|f in A, a1, . . . , am ∈ Xn}, Xω =⋃{Xn|n ∈ N}.
Show: B = 〈Xω, R1∩Xr1

ω , . . . , R2∩Xr1
ω , f1|Xa1

ω , . . . , fm|Xam
ω , {c1|i ∈ I}〉

is a substructure of A. We say that B is the substructure generated byX .
Show that B is the smallest substructure of A containing X ; B can also
be characterized as the intersection of all substructures containing X .

13. Let ∗R be a non-standard model of Th(R). Show that st (cf. page 123)
is a homomorphism from the ring of finite numbers onto R. What is the
kernel?

14. Consider R′ = 〈R,N,<,+, .,−,−1 , 0, 1〉, where N is the set of natural
numbers. L(R′) has a predicate symbol N and, we can, restricting our-
selves to + and ·, recover arithmetic by relativizing our formulas to N
(cf. 2.5.9).
Let R′ ≺∗ R′ = 〈∗R,∗N, . . .〉. Show that N = 〈N,<,+, ., 0, 1〉 ≺
〈∗N,<,+, ., 0, 1〉 =∗ N (Hint: consider for each ϕ ∈ L(N) the relativized
ϕN ∈ L(R′)).
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15. Show that any Peano-structure contains N as a substructure.

16. Let L be a language without identity and with at least one constant.
Let σ = ∃x1 . . . xnϕ(x1, . . . , xn) and Σσ = {ϕ(t1, . . . , tn)|ti closed in L},
where ϕ is quantifier free.
(i) |= σ ⇔ each A is a model of at least one sentence in Σσ. (hint: for

each A, look at the substructure generated by ∅).
(ii) Consider Σσ as a set of propositions. Show that for each valuation
v (in the sense of propositional logic) there is a model A such that
[[ϕ(t1, . . . , tn)]]v = [[ϕ(t1, . . . , tn)]]A, for all ϕ(t1, . . . tn) ∈ Σσ.

(iii) Show that � σ ⇔� ∨∨m
i=1 ϕ(ti1, . . . , t

i
n) for a certain m (hint: use

Exercise 9, section 1.5).

17. Let A,B ∈ Mod(T ) and A ≡ B. Show that Diag(A) ∪ Diag(B) ∪ T
is consistent (use the Compactness Theorem). Conclude that there is a
model of T in which both A and B can be isomorphically embedded.

18. Consider the class K of all structures of type 〈1;−; 0〉 with a denumerable
unary relation. Show that any A and B in K of the same cardinality
κ > ℵ0 are isomorphic. Show that T = Th(K) is not κ−categorical for
any κ ≥ ℵ0.

19. Consider a theory T of identity with axioms λn for all n ∈ N . In which
cardinalities is T categorical? Show that T is complete and decidable.
Compare the result with Exercise 10.

20. Show that the theory of dense order without end-points is not categorical
in the cardinality of the continuum.

21. Consider the structure A = 〈R, <, f〉, where < is the natural order, and
where f is a unary function. Let L be the corresponding language. Show
that there is no sentence σ in L such that A |= σ ⇔ f(r) > 0 for all
r ∈ R. (hint: consider isomorphisms x "→ x+ k).

22. Let A = 〈A,∼〉, where ∼ is an equivalence relation with denumerably
many equivalence classes, all of which are infinite. Show that Th(A) is
ℵ0-categorical. Axiomatize Th(A). Is there a finite axiomatization? Is
Th(A) κ-categorical for κ > ℵ0?

23. Let L be a language with one unary function symbol f . Find a sentence
τn, which says that “f has a loop of length n”, i.e. A |= τn ⇔ there
are a1, . . . , an ∈ |A| such that fA(ai) = ai+1(i < n) and fA(an) = a1.
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Consider a theory T with axiom set {β,¬τ1,¬τ2,¬τ3, . . . ,
¬τn, . . .}(n ∈ ω), where β expresses “f is bijective”.
Show that T is κ-categorical for κ > ℵ0. (hint: consider the partition
{(fA)i(a)|i ∈ ω} in a model A). Is T ℵ0-categorical?
Show that T is complete and decidable. Is T finitely axiomatizable?

24. Put T∀ = {σ|T � σ and σ is universal}. Show that T∀ axiomatizes the
theory of all substructures of models of T . Note that one part follows
from Exercise 3. For the converse: let A be a model of T∀ and consider
Diag(A) ∪ T . Use compactness.

25. We say that a theory is preserved under substructures if A ⊆ B and
B ∈Mod(T ) implies A ∈Mod(T ).
( Los-Tarski). Show that T is preserved under substructures iff T can be
axiomatized by universal sentences (use Exercise 24).

26. Let A ≡ B, show that there exists a C such that A ≺ C,B ≺ C (up
to isomorphism). Hint: assume that the set of new constants of B̂ is
disjoint with the set of new constants of Â. Show that Th(Â) ∪ Th(B̂)
has a model.

27. Show that the ordening<, defined by x < y := ∃u(y = x+Su) is provably
transitive in Peano’s Arithmetic, i.e. PA � ∀xyz(x < y∧y < z → x < z).

28. Show: (i) PA � ∀x(0 ≤ x) (use induction on x),
(ii) PA � ∀x(x = 0 ∨ ∃y(x = Sy)) (use induction on x),
(iii) PA � ∀xy(x+ y = y + x),
(iv) PA � ∀y(x < y → Sx ≤ y), (use induction on y),
(v) PA � ∀xy(x < y ∨ x = y ∨ y < x) (use induction on x,

the case of x = 0 is simple, for the step from x to Sx
use (iv)),

(iv) PA � ∀y¬∃x(y < x ∧ x < Sy) (compare with (iv)).

29. (i) Show that the theory L∞ of identity with “infinite universe” (cf.
section 3.1, Exercise 3 or Exercise 19 above) admits quantifier elim-
ination.

(ii) Show that L∞ has a prime model.

3.4 Skolem Functions or How to Enrich Your Language

In mathematical arguments one often finds passages such as “.....there is an x
such that ϕ(x) holds. Let a be such an element, then we see that ...”. In terms
of our logic, this amounts to the introduction of a constant whenever the ex-
istence of some element satisfying a certain condition has been established.
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The problem is: does one thus strengthen the theory in an essential way? In
a precise formulation: suppose T � ∃xϕ(x). Introduce a (new) constant a and
replace T by T ′ = T ∪ {ϕ(a)}. Question: is T ′ conservative over T , i.e. does
T ′ � ψ ⇒ T � ψ hold, for ψ not containing a? We have dealt with a similar
problem in the context of Henkin theories, (section 3.1), so we can use the
experience obtained there.

Theorem 3.4.1 Let T be a theory with language L, such that T � ∃xϕ(x),
where (FV (ϕ) = {x}, and let c be a constant not occurring in L. Then
T ∪ {ϕ(c)} is conservative over T .

Proof. By Lemma 3.1.7, T ′ = T ∪ {∃xϕ(x) → ϕ(c)} is conservative over T . If
ψ ∈ L and T ′ ∪ {ϕ(c)} � ψ, then T ′ ∪ {∃xϕ(x)} � ψ, or T ′ � ∃xϕ(x) → ψ.
Since T ′ is conservative over T we have T � ∃xϕ(x) → ψ Using T � ∃xϕ(x),
we get T � ψ. (For an alternative proof see Exercise 6). �

The above is but a special case of a very common piece of practice; if one,
in the process of proving a theorem, establishes that “for each x there is a y
such that ϕ(x, y)”, then it is convenient to introduce an auxilliary function
f that picks a y for each x, such that ϕ(x, f(x)) holds for each x. This tech-
nique usually invokes the axiom of choice. We can put the same question in
this case: if T � ∀x∃yϕ(x, y), introduce a function symbol f and replace T
by T ′ = T ∪ ∀xϕ(x, f(x)). Question: is T ′ conservative over T ? The idea of
enriching the language by the introduction of extra function symbols, which
take the role of choice functions, goes back to Skolem.

Definition 3.4.2 Let ϕ be a formula of the language L with FV (ϕ) =
{x1, . . . , xn, y}. Associate with ϕ an n-ary function symbol fϕ, called the
Skolem function (symbol) of ϕ. The sentence

∀x1 . . . xn(∃yϕ(x1, . . . , xn, y)→ ϕ(x1, . . . , xn, fϕ(x1, . . . , xn)))

is called the Skolem axiom for ϕ.

Note that the witness of section 3.1 is a special case of a Skolem function
(take n = 0) : fϕ is a constant.

Definition 3.4.3 If T is a theory with language L, then T sk = T ∪ {σ|σ is
a Skolem axiom for some formula of L} is the Skolem extension of T and its
language Lsk extends L by including all Skolem functions for L. If A is of the
type of L and Ask an expansion of A of the type of Lsk, such that Ask |= σ
for all Skolem axioms σ of L and |A| = |Ask|, then Ask is called a Skolem
expansion of A.

The interpretation in Ask of a Skolem function symbol is called a Skolem
function.
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Note that a Skolem expansion contains infinitely many functions, so it is
a mild extension of our notion of structure. The analogue of 3.1.7 is

Theorem 3.4.4 (i) T sk is conservative over T .
(ii) each A ∈Mod(T ) has a Skolem expansion Ask ∈Mod(T sk).

Proof. We first show (ii). We only consider the case of formulas with FV (ϕ) =
{x1, . . . , xn, y} for n ≥ 1. The case n = 0 is similar, but simpler. It requires
the introduction of new constants in A (cf. Exercise 6). Let A ∈Mod(T ) and
ϕ ∈ L with FV (ϕ) = {x1, . . . , xn, y}. We want to find a Skolem function for
ϕ in A.

Define Va1,...an = {b ∈ |A| | A |= ϕ(a1, . . . , an, b)}.
Apply AC to the set {Va1,...an |Va1,...an �= ∅}: there is a choice function F

such that F (Va1,...an) ∈ Va1,...an Define a Skolem function by

Fϕ(a1, . . . , an) =
{
F (Va1,...an) if Va1,...an �= ∅,
e else, where e ∈ |A|.

Now it is a routine matter to check that indeed
Ask |= ∀x1 . . . xn(∃yϕ(x1, . . . , xn, y) → ϕ(x1, . . . , xn, fϕ(x1, . . . , xn))), where
Fϕ = fAsk

ϕ , and where Ask is the expansion of A with all Skolem functions
Fϕ (including the “Skolem constants”, i.e. witnesses). (i) follows immediately
from (ii): Let T �� ψ (with ψ ∈ L), then there is an A such that A �� ψ. Since
ψ ∈ L, we also have Ask �� ψ (cf. section 3.2, Exercise 3), hence T sk �� ψ. �
Remark. It is not necessary (for 3.4.4) to extend L with all Skolem function
symbols. We may just add Skolem function symbols for some given set S of
formulas of L. We then speak of the Skolem extension of T with respect to S
(or with respect to ϕ if S = {ϕ}).

The following corollary confirms that we can introduce Skolem functions
in the course of a mathematical argument, without essentially strengthening
the theory.

Corollary 3.4.5 If T � ∀x1, . . . xn∃yϕ(x1, . . . , xn, y), where FV (ϕ) =
{x1, . . . , xn, y}, then T ′ = T∪{∀x1 . . . xnϕ(x1, . . . , xn, fϕ(x1, . . . , xn))} is con-
servative over T .

Proof. Observe that T ′′ = T ∪ {∀x1 . . . xn(∃yϕ(x1, . . . , xn, y)→
ϕ(x1, . . . , xn), f(ϕ(x1, . . . , xn))} � ∀x1 . . . xnϕ(x1, . . . , xn, fϕ(x1, . . . , xn)).
So T ′ � ψ ⇒ T ′′ � ψ. Now apply 3.4.4. �

The introduction of a Skolem extension of a theory T results in the “elim-
ination” of the existential quantifier in prefixes of the form ∀x, . . . , xn∃y. The
iteration of this process on prenex normal forms eventually results in the elim-
ination of all existential quantifiers.

The Skolem functions in an expanded model are by no means unique. If,
however, A |= ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y), then the Skolem function for ϕ is
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uniquely determined; we even have Ask |= ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y =
fϕ(x1, . . . , xn)). We say that ϕ defines the function Fϕ in Ask, and
∀x1 . . . xny(ϕ(x1, . . . , xn, y) ↔ y = fϕ(x1, . . . , xn)) is called the definition of
Fϕ in Ask.

We may reasonably expect that with respect to Skolem functions the ∀∃!-
combination yields better results than the ∀∃-combination. The following the-
orem tells us that we get substantially more than just a conservative extension
result.

Theorem 3.4.6 Let T � ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y), where FV (ϕ) =
{x1, . . . , xn, y} and let f be an n-ary symbol not occurring in T or ϕ. Then
T+ = T ∪ {∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = f(x1, . . . , xn))} is conservative
over T .
Moreover, there is a translation τ → τ0 from L+ = L ∪ {f} to L, such that

(1) T+ � τ ↔ τ0,
(2) T+ � τ ⇔ T � τ0,
(3) τ = τ0 for τ ∈ L.

Proof. (i) We will show that f acts just like a Skolem function; in fact T+ is
equivalent to the theory T ′ of Corollary 3.4.5 (taking f for fϕ).

(a) T+ � ∀x1 . . . xnϕ(x1, . . . , xn, f(x1, . . . , xn)).
For, T+ � ∀x1 . . . xn∃yϕ(x1, . . . , xn, y) and
T+ � ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = f(x1, . . . , xn)).
Now a simple exercise in natural deduction, involving RI4, yields (a).
Therefore T ′ ⊆ T+ (in the notation of 3.4.5).

(b) y = f(x1, . . . , xn), ∀x1 . . . xnϕ(x1 . . . xn, f(x1, . . . , xn)) �
ϕ(x1, . . . , xn, y), so T ′ � y = f(x1, . . . , xn) → ϕ(x1, . . . , xn, y)
and ϕ(x1, . . . , xn, y), ∀x1 . . . xnϕ(x1, . . . , xn, f(x1, . . . , xn),
∀x1 . . . xn∃ !yϕ(x1, . . . , xn, y) � y = f(x1, . . . , xn),
so T ′ � ϕ(x1, . . . , xn, y)→ y = f(x1, . . . , xn).
Hence T ′ � ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = f(x1, . . . , xn)).
So T+ ⊆ T ′, and hence T ′ = T+.
Now, by 3.4.5, T+ is conservative over T .

(ii) The idea, underlying the translation, is to replace occurrences of f(−) by
a new variable and to eliminate f . Let τ ∈ L∗ and let f(−) be a term in L∗

not containing f in any of its subterms. Then � τ(. . . , f(−), . . .) ↔ ∃y(y =
f(−)∧τ(. . . , y, . . .)), where y does not occur in τ , and T+ � τ(. . . , f(−), . . .)↔
∃y(ϕ(−, y) ∧ τ(. . . , y, . . .)). The right-hand side contains one occurrence of f
less than τ . Iteration of the procedure leads to the required f -free formula τ0.
The reader can provide the details of a precise inductive definition of τ0; note
that one need only consider atomic τ (the translation extends trivially to all
formulas). Hint: define something like “f -depth” of terms and atoms. From
the above description of τ0 it immediately follows that T+ � τ ↔ τ0. Now
(2) follows from (i) and (1). Finally (3) is evident. �
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As a special case we get the explicit definition of a function.

Corollary 3.4.7 Let FV (t) = {x1, . . . , xn} and f �∈ L. Then T+ = T ∪
{∀x1 . . . xn(t = f(x1, . . . , xn)} is conservative over T .

Proof. We have ∀x1 . . . xn∃!y(y = t), so the definition of f , as in 3.4.6, becomes
∀x1 . . . xny(y = t ↔ y = f(x1, . . . , xn)), which, by the predicate and identity
rules, is equivalent to ∀x1 . . . xn(t = f(x1, . . . , xn)). �

We call f(x1, . . . xn) = t the explicit definition of f . One can also add new
predicate symbols to a language in order to replace formulas by atoms.

Theorem 3.4.8 Let FV (ϕ) = {x1, . . . , xn} and let Q be a predicate symbol
not in L. Then

(i) T+ = T ∪ {∀x1 . . . xn(ϕ↔ Q(x1, . . . , xn))} is conservative over T .
(ii) there is a translation τ → τ0 into L such that

(1) T+ � τ ↔ τ0,
(2) T+ � τ ⇔ T � τ0,
(3) τ = τ0 for τ ∈ L.

Proof. Similar to, but simpler than, the above. We indicate the steps; the
details are left to the reader.

(a) Let A be of the type of L. Expand A to A+ by adding a relation Q+ =
{〈a1, . . . , an〉|A |= ϕ(a1, . . . , an)}.

(b) Show A |= T ⇔ A+ |= T+ and conclude (i).
(c) Imitate the translation of 3.4.6. �

We call the extensions shown in 3.4.6, 3.4.7 and 3.4.8, extensions by defi-
nition. The sentences
∀x1 . . . xny(ϕ↔ y = f(x1, . . . , xn)),
∀x1 . . . xn(f(x1, . . . , xn) = t),
∀x1 . . . xn(ϕ↔ Q(x1, . . . , xn)),
are called the defining axioms for f and Q respectively.
Extension by Definition belongs to the daily practice of mathematics (and

science in general). If a certain notion, definable in a given language, plays
an important role in our considerations, then it is convenient to have a short,
handy notation for it.

Think of “x is a prime number”, “x is equal to y or less than y”, “z is the
maximum of x and y”, etc.

Examples.

1. Characteristic functions
Consider a theory T with (at least) two constants c0, c1, such that

T � c0 �= c1. Let FV (ϕ) = {x1, . . . , xn}, then T � ∀x1 . . . xn∃!y(ϕ ∧
y = c1)∨(¬ϕ∧y = c0)). (Show this directly or use the Completeness Theorem).
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The defining axiom for the characteristic function Kϕ, is
∀x1 . . . xny[(ϕ ∧ y = c1) ∨ (¬ϕ ∧ y = c2))↔ y = Kϕ(x1, . . . , xn)).

2. Definition by (primitive) Recursion.
In arithmetic one often introduces functions by recursion, e.g. x!, xy. The

study of these and similar functions belongs to recursion theory; here we
only note that we can conservatively add symbols and axioms for them. Fact
(Gödel, Davis, Matijasevich): each recursive function is definable in PA, in
the sense that there is a formula ϕ of PA such that

(i) PA � ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y) and
(ii) for k1, . . . , kn,m ∈ Nf(k1, . . . , kn) = m⇒ PA � ϕ(k1, . . . , kn,m).

For details see [Smoryński 1991], [Davis 1958].
Before ending this chapter, let us briefly return to the topic of Skolem

functions and Skolem expansions. As we remarked before, the introduction of
Skolem functions allows us to dispense with certain existential quantifiers in
formulas. We will exploit this idea to rewrite formulas as universal formulas
(in an extended language !).

First we transform the formula ϕ into prenex normal form ϕ′. Let us
suppose that ϕ′ = ∀x1 . . . xn∃yψ(x1, . . . , xn, y, z1, . . . , zk), where z1, . . . , zk
are all the free variables in ϕ. Now consider

T ∗ = T ∪ {∀x1 . . . xnz1 . . . zk(∃yψ(x1, . . . , xn, y, z1, . . . , zk) →
ψ(x1, . . . , xn, f(x1, . . . , xn, z1, . . . , zk), z1, . . . , zk))}.

By Theorem 3.4.4 T ∗ is conservative over T , and it is a simple exercise in
logic to show that

T ∗ � ∀x1 . . . xn∃yψ(−, y,−)↔ ∀x1 . . . xnψ(−, f(. . .),−).
We now repeat the process and eliminate the next existential quantifier

in the prefix of ψ; in finitely many steps we obtain a formula ϕs in prenex
normal form without existential quantifiers, which, in a suitable conservative
extension of T obtained by a series of Skolem expansions, is equivalent to ϕ.
Warning: the Skolem form ϕs differs in kind from other normal forms, in the
sense that it is not logically equivalent to ϕ.

Theorem 3.4.4 shows that the adding of Skolem Axioms to a theory is
conservative, so we can safely operate with Skolem forms. The Skolem form
ϕs has the property that is satisfiable if and only if ϕ is so (cf. Exercise 4).
Therefore it is sometimes called the Skolem form for satisfiability. There is a
dual Skolem form ϕs (cf. Exercise 5), which is valid if and only if ϕ is so. ϕs
is called the Skolem form for validity.
Example. ∀x1∃1∃y2∀x2∃y3∀x3∀x4∃y4 ϕ(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2).
step 1. Eliminate y1:
∀x1∃y2∀x2∃y3∀x3∀x4∃y4 ϕ(x1, x2, x3, x4, f(x1, z1, z2), y2, y3, y4, z1, z2)

step 2. Eliminate y2:
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∀x1x2∃y3∀x3x4∃y4 ϕ(. . . , f(x1, z1, z2), g(x1, z1, z2), y3, y4, z1, z2).
step 3. Eliminate y3:
∀x1x2x3x4∃y4 ϕ(. . . , f(x1, z1, z2), g(x1, z1, z2), h(x1, x2, z1, z2), y4, z1, z2)

step 4. Eliminate y4:
∀x1x2x3x4 ϕ(. . . , f(x1, z1, z2), g(x1, z1, z2), h(x1, x2, z1, z2),

k(x1, x2, x3, x4, z1, z2), z1, z2).

In Skolem expansions we have functions available which pick elements for
us. We can exploit this phenomenon to obtain elementary extensions.

Theorem 3.4.9 Consider A and B of the same type.
If Bsk is a Skolem expansion of B and A∗ ⊆ Bsk, where A∗ is some expansion
of A, then A ≺ B.

Proof. We use Exercise 5 of section 3.3. Let a1, . . . , an ∈ |A|,
B |= ∃yϕ(y, a1, . . . , an) ⇔ Bsk |= ϕ(fϕ(a1, . . . , an), a1, . . . , an), where fϕ is
the Skolem function for ϕ. Since A∗ ⊆ Bsk, fA∗

ϕ (a1, . . . , an) =
fBsk

ϕ (a1, . . . , an) and so b = (fϕ(a1, . . . , an))Bsk

= (fϕ(a1, . . . , an))A∗ ∈ |A|.
Hence Bsk |= ϕ(b, a1, . . . , an). This shows A ≺ B. �

Definition 3.4.10 Let X ⊆ |A|. The Skolem Hull SX of X is the substruc-
ture of A which is the reduct of the structure generated by X in the Skolem
expansion Ask of A (cf. Exercise 12, section 3.3).

In other words SX is the smallest substructure of A, containing X , which
is closed under all Skolem functions (including the constants).

Corollary 3.4.11 For all X ⊆ |A| SX ≺ A.

We now immediately get the strengthening of the downward Skolem-
Löwenheim Theorem formulated in Theorem 3.3.12, by observing that the
cardinality of a substructure generated by X is the maximum of the cardi-
nalities of X and of the language. This holds too in the present case, where
infinitely many Skolem functions are added to the language).

Exercises

1. Consider the example concerning the characteristic function.
(i) Show T+ � ∀x1 . . . xn(ϕ↔ Kϕ(x1, . . . , xn) = c1).
(ii) Translate Kϕ(x1, . . . , xn) = Kϕ(y1, . . . , yn).
(iii) Show T+ � ∀x1 . . . xny1, . . . , yn(Kϕ(x1, . . . , xn) =

Kϕ(y1, . . . , yn))↔ ∀x1 . . . xnϕ(x1, . . . , xn) ∨
∀x1 . . . xn¬ϕ(x1, . . . , xn).

2. Determine the Skolem forms of
(a) ∀y∃x(2x2 + yx− 1 = 0),
(b) ∀ε∃δ(ε > 0→ (δ > 0 ∧ ∀x(|x − a| < δ → |f(x)− f(a)| < ε),
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(c) ∀x∃y(x = f(y)),
(d) ∀xy(x < y → ∃u(u < x) ∧ ∃v(y < v) ∧ ∃w(x < v ∧ w < y)),
(e) ∀x∃y(x = y2 ∨ x = −y2).

3. Let σs be the Skolem form of σ. Consider only sentences.
(i) Show that Γ ∪ {σs} is conservative over Γ ∪ {σ}.
(ii) Put Γ s = {σs|σ ∈ Γ}. Show that for finite Γ, Γ s is conservative over

Γ .
(iii) Show that Γ s is conservative over Γ for arbitrary Γ .

4. A formula ϕ with FV (ϕ) = {x1, . . . , xn} is called satisfiable if there is
an A and a1, . . . , an ∈ |A| such that A |= ϕ(a, . . . , an). Show that ϕ is
satisfiable iff ϕs is satisfiable.

5. Let σ be a sentence in prenex normal form. We define the dual Skolem
form σs of σ as follows: let σ = (Q1x1) . . . (Qnxn)τ , where τ is quantifier
free and Q1 are quantifiers. Consider σ′ = (Q1x1) . . . (Qnxn)¬τ , where
Q1 = ∀, ∃ iff Q1 = ∃, ∀. Suppose (σ′)s = (Qi1xi1) . . . (Qikxik)¬τ ′; then
σs = (Qi1xi1) . . . (Qikxik)τ ′.
In words: eliminate from σ the universal quantifiers and their variables
just as the existential ones in the case of the Skolem form. We end up
with an existential sentence.
Example. (∀x∃y∀zϕ(xyx))s = ∃yϕ(c, y, f(y)).

We suppose that L has at least one constant symbol.
(a) Show that for all (prenex) sentences σ, |= σ iff |= σs. (Hint: look at

Exercise 4). Hence the name: “Skolem form for validity”.
(b) Prove Herbrand’s Theorem:

� σ ⇔ �
m∨∨

i=1

σ′
s(t

i
1, . . . , t

i
n)

for some m, where σ′
s is obtained from σs by deleting the quantifiers.

The tij(i ≤ m, j ≤ n) are certain closed terms in the dual Skolem
expansion of L. Hint: look at ¬(¬σ)s. Use Exercise 16, section 3.3

6. Let T � ∃xϕ(x), with FV (ϕ) = {x}. Show that any model A of T can
be expanded to a model A∗ of T with an extra constant c such that
A∗ |= ϕ(c). Use this for an alternative proof of 3.4.1

7. Consider I∞ the theory of identity “with infinite universe” with axioms
λn(n ∈ N) and I ′∞ with extra constants ci(i ∈ N) and axioms ci �= cj for
i �= j, i, j ∈ N . Show that I ′∞ is conservative over I∞.
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Second Order Logic

In first-order predicate logic the variables range over elements of a structure,
in particular the quantifiers are interpreted in the familiar way as “for all
elements a of |A| . . . ” and “there exists an element a of |A| . . .”. We will now
allow a second kind of variable ranging over subsets of the universe and its
cartesian products, i.e. relations over the universe.

The introduction of these second-order variables is not the result of an un-
bridled pursuit of generality; one is often forced to take all subsets of a struc-
ture into consideration. Examples are “each bounded non-empty set of reals
has a suppremum”, “each non-empty set of natural numbers has a smallest
element”, “each ideal is contained in a maximal ideal”. Already the introduc-
tion of the reals on the basis of the rationals requires quantification over sets
of rationals, as we know from the theory of Dedekind cuts.
Instead of allowing variables for (and quantification over) sets, one can also
allow variables for functions. However, since we can reduce functions to sets
(or relations), we will restrict ourselves here to second-order logic with set
variables.
When dealing with second-order arithmetic we can restrict our attention to
variables ranging over subsets of N , since there is a coding of finite sequences
of numbers to numbers, e.g. via Gödel’s β-function, or via prime factorisation.
In general we will, however, allow for variables for relations.

The introduction of the syntax of second-order logic is so similar to that
of first-order logic that we will leave most of the details to the reader.

The alphabet consists of symbols for
(i) individual variables: x0, x1, x2, . . .,
(ii) individual constants: c0, c1, c2, . . .,

and for each n ≥ 0,
(iii) n-ary set (predicate) variables: Xn

0 , X
n
1 , X

n
2 , . . . , (iv) n-ary set (predi-

cate) constants: ⊥, Pn0 , Pn1 , Pn2 , . . . , (v) connectives : ∧,→,∨,¬,↔, ∃, ∀.
Finally we have the usual auxiliary symbols: ( , ) , , .
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Remark. There are denumerably many variables of each kind. The number of
constants may be arbitrarily large.

Formulas are inductively defined by:

(i) X0
i , P

0
i ,⊥∈ FORM ,

(ii) for n > 0 Xn(t1, . . . , tn) ∈ FORM , Pn(t1, . . . , tn) ∈ FORM ,
(iii) FORM is closed under the propositional connectives,
(iv) FORM is closed under first- and second-order quantification.

Notation. We will often write 〈x1, . . . , xn〉 ∈ Xn for Xn(x1, . . . , xn) and
we will usually drop the superscript in Xn.

The semantics of second-order logic is defined in the same manner as in
the case of first-order logic.

Definition 4.1 A second-order structure is a sequence A = 〈A,A∗, c∗, R∗〉,
where A∗ = 〈An|n ∈ N〉, c∗ = {ci|i ∈ N} ⊆ A,

R∗ = 〈Rni |i, n ∈ N〉, and An ⊆ P(An), Rni ∈ An.
In words: a second-order structure consists of a universe A of individuals

and second-order universes of n-ary relations (n ≥ 0), individual constants
and set (relation) constants, belonging to the various universes.

In case each An contains all n-ary relations (i.e. An = P(An)), we call A
full.

Since we have listed ⊥ as a 0-ary predicate constant, we must accomodate
it in the structure A.

In accordance with the customary definitions of set theory, we write
0 = ∅, 1 = 0 and 2 = {0, 1}. Also we take A0 = 1, and hence A0 ⊆ P(A0) =
P(1) = 2. By convention we assign 0 to ⊥. Since we also want a distinct 0-ary
predicate (proposition)
 := ¬ ⊥, we put 1 ∈ A0. So, in fact, A0 = P(A0) = 2.

Now, in order to define validity in A, we mimic the procedure of first-
order logic. Given a structure A, we introduce an extended language L(A)
with names S for all elements S of A and An(n ∈ N). The constants Rni are
interpretations of the corresponding constant symbols Pni .

We define A |= ϕ, ϕ is true or valid in A, for closed ϕ.

Definition 4.2 (i) A |= S if S = 1,
(ii) A |= S

n
(s1, . . . , sn)if〈s1, . . . , sn〉 ∈ Sn,

(iii) the propositional connectives are interpreted as usual (cf. 1.2.1, 2.4.5),
(iv) A |= ∀xϕ(x)ifA |= ϕ(s)for alls ∈ A,

A |= ∃xϕ(x)ifA |= ϕ(s)for somes ∈ A,
(v) A |= ∀Xnϕ(Xn)ifA |= ϕ(Sn)for allSn ∈ An,

A |= ∃Xnϕ(Xn)ifA |= ϕ(S
n
)for someSn ∈ An.
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If A |= ϕ we say that ϕ is true, or valid, in A.

As in first-order logic we have a natural deduction system, which con-
sists of the usual rules for first-order logic, plus extra rules for second-order
quantifiers.

ϕ ∀2I∀Xnϕ

∀Xnϕ ∀2E
ϕ∗

ϕ∗
∃2I∃Xnϕ ∃Xnϕ

[ϕ]

...

ψ ∃2E
ψ

where the conditions on ∀2I and ∃2E are the usual ones, and ϕ∗ is obtained
from ϕ by replacing each occurrence of Xn(t1, . . . , tn) by σ(t1, . . . , tn) for a
certain formula σ, such that no free variables among the ti become bound
after the substitution.

Note that ∃2I gives us the traditional Comprehension Schema:

∃Xn∀x1 . . . xn[ϕ(x1, . . . , xn) ↔ Xn(x1, . . . , xn)],

where Xn may not occur free in ϕ.
Proof.

∀x1 . . . xn(ϕ(x1, . . . , xn)↔ ϕ(x1, . . . , xn)) ∃2I∃Xn∀x1 . . . xn(ϕ(x1, . . . , xn) ↔ Xn(x1, . . . , xn))

Since the topline is derivable, we have a proof of the desired principle.
Conversely, ∃21 follows from the comprehension principle, given the ordinary
rules of logic. The proof is sketched here (�x and �t stand for sequences of
variables or terms; assume that Xn does not occur in σ).

∃Xn∀�x(σ(�x)↔ Xn(�x))

[∀�x(σ(�x)↔ Xn(�x))]

σ(
→
t )↔ Xn(

→
t ) ϕ(. . . , σ(

→
t ), . . .) †

ϕ(. . . , Xn(
→
t ), . . .) ∗

∃Xnϕ(. . . , Xn(
→
t ), . . .)

∃Xnϕ(. . . , Xn(
→
t ), . . .)

In † a number of steps are involved, i.e. those necessary for the Substitu-
tion Theorem. In ∗ we have applied a harmless ∃-introduction, in the sense
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that we went from a instance involving a variable to an existence statement,
exactly as in first-order logic. This seems to beg the question, as we want to
justify ∃2-introduction. However, on the basis of the ordinary quantifier rules
we have justified something much stronger than ∗ on the assumption of the
Comprehension Schema, namely the introduction of the existential quantifier,
given a formula σ and not merely a variable or a constant.

Since we can define ∀2 from ∃2 a similar argument works for ∀2E.
The extra strength of the second-order quantifier rules lies in ∀2I and ∃2E.

We can make this precise by considering second-order logic as a special kind
of first-order logic (i.e. “flattening” 2nd-order logic). The basic idea is to in-
troduce special predicates to express the relation between a predicate and its
arguments.

So let us consider a first-order logic with a sequence of predicates Ap0,
Ap1, Ap2, Ap3, . . . , such that each Apn is (n+ 1)-ary. We think of
Apn(x, y1, . . . , yn) as xn(y1, . . . , yn).

For n = 0 we get Ap0(x) as a first-order version of X0, but that is in
accordance with our intentions. X0 is a proposition (i.e. something that can
be assigned a truth value), and so is Ap0(x). We now have a logic in which
all variables are first-order, so we can apply all the results from the preceding
chapters.

For the sake of a natural simulation of second-order logic we add unary
predicates V, U0, U1, U2, . . ., to be thought of as “is an element”, “is a o-ary
predicate (i.e. proposition)” “is a 1-ary predicate”, etc.

We now have to indicate axioms of our first-order system that embody the
characteristic properties of second-order logic.

(i) ∀xyz(Ui(x) ∧ Uj(y) ∧ V (z)→ x �= y ∧ y �= z ∧ z �= x) for all i �= j.
(i.e. the Ui’s are pairwise disjoint, and disjoint from V ).

(ii) ∀xy1 . . . yn(Apn(x, y1, . . . , yn)→ Un(x) ∧
∧∧

i V (yi)) for n ≥ 1.
(i.e. if x, y1, . . . , yn are in the relation Apn, then think of x as a predicate,
and the yi’s as elements).

(iii) U0(C0, V (C2i+1), for i ≥ 0, and Un(C3i·5n), for i, n ≥ 0.
(i.e. certain constants are designated as “elements” and “predicates”).

(iv) ∀z1 . . . zm∃x[Un(x)∧ ∀y1 . . . yn(
∧∧

V (yi)→ (ϕ∗ ↔ Apn(x, y1, . . . , yn)))],
where x �∈ FV (ϕ∗), see below. (The first-order version of the comprehen-
sion schema. We assume that FV (ϕ) ⊆ {z1, . . . , zn, y1, . . . , yn}.

(v) ¬Ap0(C0). (so there is a 0-ary predicate for ‘falsity’).

We claim that the first-order theory given by the above axioms represents
second-order logic in the following precise way: we can translate second-order
logic in the language of the above theory such that derivability is faithfully
preserved.

The translation is obtained by assigning suitable symbols to the various
symbols of the alphabet of second-order logic and defining an inductive pro-
cedure for converting composite strings of symbols. We put
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(xi)∗ := x2i+1 ,
(ci)∗ := c2i+1 , for i ≥ 0,

(Xn
i )∗ := x3i·5n ,

(Pni )∗ := c3i·5n ,for i ≥ 0, n ≥ 0′

(X0
i )

∗ := Ap0(x3i ),for i ≥ 0,
(P 0
i )∗ := Ap0(c3i),for i ≥ 0,

(⊥)∗ := Ap0(c0).

Furthermore:

(ϕ�ψ)∗ := ϕ∗�ψ∗ for binary connectives � and
(¬ϕ)∗ := ¬ϕ∗ and

(∀xiϕ(xi))∗ := ∀x∗i (V (x∗i )→ ϕ∗(x∗i ))
(∃xiϕ(xi))∗ := ∃x∗i (V (x∗i ) ∧ ϕ∗(x∗i ))

(∀Xn
i ϕ(Xn

i ))∗ := ∀(Xn
i )∗(Un(Xn

i )∗)→ ϕ∗(xni )∗))
(∃Xn

i ϕ(Xn
i ))∗ := ∃(Xn

i )∗(Un((Xn
i )∗) ∧ ϕ∗((xni )∗))

It is a tedious but routine job to show that �2 ϕ⇔�1 ϕ
∗, where 2 and 1 refer

to derivability in the respective second-order and first-order systems.

Note that the above translation could be used as an excuse for not doing
second-order logic at all, were it not for the fact that first-order version is not
nearly so natural as the second-order one. Moreover, it obscures a number
of interesting and fundamental features, e.g. validity in all principal models
see below, makes sense for the second-order version, whereas it is rather an
extraneous matter with the first-order version.

Definition 4.3 A second-order structure A is called a model of second-order
logic if the comprehension schema is valid in A.

If A is full (i.e. An = P(An) for all n), then we call A a principal (or
standard) model.

From the notion of model we get two distinct notions of “second-order
validity”: (i) true in all models, (ii) true in all principal models.

Recall that A |= ϕ was defined for arbitrary second-order structures; we
will use |= ϕ for “true in all models”.

By the standard induction on derivations we get �2 ϕ⇒ |= ϕ.
Using the above translation into first-order logic we also get |= ϕ⇒ �2 ϕ.

Combining these results we get

Theorem 4.4 (Completeness Theorem) �2 ϕ⇔|= ϕ
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Obviously, we also have |= ϕ ⇒ ϕ is true in all principal models. The
converse, however, is not the case. We can make this plausible by the following
argument:

(i) We can define the notion of a unary function in second-order logic, and
hence the notions ‘bijective’ and ‘surjective’. Using these notions we can
formulate a sentence σ, which states “the universe (of individuals) is finite”
(any injection of the universe into itself is a surjection).

(ii) Consider Γ = {σ} ∪ {λn|n ∈ N}. Γ is consistent, because each finite
subset {σ, λn1 , . . . , λnk

} is consistent, since it has a second-order model,
namely the principal model over a universe with n elements, where n =
max{n1, . . . , nk}.

So, by the Completeness Theorem above Γ has a second-order model. Suppose
now that Γ has a principal model A. Then |A| is actually Dedekind finite, and
(assuming the axiom of choice) finite. Say A has n0 elements, then A �|= λn0+1.
Contradiction.

We see that Γ has no principal model. Hence the Completeness Theorem
fails for validity w.r.t. principal models (and likewise compactness). To find
a sentence that holds in all principal models, but fails in some model a more
refined argument is required.

A peculiar feature of second-order logic is the definability of all the usual
connectives in terms of ∀ and →.

Theorem 4.5 (a) �2⊥↔ ∀X0.X0,
(b) �2 ϕ ∧ ψ ↔ ∀X0((ϕ→ (ψ → X0)) → X0),
(c) �2 ϕ ∨ ψ ↔ ∀X0((ϕ→ X0) ∧ (ψ → X0) → X0),
(d) �2 ∃xϕ↔ ∀X0(∀x(ϕ→ X0)→ X0),
(e) �2 ∃Xnϕ↔ ∀X0(∀Xn((ϕ→ X0)→ X0).

Proof. (a) is obvious.

(b)

[ϕ ∧ ψ]

ϕ [ϕ→ (ψ → X0)]

ψ → X0

[ϕ ∧ ψ]

ψ

X0

(ϕ→ (ψ → X0)) → X0

∀X0((ϕ→ (ψ → X0)) → X0)

ϕ ∧ ψ → ∀X0((ϕ→ (ψ → X0))→ X0)
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Conversely,

[ϕ] [ψ]

ϕ ∧ ψ
ψ → (ϕ ∧ ψ)

ϕ→ (ψ → (ϕ ∧ ψ))

∀X0((ϕ→ (ψ → X0))→ X0) ∀2E
ϕ→ (ψ → (ϕ ∧ ψ)) → ϕ ∧ ψ
ϕ ∧ ψ

(d)

∃xϕ(x)

[ϕ(x)]

[∀x(ϕ(x) → X)]

ϕ(x) → X

X

∀x(ϕ(x) → X)→ X

∀x(ϕ(x) → X)→ X

∀X(∀x(ϕ(x) → X)→ X)

Conversely,

[ϕ(x)]

∃xϕ(x)

ϕ(x) → ∃xϕ(x)

∀x(ϕ(x) → ∃xϕ(x))

∀X(∀x(ϕ(x) → X)→ X)

∀x(ϕ(x) → ∃xϕ(x)) → ∃xϕ(x)

∃xϕ(x)

(c) and (e) are left to the reader. �
In second-order logic we also have natural means to define identity for

individuals. The underlying idea, going back to Leibniz, is that equals have
exactly the same properties.

Definition 4.6 (Leibniz-identity) x = y := ∀X(X(x)↔ X(y))

This defined identity has the desired properties, i.e. it satisfies I1, . . . , I4.



150 4 Second Order Logic

Theorem 4.7 (i) �2 x = x
(ii) �2 x = y → y = x
(iii) �2 x = y ∧ y = z → x = z
(iv) �2 x = y → (ϕ(x) → ϕ(y))

Proof. Obvious. �
In case the logic already has an identity relation for individuals, say .=, we

can show

Theorem 4.8 �2 x
.= y ↔ x = y.

Proof. → is obvious, by I4. ← is obtained as follows:

x=̇x

∀X(X(x)↔ X(y))

x=̇x↔ x=̇y

x=̇y

In ∀2E we have substituted z = x for X(z). �
We can also use second-order logic to extend Peano’s Arithmetic to second-

order arithmetic.
We consider a second-order logic with (first-order) identity and one binary

predicate constant S, which represents, intuitively, the successor relation. The
following special axioms are added:

1. ∃!x∀y¬S(y, x)
2. ∀x∃!yS(x, y)
3. ∀xyz(S(x, z) ∧ S(y, z)→ x = y)

For convenience we extend the language with numerals and the succes-
sor function. This extension is conservative anyway, under the following
axioms:
(i) ∀y¬S(y, 0),
(ii) S(n, n+ 1),
(iii) y = x+ ↔ S(x, y).

We now write down the induction axiom (N.B., not a schema, as in first-
order arithmetic, but a proper axiom!).

4. ∀X(X(0) ∧ ∀x(X(x) → X(x+))→ ∀xX(x))

The extension from first-order to second-order arithmetic in not conserv-
ative. It is, however, beyond our modest means to prove this fact.

One can also use the idea behind the induction axiom to give an (induc-
tive) definition of the class of natural numbers in a second-order logic with
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axioms (1), (2), (3): N is the smallest class containing 0 and closed under the
successor operation.

Let ν(x) := ∀X [(X(0) ∧ ∀y(X(y)→ X(y+))→ X(x)].
Then, by the comprehension axiom ∃Y ∀x(ν(x) ↔ Y (x)).
As yet we cannot assert the existence of a unique Y satisfying ∀x(ν(x) ↔

Y (x)), since we have not yet introduced identity for second-order terms.
Therefore, let us add identity relations for the various second-order terms,
plus their obvious axioms.

Now we can formulate the
Axiom of Extensionality.

∀ →
x (Xn(

→
x) ↔ Y n(

→
x )) ↔ Xn = Y n

So, finally, with the help of the axiom of extensionality, we can assert
∃!Y ∀x(ν(x) ↔ Y (x)). Thus we can conservatively add a unary predicate con-
stant N with axiom ∀x(ν(x) ↔ N(x)).

The axiom of extensionality is on the one hand rather basic - it allows
definition by abstraction (“the set of all x, such that . . .”), on the other hand
rather harmless - we can always turn a second-order model without exten-
sionality into one with extensionality by taking a quotient with respect to the
equivalence relation induced by =.

Exercises

1. Show that the restriction on Xn in the comprehension schema cannot be
dropped (consider ¬X(x)).

2. Show Γ �2 ϕ⇔ Γ ∗ �1 ϕ
∗ (where Γ ∗ = {ψ∗|ψ ∈ Γ}).

Hint: use induction on the derivation, with the comprehension schema
and simplified ∀, ∃−rules. For the quantifier rules it is convenient to con-
sider an intermediate step consisting of a replacement of the free variable
by a fresh constant of the proper kind.

3. Prove (c) and (e) of Theorem 4.5.

4. Prove Theorem 4.7.

5. Give a formula ϕ(X2), which states that X2 is a function.

6. Give a formula ϕ(X2) which states that X2 is a linear order.
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7. Give a sentence σ which states that the individuals can be linearly or-
dered without having a last element (σ can serve as an infinity axiom).

8. Given second-order arithmetic with the successor function, give axioms
for addition as a ternary relation.

9. Let a second-order logic with a binary predicate constant < be given with
extra axioms that make < a dense linear ordering without end points.
We write x < y for < (x, y). X is a Dedekind Cut if ∃xX(x)∧∃x¬X(x)∧
∀x(X(x) ∧ y < x → X(y)). Define a partial ordering on the Dedekind
cuts by putting X ≤ X ′ := ∀x(X(x) → X ′(x)). Show that this partial
order is total.

10. Consider the first-order version of second-order logic (involving the pred-
icates Apn, Un, V ) with the axiom of extensionality. Any model A of this
first-order theory can be “embedded” in the principal second-order model
over LA = {a ∈ |A||A |= V (a}, as follows.
Define for any r ∈ Un f(r) = {〈a1, . . . , an〉|A |= Apn(r, a1, . . . , an)}

Show that f establishes an “isomorphic” embedding of A into the cor-
responding principal model. Hence principal models can be viewed as
unique maximal models of second-order logic.

11. Formulate the axiom of choice – for each number x there is a set X . . . –
in second-order arithmetic.

12. Show that in definition 4.6 a single implication suffices.
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Intuitionistic Logic

5.1 Constructive Reasoning

In the preceding chapters, we have been guided by the following, seemingly
harmless extrapolation from our experience with finite sets: infinite universes
can be surveyed in their totality. In particular can we in a global manner
determine whether A |= ∃xϕ(x) holds, or not. To adapt Hermann Weyl’s
phrasing: we are used to think of infinite sets not merely as defined by a
property, but as a set whose elements are so to speak spread out in front of
us, so that we can run through them just as an officer in the police office
goes through his file. This view of the mathematical universe is an attractive
but rather unrealistic idealization. If one takes our limitations in the face of
infinite totalities seriously, then one has to read a statement like “there is a
prime number greater than 101010

” in a stricter way than “it is impossible
that the set of primes is exhausted before 101010

”. For we cannot inspect the
set of natural numbers in a glance and detect a prime. We have to exhibit a
prime p greater than 101010

.
Similarly, one might be convinced that a certain problem (e.g. the deter-

mination of the saddle point of a zero-sum game) has a solution on the basis
of an abstract theorem (such as Brouwer’s fixed point theorem). Nonetheless
one cannot always exhibit a solution. What one needs is a constructive method
(proof) that determines the solution.

One more example to illustrate the restrictions of abstract methods. Con-
sider the problem “Are there two irrational numbers a and b such that ab is

rational?” We apply the following smart reasoning: suppose
√

2
√

2
is rational,

then we have solved the problem. Should
√

2
√

2
be irrational then

(√
2
√

2
)√

2

is rational. In both cases there is a solution, so the answer to the problem is:
Yes. However, should somebody ask us to produce such a pair a, b, then we
have to engage in some serious number theory in order to come up with the
right choice between the numbers mentioned above.
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Evidently, statements can be read in an inconstructive way, as we did in
the preceding chapters, and in a constructive way. We will in the present chap-
ter briefly sketch the logic one uses in constructive reasoning. In mathematics
the practice of constructive procedures and reasoning has been advocated by
a number of people, but the founding fathers of constructive mathematics
clearly are L. Kronecker and L.E.J. Brouwer. The latter presented a complete
program for the rebuilding of mathematics on a constructive basis. Brouwer’s
mathematics (and the accompaying logic) is called intuitionistic, and in this
context the traditional nonconstructive mathematics (and logic) is called clas-
sical.

There are a number of philosophical issues connected with intuitionism,
for which we refer the reader to the literature, cf. Dummett, Troelstra-van
Dalen.

Since we can no longer base our interpretations of logic on the fiction
that the mathematical universe is a predetermined totality which can be sur-
veyed as a whole, we have to provide a heuristic interpretation of the logical
connectives in intuitionistic logic. We will base our heuristics on the proof-
interpretation put forward by A. Heyting. A similar semantics was proposed
by A. Kolmogorov; the proof-interpretation is called the Brouwer-Heyting-
Kolmogorov (BHK)-interpretation .

The point of departure is that a statement ϕ is considered to be true
(or to hold) if we have a proof for it. By a proof we mean a mathematical
construction that establishes ϕ, not a deduction in some formal system. For
example, a proof of ‘2 + 3 = 5’ consists of the successive constructions of 2, 3
and 5, followed by a construction that adds 2 and 3, followed by a construction
that compares the outcome of this addition and 5.

The primitive notion is here “a proves ϕ”, where we understand by a proof
a (for our purpose unspecified) construction. We will now indicate how proofs
of composite statements depend on proofs of their parts.

(∧) a proves ϕ ∧ ψ := a is a pair 〈b, c〉 such that b proves ϕ and c proves ψ.
(∨) a proves ϕ ∨ ψ := a is a pair 〈b, c〉 such that b is a natural number and

if b = 0 then c proves ϕ, if b �= 0 then c proves ψ.
(→) a proves ϕ → ψ := a is a construction that converts any proof p of ϕ

into a proof a(p) of ψ.
(⊥) no a proves ⊥.

In order to deal with the quantifiers we assume that some domain D of
objects is given.

(∀) a proves ∀xϕ(x) := a is a construction such that for each b ∈ D a(b)
proves ϕ(b).

(∃) a proves ∃xϕ(x) := a is a pair (b, c) such that b ∈ D and c proves ϕ(b).

The above explanation of the connectives serves as a means of giving the
reader a feeling for what is and what is not correct in intuitionistic logic. It is
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generally considered the intended intuitionistic meaning of the connectives.

Examples.

1. ϕ∧ψ → ϕ is true, for let 〈a, b〉 be a proof of ϕ∧ψ, then the construction
c with c(a, b) = a converts a proof of ϕ ∧ ψ into a proof of ϕ. So c proves
(ϕ ∧ ψ → ϕ).

2. (ϕ ∧ ψ → σ) → (ϕ → (ψ → σ)). Let a prove ϕ ∧ ψ → σ, i.e. a converts
each proof 〈b, c〉 of ϕ∧ψ into a proof a(b, c) of σ. Now the required proof
p of ϕ → (ψ → σ) is a construction that converts each proof b of ϕ into
a p(b) of ψ → σ. So p(b) is a construction that converts a proof c of ψ
into a proof (p(b))(c) of σ. Recall that we had a proof a(b, c) of σ, so put
(p(b)(c) = a(b, c); let q be given by q(c) = a(b, c), then p is defined by
p(b) = q. Clearly, the above contains the description of a construction
that converts a into a proof p of ϕ → (ψ → σ). (For those familiar with
the λ-notation: p = λb.λc.a(b, c), so λa.λb.λc.a(b, c) is the proof we are
looking for).

3. ¬∃xϕ(x) → ∀x¬ϕ(x).
We will now argue a bit more informal. Suppose we have a construction a
that reduces a proof of ∃xϕ(x) to a proof of ⊥. We want a construction
p that produces for each d ∈ D a proof of ϕ(d) →⊥, i.e. a construction
that converts a proof of ϕ(d) into a proof of ⊥. So let b be a proof of
ϕ(d), then 〈d, b〉 is a proof of ∃xϕ(x), and a(d, b) is a proof of ⊥. Hence
p with (p(d))(b) = a(d, b) is a proof of ∀x¬ϕ(x). This provides us with a
construction that converts a into p.

The reader may try to justify some statements for himself, but he should
not worry if the details turn out to be too complicated. A convenient handling
of these problems requires a bit more machinery than we have at hand (e.g.
λ-notation). Note, by the way, that the whole procedure is not unproblematic
since we assume a number of closure properties of the class of constructions.

Now that we have given a rough heuristics of the meaning of the logical
connectives in intuitionistic logic, let us move on to a formalization. As it
happens, the system of natural deduction is almost right. The only rule that
lacks constructive content is that of Reduction ad Absurdum. As we have seen
(p. 38), an application of RAA yields � ¬¬ϕ → ϕ, but for ¬¬ϕ→ ϕ to hold
informally we need a construction that transforms a proof of ¬¬ϕ into a proof
of ϕ. Now a proves ¬¬ϕ if a transforms each proof b of ¬ϕ into a proof of
⊥, i.e. there cannot be a proof b of ¬ϕ. b itself should be a construction that
transforms each proof c of ϕ into a proof of ⊥. So we know that there cannot
be a construction that turns a proof of ϕ into a proof of ⊥, but that is a long
way from the required proof of ϕ! (cf. ex. 1)
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5.2 Intuitionistic Propositional and Predicate Logic

We adopt all the rules of natural deduction for the connectives ∨,∧,→,⊥, ∃, ∀
with the exception of the rule RAA. In order to cover both propositional and
predicate logic in one sweep we allow in the alphabet (cf. 2.3,p. 60) 0-ary
predicate symbols, usually called proposition symbols.

Strictly speaking we deal with a derivability notion different from the one
introduced earlier (cf. p.36), since RAA is dropped; therefore we should use a
distinct notation, e.g. �i. However, we will continue to use � when no confu-
sion arises.

We can now adopt all results of the preceding parts that did not make use
of RAA.

The following list may be helpful:

Lemma 5.2.1 (1) � ϕ ∧ ψ ↔ ψ ∧ ϕ (p.32)
(2) � ϕ ∨ ψ ↔ ψ ∨ ϕ
(3) � (ϕ ∧ ψ) ∧ σ ↔ ϕ ∧ (ψ ∧ σ)
(4) � (ϕ ∨ ψ) ∨ σ ↔ ϕ ∨ (ψ ∨ σ)
(5) � ϕ ∨ (ψ ∧ σ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ σ)
(6) � ϕ ∧ (ψ ∨ σ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ σ) (p.51)
(7) � ϕ→ ¬¬ϕ (p.33)
(8) � (ϕ→ (ψ → σ)) ↔ (ϕ ∧ ψ → σ) (p.33)
(9) � ϕ→ (ψ → ϕ) (p.37)
(10) � ϕ→ (¬ϕ→ ψ) (p.37)
(11) � ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ
(12) � ¬ϕ ∨ ¬ψ → ¬(ϕ ∧ ψ)
(13) � (¬ϕ ∨ ψ)→ (ϕ→ ψ)
(14) � (ϕ→ ψ) → (¬ψ → ¬ϕ)(p.37)
(15) � (ϕ→ ψ) → ((ψ → σ) → (ϕ→ σ)) (p.37)
(16) �⊥↔ (ϕ ∧ ¬ϕ) (p.37)
(17) � ∃x(ϕ(x) ∨ ψ(x)) ↔ ∃xϕ(x) ∨ ∃xψ(x)
(18) � ∀x(ϕ(x) ∧ ψ(x)) ↔ ∀xϕ(x) ∧ ∀xψ(x)
(19) � ¬∃xϕ(x) ↔ ∀x¬ϕ(x)
(20) � ∃x¬ϕ(x) → ¬∀xϕ(x)
(21) � ∀x(ϕ→ ψ(x)) ↔ (ϕ→ ∀xψ(x))
(22) � ∃x(ϕ→ ψ(x)) → (ϕ→ ∃xψ(x))
(23) � (ϕ ∨ ∀xψ(x)) → ∀x(ϕ ∨ ψ(x))
(24) � (ϕ ∧ ∃xψ(x)) ↔ ∃x(ϕ ∧ ψ(x))
(25) � ∃x(ϕ(x) → ψ)→ (∀xϕ(x) → ψ)
(26) � ∀x(ϕ(x) → ψ)↔ (∃xϕ(x) → ψ)

(Observe that (19) and (20) are special cases of (26) and (25).
All of those theorems can be proved by means of straight forward applica-

tion of the rules. Some well-known theorems are conspicuously absent, and in
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some cases there is only an implication one way; we will show later that these
implications cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions
from weak premises. E.g. in ¬(ϕ∧ψ) � ¬ϕ∨¬ψ the premise is weak (something
has no proof) and the conclusion is strong, it asks for an effective decision.
One cannot expect to get such results in intuitionistic logic. Instead there is
a collection of weak results, usually involving negations and double negations.

Lemma 5.2.2 (1) � ¬ϕ↔ ¬¬¬ϕ
(2) � (ϕ ∧ ¬ψ) → ¬(ϕ→ ψ)
(3) � (ϕ→ ψ)→ (¬¬ϕ→ ¬¬ψ)
(4) � ¬¬(ϕ→ ψ)↔ (¬¬ϕ→ ¬¬ψ)
(5) � ¬¬(ϕ ∧ ψ)↔ (¬¬ϕ ∧ ¬¬ψ)
(6) � ¬¬∀xϕ(x) → ∀x¬¬ϕ(x)

In order to abbreviate derivations we will use the notation
Γ

ϕ
in a deriva-

tion when there is a derivation for Γ � ϕ (Γ has 0, 1 or 2 elements).

Proof. (1) ¬ϕ→ ¬¬¬ϕ follows from Lemma 5.2.1 (7). For the converse we
again use 5.2.1(7)

[ϕ]1
=======
ϕ→ ¬¬ϕ
¬¬ϕ [¬¬¬ϕ]2

⊥
1¬ϕ

2¬¬¬ϕ→ ¬ϕ

[ϕ ∧ ¬ψ]2

ϕ [ϕ→ ψ]1

ψ

[ϕ ∧ ¬ψ]2

¬ψ
⊥

1¬(ϕ→ ψ)
2

(ϕ ∧ ¬ψ) → ¬(ϕ→ ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ→ ψ]4

ψ [¬ψ]2

⊥
1¬ϕ

⊥
2¬¬ψ

3¬¬ϕ→ ¬¬ψ
4

(ϕ→ ψ) → (¬¬ϕ→ ¬¬ψ)
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Prove (3) also by using (14) and (15) from 5.2.1
(4) Apply the intuitionistic half of the contraposition (Lemma 5.2.1(14)) to
(2):
[¬¬(ϕ→ ψ)]4
===========¬(ϕ ∧ ¬ψ)

[ϕ]1 [¬ψ]2

ϕ ∧ ¬ψ
⊥

1¬ϕ [¬¬ϕ]3

⊥
2¬¬ψ

3¬¬ϕ→ ¬¬ψ
4¬¬(ϕ→ ψ) → (¬¬ϕ→ ¬¬ψ)

For the converse we apply some facts from 5.2.1.

[¬(ϕ→ ψ)]1
==========¬(¬ϕ ∨ ψ)
========¬¬ϕ ∧ ¬ψ
¬¬ϕ [¬¬ϕ→ ¬¬ψ]2

¬¬ψ

[¬(ϕ→ ψ)]1
==========¬(¬ϕ ∨ ψ)
========¬¬ϕ ∧ ¬ψ

¬ψ
⊥

1¬¬(ϕ→ ψ)
2

(¬¬ϕ→ ¬¬ψ) → ¬¬(ϕ→ ψ)

(5) →: Apply (3) to ϕ∧ψ → ϕ and ϕ∧ψ → ψ. The derivation of the converse
is given below.

[¬¬ϕ ∧ ¬¬ψ]4

¬¬ψ

[¬(ϕ ∧ ψ)]3
[ϕ]1 [ψ]2

ϕ ∧ ψ
⊥

1¬ϕ
[¬¬ϕ ∧ ¬¬ψ]4

¬¬ϕ
⊥

2¬ψ
⊥

3¬¬(ϕ ∧ ψ)
4

(¬¬ϕ ∧ ¬¬ψ) → ¬¬(ϕ ∧ ψ)
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(6) � ∃x¬ϕ(x) → ¬∀xϕ(x), 5.2.1(20)
so ¬¬∀xϕ(x) → ¬∃x¬ϕ(x), 5.2.1(14)
hence ¬¬∀xϕ(x) → ∀x¬¬ϕ(x). 5.2.1(19)
Most of the straightforward meta-theorems of propositional and predicate

logic carry over to intuitionistic logic. The following theorems can be proved
by a tedious but routine induction.

Theorem 5.2.3 (Substitution Theorem for Derivations) If D is a
derivation and $ a propositional atom, then D[ϕ/$] is a derivation if the free
variables of ϕ do not occur bound in D.

Theorem 5.2.4 (Substitution Theorem for Derivability) If Γ � σ and
$ is a propositional atom, then Γ [ϕ/$] � σ[ϕ/$], where the free variables of ϕ
do not occur bound in σ or Γ .

Theorem 5.2.5 (Substitution Theorem for Equivalence)
Γ � (ϕ1 ↔ ϕ2)→ (ψ[ϕ1/$]↔ ψ[ϕ2/$]),
Γ � ϕ1 ↔ ϕ2 ⇒ Γ � ψ[ϕ1/$]↔ ψ[ϕ2/$],

where $ is an atomic proposition, the free variables of ϕ1 and ϕ2 do not occur
bound in Γ or ψ and the bound variables of ψ do not occur free in Γ .

The proofs of the above theorems are left to the reader. Theorems of this
kind are always suffering from unaesthetic variable-conditions. In practical
applications one always renames bound variables or considers only closed hy-
potheses, so that there is not much to worry. For precise formulations cf. Ch. 6.

The reader will have observed from the heuristics that ∨ and ∃ carry most
of the burden of constructiveness. We will demonstrate this once more in an
informal argument.

There is an effective procedure to compute the decimal expansion of
π(3, 1415927 . . .). Let us consider the statement ϕn := in the decimal ex-
pansion of π there is a sequence of n consecutive sevens.

Clearly ϕ100 → ϕ99 holds, but there is no evidence whatsoever for
¬ϕ100 ∨ ϕ99.

The fact that ∧,→, ∀,⊥ do not ask for the kind of decisions that ∨ and ∃
require, is more or less confirmed by the following

Theorem 5.2.6 If ϕ does not contain ∨ or ∃ and all atoms but ⊥ in ϕ are
negated, then � ϕ↔ ¬¬ϕ.

Proof. Induction on ϕ.
We leave the proof to the reader. (Hint: apply 5.2.2.) �
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By definition intuitionistic predicate (propositional) logic is a subsystem
of the corresponding classical systems. Gödel and Gentzen have shown, how-
ever, that by interpreting the classical disjunction and existence quantifier in
a weak sense, we can embed classical logic into intuitionistic logic. For this
purpose we introduce a suitable translation:

Definition 5.2.7 The mapping ◦ : FORM → FORM is defined by
(i) ⊥◦ := ⊥ and ϕ◦ := ¬¬ϕ for atomic ϕ dinstinct from ⊥ .
(ii) (ϕ ∧ ψ)◦ := ϕ◦ ∧ ψ◦

(iii) (ϕ ∨ ψ)◦ := ¬(¬ϕ◦ ∧ ¬ψ◦)
(iv) (ϕ→ ψ)◦ := ϕ◦ → ψ◦

(v) (∀xϕ(x))◦ := ∀xϕ◦(x)
(vi) (∃xϕ(x))◦ := ¬∀x¬ϕ◦(x)

This mapping is called the Gödel translation.
We define Γ ◦ = {ϕ◦|ϕ ∈ Γ}. The relation between classical derivability (�c)
and intuitionistic derivability (�i is given by

Theorem 5.2.8 Γ �c ϕ⇔ Γ ◦ �i ϕ◦.

Proof. It follows from the preceding chapters that �c ϕ↔ ϕ◦, therefore ⇐ is
an immediate consequence of Γ �i ϕ⇒ Γ �c ϕ.

For ⇒, we use induction on the derivation D of ϕ from Γ .

1. ϕ ∈ Γ , then also ϕ◦ ∈ Γ ◦ and hence Γ ◦ �i ϕ◦.

2. The last rule of D is a propositional introduction or elimination rule. We
consider two cases:

→ I [ϕ]

D
ψ

ϕ→ ψ

Induction hypothesis Γ ◦, ϕ◦ �i ψ◦.
By → I Γ ◦ �i ϕ◦ → ψ◦, and so by definition
Γ ◦ �i (ϕ→ ψ)◦.

∨E
D

ϕ ∨ ψ

[ϕ]

D1

σ

[ψ]

D2

σ

σ

Induction hypothesis: Γ ◦ �i (ϕ ∨ ψ)◦,
Γ ◦, ϕ◦ �i σ◦Γ ◦, ψ◦ �i σ◦

(where Γ contains all uncancelled
hypotheses involved).

Γ ◦ �i ¬(¬ϕ◦ ∧ ¬ψ◦), Γ ◦ �i ϕ◦ → σ◦, Γ ◦ �i ψ◦ → σ◦.
The result follows from the derivation below:
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¬(¬ϕ◦ ∧ ¬ψ◦)

[ϕ◦]1 ϕ◦ → σ◦

σ◦ [¬σ◦]3

⊥
1¬ϕ◦

[ψ◦]2 ψ◦ → σ◦

σ◦ [¬σ◦]3

⊥
2¬ψ◦

¬ϕ◦ ∧ ¬ψ◦

⊥
3¬¬σ◦

====
σ◦

The remaining rules are left to the reader.
3. The last rule of D is the falsum rule. This case is obvious.
4. The last rule of D is a quantifier introduction or elimination rule. Let us

consider two cases.

∀I D
ϕ(x)

∀xϕ(x)

Induction hypothesis: Γ ◦ �i ϕ(x)◦

By∀I Γ ◦ �i ∀xϕ(x)◦,so Γ ◦ �i (∀xϕ(x))◦ .

∃E : D
∃xϕ(x)

[ϕ(x)]

D1

σ

σ

Induction hypothesis:Γ ◦ �i (∃xϕ(x))◦,
Γ ◦, ϕ(x)◦ �i σ◦.
So Γ ◦ �i (¬∀x¬ϕ(x))◦ and
Γ ◦ �i ∀x(ϕ(x)◦ → σ◦).

¬∀x¬ϕ(x)◦

[ϕ(x)◦]1
∀x(ϕ(x)◦ → σ◦)

ϕ(x)◦ → σ◦

σ◦ [¬σ◦]2

⊥
1¬ϕ(x)◦

∀x¬ϕ(x)◦

⊥
2¬¬σ◦

====
σ◦

We now get Γ ◦ �i σ◦.
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5. The last rule of D is RAA.
[¬ϕ] Induction hypothesis Γ ◦, (¬ϕ)◦ �i⊥ .
D so Γ ◦ �i ¬¬ϕ◦,and hence by Theorem 5.2.6 Γ ◦ �i ϕ◦

⊥
ϕ �

Let us call formulas in which all atoms occur negated, and which contain
only the connectives ∧,→, ∀,⊥, negative.

The special role of ∨ and ∃ is underlined by

Corollary 5.2.9 Classical predicate (propositional) logic is conservative over
intuitionistic predicate (propositional) logic with respect to negative formulae,
i.e. �c ϕ⇔�i ϕ for negative ϕ.

Proof. ϕ◦, for negative ϕ, is obtained by replacing each atom p by ¬¬p. Since
all atoms occur negated we have �i ϕ◦ ↔ ϕ (apply 5.2.2(1) and 5.2.6). The
result now follows from 5.2.8. �

In some particular theories (e.g. arithmetic) the atoms are decidable, i.e.
Γ � ϕ∨¬ϕ for atomic ϕ. For such theories one may simplify the Gödel trans-
lation by putting ϕ◦ := ϕ for atomic ϕ.

Observe that Corollary 5.2.9 tells us that intuitionistic logic is consistent
iff classical logic is so (a not very surprising result!).

For propositional logic we have a somewhat stronger result than 5.2.8.

Theorem 5.2.10 (Glivenko’s Theorem) �c ϕ⇔ �i ¬¬ϕ.

Proof. Show by induction on ϕ that �i ϕ◦ ↔ ¬¬ϕ (use 5.2.2), and apply 5.2.8.
�

5.3 Kripke Semantics

There are a number of (more or less formalized) semantics for intuitionistic
logic that allow for a completeness theorem. We will concentrate here on the
semantics introduced by Kripke since it is convenient for applications and it
is fairly simple.
Heuristic motivation. Think of an idealized mathematician (in this context
traditionally called the creative subject), who extends both his knowledge and
his universe of objects in the course of time. At each moment k he has a stock
Σk of sentences, which he, by some means, has recognised as true and a stock
Ak of objects which he has constructed (or created). Since at every moment
k the idealized mathematician has various choices for his future activities
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(he may even stop alltogether), the stages of his activity must be thought
of as being partially ordered, and not necessarily linearly ordered. How will
the idealized mathematician interpret the logical connectives? Evidently the
interpretation of a composite statement must depend on the interpretation
of its parts, e.g. the idealized mathematician has established ϕ or (and) ψ at
stage k if he has established ϕ at stage k or (and) ψ at stage k. The implica-
tion is more cumbersome, since ϕ→ ψ may be known at stage k without ϕ or
ψ being known. Clearly, the idealized mathematician knows ϕ → ψ at stage
k if he knows that if at any future stage (including k) ϕ is established, also ψ
is established. Similarly ∀xϕ(x) is established at stage k if at any future stage
(including k) for all objects a that exist at that stage ϕ(a) is established.

Evidently we must in case of the universal quantifier take the future into
account since for all elements means more than just “for all elements that
we have constructed so far”! Existence, on the other hand, is not relegated to
the future. The idealized mathematician knows at stage k that ∃xϕ(x) if he
has constructed an object a such that at stage k he has established ϕ(a). Of
course, there are many observations that could be made, for example that it
is reasonable to add “in principle” to a number of clauses. This takes care of
large numbers, choice sequences etc. Think of ∀xy∃z(z = xy), does the ide-
alized mathematician really construct 1010 as a succession of units? For this
and similar questions the reader is referred to the literature.

We will now formalizealize the above sketched semantics.
It is for a first introduction convenient to consider a language without

functions symbols. Later it will be simple to extend the language.
We consider models for some language L.

Definition 5.3.1 A Kripke model is a quadruple K = 〈K,Σ,C,D〉, where K
is a (non-empty) partially ordered set, C a function defined on the constants
of L, D a set valued function on K,Σ a function on K such that

– C(c) ∈ D(k) for all k ∈ K,
– D(k) �= ∅ for all k ∈ K,
– Σ(k) ⊆ Atk for all k ∈ K,

where Atk is the set of all atomic sentences of L with constants for the ele-
ments of D(k). D and Σ satisfy the following conditions:

(i) k ≤ l ⇒ D(k) ⊆ D(l).
(ii) ⊥�∈ Σ(k), for all k.
(iii) k ≤ l ⇒ Σ(k) ⊆ Σ(l).

D(k) is called the domain of K at k, the elements of K are called nodes
of K. Instead of “ϕ has auxilliary constants for elements of D(k)” we say for
short “ϕ has parameters in D(k)”.

Σ assigns to each node the ‘basic facts’ that hold at k, the conditions (i),
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(ii), (iii) merely state that the collection of available objects does not decrease
in time, that a falsity is never established and that a basic fact that once has
been established remains true in later stages. The constants are interpreted
by the same elements in all domains (they are rigid designators).

Note that D and Σ together determine at each node k a classical structure
A(k) (in the sense of 2.2.1). The universe of A(k) is D(k) and the relations of
A(k) are given by Σ(k) as the positive diagram: 〈→a 〉 ∈ RA(k) iff R(

→
a ) ∈ Σ(k).

The conditions (i) and (iii) above tell us that the universes are increasing:
k ≤ l⇒ |A(k)| ⊆ |A(l)|

and that the relations are increasing:
k ≤ l⇒ RA(k) ⊆ RA(l).
Furthermore cA(k) = cA(l) for all k and l.
In Σ(k) there are also propositions, something we did not allow in classical

predicate logic. Here it is convenient for treating propositional and predicate
logic simultaneously.

The function Σ tells us which atoms are “true” in k. We now extend Σ to
all sentences.

Lemma 5.3.2 Σ has a unique extension to a function on K (also denoted by
Σ) such that Σ(k) ⊆ Sentk, the set of all sentences with parameters in D(k),
satisfying:

(i) ϕ ∨ ψ ∈ Σ(k)⇔ ϕ ∈ Σ(k) or ψ ∈ Σ(k)
(ii) ϕ ∧ ψ ∈ Σ(k)⇔ ϕ ∈ Σ(k) and ψ ∈ Σ(k)
(iii) ϕ→ ψ ∈ Σ(k)⇔ for all l ≥ k (ϕ ∈ Σ(l)⇒ ψ ∈ Σ(l))
(iv) ∃xϕ(x) ∈ Σ(k)⇔ there is an a ∈ D(k) such that ϕ(a) ∈ Σ(k)
(v) ∀xϕ(x) ∈ Σ(k)⇔ for all l ≥ k and for all a ∈ D(l) ϕ(a) ∈ Σ(l).

Proof. Immediate. We simply define ϕ ∈ Σ(k) for all k ∈ K simultaneously
by induction on ϕ. �
Notation. We write k � ϕ for ϕ ∈ Σ(k), pronounce ‘k forces ϕ’.
Exercise for the reader: reformulate (i) - (v) above in terms of forcing.

Corollary 5.3.3 (i) k � ¬ϕ⇔ for all l ≥ k l �� ϕ.
(ii) k � ¬¬ϕ⇔ for all l ≥ k there exists a p ≥ l such that (p � ϕ).

Proof. k � ¬ϕ ⇔ k � ϕ →⊥⇔ for all l ≥ k(l � ϕ ⇒ l �⊥) ⇔ for all
l ≥ k l �� ϕ.
k � ¬¬ϕ ⇔ for all l ≥ k l �� ¬ϕ ⇔ for all l ≥ k not ( for all p ≥ l p �� ϕ) ⇔
for all l ≥ k there is a p ≥ l such that p � ϕ. �

The monotonicity of Σ for atoms is carried over to arbitrary formulas.
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Lemma 5.3.4 (Monotonicity of �) k ≤ l, k � ϕ⇒ l � ϕ .

Proof. Induction on ϕ.

atomic ϕ : the lemma holds by definition 5.3.1.
ϕ = ϕ1 ∧ ϕ2 : let k � ϕ1 ∧ ϕ2 and k ≤ l, then k � ϕ1 ∧ ϕ2 ⇔ k � ϕ1 and

k � ϕ2 ⇒ (ind. hyp.) l � ϕ1 and l � ϕ2 ⇔ l � ϕ1 ∧ ϕ2.
ϕ = ϕ1 ∨ ϕ2 : mimic the conjunction case.
ϕ = ϕ1 → ϕ2 Let k � ϕ1 → ϕ2, l ≥ k. Suppose p ≥ l and p � ϕ1 then, since

p ≥ k, p � ϕ2. Hence l � ϕ1 → ϕ2.
ϕ = ∃xϕ1(x) : immediate.
ϕ = ∀xϕ1(x) : let k � ∀xϕ1(x) and l ≥ k. Suppose p ≥ l and a ∈ D(p), then,

since p ≥ k, p � ϕ1(a). Hence l � ∀xϕ1(x). �

We will now present some examples, which refute classically true formulas.
It suffices to indicate which atoms are forced at each node. We will simplify
the presentation by drawing the partially ordered set and indicating the atoms
forced at each node. For propositional logic no domain function is required
(equivalently, a constant one, say D(k) = {0} ), so we simplify the presenta-
tion accordingly.

�k0

k1 ϕ�

a

�k0

�k1 ϕ �k2 ψ

�
�

�
�

�
�

�
�

b

�

�ϕ

�

ϕ, ψ

�ϕ, ψ

�
�

�
�
�

�
�

�

c

�k0 ϕ1

�k1 ϕ1, ϕ2

d

(a) In the bottom node no atoms are known, in the second one only ϕ, to
be precise k0 �� ϕ, k1 � ϕ. By 5.3.3 k0 � ¬¬ϕ, so k0 �� ¬¬ϕ → ϕ. Note,
however, that k0 �� ¬ϕ, since k1 � ϕ. So k0 �� ϕ ∨ ¬ϕ.

(b) ki �� ϕ∧ψ (i = 0, 1, 2), so k0 � ¬(ϕ ∧ψ). By definition, k0 � ¬ϕ ∨¬ψ ⇔
k0 � ¬ϕ or k0 � ¬ψ. The first is false, since k1 � ϕ, and the latter is false,
since k2 � ψ. Hence k0 �� ¬(ϕ ∧ ψ)→ ¬ϕ ∨ ¬ψ.

(c) The bottom node forces ψ → ϕ, but it does not force ¬ψ ∨ ϕ (why?). So
it does not force (ψ → ϕ) → (¬ψ ∨ ϕ).

(d) In the bottom node the following implications are forced: ϕ2 → ϕ1, ϕ3 →
ϕ2, ϕ3 → ϕ1, but none of the converse implications is forced, hence k0 ��
(ϕ1 ↔ ϕ2) ∨ (ϕ2 ↔ ϕ3) ∨ (ϕ3 ↔ ϕ1).
We will analyse the last example a bit further. Consider a Kripke model
with two nodes as in d, with some assignment Σ of atoms. We will show
that for four arbitrary propositions σ1, σ2, σ3, σ4

k0 �
∨∨

1≤i<j≤4

σi ↔ σj , i.e. from any four propositions at least two are

equivalent.
There are a number of cases. (1) At least two of σ1, σ2, σ3, σ4 are forced in
k0. Then we are done. (2) Just one σi is forced in k0. Then of the remaining
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propositions, either two are forced in k1, or two of them are not forced in
k1. In both cases there are σj and σj′ , such that k0 � σj ↔ σj′ . (3) No σi
is forced in k0. Then we may repeat the argument under (2).

��

�	

��

�	

k0

k1
�

0
�

1

�

0

ϕ, ψ(0), σ(1)

e ��

�	

k0

ϕ(0)
�

�

	

�

k1

ϕ(0), ϕ(1)
�

�

	

�

k2

ϕ(0), ϕ(1), ϕ(2)
�

�

	

�

k3

�

0

�

0
�

1

�

0
�

1
�

2

�

0
�

1
�

2
�

3

f

(e) (i) k0 � ϕ→ ∃xσ(x), for the only node that forces ϕ is k1, and
indeed k1 � σ(1), so k1 � ∃xσ(x).
Now suppose k0 � ∃x(ϕ→ σ(x)), then, since D(k0) = {0},
k0 � ϕ→ σ(0). But k1 � ϕ and k1 �� σ(0).
Contradiction. Hence k0 �� (ϕ→ ∃xσ(x)) → ∃x(ϕ→ σ(x)).

Remark. (ϕ → ∃xσ(x)) → ∃x(ϕ → σ(x)) is called the independence of
premise principle. It is not surprising that it fails in some Kripke models,
for ϕ→ ∃xσ(x) tells us that the required element a for σ(a) may depend on
the proof of ϕ (in our heuristic interpretation); while in ∃x(ϕ→ σ(x)), the el-
ement a must be found independently of ϕ. So the right hand side is stronger.

(ii) k0 � ¬∀xψ(x) ⇔ ki �� ∀xψ(x)(i = 0, 1). k1 �� ψ(1), so we have shown
k0 � ¬∀xψ(x). k0 � ∃x¬ψ(x) ⇔ k0 � ¬ψ(0). However, k1 � ψ(0), so
k0 �� ∃x¬ψ(x). Hence k0 �� ¬∀xψ(x) → ∃x¬ψ(x).

(iii) A similar argument fs k0 �� (∀xψ(x) → τ) → ∃x(ψ(x) → τ), where
τ is not forced in k1.

(f) D(ki) = {0, . . . , i}, Σ(ki) = {ϕ(0), . . . , ϕ(i − 1)}, k0 � ∀x¬¬ϕ(x) ⇔ for
all i ki � ¬¬ϕ(j), j ≤ i. The latter is true since for all p > i kp � ϕ(j),
j ≤ i. Now k0 � ¬¬∀xϕ(x) ⇔ for all i there is a j ≥ i such that kj �
∀xϕ(x). But no kj forces ∀xϕ(x). So k0 �� ∀x¬¬ϕ(x) → ¬¬∀xϕ(x).

Remark. We have seen that ¬¬∀xϕ(x) → ∀x¬¬ϕ(x) is derivable and it is
easily seen that it holds in all Kripke models, but the converse fails in some
models. The schema ∀x¬¬ϕ(x) → ¬¬∀xϕ(x) is called the double negation
shift (DNS).
The next thing to do is to show that Kripke semantics is sound for intuitionistic
logic.
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We define a few more notions for sentences:

(i) K � ϕ if k � ϕ for all k ∈ K.
(ii) � ϕ if K � ϕ for all K.

For formulas containing free variables we have to be more careful. Let
ϕ contain free variables, then we say that k � ϕ iff k � Cl(ϕ) (the universal
closure). For a set Γ and a formula ϕ with free variables xi0 , xi1 , xi2 , . . . (which
we will denote by

→
x), we define Γ � ϕ by: for all K, k ∈ K and for all

(
→
a∈ D(k)) [k � ψ(

→
a ) for all ψ ∈ Γ ⇒ k � ϕ(

→
a )]. (

→
a∈ D(k) is a convenient

abuse of language).
Before we proceed we introduce an extra abuse of language which will

prove extremely useful: we will freely use quantifiers in our meta-language.
It will have struck the reader that the clauses in the definition of the Kripke
semantics abound with expressions like “for all l ≥ k”,“ for all a ∈ D(k)”.
It saves quite a bit of writing to use “∀l ≥ k”, “∀a ∈ D(k)” instead, and it
increases systematic readability to boot. By now the reader is well used to
the routine phrases of our semantics, so he will have no difficulty to avoid a
confusion of quantifiers in the meta-language and the object-language.

By way of example we will reformulate the preceding definition:
Γ � ϕ := (∀K)(∀k ∈ K)(∀ →

a∈ D(k))[∀ψ ∈ Γ (k � ψ(
→
a )) ⇒ k � ϕ(

→
a )].

There is a useful reformulation of this “semantic consequence” notion.

Lemma 5.3.5 Let Γ be finite, then Γ � ϕ⇔ � Cl(∧∧ Γ → ϕ) (where Cl(X)
is the universal closure of X).

Proof. Left to the reader. �

Theorem 5.3.6 (Soundness Theorem) Γ � ϕ⇒ Γ � ϕ.

Proof. Use induction on the derivation D of ϕ from Γ . We will abbreviate
“k � ψ(

→
a ) for all ψ ∈ Γ” by “k � Γ (

→
a )”. The model K is fixed in the proof.

(1) D consists of just ϕ, then obviously k � Γ (
→
a ) ⇒ k � ϕ(

→
a ) for all k and

(
→
a ) ∈ D(k).

(2) D ends with an application of a derivation rule.
(∧I) Induction hypothesis: ∀k∀ →

a∈ D(k)(k � Γ (
→
a ) ⇒ k � ϕi(

→
a )), for

i = 1, 2. Now choose a k ∈ K and
→
a∈ D(k) such that k � Γ (

→
a ), then

k � ϕ1(
→
a ) and k � ϕ2(

→
a ), so k � (ϕ1 ∧ ϕ2)(

→
a ).

Note that the choice of
→
a did not really play a role in this proof. To

simplify the presentation we will suppress reference to
→
a , when it does

not play a role.
(∧E)) Immediate.
(∨I) Immediate.
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(∨E) Induction hypothesis: ∀k(k � Γ ⇒ k � ϕ ∨ ψ), ∀k(k � Γ, ϕ ⇒ k � σ),
∀k(k � Γ, ψ ⇒ k � σ). Now let k � Γ , then by i.h. k � ϕ ∨ ψ, so k � ϕ or
k � ψ. In the first case k � Γ, ϕ, so k � σ. In the second case k � Γ, ψ, so
k � σ. In both cases k � σ, so we are done.

(→ I) Induction hypothesis: (∀k)(∀ →
a∈ D(k))(k � Γ (

→
a ), ϕ(

→
a ) ⇒

k � ψ(
→
a )). Now let k � Γ (

→
a ) for some

→
a∈ D(k). We want to show

k � (ϕ→ ψ)(
→
a ), so let l ≥ k and l � ϕ(

→
a ). By monotonicity l � Γ (

→
a ), and

→
a∈ D(l), so the ind. hyp. tells us that l � ψ(

→
a ). Hence ∀l ≥ k(l � ϕ(

→
a )

⇒ l � ψ(
→
a )), so k � (ϕ→ ψ)(

→
a ).

(→ E) Immediate.
(⊥) Induction hypothesis ∀k(k � Γ ⇒ k �⊥). Since, evidently, no k can force
Γ , ∀k(k � Γ ⇒ k � ϕ) is correct.

(∀I) The free variables in Γ are
→
x , and z does not occur in the sequence

→
x . Induction hypothesis: (∀k)(∀ →

a , b ∈ D(k))(k � Γ (
→
a ) ⇒ k � ϕ(

→
a , b)).

Now let k � Γ (
→
a ) for some

→
a∈ D(k), we must show k � ∀zϕ(

→
a , z). So let

l ≥ k and b ∈ D(l). By monotonicity l � Γ (
→
a ) and

→
a∈ D(l), so by the

ind. hyp. l � ϕ(
→
a , b). This shows (∀l ≥ k)(∀b ∈ D(l))(l � ϕ((

→
a , b), and

hence k � ∀zϕ(
→
a , z).

(∀E) Immediate.
(∃I) Immediate.
(∃E) Induction hypothesis: (∀k)(∀ →

a∈ D(k)(k � Γ (
→
a ) ⇒ k � ∃zϕ(

→
a , z))

and (∀k)(∀ →
a , b ∈ D(k)(k � ϕ(

→
a , b), k � Γ (

→
a ) ⇒ k � σ(

→
a )). Here the

variables in Γ and σ are
→
x , and z does not occur in the sequence

→
x . Now

let k � Γ (
→
a ), for some

→
a∈ D(k), then k � ∃zϕ(

→
a , z). So let k � ϕ(

→
a , b)

for some b ∈ D(k). By the induction hypothesis k � σ(
→
a ). �

For the Completeness Theorem we need some notions and a few lemma’s.

Definition 5.3.7 A set of sentences Γ is a prime theory with respect to a
language L if

(i) Γ is closed under �
(ii) ϕ ∨ ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ
(iii) ∃xϕ(x) ∈ Γ ⇒ ϕ(c) ∈ Γ for some constant c in L.

The following is analogue of the Henkin construction combined with a
maximal consistent extension.

Lemma 5.3.8 Let Γ and ϕ be closed, then if Γ �� ϕ, there is a prime theory
Γ ′ in a language L′, extending Γ such that Γ ′ �� ϕ.
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Proof. In general one has to extend the language L of Γ by a suitable set of
‘witnessing’ constants. So we extend the language L of Γ by a denumerable
set of constants to a new language L′. The required theory Γ ′ is obtained by
series of extensions Γ0 ⊆ Γ1 ⊆ Γ2 . . .. We put Γ0 := Γ .

Let Γk be given such that Γk �� ϕ and Γk contains only finitely many new
constants. We consider two cases.

k is even. Look for the first existential sentence ∃xψ(x) in L′ that has not
yet been treated, such that Γk � ∃xψ(x). Let c be the first new constant
not in Γk. Now put Γk+1 := Γk ∪ {ψ(c)}.

k is odd. Look for the first disjunctive sentence ψ1∨ψ2 with Γk � ψ1∨ψ2 that
has not yet been treated. Note that not both Γk, ψ1 � ϕ and Γk, ψ2 � ϕ
for then by ∨∃ Γk � ϕ.

Now we put: Γk+1 :=
{
Γk ∪ {ψ1} if Γk, ψ1 �� ϕ
Γk ∪ {ψ2} otherwise.

Finally: Γ ′ :=
⋃

k≥0

Γk.

There are a few things to be shown:

1. Γ ′ �� ϕ. We first show Γi �� ϕ by induction on i. For i = 0, Γ0 �� ϕ holds
by assumption. The induction step is obvious for i odd. For i even we
suppose Γi+1 � ϕ. Then Γi, ψ(c) � ϕ. Since Γi � ∃xψ(x), we get Γi � ϕ
by ∃E, which contradicts the induction hypothesis. Hence Γi+1 �� ϕ, and
therefore by complete induction Γi �� ϕ for all i.
Now, if Γ ′ � ϕ then Γi � ϕ for some i. Contradiction.

2. Γ ′ is a prime theory.
(a) Let ψ1∨ψ2 ∈ Γ ′ and let k be the least number such that Γk � ψ1∨ψ2.

Clearly ψ1 ∨ψ2 has not been treated before stage k, and Γh � ψ1 ∨ψ2

for h ≥ k. Eventually ψ1 ∨ ψ2 has to be treated at some stage h ≥ k,
so then ψ1 ∈ Γh+1 or ψ2 ∈ Γh+1, and hence ψ1 ∈ Γ ′ or ψ2 ∈ Γ ′.

(b) Let ∃xψ(x) ∈ Γ ′, and let k be the least number such that Γk �
∃xψ(x). For some h ≥ k ∃xψ(x) is treated, and hence ψ(c) ∈ Γh+1 ⊆
Γ ′ for some c.

(c) Γ ′ is closed under �. If Γ ′ � ψ, then Γ ′ � ψ ∨ ψ, and hence by (a)
ψ ∈ Γ ′.

Conclusion: Γ ′ is a prime theory containing Γ , such that Γ ′ �� ϕ. �

The next step is to construct for closed Γ and ϕ with Γ �� ϕ, a Kripke
model, with K � Γ and k �� ϕ for some k ∈ K.
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Lemma 5.3.9 (Model Existence Lemma) If Γ �� ϕ then there is a
Kripke model K with a bottom node k0 such that k0 � Γ and k0 �� ϕ.

Proof: We first extend Γ to a suitable prime theory Γ ′ such that Γ ′ �� ϕ. Γ ′ has
the language L′ with set of constants C′. Consider a set of distinct constants
{cim|i ≥ 0,m ≥ 0} disjoint with C′. A denumerable family of denumerable sets
of constants is given by Ci = {cim|m ≥ 0}. We will construct a Kripke model
over the poset of all finite sequences of natural numbers, including the empty
sequence 〈〉, with their natural ordering, “initial segment of”.

Define C(〈〉) := C′ and C(
→
n) = C(〈〉) ∪ C0 ∪ . . . ∪ Ck−1 for

→
n of positive

length k. L(
→
n) is the extension of L by C(

→
n), with set of atoms At(

→
n). Now

put D(
→
n) := C(

→
n). We define Σ(

→
n) by induction on the length of

→
n .

Σ(〈〉) := Γ ′ ∩ At(〈〉). Suppose Σ(
→
n) has already been defined. Consider

an enumeration 〈σ0, τ0〉, 〈σ1, τ1〉, . . . of all pairs of sentences in L(
→
n) such that

Γ (
→
n), σi �� τi. Apply Lemma 5.3.8 to Γ (

→
n)∪{σi} and τi for each i. This yields

a prime theory Γ (
→
n, i) and L(

→
n, i) such that σi ∈ Γ (

→
n, i) and Γ (

→
n, i) �� τi.

Now put Σ(
→
n, i) := Γ (

→
n, i) ∩At(→n, i). We observe that all conditions for

a Kripke model are met. The model reflects (like the model of 3.1.11) very
much the nature of the prime theories involved.

Claim:
→
n � ψ ⇔ Γ (

→
n) � ψ.

We prove the claim by induction on ψ.

– For atomic ψ the equivalence holds by definition.
– ψ = ψ1 ∧ ψ2 – immediate
– ψ = ψ1 ∨ ψ2.

(a)
→
n � ψ1 ∨ ψ2 ⇔→

n � ψ1 or
→
n � ψ2 ⇒ (ind. hyp.) Γ (

→
n) � ψ1 or

Γ (
→
n) � ψ2 ⇒ Γ (

→
n) � ψ1 ∨ ψ2.

(b) Γ (
→
n) � ψ1 ∨ ψ2 ⇒ Γ (

→
n) � ψ1 or Γ (

→
n) � ψ2, since Γ (

→
n) is a prime

theory (in the right language L(
→
n)). So, by induction hypothesis,

→
n � ψ1

or
→
n � ψ2, and hence

→
n � ψ1 ∨ ψ2.

– ψ = ψ1 → ψ2.

(a)
→
n � ψ1 → ψ2. Suppose Γ (

→
n) �� ψ1 → ψ2, then Γ (

→
n), ψ1 �� ψ2. By the

definition of the model there is an extension
→
m= 〈n0, . . . , nk−1, i〉 of

→
n

such that Γ (
→
n) ∪ {ψ1} ⊆ Γ (

→
m) and Γ (

→
m) �� ψ2. By induction hypothesis

→
m � ψ1 and by

→
m≥→

n and
→
n � ψ1 → ψ2,

→
m � ψ2. Applying the

induction hypothesis once more we get Γ (
→
m) � ψ2. Contradiction. Hence

Γ (
→
n) � ψ1 → ψ2.

(b) The converse is simple; left to the reader.
– ψ = ∀xψ(x).

(a) Let
→
n � ∀xϕ(x), then we get ∀ →

m≥→
n ∀c ∈ C(

→
m)(

→
m � ϕ(c)). Assume

Γ (
→
n) �� ∀xϕ(x), then for a suitable i Γ (

→
n, i) �� ∀xϕ(x) (take 
 for σi in
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the above construction). Let c be a constant in L(
→
n, i) not in Γ (

→
n, i), then

Γ (
→
n, i) �� ϕ(c), and by induction hypothesis (

→
n, i) �� ϕ(c). Contradiction.

(b)Γ (
→
n) � ∀xϕ(x). Suppose

→
n �� ∀xϕ(x), then

→
m �� ϕ(c) for some

→
m≥→

n

and for some c ∈ L(
→
m), hence Γ (

→
m) �� ϕ(c) and therefore Γ (

→
m) �� ∀xϕ(x).

Contradiction.
– ψ = ∃xϕ(x).

The implication from left to right is obvious. For the converse we use the
fact that Γ (

→
n) is a prime theory. The details are left to the reader.

We now can finish our proof. The bottom node forces Γ and ϕ is not forced. �

We can get some extra information from the proof of the Model Existence
Lemma: (i) the underlying partially ordered set is a tree, (ii) all sets D(

→
m)

are denumerable.
From the Model Existence Lemma we easily derive the following

Theorem 5.3.10 (Completeness Theorem – Kripke) Γ �i ϕ ⇔ Γ � ϕ
(Γ and ϕ closed).

Proof. We have already shown ⇒. For the converse we assume Γi �� ϕ and
apply 5.3.9, which yields a contradiction. �

Actually we have proved the following refinement: intuitionistic logic is
complete for countable models over trees.

The above results are completely general (safe for the cardinality restric-
tion on L), so we may as well assume that Γ contains the identity axioms
I1, . . . , I4 (2.6). May we also assume that the identity predicate is interpreted
by the real equality in each world? The answer is no, this assumption consti-
tutes a real restriction, as the following theorem shows.

Theorem 5.3.11 If for all k ∈ K k � a = b ⇒ a = b for a, b ∈ D(k) then
K � ∀xy(x = y ∨ x �= y).

Proof. Let a, b ∈ D(k) and k �� a = b, then a �= b, not only in D(k), but in all
D(l) for l ≥ k, hence for all l ≥ k, l �� a = b, so k � a �= b. �

For a kind of converse, cf. Exercise 18.
The fact that the relation a ∼k b in A(k), given by k � a = b, is not the iden-
tity relation is definitely embarrassing for a language with function symbols.
So let us see what we can do about it. We assume that a function symbol F
is interpreted in each k by a function Fk. We require k ≤ l ⇒ Fk ⊆ Fl. F
has to obey I4 : ∀ →

x
→
y (

→
x=

→
y→ F (

→
x) = F (

→
y )). For more about functions see

Exercise 34.
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Lemma 5.3.12 The relation ∼k is a congruence relation on A(k), for each k.

Proof. Straightforward, by interpreting I1 − I4 �
We may drop the index k, this means that we consider a relation ∼ on the

whole model, which is interpreted node-wise by the local ∼k’s.
We now define new structures by taking equivalence classes: A�(k):=A(k)/∼k,
i.e. the elements of |A�(k)| are equivalence classes a/∼k of elements a ∈ D(k),
and the relations are canonically determined by

R�k(a/ ∼, . . .) ⇔ Rk(a, . . .), similarly for the functions F �k (a/ ∼, . . .) =
Fk(a, . . .)/ ∼.

The inclusion A(k) ⊆ A(l), for k ≤ l, is now replaced by a map fkl :
A�(k) → A�(l), where fkl is defined by fkl(a) = aA(l) for a ∈ |A�(k)|. To be
precise:

a/∼k "−→ a/∼l, so we have to show a ∼k a′ ⇒ a ∼l a′ to ensure the well-
definedness of fkl. This, however, is obvious, since k � a = a′ ⇒ l � a = a′.

Claim 5.3.13 fkl is a homomorphism.

Proof. Let us look at a binary relation. R�k(a/∼, b/∼) ⇔ Rk(a, b) ⇔ k �
R(a, b)⇒ l � R(a, b)⇔ Rl(a, b)⇔ R�l (a/∼, b/∼).

The case of an operation is left to the reader. �
The upshot is that we can define a modified notion of Kripke model.

Definition 5.3.14 A modified Kripke model for a language L is a triple K =
〈K,A, f〉 such that K is a partially ordered set, A and f are mappings such
that for k ∈ K,A(k) is a structure for L and for k, l ∈ K with k ≤ l f(k, l) is
a homomorphism from A(k) to A(l) and f(l,m) ◦ f(k, l) = f(k,m),
f(k, k) = id.

Notation. We write fkl for f(k, l), and k ��ϕ for A(k) |= ϕ, for atomic ϕ.
Now one may mimic the development presented for the original notion of

Kripke semantics.
In particular the connection between the two notions is given by

Lemma 5.3.15 Let K� be the modified Kripke model obtained from K by
dividing out ∼. Then k � ϕ(

→
a )⇔ k �� ϕ(

→
a /∼) for all k ∈ K.

Proof. Left to the reader. �

Corollary 5.3.16 Intuitionistic logic (with identity) is complete with respect
to modified Kripke semantics.
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Proof. Apply 5.3.10 and 5.3.15. �

We will usually work with ordinary Kripke models, but for convenience we
will often replace inclusions of structures A(k) ⊆ A(l) by inclusion mappings
A(k) ↪→ A(l).

5.4 Some Model Theory

We will give some simple applications of Kripke’s semantics. The first ones
concern the so-called disjunction and existence properties.

Definition 5.4.1 A set of sentences Γ has the
(i) disjunction property (DP ) if Γ � ϕ ∨ ψ ⇒ Γ � ϕ or Γ � ψ.
(ii) existence property (EP) if Γ � ∃xϕ(x) ⇒ Γ � ϕ(t) for some closed term
t (where ϕ ∨ ψ and ∃xϕ(x) are closed).

In a sense DP and EP reflect the constructive character of the theory
Γ (in the frame of intuitionistic logic), since it makes explicit the clause ‘if
we have a proof of ∃xϕ(x), then we have a proof of a particular instance’,
similarly for disjunction.

Classical logic does not have DP or EP , for consider in propositional logic
p0 ∨ ¬p0. Clearly �c p0 ∨ ¬p0, but neither �c p0 nor �c ¬p0!

Theorem 5.4.2 Intuitionistic propositional and predicate logic without func-
tions symbols have DP .

Proof. Let � ϕ ∨ ψ, and suppose �� ϕ and �� ψ, then there are Kripke models
K1 and K2 with bottom nodes k1 and k2 such that k1 �� ϕ and k2 �� ψ.

��

�	

��

�	

��

�	

k0

k1 k2

�
�

�
���
f01

�
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���
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It is no restriction to suppose that the partially ordered sets K1,K2 of K1 and
K2 are disjoint.

We define a new Kripke model with K = K1 ∪ K2 ∪ {k0} where k0 �∈
K1 ∪K2, see picture for the ordering.

We define A(k) =

⎧
⎨

⎩

A1(k) for k ∈ K1

A2(k) for k ∈ K2

|A| for k = k0.

where |A| consists of all the constants of L, if there are any, otherwise |A| con-
tains only one element a. The inclusion mapping for A(k0) ↪→ A(ki)(i = 1, 2)
is defined by c "→ cA(ki) if there are constants, if not we pick ai ∈ A(ki) ar-
bitrarily and define f01(a) = a1, f02(a) = a2. A satisfies the definition of a
Kripke model.
The models K1 and K2 are ‘submodels’ of the new model in the sense that the
forcing induced on Ki by that of K is exactly its old forcing, cf. Exercise 13.
By the Completeness Theorem k0 � ϕ ∨ ψ, so k0 � ϕ or k0 � ψ. If k0 � ϕ,
then k1 � ϕ. Contradiction. If k0 � ψ, then k2 � ψ. Contradiction. So �� ϕ and
�� ψ is not true, hence � ϕ or � ψ. �

Observe that this proof can be considerably simplified for propositional
logic, all we have to do is place an extra node under k1 and k2 in which no
atom is forced (cf. Exercise 19).

Theorem 5.4.3 Let the language of intuitionistic predicate logic contain at
least one constant and no function symbols, then EP holds.

Proof. Let � ∃xϕ(x) and �� ϕ(c) for all constants c. Then for each c there is
a Kripke model Kc with bottom node kc such that kc �� ϕ(c). Now mimic the
argument of 5.4.2 above, by taking the disjoint union of the Kc’s and adding
a bottom node k0. Use the fact that k0 � ∃xϕ(x). �

The reader will have observed that we reason about our intuitionistic logic
and model theory in a classical meta-theory. In particular we use the principle
of the excluded third in our meta-language. This indeed detracts from the
constructive nature of our considerations. For the present we will not bother
to make our arguments constructive, it may suffice to remark that classical
arguments can often be circumvented, cf. Chapter 6.

In constructive mathematics one often needs stronger notions than the
classical ones. A paradigm is the notion of inequality. E.g. in the case of the
real numbers it does not suffice to know that a number is unequal (i.e. not
equal) to 0 in order to invert it. The procedure that constructs the inverse
for a given Cauchy sequence requires that there exists a number n such that
the distance of the given number to zero is greater than 2−n. Instead of a
negative notion we need a positive one, this was introduced by Brouwer, and
formalized by Heyting.
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Definition 5.4.4 A binary relation # is called an apartness relation if
(i) ∀xy(x = y ↔ ¬x#y)
(ii) ∀xy(x#y ↔ y#x)
(iii) ∀xyz(x#y → x#z ∨ y#z)

Examples.

1. For rational numbers the inequality is an apartness relation.
2. If the equality relation on a set is decidable (i.e. ∀xy(x = y ∨ x �= y)),

then �= is an apartness relation (Exercise 22).
3. For real numbers the relation |a − b| > 0 is an apartness relation (cf.

Troelstra-van Dalen, 2.7, 2.8.).

We call the theory with axioms (i), (ii), (iii) of 5.4.4 AP, the theory of apart-
ness (obviously, the identity axiom x1 = x2 ∧ y1 = y2 ∧ x1#y1 → x2#y2 is
included).

Theorem 5.4.5 AP � ∀xy(¬¬x = y → x = y).

Proof. Observe that ¬¬x = y ↔ ¬¬¬x#y ↔ ¬x#y ↔ x = y. �

We call an equality relation that satisfies the condition ∀xy(¬¬x = y → x = y)
stable. Note that stable is essentially weaker than decidable (Exercise 23).

In the passage from intuitionistic theories to classical ones by adding the
principle of the excluded third usually a lot of notions are collapsed, e.g.
¬¬x = y and x = y. Or conversely, when passing from classical theories to
intuitionistic ones (by deleting the principle of the excluded third) there is
a choice of the right notions. Usually (but not always) the strongest notions
fare best. An example is the notion of linear order.

The theory of linear order, LO, has the following axioms:
(i) ∀xyz(x < y ∧ y < z → x < z)
(ii) ∀xyz(x < y → z < y ∨ x < z)
(iii) ∀xyz(x = y ↔ ¬x < y ∧ ¬y < x).

One might wonder why we did not choose the axiom ∀xyz(x < y∨x = y∨y <
x) instead of (ii), it certainly would be stronger! There is a simple reason: the
axiom is too strong, it does not hold, e.g., for the reals.

We will next investigate the relation between linear order and apartness.

Theorem 5.4.6 The relation x < y ∨ y < x is an apartness relation.

Proof. An exercise in logic. �
Conversely, Smoryǹski has shown how to introduce an order relation in

a Kripke model of AP: Let K � AP, then in each D(k) the following is an
equivalence relation: k �� a#b.
(a) k � a = a↔ ¬a#a, since k � a = a we get k � ¬a#a and hence k �� a#a.
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(b) k � a#b↔ b#a, so obviously k �� a#b⇔ k �� b#a.
(c) let k �� a#b, k �� b#c and suppose k � a#c, then by axiom (iii) k � a#b

or k � c#b which contradicts the assumptions. So k �� a#c.

Observe that this equivalence relation contains the one induced by the iden-
tity; k � a = b⇒ k �� a#b. The domains D(k) are thus split up in equivalence
classes, which can be linearly ordered in the classical sense. Since we want
to end up with a Kripke model, we have to be a bit careful. Observe that
equivalence classes may be split by passing to a higher node, e.g. if k < l and
k �� a#b then l � a#b is very well possible, but l �� a#b⇒ k �� a#b. We take
an arbitrary ordering of the equivalence classes of the bottom node (using the
axiom of choice in our meta-theory if necessary). Next we indicate how to
order the equivalence classes in an immediate successor l of k.
The ‘new’ elements of D(l) are indicated by the shaded part.

(i) Consider an equivalence class [a0]k in D(k), and look at the corresponding
set â0 :=

⋃{[a]l|a ∈ [a0]k}.
This set splits in a number of classes; we order those linearly. Denote the
equivalence classes of â0 by a0b (where b is a representative). Now the
classes belonging to the b′s are ordered, and we order all the classes on
⋃
â0|a0 ∈ D(k)} lexicographically according to the representation a0b.

(ii) Finally we consider the new equivalence classes, i.e. of those that are not
equivalent to any b in

⋃{â0|a0 ∈ D(k)}. We order those classes and put
them in that order behind the classes of case (i).

Under this procedure we order all equivalence classes in all nodes.
We now define a relation Rk for each k: Rk(a, b) := [a]k < [b]k, where < is the
ordering defined above. By our definition k < l and Rk(a, b) ⇒ Rl(a, b). We
leave it to the reader to show that I4 is valid, i.e. in particular k � ∀xyz(x =
x′ ∧ x < y → x′ < y), where < is interpreted by Rk.
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Observe that in this model the following holds:

(#) ∀xy(x#y ↔ x < y ∨ y < x),

for in all nodes k, k � a#b↔ k � a < b or k � b < a.
Now we must check the axioms of linear order.

(i) transitivity. k0 � ∀xyz(x < y ∧ y < z → x < z) ⇔ for all k ≥ k0, for
all a, b, c ∈ D(k)k � a < b ∧ b < c → a < c ⇔ for all k ≥ k0, for all
a, b, c ∈ D(k) and for all l ≥ k l � a < b and l � b < c⇒ l � a < c.
So we have to show Rl(a, b) and Rl(b, c)⇒ Rl(a, c), but that is indeed the
case by the linear ordering of the equivalence classes.

(ii) (weak)linearity. We must show k0 � ∀xyz(x < y → z < y ∨ x < z). Since
in our model ∀xy(x#y ↔ x < y ∨ y < x) holds the problem is reduced to
pure logic: show:
AP + ∀xyz(x < y ∧ y < z → x < z) + ∀xy(x#y ↔ x < y ∨ y < x) �
∀xyz(x < y → z < y ∨ x < z).
We leave the proof to the reader.

(iii) anti-symmetry. We must show k0 � ∀xy(x = y ↔ ¬x < y ∧ ¬y < x). As
before the problem is reduced to logic. Show:
AP + ∀xy(x#y ↔ x < y ∨ y < x) � ∀xy(x = y ↔ ¬x < y ∧ ¬y < x).

Now we have finished the job – we have put a linear order on a model with
an apartness relation. We can now draw some conclusions.

Theorem 5.4.7 AP + LO + (#) is conservative over LO.

Proof. Immediate, by Theorem 5.4.6. �

Theorem 5.4.8 (van Dalen-Statman) AP + LO + (#) is conservative
over AP.

Proof. Suppose AP �� ϕ, then by the Model Existence Lemma there is a tree
model K of AP such that the bottom node k0 does not force ϕ.
We now carry out the construction of a linear order on K, the resulting model
K∗ is a model of AP + LO + (#), and, since ϕ does not contain <, k0 �� ϕ.
Hence AP + LO + (#) �� ϕ. This shows the conservative extension result:

AP + LO + (#) � ϕ⇒ AP � ϕ, for ϕ in the language of AP. �
There is a convenient tool for establishing elementary equivalence between

Kripke models:
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Definition 5.4.9 (i) A bisimulation between two posets A and B is a relation
R ⊆ A×B such that for each a, a′, b with a ≤ a′, aRb there is a b′ with a‘Rb′

and for each a, b, b′ with aRb, b ≤ b′ there is an a′ such that a′Rb′.
(ii) R is a bisimulation between propositional Kripke models A and B if it is
a bisimulation between the underlying posets and if aRb⇒ Σ(a) = Σ(b) (i.e.
a and b force the same atoms).

Bisimulations are useful to establish elementary equivalence node-wise.

Lemma 5.4.10 Let R be a bisimulation between A and B then for all
a, b, ϕ, aRb⇒ (a � ϕ⇔ b � ϕ).

Proof. Induction on ϕ. For atoms and conjunctions and disjunctions the
result is obvious.
Consider ϕ = ϕ1 → ϕ2.
Let aRb and a � ϕ1 → ϕ2. Suppose b �� ϕ1 → ϕ2, then for some b′ ≥ b b′ �
ϕ1 and b′ �� ϕ2. By definition, there is an a′ ≥ a such that a′Rb′. By induction
hypothesis a′ � ϕ1 and a′ �� ϕ2. Contradiction.

The converse is completely similar. �

Corollary 5.4.11 If R is a total bisimulation between A and B, i.e. domR =
A, ranR = B, then A and B are elementarily equivalent (A � ϕ⇔ B � ϕ).

We end this chapter by giving some examples of models with unexpected
properties.

1.
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f is the identity and g is the canonical ring homomorphism Z → Z/(2).
K is a model of the ring axioms (p. 86).
Note that k0 � 3 �= 0, k0 �� 2 = 0, k0 �� 2 �= 0 and k0 �� ∀x(x �= 0 →
∃y(xy = 1)), but also k0 �� ∃x(x �= 0 ∧ ∀y(xy �= 1)). We se that K is a
commutative ring in which not all non-zero elements are invertible, but
in which it is impossible to exhibit a non-invertible, non-zero element.
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2.
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Again f and g are the canonical homomorphisms. K is an intuitionistic,
commutative ring, as one easily verifies. medskip
K has no zero-divisors: k0 � ¬∃xy(x �= 0 ∧ y �= 0 ∧ xy = 0) ⇔ for all

i ki �� ∃xy(x �= 0 ∧ y �= 0 ∧ xy = 0). (1)
For i = 1, 2 this is obvious, so let us consider i = 0. k0 � ∃xy(x �=
0 ∧ y �= 0 ∧ xy = 0) ⇔ k0 � m �= 0 ∧ n �= 0 ∧mn = 0 for some m,n. So
m �= 0, n �= 0,mn = 0. Contradiction. This proves (1).
The cardinality of the model is rather undetermined. We know k0 �
∃xy(x �= y) - take 0 and 1, and k0 � ¬∃x1x2x3

∧∧

1≤i<j≤4

xi �= xj . But

note that k0 �� ∃x1x2x3

∧∧

1≤i<j≤3

x1 �= xj , k0 �� ∀x1x2x3x4

∨∨

1≤i<j≤4

xi = xj

and k0 �� ¬∃x1x2x3

∧∧

1≤i<j≤3

x1 �= xj .

Observe that the equality relation in K is not stable: k0 � ¬¬0 = 6, but
k0 �� 0 = 6.

3.

��

��

��

��

{e}

Sn

k0

k1

Sn is the (classical) symmetric group on n elements. Choose n ≥ 3. k0

forces the group axioms (p. 85). k0 � ¬∀xy(xy = yx), but k0 �� ∃xy(xy �=
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yx), and k0 �� ∀xy(xy = yx). So this group is not commutative, but one
cannot indicate non-commuting elements.

4.

��

��

Z/(2)
��

��

Z/(3)k1 k2

Define an apartness relation by k1 � a#b ⇔ a �= b in Z/(2), idem for k2.
Then K � ∀x(x#0 → ∃y(xy = 1)).
This model is an intuitionistic field, but we cannot determine its char-
acteristic. k1 � ∀x(x + x = 0), k2 � ∀x(x + x + x = 0). All we know is
K � ∀x(6.x = 0).

In the short introduction to intuitionistic logic that we have presented we
have only been able to scratch the surface. We have intentionally simplified
the issues so that a reader can get a rough impression of the problems and
methods without going into the finer foundational details. In particular we
have treated intuitionistic logic in a classical meta-mathematics, e.g. we have
freely applied proof by contradiction (cf. 5.3.10). Obviously this does not do
justice to constructive mathematics as an alternative mathematics in its own
right. For this and related issues the reader is referred to the literature. A
more constructive appraoch is presented in the next chapter.

Exercises

1. (informal mathematics). Let ϕ(n) be a decidable property of natural
numbers such that neither ∃nϕ(n), nor ∀n¬ϕ(n) has been established
(e.g. “n is the largest number such that n and n+ 2 are prime”). Define
a real number a by the cauchy sequence:

an :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

2−i if ∀k < n¬ϕ(k)

k∑

i=1

2−i if k < n and ϕ(k) and ¬ϕ(i)for i < k.

Show that (an) is a cauchy sequence and that “¬¬a is rational”, but
there is no evidence for “a is rational”.

2. Prove
� ¬¬(ϕ→ ψ)→ (ϕ→ ¬¬ψ), � ¬¬(ϕ ∨ ¬ϕ),
� ¬(ϕ ∧ ¬ϕ), � ¬¬(¬¬ϕ→ ϕ),
¬¬ϕ,¬¬(ϕ→ ψ) � ¬¬ψ, � ¬¬(ϕ→ ψ) ↔ ¬(ϕ ∧ ¬ψ),
� ¬(ϕ ∨ ψ)↔ ¬(¬ϕ→ ψ).
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3. (a) ϕ ∨ ¬ϕ, ψ ∨ ¬ψ � (ϕ�ψ) ∨ ¬(ϕ�ψ), where � ∈ {∧,∨,→}.
(b) Let the proposition ϕ have atoms p0, . . . , pn, show

∧∧
(pi ∨ ¬pi) � ϕ ∨ ¬ϕ.

4. Define the double negation translation ϕ¬¬ of ϕ by placing ¬¬ in front
of each subformula. Show �i ϕ◦ ↔ ϕ¬¬ and �c ϕ⇔ �i ϕ¬¬.

5. Show that for propositional logic �i ¬ϕ⇔�c ¬ϕ.

6. Intuitionistic arithmetic HA (Heyting’s arithmetic) is the first-order in-
tuitionistic theory with the axioms of page 87 as mathematical axioms.
Show HA � ∀xy(x = y ∨ x �= y) (use the principle of induction). Show
that the Gödel translation works for arithmetic, i.e. PA � ϕ⇔ HA � ϕ◦

(where PA is Peano’s (classical) arithmetic). Note that we need not dou-
bly negate the atoms.

7. Show that PA is conservative over HA with respect to formula’s not
containing ∨ and ∃.

8. Show that HA � ϕ ∨ ψ ↔ ∃x((x = 0 → ϕ) ∧ (x �= 0→ ψ)).

9. (a) Show �� (ϕ→ ψ) ∨ (ψ → ϕ); �� (¬¬ϕ→ ϕ) → (ϕ ∨ ¬ϕ);
�� ¬ϕ ∨ ¬¬ϕ; �� (¬ϕ→ ψ ∨ σ) → [(¬ϕ→ ψ) ∨ (¬ϕ→ σ)];
�� ¬ϕ ∨ ¬¬ϕ; ��

∨∨

1≤i<j≤n(ϕi ↔ ϕj), for all n > 2.

(b) Use the completeness theorem to establish the following theorems:
(i) ϕ→ (ψ → ϕ)
(ii) (ϕ ∨ ϕ)→ ϕ
(iii) ∀xyϕ(x, y) → ∀yxϕ(x, y)
(iv) ∃x∀yϕ(x, y) → ∀y∃xϕ(x, y)

(c) Show k � ∀xyϕ(xy) ⇔ ∀l ≥ k∀a, b ∈ D(l) l � ϕ(a, b).
k �� ϕ→ ψ ⇔ ∃l ≥ k(l � ϕ and l �� ψ).

10. Give the simplified definition of a Kripke model for (the language of)
propositional logic by considering the special case of def. 5.3.1 with Σ(k)
consisting of propositional atoms only, and D(k) = {0} for all k.

11. Give an alternative definition of Kripke model based on the “structure-
map” k "→ A(k) and show the equivalence with definition 5.3.1 (without
propositional atoms).

12. Prove the soundness theorem using lemma 5.3.5.
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13. A subset K ′ of a partially ordered set K is closed (under ≤) if k ∈ K ′,
k ≤ l ⇒ l ∈ K ′. If K ′ is a closed subset of the underlying partially
ordered set K of a Kripke model K, then K ′ determines a Kripke model
K′ over K ′ with D′(k) = D(k) and k �′ ϕ ⇔ k � ϕ for k ∈ K ′ and ϕ
atomic. Show k �′ ϕ ⇔ k � ϕ for all ϕ with parameters in D(k), for
k ∈ K ′ (i.e. it is the future that matters, not the past).

14. Give a modified proof of the model existence lemma by taking as nodes
of the partially ordered set prime theories that extend Γ and that have
a language with constants in some set C0 ∪ C1 ∪ . . . ∪ Ck−1 (cf. proof
of 5.3.9 ) (note that the resulting partially ordered set need not (and, as
a matter of fact, is not) a tree, so we lose something. Compare however
exercise 16).

15. Consider a propositional Kripke model K, where the Σ function assigns
only subsets of a finite set Γ of the propositions, which is closed under
subformulas. We may consider the sets of propositions forced at a node
instead of the node: define [k] = {ϕ ∈ Γ |k � ϕ}. The set {[k]|k ∈ K} is
partially ordered by inclusion define ΣΓ ([k]) := Σ(k)∩At, show that the
conditions of a Kripke model are satisfied; call this model KΓ , and denote
the forcing by �Γ . We say that KΓ is obtained by filtration from K.
(a) Show [k] �Γ ϕ⇔ k � ϕ, for ϕ ∈ Γ .
(b) Show that KΓ has an underlying finite partially ordered set.
(c) Show that � ϕ⇔ ϕ holds in all finite Kripke models.
(d) Show that intuitionistic propositional logic is decidable (i.e. there is

a decision method for � ϕ), apply 3.3.17.

16. Each Kripke model with bottom node k0 can be turned into a model
over a tree as follows: Ktr consists of all finite increasing sequences
〈k0, k1, . . . , kn〉, ki < ki+1(0 ≤ i < n), and Atr(〈k0, . . . , kn〉) := A(kn).
Show 〈k0, . . . , kn〉, �tr ϕ ⇔ kn � ϕ, where �tr is the forcing relation in
the tree model.

17. (a) Show that (ϕ → ψ) ∨ (ψ → ϕ) holds in all linearly ordered Kripke
models for propositional logic.

(b) Show that LC �� σ ⇒ there is a linear Kripke model of LC in which σ
fails, where LC is the propositional theory axiomatized by the schema
(ϕ→ ψ) ∨ (ψ → ϕ) (Hint: apply Exercise 15). Hence LC is complete
for linear Kripke models (Dummett).

18. Consider a Kripke model K for decidable equality (i.e. ∀xy(x = y ∨
x �= y)). For each k the relation k � a = b is an equivalence relation.
Define a new model K′ with the same partially ordered set as K, and
D′(k) = {[a]k|a ∈ D(k)}, where [a] is the equivalence class of a. Replace
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the inclusion of D(k) in D(l), for k < l, by the corresponding canonical
embedding [a]k "→ [a]l. Define for atomic ϕ k �′ ϕ := k � ϕ and show
k �′ ϕ⇔ k � ϕ for all ϕ.

19. ProveDP for propositional logic directly by simplifying the proof of 5.4.2.

20. Show that HA hasDP and EP , the latter in the form: HA � ∃xϕ(x)) ⇒
HA � ϕ(n) for some n ∈ N . (Hint, show that the model, constructed in
5.4.2 and in 5.4.3, is a model of HA).

21. Consider predicate logic in a language without function symbols and
constants. Show � ∃xϕ(x) ⇒� ∀xϕ(x), where FV (ϕ) ⊆ {x}. (Hint: add
an auxiliary constant c, apply 5.4.3, and replace it by a suitable variable).

22. Show ∀xy(x = y ∨ x �= y) � ∧∧
AP, where AP consists of the three

axioms of the apartness relation, with x#y replaced by �=.

23. Show ∀xy(¬¬x = y → x = y) �� ∀xy(x = y ∨ x �= y).

24. Show that k � ϕ∨¬ϕ for maximal nodes k of a Kripke model, so Σ(k) =
Th(A(k)) (in the classical sense). That is, “the logic in maximal node is
classical.”

25. Give an alternative proof of Glivenko’s theorem using Exercises 15
and 24.

26. Consider a Kripke model with two nodes k0, k1; k0 < k1 and A(k0) = R,
A(k1) = C. Show k0 �� ¬∀x(x2 + 1 �= 0)→ ∃x(x2 + 1 = 0).

27. Let D = R[X ]/X2 be the ring of dual numbers. D has a unique max-
imal ideal, generated by X . Consider a Kripke model with two nodes
k0, k1; k0 < k1 and A(k0) = D, A(k1) = R, with f : D → R the canonical
map f(a+ bX) = a. Show that the model is an intuitionistic field, define
the apartness relation.

28. Show that ∀x(ϕ∨ψ(x)) → (ϕ∨∀xψ(x))(x �∈ FV (ϕ)) holds in all Kripke
models with constant domain function (i.e. ∀kl(D(k) = D(l)).

29. This exercise will establish the undefinability of propositional connectives
in terms of other connectives. To be precise the connective �1 is not
definable in (or ‘by’) �2, . . . ,�n if there is no formula ϕ, containing only
the connectives �2, . . . ,�n and the atoms p0, p1, such that � p0�1p1 ↔ ϕ.
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(i) ∨ is not definable in →,∧,⊥. Hint: suppose ϕ defines ∨, apply the
Gödel translation.

(ii) ∧ is not definable in →,∨,⊥. Consider the Kripke model with three
nodes k1, k2, k3 and k1 < k3, k2 < k3, k1 � p, k2 � q, k3 � p, q. Show
that all ∧-free formulas are either equivalent to ⊥ or are forced in k1

or k2.
(iii) → is not definable in ∧,∨,¬,⊥. Consider the Kripke model with

three nodes k1, k2, k3 and k1 < k3, k2 < k3, k1 � p, k3 � p, q. Show for
all → −free formulas k2 � ϕ⇒ k1 � ϕ.

30. In this exercise we consider now only propositions with a single atom p.
Define a sequence of formulas by ϕ0 :=⊥, ϕ1 := p, ϕ2 := ¬p, ϕ2n+3 :=
ϕ2n+1∨ϕ2n+2, ϕ2n+4 := ϕ2n+2 → ϕ2n+1 and an extra formula ϕ∞ := 
.
There is a specific set of implications among the ϕi, indicated in the
diagram on the left.
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(i) Show that the following implications hold:
� ϕ2n+1 → ϕ2n+3, � ϕ2n+1 → ϕ2n+4, � ϕ2n+2 → ϕ2n+3,
� ϕ0 → ϕn, � ϕn → ϕ.

(ii) Show that the following ‘identities’ hold:
� (ϕ2n+1 → ϕ2n+2)↔ ϕ2n+2, � (ϕ2n+2 → ϕ2n+4)↔ ϕ2n+4,
� (ϕ2n+3 → ϕ2n+1)↔ ϕ2n+4, � (ϕ2n+4 → ϕ2n+1)↔ ϕ2n+6,
� (ϕ2n+5 → ϕ2n+1)↔ ϕ2n+1, � (ϕ2n+6 → ϕ2n+1)↔ ϕ2n+4,
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� (ϕk → ϕ2n+1)↔ ϕ2n+1 for k ≥ 2n+ 7,
� (ϕk → ϕ2n+2)↔ ϕ2n+2 for k ≥ 2n+ 3.
Determine identities for the implications not covered above.

(iii) Determine all possible identities for conjunctions and disjunctions
of ϕi’s (look at the diagram).

(iv) Show that each formula in p is equivalent to some ϕi.
(v) In order to show that there are no other implications than those

indicated in the diagram (and the compositions of course) it suffices
to show that no ϕn is derivable. Why?

(vi) Consider the Kripke model indicated in the diagram on the right.
a1 � p and no other node forces p. Show: ∀an∃ϕi∀k(k � ϕi ⇔
k ≥ an), ∀bn∃ϕj∀k(k � ϕj ⇔ k ≥ bn)
Clearly the ϕi(ϕj) is uniquely determined, call it ϕ(an), resp. ϕ(bn).
Show ϕ(a1) = ϕ1, ϕ(b1) = ϕ2, ϕ(a2) = ϕ4, ϕ(b2) = ϕ6, ϕ(an+2) =
[(ϕ(an+1)∨ϕ(bn))→ (ϕ(an)∨ϕ(bn))] → (ϕ(an+1)∨ϕ(bn)), ϕ(bn+2) =
[(ϕ(an+1) ∨ ϕ(bn+1)) → (ϕ(an+1) ∨ ϕ(bn))] → (ϕ(an+1) ∨ ϕ(bn+1).

(vii) Show that the diagram on the left contains all provable implications.
Remark. The diagram of the implications is called the Rieger-Nishimura
lattice (it actually is the free Heyting algebra with one generator).

31. Consider intuitionistic predicate logic without function symbols. Prove
the following extension of the existence property: � ∃yϕ(x1, . . . , xn, y)⇔
� ϕ(x1, . . . , xn, t), where t is a constant or one of the variables x1, . . . , xn.
(Hint: replace x1, . . . , xn by new constants a1, . . . , an).

32. LetQ1x1 . . . Qnxnϕ(�x, �y) be a prenex formula (without function symbols),
then we can find a suitable substitution instanceϕ′ ofϕ obtained by replac-
ing the existentially quantified variables by certain universally quantified
variables or by constants, such that � Q1x1 . . . Qnxnϕ(�x, �y) ⇔� ϕ′ (use
Exercise 31).

33. Show that � ϕ is decidable for prenex ϕ. (use 3.3.17 and Exercise 32).
Remark. Combined with the fact that intuitionistic predicate logic is
undecidable, this shows that not every formula is equivalent to one in
prenex normal form.

34. Consider a language with identity and function symbols, and interpret
an n-ary symbol F by a function Fk : D(k)n → D(k) for each k in a
given Kripke model K. We require monotonicity: k ≤ l ⇒ Fk ⊆ Fl, and
preservation of equality: �a ∼k �b⇒ Fk(�a) ∼k Fk(�b), where a ∼k b⇔ k
� a = b.

(i) Show K � ∀�x∃!y(F (�x) = y)
(ii) Show K � I4.
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(iii) Let K � ∀�x∃!yϕ(�x, y), show that we can define for each k and Fk
satisfying the above requirements such that K � ∀(�xϕ(�x, F (�x)).

(iv) Show that one can conservatively add definable Skolem functions.
Note that we have shown how to introduce functions in Kripke mod-
els, when they are given by “functional” relations. So, strictly speaking,
Kripke models with just relations are good enough.
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Normalisation

6.1 Cuts

Anyone with a reasonable experience in making natural deduction derivations
will have observed that one somehow gets fairly efficient derivations. The worst
that can happen is a number of steps that end up with what was already
derived or given, but then one can obviously shorten the derivation. Here is
an example:

[σ ∧ ϕ]2 ∧E
ϕ [ϕ→ ψ]1 → E

ψ

[σ ∧ ϕ]2 ∧E
σ → I

ψ → σ → E
σ → I1

(ϕ→ ψ) → σ → I2
(σ ∧ ϕ)→ ((ϕ→ ψ)→ σ)

σ occurs twice, the first time it is a premise for a → I, and the second
time the result of a → E. We can shorten the derivation as follows:

[σ ∧ ϕ]1 ∧E
σ → I

(ϕ→ ψ)→ σ → I1
(σ ∧ ϕ) → ((ϕ→ ψ)→ σ)

It is apparently not a good idea to introduce something and to eliminate it
right away. This indeed is the key-idea for simplifying derivations: avoid elim-
inations after introductions. If a derivation contains an introduction followed
by an elimination, then one can, as a rule, easily shorten the derivation, the
question is, can one get rid of all those unfortunate steps? The answer is ‘yes’,
but the proof is not trivial.



188 6 Normalisation

The topic of this chapter belongs to proof theory; the system of natural
deduction was introduced by Gentzen, who also showed that “detours” in
derivations can be eliminated. The subject was revived again by Prawitz, who
considerable extended Gentzen’s techniques and results.

We will introduce a number of notions in order to facilitate the treatment.

Definition 6.1.1 The formulas directly above the line in a derivation rule
are called the premises, the formula directly below the line, the conclusion. In
elimination rules a premise not containing the connective is called a minor
premise. All other premises are called the major premises.

Convention The major premises will from now on appear on the left hand
side.

Definition 6.1.2 A formula occurrence γ is a cut in a derivation when it is
the conclusion of an introduction rule and the major premise of an elimination
rule. γ is called the cut formula of the cut.

In the above example ψ → σ is a cut formula.

We will adopt a slightly changed ∀I-rule, this will help to streamline the
system.

∀I
ϕ ∀I∀x ϕ[x/y]

where y does not occur free in ϕ or in a hypothesis of the derivation of ϕ, and
x is free for y in ϕ.

The old version of ∀I is clearly a special case of the new rule. We will use
the familiar notations, e.g.

∀I ϕ(y) ∀I∀x ϕ(x)

Note that with the new rule we get a shorter derivation for

D
ϕ(x) ∀I∀xϕ(x) ∀E
ϕ(y) ∀I∀yϕ(y)

namely

D
ϕ(x) ∀I∀yϕ(y)
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The adoption of the new rule is not necessary, but rather convenient.

We will first look at predicate calculus with ∧,→,⊥, ∀.

Derivations will systematically be converted into simpler ones by “elimi-
nation of cuts”; here is an example:

D
σ → I

ψ → σ

D′

ψ → E
σ

converts to
D
σ

In general, when the tree under consideration is a subtree of a larger deriva-
tion the whole subtree ending with σ is replaced by the second one. The rest
of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:

D1

ϕ1

D2

ϕ2 ∧I
ϕ1 ∧ ϕ2 ∧E
ϕi

is converted to
Di
ϕi

D1

ψ

[ψ]

D2

ϕ → I
ψ → ϕ→ E
ϕ

is converted to

D1

ψ

D2

ϕ

D
ϕ ∀I∀xϕ[x/y] ∀E

ϕ[t/y]

is converted to
D[t/y]

ϕ[t/y]
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It is not immediately clear that this conversion is a legitimate operation
on derivations, e.g. consider the elimination of the lower cut which converts

D
ϕ(z, z)

∀xϕ(x, x)

ϕ(v, v)

=

∀uϕ(u, z)

ϕ(v, z)

∀vϕ(v, z)

ϕ(z, z) ∀I∀xϕ(x, x) ∀E
ϕ(v, v)

to

∀uϕ(u, v)

ϕ(v, v) ∀I∀vϕ(v, v)

ϕ(v, v)

= D[v/z]

The thoughtless substitution of v for z in D is questionable because v is
not free for z in the third line and we see that in the resulting derivation ∀I
violates the condition on the proper variable.

In order to avoid confusion of the above kind, we have to look a bit closer at
the way we handle our variables in derivations. There is, of course, the obvious
distinction between free and bound variables, but even the free variables do
not all play the same role. Some of them are “the variable” involved in a
∀I. We call these occurrences proper variables and we extend the name to all
occurrences that are “related” to them. The notion “related” is the transitive
closure of the relation that two occurrences of the same variable have if one
occurs in a conclusion and the other in a premise of a rule in “related” formula
occurrences. It is simplest to define “related” as the reflexive, symmetric,
transitive closure of the “direct relative” relation which is given by checking

all derivation rules, e.g. in
ϕ(x) ∧ ψ(x, y) ∧E

ψ(x, y)
the top

occurrence and bottom occurrence of ψ(x, y) are directly related, and so are
the corresponding occurrences of x and y . Similarly the ϕ at the top and the
one at the bottom in

[ϕ]

D
ψ → I

ϕ→ ψ

The details are left to the reader.

Dangerous clashes of variables can always be avoided, it takes just a rou-
tine renaming of variables. Since these syntactic matters present notorious
pitfalls, we will exercise some care. Recall that we have shown earlier that
bound variables may be renamed while retaining logical equivalence. We will
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use this expedient trick also in derivations.

Lemma 6.1.3 In a derivation the bound variables can be renamed so that no
variable occurs both free and bound.

Proof. By induction on D. Actually it is better to do some ‘induction loading’,
in particular to prove that the bound variables can be chosen outside a given
set of variables (including the free variables under consideration). The proof
is simple, and hence left to the reader. �

Note that the formulation of the lemma is rather cryptic, we mean of
course that the resulting configuration is again a derivation. It also expedient
to rename some of the free variables in a derivation, in particular we want to
keep the proper and the non-proper free variables separated.

Lemma 6.1.4 In a derivation the free variables may be renamed, so that
unrelated proper variables are distinct and each one is used exactly once in
its inference rule. Moreover, no variable occurs as a proper and a non-proper
variable.

Proof. Induction on D. Choose always a fresh variable for a proper variable.
Note that the renaming of the proper variables does not influence the hy-
potheses and the conclusion. �

In practice it may be necessary to keep renaming variables in order to
satisfy the results of the above lemmas.

From now on we assume that our derivations satisfy the above condition,
i.e.

(i) bound and free variables are distinct,
(ii) proper and non-proper variables are distinct and each proper variable is

used in precisely one ∀I.

Lemma 6.1.5 The conversions for →,∧, ∀ yield derivations.

Proof. The only difficult case is the ∀-conversion. But according to our
variables-condition D[t/u] is a derivation when D is one, for the variables
in t do not act as proper variables in D. �
Remark There is an alternative practice for formulating the rules of logic,
which is handy indeed for proof theoretical purposes: make a typographi-
cal distinction between bound and free variables (a distinction in the alpha-
bet). Free variables are called parameters in that notation. We have seen that
the same effect can be obtained by the syntactical transformations described
above. It is then necessary, of course, to formulate the ∀-introduction in the
liberal form!
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6.2 Normalization for Classical Logic

Definition 6.2.1 A string of conversions is called a reduction sequence. A
derivation D is called irreducible derivation if there is no D′ such that
D >1 D′.

Notation D >1 D′ stands for “D is converted to D′”. D > D′ stands for
“there is a finite sequence of conversions D = D0 >1 D1 >1 . . . >1 Dn−1 = D
and D ≥ D′ stands for D > D′ or D = D′. (D reduces to D′).

The basic question is of course ‘does every sequence of conversions termi-
nate in finitely many steps?’, or equivalently ‘is > well-founded?’ The answer
turns out to be ‘yes’, but we will first look at a simpler question: ‘does every
derivation reduce to an irreducible derivation?’

Definition 6.2.2 If there is no D′
1 such that D1 >1 D′

1 (i.e. if D1 does not
contain cuts), then we call D1 a normal derivation, or we say that D1 is in
normal form, and if D ≥ D′ where D′ is normal, then we say that D normal-
izes to D′.

We say that > has the strong normalization property if > is well-founded,
i.e. there are no infinite reduction sequences, and the weak normalization prop-
erty if every derivation normalizes.

Popularly speaking strong normalization tells you that no matter how you
choose your conversions, you will ultimately find a normal form; weak nor-
malization tells you that if you choose your conversions in a particular way,
you will find a normal form.

Before getting down the normalization proofs, we remark that the ⊥-rule
can be restricted to instances where the conclusion is atomic. This is achieved
by lowering the rank of the conclusion step by step.
Example.

D
⊥

ϕ ∧ ψ
is replaced by

D
⊥
ϕ

D
⊥
ψ ∧I

ϕ ∧ ψ

D
⊥

ϕ→ ψ

is replaced by

D
⊥
ψ → I

ϕ→ ψ

etc.

(Note that in the right hand derivation some hypothesis may be cancelled,
this is, however, not necessary; if we want to get a derivation from the same
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hypotheses, then it is wiser not to cancel the ϕ at that particular ∀I) A similar
fact holds for RAA: it suffices to apply RAA to atomic instances. The proof
is again a matter of reducing the complexity of the relevant formula.

[¬(ϕ ∧ ψ)]

D
⊥

ϕ ∧ ψ

is replaced by

[¬ϕ]

[ϕ ∧ ψ]

ϕ

⊥
¬(ϕ ∧ ψ)

D
⊥
RAA

ϕ

[¬ψ]

[ϕ ∧ ψ]

ψ

⊥
¬(ϕ ∧ ψ)

D
⊥
RAA

ψ ∧I
ϕ ∧ ψ

[¬(ϕ→ ψ)]

D
⊥

ϕ→ ψ

is replaced by

[ϕ] [ϕ→ ψ]

ψ [¬ψ]

⊥
¬(ϕ→ ψ)

D
⊥

RAA
ψ

ϕ→ ψ

[¬∀x ϕ(x)]

D
⊥

∀x ϕ(x)

is replaced by

[¬ϕ(x)]

[∀x ϕ(x)]

ϕ(x)

⊥
¬∀x ϕ(x)

D
⊥

RAA
ϕ(x)

∀x ϕ(x)
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Some definitions are in order now:

Definition 6.2.3 (i) a maximal cut formula is a cut formula with maximal
rank.
(ii) d = max{r(ϕ)|ϕ cut formula in D} (observe that max ∅ = 0).
n = number of maximal cutformulas and cr(D) = (d, n), the cut rank of D.

If D has no cuts, put cr(D) = (0, 0). We will systematically lower the cut
rank of a derivation until all cuts have been eliminated. The ordering on cut
ranks is lexicographic:

(d, n) < (d′, n′) := d < d′ ∨ (d = d′ ∧ n < n′).

Fact 6.2.4 < is a well-ordering (actually ω · ω) and hence has no infinite
descending sequences.

Lemma 6.2.5 Let D be a derivation with a cut at the bottom, let this cut
have rank n while all other cuts have rank < n, then the conversion of D at
this lowest cut yields a derivation with only cuts of rank < n.

Proof. Consider all the possible cuts at the bottom and check the ranks of the
cuts after the conversion.

(i) →-cut

[ϕ]

D1

ψ

ϕ→ ψ

D2

ϕ

ψ

= D. Then D >1 D′ =

D2

ϕ

D1

ψ

Observe that nothing happened in D1 and D2, so all the cuts in D′ have
rank < n.

(ii) ∀-cut

D
ϕ(x)

∀y ϕ(y)

ϕ(t)

= D. Then D >1 D′ =
(D
ϕ

)

[t/x]

The substitution of a term does not affect the cut-rank of a derivation, so
in D′ all cuts have rank < n.

(iii) ∧-cut. Similar. �
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Observe that in the ∧,→,⊥, ∀ - language the reductions are fairly simple, i.e.
parts of derivations are replaced by proper parts (forgetting for a moment
about the terms) - things get smaller!

Lemma 6.2.6 If cr(D) > (0, 0), then there is a D′ with D >1 D′ and
cr(D′) < cr(D).

Proof. Select a maximal cut formula in D such that all cuts above it have
lower rank. Apply the appropriate reduction to this maximal cut, then the
part of the derivation D ending in the conclusion σ of the cut is replaced,
by Lemma 6.2.5, by a (sub-) derivation in which all cut formula have lower
rank. If the maximal cut formula was the only one, then d is lowered by 1,
otherwise n is lowered by 1 and d remains unchanged. In both cases cr(D)
gets smaller. Note that in the first case n may become much larger, but that
does not matter in the lexicographic order.

Observe that the elimination a cut ( here!) is a local affair, i.e. it only
affects the part of the derivation tree above the conclusion of the cut.

Theorem 6.2.7 (Weak normalization) All derivations normalize.

Proof. By Lemma 6.2.6 the cut rank can be lowered to (0, 0) in a finite number
of steps, hence the last derivation in the reduction sequence has no more cuts.
�

Normal derivations have a number of convenient properties, which can be
read off from their structure. In order to formulate these properties and the
structure, we introduce some more terminology.

Definition 6.2.8 A path in a derivation is a sequence of formulas ϕ0, . . . , ϕn,
such that ϕ0 is a hypothesis, ϕn is the conclusion and ϕi is a premise imme-
diately above ϕi+1(0 ≤ i ≤ n − 1). (ii) A track is an initial part of a path
which stops at the first minor premise or at the conclusion. In other words, a
track can only pass through the major premises of elimination rules.

Example.

[ϕ→ (ψ → σ)]

[ϕ ∧ ψ]

ϕ

ψ → σ

[ϕ ∧ ψ]

ψ

σ

ϕ ∧ ψ → σ

ϕ→ (ψ → σ)) → (ϕ ∧ ψ → σ)
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The underlying tree is provided with number labels:

�

1

�

2

�

3

�

4

�

6
�

7

�

9

�

5

�

8

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

and the tracks are (6, 4, 3, 2, 1), (9, 7) and (8, 5).

Fact 6.2.9 In a normal derivation no introduction rule (application) can pre-
cede an elimination rule (application) in a track.

Proof. Suppose an introduction rule precedes an elimination rule in a track,
then there is a last introduction rule that precedes the first elimination
rule. Because the derivation is normal, one cannot immediately precede the
other. So there has to be a rule in between, which must be the ⊥-rule or the
RAA, but that clearly is impossible, since ⊥ cannot be the conclusion of an
introduction rule. �

Fact 6.2.10 A track in a normal derivation is divided into (at most) three
parts: an elimination part, followed by a ⊥-part, followed by an introduction
part. Each of the parts may be empty.

Proof. By Fact 6.2.9 we know that if the first rule is an elimination, then all
eliminations come first. Look at the last elimination, it results (1) in the con-
clusion of D, or (2) in ⊥, in which case the ⊥-rule or RAA may be applied, or
(3) it is followed by an introduction. In the last case only introductions can
follow. If we applied the ⊥- or RAA-rule, then an atom appears, which can
only be the premise of an introduction rule (or the conclusion of D). �

Fact 6.2.11 Let D be a normal derivation. Then D has at least one maximal
track, ending in the conclusion.

The underlying tree of a normal derivation looks like
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�

�
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�

�

�

�

�

0

�

�

�

2

�

3
�

1

�

�

1
�

�

2
�

�

3

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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�
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�

�
�

�
�

�
�

�
�

�
�

The picture suggests that the tracks are classified as to “how far” they are
from the maximal track. We formalize this in the notion of order.

Definition 6.2.12 Let D be a normal derivation.
o(tm) = 0 for a maximal track tm.
o(t) = o(t′) + 1 if the end formula of track t is a minor premise

belonging to a major premise in t′

The orders of the various tracks are indicated in the picture

Theorem 6.2.13 (Subformula Property) Let D be a normal derivation
of Γ � ϕ, then each formula (occurrence) ψ of D is a subformula of ϕ or of
a formula in Γ , unless ψ is cancelled by an application of RAA or when it is
the ⊥ immediately following such a cancelled hypothesis.

Proof. Consider a formula ψ in D, if it occurs in the elimination part of its
track t, then it evidently is a subformula of the hypothesis at the top of t.
If not, then it is a subformula of the end formula ψ1 of t. Hence ψ1 is a
subformula of a formula ψ2 of a track t1 with o(t1) < o(t). Repeating the
argument we find that ψ is a subformula of a hypothesis or of the conclusion.

Sofar we considered all hypotheses, but we can do better. If ϕ is a sub-
formula of a cancelled hypothesis, it must be a subformula of the resulting
implicational formula in case of an → I application, or of the resulting for-
mula in case of an RAA-application, or (and these are the only exceptions) it
is itself cancelled by an RAA-application or it is a ⊥ immediately following
such a hypothesis. �
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One can draw some immediate corollaries from our results so far.

Corollary 6.2.14 Predicate logic is consistent.

Proof. Suppose �⊥, then there is a normal derivation ending in ⊥ with all
hypotheses cancelled. There is a track through the conclusion; in this track
there are no introduction rules, so the top (hypothesis) is not cancelled. Con-
tradiction. �

Note that 6.2.14 does not come as a surprise, we already knew that predi-
cate logic is consistent on the basis of the Soundness Theorem. The nice point
of the above proof is, that it uses only syntactical arguments.

Corollary 6.2.15 Predicate logic is conservative over propositional logic.

Proof. Let D be a normal derivation of Γ � ϕ, where Γ and ϕ contain no
quantifiers, then by the subformula property D contains only quantifier-free
formulas, hence D is a derivation in propositional logic. �

6.3 Normalization for Intuitionistic Logic

When we consider the full language, including ∨ and ∃, some of the notions
introduced above have to be reconsidered. We briefly mention them:

– in the ∃E
∃x ϕ(x)

ϕ(u)

D
σ

σ

u is called the proper variable.

– the lemmas on bound variables, proper variables and free variables remain
correct.

– cuts and cut formulas are more complicated, they will be dealt with below.

As before we assume that our derivations satisfy the conditions on free
and bound variables and on proper variables.

Intuitionistic logic adds certain complications to the technique developed
above. We can still define all conversions:

∨ − conversion

D
ϕi ∨I

ϕ1 ∨ ϕ2

[ϕ1]

D1

σ

[ϕ2]

D2

σ ∨E
σ

converts to

Di
ϕi

D1

σ
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∃ − conversion

D
ϕ(t)

∃x ϕ(x)

ϕ(y)

D′

σ

σ

converts to

D
ϕ(t)

D′[t/y]

σ

Lemma 6.3.1 For any derivation
ϕ(y)
D′

σ
with y not free in σ and t free for y

in ϕ(y),
ϕ(t)
D′[t/y]
σ

is also a derivation.

Proof. Induction on D′. �

It becomes somewhat harder to define tracks; recall that tracks were intro-

duced in order to formalize something like “essential successor”. In
ϕ→ ψ ϕ

ψ
we did not consider ϕ to be an “essential successor” of ϕ (the minor premise)
since ψ has nothing to do with ϕ.

In ∨E and ∃E the cancelled hypotheses have something to do with the
major premise, so we deviate from the geometric idea of going down in the
tree and we make a track that ends in ϕ∨ψ continue both through (the can-
celled) ϕ and ψ, similarly a track that gets to ∃xϕ(x) continues through (the
cancelled) ϕ(y).
The old clauses are still observed, except that tracks are not allowed to start
at hypotheses, cancelled by ∨E or ∃E. Moreover, a track (naturally) ends in
a major premise of ∨E or ∃E if no hypotheses are cancelled in these rule
application.

Example.

[∃x(ϕ(x) ∨ ψ(x))]

[ϕ(y) ∨ ψ(y)]

[ϕ(y)]

∃xϕ(x)

∃xϕ(x) ∨ ∃xψ(x)

[ψ(y)]

∃xψ(x)

∃xϕ(x) ∨ ∃xψ(x)

∃xϕ(x)∨ ∃xψ(x)
∃E

∃xϕ(x) ∨ ∃xψ(x)

∃x(ϕ(x)∨ ψ(x)) → ∃xϕ(x) ∨ ∃xψ(x)
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In tree form:

�

1

�

�

2
�

3

�

4
�

5
�

6

�

7
�

8

�

9
�

10

�
�

�
�

�
�

�
�

The derivation contains the following tracks:
(2, 4, 9, 7, 5, 3, 1), (2, 4, 10, 8, 6, 3, 1).
There are still more problems to be faced in the intuitionistic case:

(i) There may be superfluous applications of ∨E and ∃E in the sense that
“nothing is cancelled”.

I.e. in

D
∃xϕ(x)

D′

σ

σ

no hypotheses ϕ(y) are cancelled in D′.

We add extra conversions to get rid of those elimination rule applications:

D
ϕ ∨ ψ

D1

σ

D2

σ

σ

converts to
Di
σ

if ϕ and ψ are not cancelled in resp. D1,D2.

D
∃xϕ(x)

D′

σ

σ

converts to
D′

σ

if ϕ(y) is not cancelled in D′.

(ii) An introduction may be followed by an elimination in a track without
giving rise to a conversion.
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Example.

ϕ ∨ ϕ
[ϕ] [ϕ] ∧I
ϕ ∧ ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∨E

ϕ ∧ ϕ ∧E
ϕ

In each track there is an ∧-introduction and two steps later an ∧-
elimination, but we are not in a position to apply a reduction.

We would still not be willing to accept this derivation as ‘normal’, if only
because nothing is left of the subformula property: ϕ∧ϕ is neither a subformula
of its predecessor in the track, nor of its predecessor. The problem is caused
by the repetitions that may occur because of ∨E and ∃E, e.g. one may get a
string of occurrences of the same formula:

∃xnϕn(xn)

∃x3ϕ3(x3)

∃x2ϕ2(x2)

∃x1ϕ1(x1)

D1

σ

σ

σ

σ

. . .

σ

σ

Clearly the formulas that would have to interact in a reduction may be
too far apart. The solution is to change the order of the rule applications, we
call this a permutation conversion.

Our example is converted by ‘pulling’ the ∧E upwards:

ϕ ∨ ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∧E
ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∧E
ϕ ∨E

ϕ

Now we can apply the ∧−conversion:

ϕ ∨ ϕ [ϕ] [ϕ] ∨E
ϕ
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In view of the extra complications we have to extend our notion of cut.

Definition 6.3.2 A string of occurrences of a formula σ in a track which
starts with the result of an introduction and ends with an elimination is called
a cut segment. A maximal cut segment is one with a cut formula of maximal
rank.

We have seen that the elimination at the bottom of the cut segment can
be permuted upwards:

Example.

∃yϕ2(y)

∃xϕ1(x)

[ψ]

D
σ

ψ → σ

ψ → σ

ψ → σ ψ

σ

converts to

∃yϕ2(y)

∃xϕ1(x)

[ψ]

D
σ

ψ → σ

ψ → σ ψ

σ

σ

and then to

∃yϕ2(y)

∃xϕ1(x)

[ψ]

D
σ

ψ → σ ψ

σ

σ

σ

Now we can eliminate the cut formula ψ → σ:

∃yϕ2(y)

∃xϕ1(x)

ψ

D
σ

σ

σ

So a cut segment may be eliminated by applying a series of permutation con-
versions followed by a “connective-conversion”.
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As in the smaller language, we can restrict our attention to applications
of the ⊥ −rule for atomic instances.

We just have to consider the extra connectives:

D
⊥

ϕ ∨ ψ
can be replaced by

D
⊥
ϕ

ϕ ∨ ψ

D
⊥

∃xϕ(x)

can be replaced by

D
⊥
ϕ(y)

∃xϕ(x)

We will show that in intuitionistic logic derivations can be normalized.
Define the cut rank as before; but now for cut segments:

Definition 6.3.3 (i) The rank of a cut segment is the rank of its formula.
(ii) d = max{r(ϕ)|ϕ cut formula in D}, n = number of maximal cut segments,
cr(D) = (d, n) with the same lexicographical ordering.

Lemma 6.3.4 If D is a derivation ending with a cut segment of maximal
rank such that all cut segments distinct from this segment, have a smaller
rank, then a number of permutation conversions and a conversion reduce D
to a derivation with smaller cut rank.

Proof. (i) Carry out the permutation conversions on a maximal segment, so
that an elimination immediately follows an introduction. E.g.

· · ·
· · ·

· · ·
ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ

ϕ ∧ ψ
ϕ ∧ ψ
ϕ

>

· · ·
· · ·

· · ·

ϕ ψ

ϕ ∧ ψ
ϕ

ϕ

ϕ

ϕ

Observe that the cut rank is not raised. We now apply the “connective”
conversion to the remaining cut. The result is a derivation with a lower d. �

Lemma 6.3.5 If cr(D) > (0, 0), then there is a D′ such that D > D′ and
cr(D′) < cr(D).



204 6 Normalisation

Proof. Let s be a maximal segment such that in the sub derivation D̂ ending
with s no other maximal segments occur. Apply the reduction steps indicated
in Lemma 6.3.4, then D is replaced by D′ and either the d is not lowered, but
n is lowered, or d is lowered. In both cases cr(D′) < cr(D). �

Theorem 6.3.6 (Weak normalization) Each intuitionistic derivation nor-
malizes.

Proof. Apply Lemma 6.3.5. �

Observe that the derivation may grow in size during the reductions, e.g.

ϕ ∨ ϕ
[ϕ]1

ϕ ∨ ψ
[ϕ]1

ϕ ∨ ψ
1

ϕ ∨ ψ
ϕ→ σ [ϕ]2

σ

ψ → σ [ψ]2

σ
2

σ

is reduced by a permutation conversion to

ϕ ∨ ϕ

[ϕ]1

ϕ ∨ ψ
[ϕ]2 ϕ→ σ

σ

[ψ]2 ψ → σ

σ
2

σ D
1

σ

where

D =

[ϕ]1

ϕ ∨ ψ
[ϕ]3 ϕ→ σ

σ

[ψ]3 ψ → σ

σ
3

σ

In general, parts of derivations may be duplicated.

The structure theorem for normal derivations holds for intuitionistic logic
as well; note that we have to use the extended notion of track and that seg-
ments may occur.

Fact 6.3.7 (i) In a normal derivation, no application of an introduction rule
can precede an application of an elimination rule.
(ii) A track in a normal derivation is divided into (at most) three parts: an
elimination part, followed by a ⊥ part, followed by an introduction part. These



6.3 Normalization for Intuitionistic Logic 205

parts consist of segments, the last formula of which are resp. the major premise
of an elimination rule, the falsum rule or (an introduction rule or the conclu-
sion).
(iii) In a normal derivation the conclusion is in at least one maximal track.

Theorem 6.3.8 (Subformula Property) In a normal derivation of Γ � ϕ,
each formula is a subformula of a hypothesis in Γ , or of ϕ.

Proof. Left to the reader. �

Definition 6.3.9 The relation “ϕ is a strictly positive subformula occurrence
of ψ” is inductively defined by:

(1) ϕ is a strictly positive subformula occurrence of ϕ,
(2) ψ is a strictly positive subformula occurrence of ϕ ∧ ψ, ψ ∧ ϕ,

ϕ ∨ ψ, ψ ∨ ϕ,ϕ→ ψ,
(3) ψ is a strictly positive subformula occurrence of ∀xψ, ∃xψ.

Note that here we consider occurrences ; as a rule this will be tacitly un-
derstood. We will also say, for short, ϕ is strictly positive in ψ, or ϕ occurs
strictly positive in ψ. The extension to connectives and terms is obvious, e.g.
“∀ is strictly positive in ψ”.

Lemma 6.3.10 (i) The immediate successor of the major premise of an elim-
ination rule is strictly positive in this premise (for → E,∧E, ∀E this actually
is the conclusion). (ii) A strictly positive part of a strictly positive part of ϕ
is a strictly positive part of ϕ.

Proof. Immediate. �

We now give some applications of the Normal Form Theorem.

Theorem 6.3.11 Let Γ � ϕ ∨ ψ, where Γ does not contain ∨ in strictly
positive subformulas, then Γ � ϕ or Γ � ψ.

Proof. Consider a normal derivation D of ϕ∨ψ and a maximal track t. If the
first occurrence ϕ∨ψ of its segment belongs to the elimination part of t, then
ϕ ∨ ψ is a strictly positive part of the hypothesis in t, which has not been
cancelled. Contradiction.

Hence ϕ ∨ ψ belongs to the introduction part of t, and thus D contains a
subderivation of ϕ or of ψ.
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D looks like

Dk
Dk−1

Dk−2

D1

D′

ϕ

ϕ ∨ ψ · · ·
. . . · · ·

ϕ ∨ ψ · · ·
ϕ ∨ ψ · · ·

ϕ ∨ ψ

The last k steps are ∃E or ∨E. If any of them were an ∨-elimination then
the disjunction would be in the elimination part of a track and hence a ∨
would occur strictly positive in some hypothesis of Γ . Contradiction.

Hence all the eliminations are ∃E. Replace the derivation now by:

Dk

D2

D1

D′

ϕ

ϕ

ϕ

. . .

ϕ

ϕ

In this derivation exactly the same hypothesis have been cancelled, so
Γ � ϕ. �

Consider a language without function symbols (i.e. all terms are variables
or constants).

Theorem 6.3.12 If Γ � ∃xϕ(x), where Γ does not contain an existential
formula as a strictly positive part, then Γ � ϕ(t1) ∨ . . . ∨ ϕ(tn), where the
terms t1, . . . , tn occur in the hypotheses or in the conclusion.

Proof. Consider an end segment of a normal derivation D of ∃xϕ(x) from Γ .
End segments run through minor premises of ∨E and ∃E. In this case an end
segment cannot result from ∃E, since then some ∃uϕ(u) would occur strictly
positive in Γ . Hence the segment runs through minor premises of ∨E’s. I.e.
we get:
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α2 ∨ β2

α1 ∨ β1

[α1]

D1

∃xϕ(x)

[β1]

D2

∃xϕ(x)

∃xϕ(x)

...

∃xϕ(x)

∃xϕ(x)

. . .

∃xϕ(x)

∃xϕ(x) at the beginning of an end segment results from an introduction
(else it would occur strictly positive in Γ ), say from ϕ(ti). It could also result
from a ⊥ rule, but then we could conclude a suitable instance of ϕ(x).

We now replace the parts of D yielding the tops of the end segments by
parts yielding disjunctions:

α2 ∨ β2

α1 ∨ β1

[α1]

D1

ϕ(t1)

ϕ(t1) ∨ ϕ(t2)

[β1]

D2

ϕ(t2)

ϕ(t1) ∨ ϕ(t2)

ϕ(t1) ∨ ϕ(t2)

...

ϕ(t3)

. . .

ϕ(t1) ∨ ϕ(t2) ∨ . . . ∨ ϕ(tn)

So Γ �
∨∨

ϕ(ti) . Since the derivation was normal the various ti’s are
subterms of Γ or ∃xϕ(x). �

Corollary 6.3.13 If in addition ∨ does not occur strictly positive in Γ , then
Γ � ϕ(t) for a suitable t.

Corollary 6.3.14 If the language does not contain constants, then we get
Γ � ∀xϕ(x).

We have obtained here constructive proofs of the Disjunction and Exis-
tence Properties, which had already been proved by classical means in Ch. 5.

Exercises

1. Show that there is no formula ϕ with atoms p and q without ∨ so that
� ϕ↔ p ∨ q (hence ∨ is not definable from the remaining connectives).
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2. If ϕ does not contain → then ��i ϕ. Use this to show that → is not defin-
able by the remaining connectives.

3. If ∧ does not occur in ϕ and p and q are distinct atoms, then ϕ � p and
ϕ � q ⇒ ϕ �⊥.

4. Eliminate the cut segment (σ ∨ τ) from

D1

∃yϕ1(y)

D2

∃xϕ2(x)

D3

σ

σ ∨ τ
σ ∨ τ

σ ∨ τ

[σ]

D4

ρ

[τ ]

D5

ρ

ρ

5. Show that a prenex formula (Q1x1) . . . (Qnxn)ϕ is derivable if and only if
a suitable quantifier-free formula, obtained from ϕ, is derivable. This, in
combination with exercise 15 of section 5, yields another proof of exercise
33 of section 5.

Additional Remarks: Strong normalization
and the Church-Rosser property.

As we already mentioned, there is a stronger result for natural deduction:
every reduction sequence terminates (i.e. <1 is well-founded). For proofs see
Girard 1987 and Girard et al. 1989. Indeed, one can also show for > the so-
called Church-Rosser property (or confluence property): if D ≥ D1,D ≥ D2

then there is a D3 such that D1 ≥ D3 and D2 ≥ D3. As a consequence each
D has a unique normal form. One easily shows, however, that a given ϕ may
have more than one normal derivation.
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Gödel’s theorem

7.1 Primitive recursive functions

We will introduce a class of numerical functions which evidently are effec-
tively computable. The procedure may seem rather ad hoc, but it gives us a
surprisingly rich class of algorithms. We use the inductive method, that is, we
fix a number of initial functions which are as effective as one can wish; after
that we specify certain ways to manufacture new algorithms out of old ones.

The initial algorithms are extremely simple indeed: the successor function,
the constant functions and the projection functions. It is obvious that compo-
sition (or substitution) of algorithms yields algorithms The use of recursion
was as a device to obtain new functions already known to Dedekind’; that re-
cursion produces algorithms from given algorithms is also easily seen. In logic
the study of primitive recursive functions was initiated by Skolem, Herbrand,
Gödel and others.

We will now proceed with a precise definition, which will be given in the
form of an inductive definition. First we present a list of initial functions
of an unmistakably algorithmic nature, and then we specify how to get new
algorithms from old ones. All functions have their own arity, that is to say,
they map N

k to N for a suitable k. We will in general not specify the arities
of the functions involved, and assume that they are chosen correctly.
The so-called initial functions are

– the constant functions Ckm with Ckm(n0, . . . , nk−1) = m,
– the successor function S with S(n) = n+ 1,
– the projection functions P ki with P ki (n0, . . . , nk−1) = ni (i < k).

New algorithms are obtained from old ones by substitution or composition and
primitive recursion,.

– A class F of functions is closed under substitution if g, h0, . . . , hp−1 ∈ F ⇒
f ∈ F , where f(�n) = g(h0(�n), . . . , hp−1(�n))
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– F is closed under primitive recursion if g, h ∈ F ⇒ f ∈ F , where
{
f(0, �n) = g(�n)
f(m+ 1, �n) = h(f(m,�n), �n,m).

Definition 7.1.1 The class of primitive recursive functions is the smallest
class of functions containing the constant functions, the successor function,
and the projection functions, which is closed under substitution and primitive
recursion.

Remark. Substitution has been defined in a particular way: the functions
that are substituted have all the same string of inputs. In order to make
arbitrary substitutions one has to do a little bit of extra work. Consider
for example the function f(x, y) in which we want to substitute g(z) for
x and f(z, x) for y: f(g(z), f(z, x)), This is accomplished as follows: put
h0(x, z) = g(z) = g(P 2

1 (x, z)) and h(x, z) = f(z, x) = f(P 2
1 (x, z), P 2

0 (x, z)),
Then the required f(g(z), f(z, x)) is obtained as f(h0(x, z), h1(x, z)). The
reader is expected to handle cases of substitution that will come up.

Let us start by building up a stock of primitive recursive functions. The
technique is not difficult at all, most readers will have used it at numerous
occasions. The surprising fact is that so many functions can be obtained by
these simple procedures. Here is a first example:
x+ y, defined by

{
x+ 0 = x
x+ (y + 1) = (x + y) + 1

We will reformulate this definition so that that the reader can see that it in-
deed fits the prescribed format:

{
+(0, x) = P 1

0 (x)
+(y + 1, x) = S(P 3

0 (+(y, x), P 2
0 (x, y), P 2

1 (x, y))).

As a rule we will we stick to traditional notations, so we will simply write
x + y for +(y, x). We will also tacitly use the traditional abbreviations from
mathematics, e.g. we will mostly drop the multiplication dot.

There are two convenient tricks to add or delete variables. The first one is
the introduction of dummy variables.

Lemma 7.1.2 (dummy variables) If f is primitive recursive, then so is g
with g(x0, . . . , xn−1, z0, . . . , zm−1) = f(x0, . . . , xn−1).

Proof. Put g(x0, . . . , xn−1, z0, . . . , zm−1) = f(Pn+m
0 (�x, �z), . . . , Pn+m

n (�x, �z) �

Lemma 7.1.3 (identification of variables) If f is primitive recursive, then
so is f(x0, . . . , xn−1)[xi/xj], where i, j ≤ n
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Proof. We need only consider the case i �= j. f(x0, . . . , xn−1)[xi/xj ] =
f(Pn0 (x0, . . . , xn−1), . . . , Pni (x0, . . . , xn−1), . . . , Pni (x0, . . . , xn−1), . . . ,
Pnn−1(x0, . . . , xn−1)), where the second Pni is at the jth entry. �

A more pedestrian notation is f(x0, . . . , xi, . . . , xi, . . . xn−1).

Lemma 7.1.4 (permutation of variables) If f is primitive recursive, then
so is g with g(x0, . . . , xn−1) = f(x0, . . . , xn−1)[xi, xj/xj , xi], where i, j ≤ n

Proof. Use substitution and projection functions. �

From now on we will use the traditional informal notations, e.g. g(x) =
f(x, x, x), or g(x, y) = f(y, x). For convenience we have used and will use,
when no confusion can arise, the vector notation for strings of inputs.
The reader can easily verify that the following examples can be cast in the
required format of the primitive recursive functions.

1. x+ y {
x+ 0 = x
x+ (y + 1) = (x+ y) + 1

2. x · y {
x · 0 = 0
x · (y + 1) = x · y + x (we use (1))

3. xy {
x0 = 1
xy+1 = xy · x

4. predecessor function

p(x) =
{
x− 1 if x > 0
0 if x = 0

Apply recursion:{
p(0) = 0
p(x+ 1) = x

5. cut-off subtraction (monus)

x .− y =
{
x− y if x ≥ y
0 else.

Apply recursion:{
x .− 0 = x
x .− (y + 1) = p(x .− y)

6. factorial function
n! = 1 · 2 · 3 · · · (n− 1) · n.

7. signum function

sg(x) =
{

0 if x = 0
1 otherwise

Apply recursion:
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{
sg(0) = 0
sg(x+ 1) = 1

8. sg(x) = 1 .− sg(x).

sg(x) =
{

1 if x = 0
0 otherwise

9. | x− y |.
Observe that | x− y |= (x .− y) + (y .− x)

10. f(�x, y) =
∑y
i=0 g(�x, i), where g is primitive recursive.
{∑0

i=0 g(�x, i) = g(�x, 0)
∑y+1
i=0 g(�x, i) =

∑y
i=0 g(�x, i) + g(�x, y + 1)

11.
∏y
i=0 g(�x, i), idem.

12. If f is primitive recursive and π is a permutation of the set {0, . . . , n− 1},
then g with g(�x) = f(xπ0, . . . , xπ(n−1)) is also primitive recursive.

13. If f(�x, y) is primitive recursive, so is f(�x, k)

The definition of primitive recursive functions by direct means is a worth-
while challenge, and the reader will find interesting cases among the exercises.
For an efficient and quick access to a large stock of primitive recursive func-
tions there are, however, techniques that cut a number of corners. We will
present them here.

In the first place we can relate sets and functions by means of characteristic
functions. In the setting of number theoretic functions, we define characteristic
functions as follows: for A ⊆ N

k the characteristic function KA : N
k → {0, 1}

of A is given by �n ∈ A ⇔ KA(�n) = 1 (and hence �n �∈ A ⇔ KA(�n) = 0).
Warning: in logic the characteristic function is sometimes defined with 0 and
1 interchanged. For the theory that does not make any difference. Note that
a subset of N

k is also called a k-ary relation. When dealing with relations we
tacitly assume that we have the correct number of arguments, e.g. when we
write A ∩B we suppose that A,B are subsets of the same N

k.

Definition 7.1.5 A relation R is primitive recursive if its characteristic func-
tion is so.

Note that this corresponds to the idea of using KR as a test for membership.

The following sets (relations) are primitive recursive:

1. ∅ : K∅(n) = 0 for all n.
2. The set of even numbers, E:{

KE(0) = 1
KE(x + 1) = sg(KE(x))
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3. The equality relation: K=(x, y) = sg(| x− y |)
4. The order relation: K<(x, y) = sg((x+ 1) .− y).

Lemma 7.1.6 The primitive recursive relations are closed under ∪,∩, c and
bounded quantification.

Proof Let C = A ∩ B, then x ∈ C ⇔ x ∈ A ∧ x ∈ B, so KC(x) = 1 ⇔
KA(x) = 1 ∧KB(x) = 1. Therefore we put KC(x) = KA(x) ·KB(x). Hence
the intersection of primitive recursive sets is primitive recursive. For union
take KA∪B(x) = sg(KA(x) + KB(x)), and for the complement KAC (x) =
sg(KA(x)).

We say that R is obtained by bounded quantification from S if R(�n,m) :=
Qx ≤ mS(�n, x), where Q is one of the quantifiers ∀, ∃.

Consider the bounded existential quantification: R(�x, n) := ∃y ≤ nS(�x, y),
then KR(�x, n) = sg(

∑
y≤nKS(�x, y)), so if S is primitive recursive, then R is

so.
The ∀ case is similar; it is left to the reader. �

Lemma 7.1.7 The primitive recursive relations are closed under primitive
recursive substitutions, i.e. if f0, . . . , fn−1 and R are primitive recursive, then
so is S(�x) := R(f0(�x), . . . , fn−1(�x)).

Proof KS(�x) = KR(f1(�x), . . . , fn−1(�x)) �.

Lemma 7.1.8 (definition by cases) Let R1, . . . , Rp be mutually exclusive
primitive recursive predicates, such that ∀�x(R1(�x) ∨R2(�x) ∨ · · · ∨Rp(�x)) and
let g1, . . . , gp be primitive recursive functions, then f with

f(�x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1(�x) if R1(�x)
g2(�x) if R2(�x)

...
gp(�x) if Rp(�x)

is primitive recursive.

Proof If KRi(�x) = 1, then all the other characteristic functions yield 0, so we
put f(�x) = g1(�x) ·KR1(�x) + . . .+ gp(�x) ·KRp(�x). �

The natural numbers are well-ordered, that is to say, each non-empty sub-
set has a least element. If we can test the subset for membership, then we can
always find this least element effectively. This is made precise for primitive
recursive sets.

Some notation: (µy)R(�x, y) stands for the least number y such that R(�x, y)
if there is one. (µy < m)R(�x, y) stands for the least number y < m such that
R(�x, y) if such a number exists; if not, we simply take it to be m.
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Lemma 7.1.9 (bounded minimalization) R isprimitiverecursive⇒ (µy<
m)R(�x, y) is primitive recursive.

Proof Consider the following table:

R R(�x, 0) R(�x, 1) , . . . , R(�x, i), R(�x, i+ 1) , . . . , R(�x,m)
KR 0 0 . . . 1 0 . . . 1
g 0 0 . . . 1 1 . . . 1
h 1 1 . . . 0 0 . . . 0
f 1 2 . . . i i . . . i

In the first line we write the values of KR(�x, i) for 0 ≤ i ≤ m, in the second
line we make the sequence monotone, e.g. take g(�x, i) = sg

∑i
j=0KR(�x, j).

Next we switch 0 and 1: h(�x, i)=sgg(�x, i) and finally we sum the h : f(�x, i) =
∑i
j=0 h(�x, j). If R(�x, j) holds for the first time in i, then f(�x,m− 1) = i, and

if R(�x, j) does not hold for any j < m, then f(�x,m− 1) = m.
So (µy < m)R(�x, y) = f(�x,m− 1), and thus bounded minimalization yields a
primitive recursive function. �

We put (µy ≤ m)R(�x, y) := (µy < m+ 1)R(�x, y).
Now it is time to apply our arsenal of techniques to obtain a large variety

of primitive recursive relations and functions.

Theorem 7.1.10 The following are primitive recursive:

1. The set of primes:
Prime(x) ⇔ x is a prime ⇔ x �= 1 ∧ ∀yz ≤ x(x = yz → y = 1 ∨ z = 1).

2. The divisibility relation:
x | y ⇔ ∃z ≤ y(x · z = y)

3. The exponent of the prime p in the factorisation of x:
(µy ≤ x)[py | x ∧ ¬ py+1 | x]

4. The ‘nth prime’ function:{
p(0) = 2
p(n+ 1) = (µx ≤ p(n)n+2)(x is prime ∧ x > p(n)).

Note that we start to count the prime numbers from zero, and we use the
notation pn = p(n). So p0 = 2, p1 = 3, p2 = 5, . . .. The first prime is p0, and
the ith prime is pi−1.

Proof. One easily checks that the defining predicates are primitive recursive
by applying the above theorems. �

Coding of finite sequences
One of the interesting features of the natural number system is that it

allows a fairly simple coding of pairs of numbers, triples, . . . , and n-tuples
in general. There are quite a number of these codings around, each having
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its own strong points. The two best known ones are those of Cantor and of
Gödel. Cantor’s coding is given in exercise 6, Gödel’s coding will be used here.
It is based on the well-known fact that numbers have a unique (up to order)
prime factorization.

The idea is to associate to a sequence (n0, . . . , nk−1) the number 2n0+1·
3n1+1 · · · · · pni+1

i · · · · · pnk−1+1
k−1 . The extra +1 in the exponents is to take

into account that the coding has to show the zero’s that occur in a sequence.
From the prime factorization of a coded sequence we can effectively extract
the original sequence. The way we have introduced these codes makes the
coding unfortunately not a bijection, for example, 10 is not a coded sequence,
whereas 6 is. This is not a terrible drawback; there are remedies, which we
will not consider here.

Recall that, in the framework of set theory a sequence of length n is a
mapping from {0, . . . , n − 1} to N, so we define the empty sequence as the
unique sequence of length 0, i.e. the unique map from ∅ to N, which is the
empty function (i.e. set). We put the code of the empty sequence 1.

Definition 7.1.11 1. Seq(n) := ∀p, q ≤ n(Prime(p) ∧ Prime(q) ∧ q < p ∧
p | n→ q | n) ∧ n �= 0. (sequence number)
In words: n is a sequence number if it is a product of consecutive positive
prime powers.

2. lth(n) := (µx ≤ n+ 1)[¬ px | n] (length)
3. (n)i = (µx < n)[pxi | n ∧ ¬ px+1

i | n] .− 1 (decoding or projection)
In words: the exponent of the ith prime in the factorisation of n, minus
1. (n)i extracts the ith element of the sequence.

4. n ∗m = n ·∏lth(m)−1
i=0 p

(m)i+1
lth(n)+i. (concatenation)

In words: if m,n are codes of two sequences �m,�n, then the code of the
concatenation of �m and �n is obtained by the product of n and the prime
powers that one gets by ‘moving up’ all primes in the factorization of m
by the length of n.

Remark: 1 is trivially a sequence number. The length function only yields the
correct output for sequence numbers, e.g. lth(10) = 1. Furthermore the length
of 1 is indeed 0, and the length of a 1-tuple is 1.

Notation. We will use abbreviations for the iterated decoding functions:
(n)i,j = ((n)i)j , etc.
Sequence numbers are from now on written as 〈n0, . . . , nk−1〉. So, for example,
〈5, 0〉 = 26 · 31. We write 〈〉 for the code of the empty sequence. The binary
coding, 〈x, y〉, is usually called a pairing function.

So far we have used a straightforward form of recursion, each next output
depends on the parameters and on the previous output. But already the
Fibonacci sequence shows us that there are more forms of recursion that occur
in practice:
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⎧
⎨

⎩

F (0) = 1
F (1) = 1
F (n+ 2) = F (n) + F (n+ 1)

The obvious generalization is a function, where each output depends on the
parameters and all the preceding outputs. This is called course of value re-
cursion.

Definition 7.1.12 For a given function f(y, �x) its ‘course of value’ function
f̄(y, �x) is given by

{
f̄(0, �x) = 1
f̄(y + 1, �x) = f̄(y · �x) · pf(y,�x)+1

y ,

Example: if f(0) = 1, f(1) = 0, f(2) = 7, then f̄(0) = 1, f̄(1) = 21+1, f̄(2) =
21+1 · 31, f̄(3) = 22 · 3 · 58 = 〈1, 0, 7〉.
Lemma 7.1.13 If f is primitive recursive, then so is f̄ .

Proof. Obvious. �

Since f̄(n+1) ‘codes’ so to speak all information on f up to the nth value,
we can use f̄ to formulate course-of-value recursion.

Theorem 7.1.14 If g is primitive recursive and f(y, �x) = g(f̄(y, �x), y, �x),
then f is primitive recursive.

Proof We first define f̄ .{
f̄(0, �x) = 1
f̄(y + 1, �x) = f̄(y, �x) ∗ 〈g(f̄(y, �x), y, �x)〉.

f̄ is obviously primitive recursive. Since f(y, �x) = (f̄(y + 1, �x))y we see that
f is primitive recursive. �

By now we have collected enough facts for future use about the primitive
recursive functions. We might ask if there are more algorithms than just the
primitive recursive functions. The answer turns out to be yes. Consider the
following construction: each primitive recursive function f is determined by
its definition, which consists of a string of functions f0, f1, . . . , fn−1 = f such
that each function is either an initial function, or obtained from earlier ones
by substitution or primitive recursion.

It is a matter of routine to code the whole definition into a natural number
such that all information can be effectively extracted from the code (see
[Hinman], p. 34). The construction shows that we may define a function F such
that F (x, y) = fx(y), where fx is the primitive recursive function with code x.
Now consider D(x) = F (x, x) + 1. Suppose that D is primitive recursive, so
D = fn for a certain n, but then D(n) = F (n, n) + 1 = fn(n) + 1 �= fn(n).
contradiction. It is clear, however, from the definition of D that it is effective,
so we have indicated how to get an effective function which is not primitive
recursive. The above result can also be given the following formulation: there
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is no binary primitive recursive function F (x, y) such that each unary prim-
itive function is F (n, y) for some n. In other words, the primitive functions
cannot be primitive recursively enumerated.

The argument is in fact completely general; suppose we have a class of
effective functions that can enumerate itself in the manner considered above,
then we can always “diagonalize out of the class” by the D function. We
call this ‘diagonalization’. The moral of this observation is that we have little
hope of obtaining all effective functions in an effective way. The diagonaliza-
tion technique goes back to Cantor, who introduced it to show that the reals
are not denumerable. In general he used diagonalization to show that the car-
dinality of a set is less than the cardinality of its power set.

Exercises

1. If h1 and h2 are primitive recursive, then so are f and g, where⎧
⎪⎪⎨

⎪⎪⎩

f(0) = a1

g(0) = a2

f(x+ 1) = h1(f(x), g(x), x)
g(x+ 1) = h2(f(x), g(x), x)

2. Show that the Fibonacci series is primitive recursive, where{
f(0) = f(1) = 1
f(x+ 2) = f(x) + f(x+ 1)

3. Let [a] denote the integer part of the real number a (i.e. the greatest integer
≤ a). Show that [ x

y+1 ], for natural numbers x and y, is primitive recursive.

4. Show that max(x, y) and min(x, y) are primitive recursive.

5. Show that the gcd (greatest commion divisor) and lcm (least common
multiple) are primitive recursive.

6. Cantor’s pairing function is given by P (x, y) = 1
2 ((x + y)2 + 3x + 2y).

Show that P is primitive recursive, and that P is a bijection of N
2 onto

N (Hint. Consider in the plane a walk along all lattice points as follows:
(0, 0) → (0, 1) → (1, 0) → (0, 2) → (1, 1) → (2, 0) → (0, 3) → (1, 2) →
. . .). Define the ‘inverses’ L and R such that P (L(z), R(z)) = z and show
that they are primitive recursive.

7. Show pn ≤ 22n

. For more about bounds on pn see Smoryński 1980.
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7.2 Partial Recursive Functions

Given the fact that the primitive recursive functions do not exhaust the nu-
merical algorithms, we extend in a natural way the class of effective functions.
As we have seen that an effective generation of all algorithms invariably brings
us in conflict with diagonalization, we will widen our scope by allowing partial
functions. In this way the conflicting situation D(n) = D(n) + 1 for a certain
n only tells us that D is not defined for n.

In the present context functions have natural domains, i.e. sets of the form
N
n(= {(m0, . . . ,mn−1) | mi ∈ N}, so called Cartesian products), a partial

function has a domain that is a subset of N
n. If the domain is all of N

n, then
we call the function total.

Example: f(x) = x2 is total, g(x) = µy[y2 = x] is partial and not total, (g(x)
is the square root of x if it exists).

The algorithms that we are going to introduce are called partial recur-
sive functions; perhaps recursive, partial functions would have been a better
name. However, the name has come to be generally accepted. The particular
technique for defining partial recursive functions that we employ here goes
back to Kleene. As before, we use an inductive definition; apart from clause
R7 below, we could have used a formulation almost identical to that of the
definition of the primitive recursive functions. Since we want a built-in uni-
versal function, that is a function that effectively enumerates the functions,
we have to employ a more refined technique that allows explicit reference to
the various algorithms. The trick is not esoteric at all, we simply give each
algorithm a code number, called its index. We fix these indices in advance so
that we can speak of the ‘algorithm with index e yields output y on input
(x0, . . . , xn−1)’, symbolically represented as {e}(x0, . . . , xn−1) ' y.

The heuristics of this ‘index applied to input’ is that an index is viewed as
a description of an abstract machine that operates on inputs of a fixed arity.
So {e}(�n) ' m must be read as ‘the machine with index e operates on �n and
yields output m’. It may very well be the case that the machine does not yield
an output, in that case we say that {e}(�n) diverges. If there is an output, we
say that {e}(�n) converges. That the abstract machine is an algorithm will
appear from the specification in the definition below.

Note that we do not know in advance that the result is a function, i.e. that
for each input there is at most one output. However plausible that is, it has to
be shown. Kleene has introduced the symbol ' for ‘equality’ in contexts where
terms may be undefined. This happens to be useful in the study of algorithms
that need not necessarily produce an output. The abstract machines above
may, for example, get into a computation that runs on forever. For example, it
might have an instruction of the form ‘the output at n is the successor of the
output at n+ 1’. It is easy to see that for no n an output can be obtained. In
this context the use of the existence predicate would be useful, and ' would
be the ≡ of the theory of partial objects (cf. Troelstra–van Dalen, 2.2). The
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convention ruling ' is: if t ' s then t and s are simultaneously defined and
identical, or they are simultaneously undefined.

Definition 7.2.1 The relation {e}(�x) ' y is inductively defined by

R1 {〈0, n, q〉}(m0, . . . ,mn−1) ' q
R2 {〈1, n, i〉}(m0, . . . ,mn−1) ' mi, for 0 ≤ i < n
R3 {〈2, n, i〉}(m0, . . . ,mn−1) ' mi + 1, for 0 ≤ i < n
R4 {〈3, n+ 4〉}(p, q, r, s,m0, . . . ,mn−1) ' p if r = s
{〈3, n+ 4〉}(p, q, r, s,m0, . . . ,mn−1) ' q if r �= s

R5 {〈4, n, b, c0, . . . , ck−1〉}(m0, . . . ,mn−1) ' p if there are q0, . . . , qk−1 such
that {ci}(m0, . . . ,mn−1) ' qi(0 ≤ i < k) and {b}(q0, . . . , qk−1) ' p

R6 {〈5, n+ 2〉}(p, q,m0, . . . ,mn−1) ' S1
n(p, q)

R7 {〈6, n+ 1〉}(b,m0, . . . ,mn−1) ' p if {b}(m0, . . . ,mn−1) ' p.

The function S1
n in R6 will be specified in the Smn theorem below.

Keeping the above reading of {e}(�x) in mind, we can paraphrase the
schema’s as follows:

R1 the machine with index 〈0, n, q〉 yields for input
(m0, . . . ,mn−1) output q (the constant function),

R2 the machine with index 〈1, n, i〉 yields for input �m out-
put mi (the projection function Pni ),

R3 the machine with index 〈2, n, i〉 yields for input �m out-
put mi+1 (the successor function on the ith argument),

R4 the machine with index 〈3, n + 4〉 tests the equality of
the third and fourth argument of the input and yields
the first argument in the case of equality, and the second
argument otherwise (the discriminator function),

R5 the machine with index 〈4, n, b, c0, . . . , ck−1〉 first sim-
ulates the machines with index c0, . . . , ck−1 with input
�m, then uses the output sequence (q0, . . . , qk−1) as input
and simulates the machine with index b (substitution),

R7 the machine with index 〈6, n+ 1〉 simulates for a given
input b,m0, . . . ,mn−1, the machine with index b and
input m0, . . . ,mn−1 (reflection).

Another way to view R7 is that it provides a universal machine for all
machines with n-argument inputs, that is to say, it accepts as an input the
indices of machines, and then simulates them. This is the kind of machine
required for the diagonalization process. If one thinks of idealized abstract
machines, then R7 is quite reasonable. One would expect that if indices can
be ‘deciphered’, a universal machine can be constructed. This was indeed ac-
complished by Alan Turing, who constructed (abstractly) a so-called universal
Turing machine.

The scrupulous might call R7 a case of cheating, since it does away with
all the hard work one has to do in order to obtain a universal machine, for
example in the case of Turing machines.



220 7 Gödel’s theorem

As {e}(�x) ' y is inductively defined, everything we proved about induc-
tively defined sets applies here. For example, if {e}(�x) ' y is the case, then
we know that there is a formation sequence (see page 9) for it. This sequence
specifies how {e} is built up from simpler partial recursive functions.
Note that we could also have viewed the above definition as an inductive
definition of the set of indices (of partial recursive functions).

Lemma 7.2.2 The relation {e}(�x) ' y is functional.

Proof. We have to show that {e} behaves as a function, that is {e}(�x) ' y,
{e}(�x) ' z ⇒ y = z. This is done by induction on the definition of {e}. We
leave the proof to the reader. �

The definition of {e}(�n) ' m has a computational content, it tells us what
to do. When presented with {e}(�n), we first look at e; if the first ‘entry’ of e
if 0, 1or2, then we compute the output via the corresponding initial function.
If the first ‘entry’ is 3, then we determine the output ‘by cases’. If the first
entry is 4, we first do the subcomputations indicated by {ci}(�m), then we use
the outputs to carry out the subcomputation for {b}(�n). And so on.

If R7 is used in such a computation, we are no longer guaranteed that it
will stop; indeed, we may run into a loop, as the following simple example
shows.

From R7 it follows, as we will see below, that there is an index e such that
{e}(x) = {x}(x). To compute {e} for the argument e we pass, according to
R7, to the right-hand side, i.e. we must compute {e}(e), since e was introduced
by R7, we must repeat the transitions to the right hand side, etc. Evidently
our procedure does not get us anywhere!
Conventions. The relation {e}(�x) ' y defines a function on a domain, which is
a subset of the ‘natural domain’, i.e. a set of the form N

n. Such functions are
called partial recursive functions; they are traditionally denoted by symbols
from the Greek alphabet, ϕ, ψ, σ, etc. If such a function is total on its natural
domain, it is called recursive, and denoted by a roman symbol, f, g, h, etc.
The use of the equality symbol ‘=’ is proper in the context of total functions.
In practice we will however, when no confusion arises, often use it instead of
‘'’ . The reader should take care not to confuse formulas and partial recursive
functions; it will always be clear from the context what a symbol stands for.
Sets and relations will be denoted by roman capitals. When no confusion can
arise, we will sometimes drop brackets, as in {e}x for {e}(x). Some authors
use a ‘bullet’ notation for partial recursive functions: e • �x. We will stick to
‘Kleene brackets’: {e}(�x).

The following terminology is traditionally used in recursion theory:

Definition 7.2.3 1. If for a partial function ϕ ∃y(ϕ(�x) = y), then we say
that ϕ converges at �x, otherwise ϕ diverges at �x.

2. If a partial function converges for all (proper) inputs, it is called total.
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3. A total partial recursive function (sic!) will be called a recursive function.
4. A set (relation) is called recursive if its characteristic function (which, by

definition, is total) is recursive.

Observe that it is an important feature of computations as defined in defini-
tion 7.2.1, that {e}(ψ0(�n), ψ1(�n), . . . , ψk−1(�n)) diverges if one of its arguments
ψi(�n) diverges. So, for example, the partial recursive function {e}(x)−{e}(x)
need not converge for all e and x, we first must know that {e}(x) converges!

This feature is sometimes inconvenient and slightly paradoxical, e.g. in
direct applications of the discriminator scheme R4, {〈3, 4〉}(ϕ(x), ψ(x), 0, 0) is
undefined when the (seemingly irrelevant) function ψ(x) is undefined.

With a bit of extra work, we can get an index for a partial recursive func-
tion that does definition by cases on partial recursive functions:

{e}(�x) =
{{e1}(�x) if g1(�x) = g2(�x)
{e2}(�x) if g1(�x) �= g2(�x)

for recursive g1, g2.
Define

ϕ(�x) =
{
e1 if g1(�x) = g2(�x)
e2 if g1(�x) �= g2(�x)

by ϕ(�x) = {〈3, 4〉}(e1, e2, g1(�x), g2(�x)). So {e}(�x) = {ψ(�x)}(�x) = [byR7]
{〈6, n+ 1〉}(ψ(�x), �x). Now use R5 (substitution) to get the required index.

Since the primitive recursive functions form such a natural class of algo-
rithms, it will be our first goal to show that they are included in the class of
recursive functions.

The following important theorem has a neat machine motivation. Consider
a machine with index e operating on two arguments x and y. Keeping x fixed,
we have a machine operating on y. So we get a sequence of machines, one for
each x. Does the index of each such machine depend in a decent way on x?
The plausible answer seems ‘yes’. The following theorem confirms this.

Theorem 7.2.4 (The Smn Theorem) For every m,n with 0 < m < n there
exists a primitive recursive function Smn such that

{Smn (e, x0, . . . , xm−1)}(xm, . . . , xn−1) = {e}(�x).
Proof. The first function, S1

n, occurs in R6, we have postponed the precise
definition, here it is:

S1
n(e, y) = 〈4, (e)1 .− 1, e, 〈0, (e)1 .− 1, y〉, 〈1, (e)1 .− 1, 0〉, . . . , 〈1, (e)1 .− 1, n .− 2〉〉.

Note that the arities are correct, {e} has one argument more than the con-
stant function and the projection functions involved.
Now {S1

n(e, y)}(�x) = z ⇔ there are q0 · · · qn−1 such that
{〈0, (e)1 .− 1, y〉}(�x) = q0
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{〈1, (e)1 .− 1, 0〉}(�x) = q1
. . . . . .

{〈1, (e)1 .− 1, n .− 2〉}(�x) = qn−1

{e}(q0, . . . , qn−1) = z.
By the clauses R1 and R2 we get q0 = y and qi+1 = xi (0 ≤ i ≤ n − 1), so
{S1

n(e, y)}(�x) = {e}(y, �x). Clearly, S1
n is primitive recursive.

The primitive recursive function Smn is obtained by applying S1
n m times.

From our definition it follows that Smn is also recursive. �

The Smn function allows us to consider some inputs as parameters, and
the rest as proper inputs. This is a routine consideration in everyday math-
ematics: ‘consider f(x, y) as a function of y’. The logical notation for this
specification of inputs makes use of the lambda operator. Say t(x, y, z) is a
term (in some language), then λx · t(x, y, z) is for each choice of y, z the func-
tion x "→ t(x, y, z). we say that y and z are parameters in this function. The
evaluation of these lambda terms is simple: λx · t(x, y, z)(n) = t(n, y, z). This
topic belongs to the so-called lambda-calculus, for us the notation is just a
convenient tool to express ourselves succinctly.

The Smn theorem expresses a uniformity property of the partial recursive
functions. It is obvious indeed that, say for a partial recursive function ϕ(x, y),
each individual ϕ(n, y) is partial recursive (substitute the constant n function
for x), but this does not yet show that the index of λy·ϕ(x, y) is in a systematic,
uniform way computable from the index of ϕ and x. By the Smn theorem, we
know that the index of {e}(x, y, z), considered as a function of, say, z depends
primitive recursively on x and y: {h(x, y)}(z) = {e}(x, y, z). We will see a
number of applications of the Smn theorem.

Next we will prove a powerful theorem about partial recursive functions,
that allows us to introduce partial recursive functions by inductive definitions,
or by implicit definitions. Partial recursive functions can by this theorem be
given as solutions of certain equations.

Example
ϕ(n) =

{
0 if n is a prime, or 0, or 1
ϕ(2n+ 1) + 1 otherwise.

Then ϕ(0) = ϕ(1) = ϕ(2) = ϕ(3) = 0, ϕ(4) = ϕ(9) + 1 = ϕ(19) + 2 = 2,
ϕ(5) = 0, and , e.g. ϕ(85) = 6. Prima facie, we cannot say much about such
a sequence. The following theorem of Kleene shows that we can always find a
partial recursive solution to such an equation for ϕ.

Theorem 7.2.5 (The Recursion Theorem) There exists a primitive re-
cursive function rc such that for each e and �x {rc(e)}(�x) = {e}(rc(e), �x).

Let us note first that the theorem indeed gives the solution r of the fol-
lowing equation: {r}(�x) = {e}(r, �x). Indeed the solution depends primitive
recursively on the given index e: {f(e)}(x) = {e}(f(e), x). If we are not inter-
ested in the (primitive recursive) dependence of the index of the solution on
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the old index, we may even be content with the solution of {f}(x) = {e}(f, x).

Proof. Let ϕ(m, e, �x) = {e}(S2
n+2(m,m, e), �x) and let p be an index of ϕ. Put

rc(e) = S2
n+2(p, p, e), then

{rc(e)}(�x) = {S2
n+2(p, p, e)}(�x) = {p}(p, e, �x) = ϕ(p, e, �x)

= {e}(S2
n+2(p, p, e), �x) = {e}(rc(e), �x).

�
As a special case we get the

Corollary 7.2.6 For each e there exists an n such that {n}(�x) = {e}(n, �x).
Corollary 7.2.7 If {e} is primitive recursive, then the solution of the equa-
tion {f(e)}(�x) = {e}(f(e), �x) given by the recursion theorem is also primitive
recursive.

Proof. Immediate from the explicit definition of the function rc. �

We will give a number of examples as soon as we have shown that we can
obtain all primitive recursive functions. For then we have an ample stock of
functions to experiment on. First we have to prove some more theorems.

The partial recursive functions are closed under a general form of min-
imalization, sometimes called unbounded search, which for a given recursive
function f(y, �x) and arguments �x runs through the values of y and looks for
the first one that makes f(y, �x) equal to zero.

Theorem 7.2.8 Let f be a recursive function, then ϕ(�x) = µy[f(y, �x) = 0]
is partial recursive.

Proof. The idea is to compute consecutively f(0, �x), f(1, �x), f(2, �x), . . . until
we find a value 0. This need not happen at all, but if it does, we will get
to it. While we are computing these values, we keep count of the number of
steps. This is taken care of by a recursive function. So we want a function
ψ with index e, operating on y and �x, that does the job for us, i.e. a ψ that
after computing a positive value for f(y, �x) moves on to the next input y and
adds a 1 to the counter. Since we have hardly any arithmetical tools at the
moment, the construction is rather roundabout and artificial.
In the table below we compute f(y, �x) step by step (the outputs are in the
third row), and in the last row we compute ψ(y, �x) backwards , as it were.

y 0 1 2 3 . . . k − 1 k
f(y, �x) f(0, �x) f(1, �x) f(2, �x) f(3, �x) . . . f(k − 1, �x) f(k, �x)

2 7 6 12 . . . 3 0
ψ(y, �x) k k − 1 k − 2 k − 3 . . . 1 0

ψ(0, �x) is the required k. The instruction for ψ is simple:

ψ(y, �x) =
{

0 if f(y, �x) = 0
ψ(y + 1, �x) + 1 else
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In order to find an index for ψ, put ψ(y, �x) = {e}(y, �x) and look for a value
for e. We introduce two auxiliary functions ψ1 and ψ2 with indices b and c such
that ψ1(e, y, �x) = 0 and ψ2(e, y, �x) = ψ(y + 1, �x) + 1 = {e}(y + 1, �x) + 1. The
index c follows easily by applying R3, R7 and the Smn -theorem. If f(y, �x) = 0
then we consider ψ1, if not, ψ2. Now we introduce, by clause R4, a new function
χ0 which computes an index:

χ0(e, y, �x) =
{
b if f(y, �x) = 0
c else

and we put χ(e, y, �x) = {χ0(e, y, �x)}(e, y, �x). The recursion theorem provides
us with an index e0 such that χ(e0, y, �x) = {e0}(y, �x).

We claim that {e0}(0, �x) yields the desired value k, if it exists at all, i.e.
e0 is the index of the ψ we were looking for, and ϕ(�x) = {e}(o, �x).
If f(y, �x) �= 0 then χ(e0, y, �x) = {c}(e0, y, �x) = ψ2(e0, y, �x) = ψ(y + 1, �x) + 1,
and if f(y, �x) = 0 then χ(e0, y, �x) = {b}(e0, y, �x) = 0.

If, on the other hand, k is the first value y such that f(y, �x) = 0, then
ψ(0, �x) = ψ(1, �x) + 1 = ψ(2, �x) + 2 = · · · = ψ(y0, �x) + y0 = k. �

Note that the given function need not be recursive, and that the above
argument also works for partial recursive f . We then have to reformulate
µy[f(x, �y) = 0] as the y such that f(y, �x) = 0 and for all z < y f(z, �x) is
defined and positive.

Lemma 7.2.9 The predecessor is recursive.

Proof. Define

x .− 1 =
{

0 if x = 0
µy[y + 1 = x] else

where µy[y + 1 = x] = µy[f(y, x) = 0] with

f(y, x) =
{

0 if y + 1 = x
1 else �

Theorem 7.2.10 The recursive functions are closed under primitive recur-
sion.

Proof. Let g and h be recursive, and let f be given by
{
f(0, �x) = g(�x)
f(y + 1, �x) = h(f(y, �x), �x, y).

We rewrite the schema as

f(y, �x) =
{
g(�x) if y = 0
h(f(y .− 1, �x), �x, y .− 1) otherwise.

On the right hand side we have a definition by cases. So, it defines a partial
recursive function with index, say, a of y, �x and the index e of the function
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f we are looking for. This yields an equation {e}(y, �x) = {a}(y, �x, e). By the
recursion theorem the equation has a solution e0. And an easy induction on
y shows that {e0} is total, so f is a recursive function. �

We now get the obligatory

Corollary 7.2.11 All primitive recursive functions are recursive.

Now that we have recovered the primitive recursive functions, we can get
lots of partial recursive functions.
Examples

1. define ϕ(x) = {e}(x) + {f}(x), then by 7.2.11 and R5 ϕ is partial recur-
sive and we would like to express the index of ϕ as a function of e and f .
Consider ψ(e, f, x) = {e}(x) + {f}(x). ψ is partial recursive, so it has an
index n, i.e. {n}(e, f, x) = {e}(x) + {f}(x). By the Smn theorem there is
a primitive recursive function h such that {n}(e, f, x) = {h(n, e, f)}(x).
Therefore, g(e, f) = h(n, e, f) is the required function.

2. There is a partial recursive function ϕ such that ϕ(n) = (ϕ(n + 1) + 1)2:
Consider {z}(n) = {e}(z, n) = ({z}(n+1)+1)2. By the recursion theorem
there is a solution rc(e) for z, hence ϕ exists. A simple argument shows
that ϕ cannot be defined for any n, so the solution is the empty function
(the machine that never gives an output).

3. The Ackermann function, see [Smorynski 1991], p.70 . Consider the fol-
lowing sequence of functions.

ϕ0(m,n) = n+m
ϕ1(m,n) = n ·m
ϕ2(m,n) = nm

...{
ϕk+1(0, n) = n
ϕk+1(m+ 1, n) = ϕk(ϕk+1(m,n), n) (k ≥ 2)

This sequence consists of faster and faster growing functions. We can lump
all those functions together in one function

ϕ(k,m, n) = ϕk(m,n).

The above equations can be summarised
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(0,m, n) = n+m

ϕ(k + 1, 0, n) =

⎧
⎨

⎩

0 if k = 0
1 if k = 1
n else

ϕ(k + 1,m+ 1, n) = ϕ(k, ϕ(k + 1,m, n), n).
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Note that the second equation has to distinguish cases according to the
ϕk+1 being the multiplication, exponentiation, or the general case (k ≥ 2).
Using the fact that all primitive recursive functions are recursive, we
rewrite the three cases into one equation of the form {e}(k,m, n) =
f(e, k,m, n) for a suitable recursive f (exercise 3). Hence, by the recursion
theorem there exists a recursive function with index e that satisfies the
equations above. Ackermann has shown that the function ϕ(n, n, n) grows
eventually faster than any primitive recursive function.

4. The recursion theorem can also be used for inductive definitions of sets
or relations; this is seen by changing over to characteristic functions, e.g.
suppose we want a relation R(x, y) such that

R(x, y)⇔ (x = 0 ∧ y �= 0) ∨ (x �= 0 ∧ y �= 0) ∧R(x
.− 1, y

.− 1)).

Then we write

KR(x, y) = sg(sg(x) · sg(y) + sg(x) · sg(y) ·KR(x
.− 1, y

.− 1)),

so there is an e such that

KR(x, y) = {e}(KR(x
.− 1, y

.− 1), x, y).

Now suppose KR has index z then we have

{z}(x, y) = {e′}(z, x, y).
The solution {n} as provided by the recursion theorem is the required
characteristic function. One immediately sees that R is the relation ‘less
than’. Therefore {n} is total, and hence recursive; this shows that R is
also recursive.Note that by the remark following the recursion theorem we
even get the primitive recursiveness of R.

The following fundamental theorem is extremely useful for many appli-
cations. Its theoretical importance is that it shows that all partial recursive
functions can be obtained from a primitive recursive relation by one minimal-
ization.

So minimalization is the missing link between primitive recursive and (par-
tial) recursive.

Theorem 7.2.12 (Normal Form Theorem). There is a primitive recursive
predicate T such that {e}(�x) = ((µz)T (e, 〈�x〉, z))1.
Proof. Our heuristics for partial recursive functions was based on the machine
metaphor: think of an abstract machine with actions prescribed by the clauses
R1 through R7. By retracing the index e of such a machine, we more or less
give a computation procedure. It now is a clerical task to specify all the steps
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involved in such a ‘computation’. Once we have accomplished this, we have
made our notion of ‘computation’ precise, and from the form of the specifica-
tion, we can immediately conclude that “c is the code of a computation” is
indeed primitive recursive. We look for a predicate T (e, u, z) that formalizes
the heuristic statement ‘z is a (coded) computation that is performed by a
partial recursive function with index e on input u’ (i.e. 〈�x〉). The ‘compu-
tation’ has been arranged in such a way that the first projection of z is its
output.

The proof is a matter of clerical perseverance—not difficult, but not excit-
ing either. For the reader it is better to work out a few cases by himself and
to leave the rest, than to spell out the following details.

First two examples.
(1) The successor function applied to (1, 2, 3):
S3

1(1, 2, 3) = 2 + 1 = 3. Warning, here S3
1 is used for the successor function

operating on the second item of the input string of length 3. The notation
only used here.
The index is e = 〈2, 3, 1〉, the input is u = 〈1, 2, 3〉, and the step is the direct
computation z = 〈3, 〈1, 2, 3〉, 〈2, 3, 1〉〉 = 〈3, u, e〉

(2) The composition of projection and constant functions.
P 3

2 (C2
0 (7, 0), 5, 1) = 1.

By R5 the input of this function has to be a string of numbers, so we have
to introduce a suitable input. The simplest solution is to use (7,0) as in-
put and manufacture the remaining 5 and 1 out of them. So let us put
P 3

2 (C2
0 (7, 0), 5, 1) = P 3

2 (C2
0 (7, 0), C2

5 (7, 0), C2
1 (7, 0)).

In order to keep the notation readable, we will use variables instead of the
numerical inputs.
ϕ(y0, y1) = P 3

2 (C2
0 (y0, y1), C2

5 (y0, y1), C2
1 (y0, y1)) = P 3

2 (C2
0 (y0, y1), x1, x2).

Let us first write down the data for the component functions:

index input step
C2

0 〈0, 2, 0〉 = e0 〈y0, y1〉 = u 〈0, u, e0〉 = z0
C2
x1
〈0, 2, x1〉 = e1 〈y0, y1〉 = u 〈x1, u, e1〉 = z1

C2
x2
〈0, 2, x2〉 = e2 〈y0, y1〉 = u 〈x2, u, e2〉 = z2

P 3
2 〈1, 3, 2〉 = e3 〈0, x1, x2〉 = u′ 〈x2, u

′, e3〉 = z3

Now for the composition:

index input step
f(y0, y1) 〈4, 2, e3, e0, e1, e2〉 = e 〈y0, y1〉 = u 〈x2, 〈y0, y1〉, e, z3, 〈z0, z1, z2〉〉 = z

As we see in this example, ‘step’ means the last step in the chain of steps
that leads to the output. Now for an actual computation on numerical inputs,
all one has to do is to replace y0, y1, x1, x2 by numbers and write out the data
for ϕ(y0, y1).
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We have tried to arrange the proof in a readable manner by providing a
running commentary.

The ingredients for, and conditions on, computations are displayed below.
The index contains the information given in the clauses Ri. The computation
codes the following items:

(1) the output (3) the index
(2) the input (4) subcomputations.

Note that z in the table below is the ‘master number’, i.e. we can read
off the remaining data from z, e.g. e = (z)2, lth(u) = (e)1 = (z)2,1, and
the output (if any) of the computation, (z)0. In particular we can extract
the ‘master numbers’ of the subcomputations. So, by decoding the code for a
computation, we can effectively find the codes for the subcomputations, etc.
This suggests a primitive recursive algorithm for the extraction of the total
‘history’ of a computation from its code. As a matter of fact, that is essentially
the content of the normal form theorem.

Index Input Step Conditions on
Subcomputations

e u z

R1 〈0, n, q〉 〈�x〉 〈q, u, e〉
R2 〈1, n, i〉 〈�x〉 〈xi, u, e〉
R3 〈2, n, i〉 〈�x〉 〈xi + 1, u, e〉
R4 〈3, n+ 4〉 〈p, q, r, s, �x〉 〈p, u, e〉 if r = s

〈q, u, e〉 if r �= s

R5 〈4, n, b, c0, . . . , ck−1〉 〈�x〉 〈(z′)0, u, e, z′, z′, z′′0 , . . . , z
′′
k−1 are

〈z′′0 , . . . , z′′k−1〉〉 computations with
indices b, c0, . . . , ck−1.
z′ has input
〈(z′′0 )0, . . . , (z

′′
k−1)0〉.

R6 〈5, n+ 2〉 〈p, q, �x〉 〈s, u, e〉 (cf. 7.2.4)

R7 〈6, n+ 1〉 〈b, �x〉 〈(z′)0, u, e, z′〉 z′ is a computation
with input 〈�x〉
and index b.

We will now proceed in a (slightly) more formal manner, by defining a
predicate C(z) (for z is a computation), using the information of the preceding
table. For convenience, we assume that in the clauses below, sequences u (in
Seq(u)) have positive length.

C(z) is defined by cases as follows:
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C(z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃q, u, e < z[z = 〈q, u, e〉 ∧ Seq(u) ∧ e = 〈0, lth(u), q〉] (1)
or
∃u, e, i < z[z = 〈(u)i, u, e〉 ∧ Seq(u) ∧ e = 〈1, lth(u), i〉] (2)
or
∃u, e, i < z[z = 〈(u)i + 1, u, e〉 ∧ Seq(u) ∧ e = 〈2, lth(u), i〉] (3)
or
∃u, e < z[Seq(u) ∧ e = 〈3, lth(u)〉 ∧ lth(u) > 4 ∧ ([z = 〈(u)0, u, e〉∧

∧(u)2 = (u)3] ∨ [z = 〈(u)1, u, e〉 ∧ (u)2neq(u)3])] (4)
or
Seq(z) ∧ lth(z) = 5 ∧ Seq((z)2) ∧ Seq((z)4) ∧ lth((z)2) =

= 3 + l th((z)4) ∧ (z)2,0 = 4 ∧ C((z)3) ∧ (z)3,0 = (z)0 ∧ (z)3,1 =
= 〈(z)4,0,0, . . . , (z)4,lth((z)4),0〉 ∧ (z)3,2 = (z)2,2∧
∧∧lth((z)4)−1

i=0 [C((z)4,i) ∧ (z)4,i,2 = (z)0,2+i ∧ (z)4,i,1 = (z)1] (5)
or
∃s, u, e < z[z = 〈s, u, e〉 ∧ Seq(u) ∧ e = 〈5, lth(u)〉∧
s = 〈4, (u)0,1

.− 1, (u)0, 〈0, (u)0,1
.− 1, (u)1〉, 〈1, (u)0,1

.− 1, 0〉, . . .
. . . , 〈1, (u)0,1

.− 1, (e)1
.− 2〉〉], (6)

or
∃u, e, w < z[Seq(u) ∧ e = 〈6, lth(y)〉 ∧ z = 〈(w)0, u, e, w〉 ∧ C(w)∧

∧(w)2 = (u)0 ∧ (w)1 = 〈(u)1, . . . , (u)lth(u)−1〉] (7)

We observe that the predicate C occurs at the right hand side only for
smaller arguments, furthermore all operations involved in this definition of
C(z) are primitive recursive. We now apply the recursion theorem, as in the
example on page 4, and conclude that C(z) is primitive recursive.

Now we put T (e, �x, z) := C(z) ∧ e = (z)2 ∧ 〈�x〉 = (z)1. So the pred-
icate T (e, �x, z) formalizes the statement ‘z is the computation of the par-
tial recursive function (machine) with index e operating on input 〈�x〉’. The
output of the computation, if it exists, is U(z) = (z)0; hence we have
{e}(�x) = (µzT (e, �x, z))0

For applications the precise structure of T is not important, it is good
enough to know that it is primitive recursive. �

Exercises

1. Show that the empty function (that is the function that diverges for all
inputs) is partial recursive. Indicate an index for the empty function.

2. Show that each partial recursive function has infinitely many indices.
3. Carry out the conversion of the three equations of the Ackermann function

into one function, see p.225.
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7.3 Recursively enumerable sets

If a set A has a recursive characteristic function, then this function acts as
an effective test for membership. We can decide which elements are in A and
which not. Decidable sets, convenient as they are, demand too much; it is
usually not necessary to decide what is in a set, as long as we can generate it
effectively. Equivalently, as we shall see, it is good enough to have an abstract
machine that only accepts elements, and does not reject them. If you feed it
an element, it may eventually show a green light of acceptance, but there is
no red light for rejection.

Definition 7.3.1 1. A set (relation) is (recursively) decidable if it is recur-
sive.

2. A set is recursively enumerable (RE) if it is the domain of a partial re-
cursive function.

3. W k
e = {�x ∈ N

k|∃y({e}(�x) = y}, i.e. the domain of the partial recursive
function {e}. We call e the RE index of W k

e . If no confusion arises we
will delete the superscript.

Notation: we write ϕ(�x) ↓ (resp. ϕ(�x) ↑) for ϕ(�x) converges (resp. ϕ(�x) di-
verges).

It is good heuristics to think of RE sets as being accepted by machines,
e.g. if Ai is accepted by machine Mi(i = 0, 1), then we make a new machine
that simulates M0 and M1 simultaneously, e.g. you feed M0 and M1 an input,
and carry out the computation alternatingly – one step for M0 and then one
step for M1, and so n is accepted by M if it is accepted by M0 or M1. Hence
the union of two RE sets is also RE.

Example 7.3.2 1. N = the domain of the constant 1 function.
2. ∅ = the domain of the empty function. This function is partial recursive,

as we have already seen.
3. Every recursive set is RE. Let A be recursive, put

ψ(�x) = µy[KA(�x) = y ∧ y �= 0]

Then Dom(ψ) = A.

The recursively enumerable sets derive their importance from the fact that
they are effectively given, in the precise sense of the following theorem. Fur-
thermore it is the case that the majority of important relations (sets) in logic
are RE. For example the set of (codes of) provable sentences of arithmetic or
predicate logic is RE. The RE sets represent the first step beyond the decid-
able sets, as we will show below.
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Theorem 7.3.3 The following statements are equivalent, (A ⊆ N):

1. A = Dom(ϕ) for some partial recursive ϕ,
2. A = Ran(ϕ) for some partial recursive ϕ,
3. A = {x|∃yR(x, y)} for some recursive R.

Proof. (1)⇒ (2). Define ψ(x) = x·sg(ϕ(x)+1). If x ∈ Dom(ϕ), then ψ(x) = x,
so x ∈ Ran(ψ), and if x ∈ Ran(ψ), then ϕ(x) ↓, so x ∈ Dom(ϕ).

(2) ⇒ (3) Let A = Ran(ϕ), with {g} = ϕ, then

x ∈ A⇔ ∃w[T (g, (w)0, (w)1) ∧ x = (w)1,0].

The relation in the scope of the quantifier is recursive.
Note that w ‘simulates’ a pair: first co-ordinate—input, second co-ordinate—
computation, all in the sense of the normal form theorem.

(3)⇒ (1) Define ϕ(x) = µyR(x, y). ϕ is partial recursive andDom(ϕ) = A.
Observe that (1) ⇒ (3) also holds for A ⊆ N

k. �

Since we have defined recursive sets by means of characteristic functions,
and since we have established closure under primitive recursion, we can copy
all the closure properties of primitive recursive sets (and relations) for the
recursive sets (and relations).

Next we list a number of closure properties of RE-sets. We will write sets
and relations also as predicates, when that turns out to be convenient.

Theorem 7.3.4 1. If A and B are RE, then so are A ∪B and A ∩B
2. If R(x, �y) is RE, then so is ∃xR(x, �y)
3. If R(x, �y) is RE and ϕ partial recursive, then R(ϕ(�y, �z), �y) is RE
4. If R(x, �y) is RE, then so are ∀x < zR(x, �y) and ∃x < zR(x, �y).

Proof. (1) There are recursive R and S such that
A�y ⇔ ∃xR(x, �y),
B�y ⇔ ∃xS(x, �y).

Then A�y ∧B�y ⇔ ∃x1x2(R(x1, �y) ∧ S(x2, �y))
⇔ ∃z(R((z)0, �y) ∧ S((z)1, �y)).

The relation in the scope of the quantifier is recursive, so A ∩ B is RE. A
similar argument establishes the recursive enumerability of A ∪B. The trick
of replacing x1 and x2 by (z)0 and (z)1 and ∃x1x2 by ∃z is called contraction
of quantifiers.
(2) Let R(x, �y) ⇔ ∃zS(z, x, �y) for a recursive S, then ∃xR(x, �y) ⇔
∃x∃zS(z, x, �y)⇔ ∃uS((u)0, (u)1, �y). So the projection ∃xR(x, �y) of R is RE.
Geometrically speaking, ∃xR(x, �y) is indeed a projection. Consider the two-
dimensional case,
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�

�

�

�

R

S

The vertical projection S of R is given by Sx⇔ ∃yR(x, y).
(3) Let R be the domain of a partial recursive ψ, then R(ϕ(�y, �z), �y) is the
domain of ψ(ϕ(�y, �z), �y).
(4) Left to the reader. �
Theorem 7.3.5 The graph of a partial function is RE iff the function is
partial recursive.

Proof. G = {(�x, y)|y = {e}(�x)} is the graph of {e}. Now (�x, y) ∈ G ⇔
∃z(T (e, 〈�x〉, z) ∧ y = (z)0), so G is RE.
Conversely, if G is RE, then G(�x, y) ⇔ ∃zR(�x, y, z) for some recursive R.
Hence ϕ(�x) = (µwR(�x, (w)0, (w)1))0, so ϕ is partial recursive. �

We can also characterize recursive sets in terms of RE-sets. Suppose both
A and its complement Ac are RE, then (heuristically) we have two machines
enumerating A and Ac. Now the test for membership of A is simple: turn
both machines on and wait for n to turn up as output of the first or second
machine. This must necessarily occur in finitely many steps since n ∈ A or
n ∈ Ac (principle of the excluded third!). Hence, we have an effective test. We
formalize the above:

Theorem 7.3.6 A is recursive ⇔ A and Ac are RE.

Proof. ⇒ is trivial: A(�x) ⇔ ∃yA(�x), where y is a dummy variable. Similarly
for Ac.
⇐ Let A(�x)) ⇔ ∃yR(�x, y),¬A(�x) ⇔ ∃zS(v, z). Since ∀�x(A(�x) ∨ ¬A(�x)), we
have ∀�x∃y(R(�x, y) ∨ S(�x, y)), so f(�x) = µy[R(�x, y) ∨ S(�x, y)] is recursive and
if we plug the y that we found in R(�x, y), then we know that if R(�x, f(�x)) is
true, the �x belongs to A. So A(�x) ⇔ R(�x, f(�x)), i.e. A is recursive. �

For partial recursive functions we have a strong form of definition by cases:

Theorem 7.3.7 Let ψ1, . . . , ψk be partial recursive, R0, . . . , Rk−1 mutually
disjoint RE-relations, then the following function is partial recursive:

ϕ(�x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ0(�x) if R0(�x)
ψ1(�x) if R1(�x)

...
ψk−1(�x) if Rk−1(�x)
↑ else
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Proof. We consider the graph of the function ϕ.

G(�x, y)⇔ (R0(�x) ∧ y = ψ1(�x)) ∨ · · · ∨ (Rk−1(�x) ∧ y = ψk−1(�x)).

By the properties of RE-sets, G(�x, y) is RE and, hence, ϕ(�x) is partial recur-
sive. (Note that the last case in the definition of ϕ is just a bit of decoration).�

Now we can show the existence of undecidable RE sets.

Examples

(1) (The Halting Problem (Turing))
Consider K = {x|∃zT (x, x, z)}. K is the projection of a recursive relation, so
it is RE. Suppose that Kc is also RE, then x ∈ Kc ⇔ ∃zT (e, x, z) for some
index e. Now e ∈ K ⇔ ∃zT (e, e, z)⇔ e ∈ Kc. Contradiction. Hence K is not
recursive by theorem 7.3.6. This tells us that there are recursively enumerable
sets which are not recursive. In other words, the fact that one can effectively
enumerate a set, does not guarantee that it is decidable.

The decision problem for K is called the halting problem, because it can be
paraphrased as ‘decide if the machine with index x performs a computation
that halts after a finite number of steps when presented with x as input. Note
that it is ipso facto undecidable if ‘the machine with index x eventually halts
on input y’.
It is a characteristic feature of decision problems in recursion theory, that they
concern tests for inputs out of some domain. It does not make sense to ask
for a decision procedure for, say, the Riemann hypothesis, since there trivially
is a recursive function f that tests the problem in the sense that f(0) = 0
if the Riemann hypothesis holds and f(0) = 1 if the Riemann hypothesis is
false. Namely, consider the functions f0 and f1, which are the constant 0 and
1 functions respectively. Now logic tells us that one of the two is the required
function (this is the law of the excluded middle), unfortunately we do not
know which function it is. So for single problems (i.e. problems without a
parameter), it does not make sense in the framework of recursion theory to
discuss decidability. As we have seen, intuitionistic logic sees this ‘pathological
example’ in a different light.

(2) It is not decidable if {x} is a total function.
Suppose it were decidable, then we would have a recursive function f such
that f(x) = 0 ⇔ {x} is total. Now consider

ϕ(x, y) :=
{

0 if x ∈ K
↑ else

By the Smn theorem there is a recursive h such that {h(x)}(y) = ϕ(x, y). Now
{h(x)} is total ⇔ x ∈ K, so f(h(x)) = 0 ⇔ x ∈ K, i.e. we have a recur-
sive characteristic function sg(f(h(x))) for K. Contradiction. Hence such an
f does not exist, that is {x|{x} is total} is not recursive.
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(3) The problem ‘We is finite’ is not recursively solvable.
In words, ‘it is not decidable whether a recursively enumerable set is finite’.
Suppose that there was a recursive function f such that f(e) = 0⇔We is fi-
nite. Consider the h(x) defined in example (2). ClearlyWh(x) = Dom{h(x)} =
∅ ⇔ x �∈ K, and Wh(x) is infinite for x ∈ K. f(h(x)) = 0 ⇔ x �∈ K, and hence
sg(f(h(x))) is a recursive characteristic function for K. Contradiction.

Note that x ∈ K ⇔ {x}x ↓, so we can reformulate the above solutions as
follows: in (2) take ϕ(x, y) = 0 · {x}(x) and in (3) ϕ(x, y) = {x}(x).

(4) The equality of RE sets is undecidable.
That is, {(x, y)|Wx = Wy} is not recursive. We reduce the problem to the
solution of (3) by choosing Wy = ∅.

(5) It is not decidable if We is recursive.
Put ϕ(x, y) = {x}(x) · {y}(y), then ϕ(x, y) = {h(x)}(y) for a certain recursive
h, and

Dom{h(x)} =
{
K if x ∈ K
∅ otherwise.

Suppose there were a recursive function f such that f(x) = 0 ⇔ Wx is
recursive, then f(h(x)) = 0 ⇔ x �∈ K and, hence, K would be recursive.
Contradiction.

There are several more techniques for establishing undecidability. We will
treat here the method of inseparability.

Definition 7.3.8 Two disjoint RE-setsWm and Wn are recursively separable
if there is a recursive set A such that Wn ⊆ A and Wm ⊆ Ac. Disjoint sets
A and B are effectively inseparable if there is a partial recursive ϕ such that
for every m,n with A ⊆ Wm, B ⊆ Wn,Wm ∩Wn = ∅ we have ϕ(m,n) ↓ and
ϕ(m,n) �∈ Wm ∪Wn.
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We immediately see that effectively inseparable RE sets are recursively
inseparable, i.e. not recursively separable.
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Theorem 7.3.9 There exist effectively inseparable RE sets.

Proof. Define A = {x|{x}(x) = 0}, B = {x|{x}(x) = 1}. Clearly A ∩ B = ∅
and both sets are RE.

Let Wm ∩Wn = ∅ and A ⊆ Wm, B ⊂ Wn. To define ϕ we start testing
x ∈ Wm or x ∈Wn; if we first find x ∈ Wm, we put an auxiliary function σ(x)
equal to 1, if x turns up first in Wn then we put σ(x) = 0.
Formally

σ(m,n, x) =

⎧
⎨

⎩

1 if ∃z(T (m,x, z) and ∀y < z¬T (n, x, y))
0 if ∃z(T (n, x, z) and ∀y ≤ z¬T (m,x, y))
↑ else.

By the Smn theorem {h(m,n)}(x) = σ(m,n, x) for some recursive h.
h(m,n) ∈ Wm ⇒ h(m,n) �∈Wn. So ∃z(T (m,h(m,n), z) ∧

∀y < z¬T (n, h(m,n), y))
⇒ σ(m,n, h(m,n)) = 1 ⇒ {h(m,n)}(h(m,n)) = 1
⇒ h(m,n) ∈ B ⇒ h(m,n) ∈Wn.

Contradiction. Hence h(m,n) �∈ Wm. Similarly h(m,n) �∈ Wn. Thus h is the
required ϕ. �

Definition 7.3.10 A subset A of N is productive if there is a partial recursive
function ϕ, such that for each Wn ⊆ A, ϕ(n) ↓ and ϕ(n) ∈ A−Wn.

�

�

�

�

�

�

�

�
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�

�


Wn

ϕ(n)�

The theorem above gives us the following

Corollary 7.3.11 There are productive sets.

Proof. The set Ac defined in the above proof is productive. Let Wk ⊆ Ac.
Put W	 = B ∪Wk = Wn ∪Wk = Wh(n,k) for a suitable recursive function h.
Now apply the separating function from the proof of the preceding theorem
to A = Wm and Wh(n,k)): ϕ(m,h(n, k)) ∈ Ac −Wm. �

Productive sets are in a strong sense not RE: no matter how one tries to
fit an RE set into them, one can uniformly and effectively indicate a point
that is missed by this RE set.
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Exercises

1. The projection of an RE set is RE, i.e. if R(�x, y) is RE then so is ∃yR(�x, y).
2. (i) If A is enumerated by a strictly monotone function, then A is recursive.

(ii) If A is infinite and recursive, then A is enumerated by a strictly in-
creasing recursive function. (iii) An infinite RE set contains an infinite
recursive subset.

3. Every non-empty RE set is enumerated by a total recursive function.
4. If A is an RE set and f a partially recursive function, then f−1(A)(=
{x|f(x) ∈ A}) and f(A) are RE.

5. Show that the following are not recursive
(i) {(x, y)|Wx = Wy}
(ii) {x|Wx is recursive}
(iii) {x|0 ∈ Wx}

7.4 Some arithmetic

In the section on recursive functions we have been working in the standard
model of arithmetic; as we are now dealing with provability in arithmetic we
have to avoid semantical arguments. and to rely solely on derivations inside
the formal system of arithmetic. The generally accepted theory for arithmetic
goes back to Peano, and thus we speak of Peano arithmetic, PA (cf. 2.7)

A major issue in the late 1920s was the completeness of PA. Gödel put
an end to prevailing high hopes of the day by showing that PA is incomplete
(1931). In order to carry out the necessary steps for Gödel’s proof, we have
to prove a number of theorems in PA. Most of these facts can be found in
texts on number theory, or on the foundation of arithmetic. We will leave a
considerable number of proofs to the reader. Most of the time one has to apply
a suitable form of induction. Important as the actual proofs are, the heart of
Gödel’s argument lies in his ingenious incorporation of recursion theoretic
arguments inside PA.

One of the obvious stumbling blocks for a straightforward imitation of ‘self-
reference’ is the apparent poverty of the language of PA. It does not allow us
to speak of, e.g., a finite string of numbers. Once we have exponentiation we
can simply code finite sequences of numbers. Gödel showed that one can indeed
define the exponential (and much more) at the cost of some extra arithmetic,
yielding his famous β-function. In 1971 Matiyashevich showed by other means
that the exponential is definable in PA, thus enabling us to handle coding of
sequences in PA directly. Peano arithmetic plus exponentiation is prima facie
stronger than PA, but the above mentioned results show that exponentiation
can be eliminated. Let us call the extended system PA; no confusion will
arise.

We repeat the axioms:

– ∀x(S(x) �= 0),
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– ∀xy(S(x) = S(y)→ x = y),
– ∀x(x+ 0 = x),
– ∀xy(x+ S(y) = S(x+ y)),
– ∀x(x · 0 = 0),
– ∀xy(x · S(y) = x · y + x),
– ∀x(x0 = 1),
– ∀xy(xSy = xy · x),
– ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x))) → ∀xϕ(x).

Since � 1 = S(0), we will use both S(x) and x + 1, whichever is convenient.
We will also use the usual abbreviations. In order to simplify the notation,
we will tacitly drop the ‘PA’ in front of ‘�’ whenever possible. As another
harmless simplification of notation we will often simply write n for n when no
confusion arises.

In the following we will give a number of theorems of PA; in order to
improve the readability, we will drop the universal quantifiers preceding the
formulas. The reader should always think of ‘the universal closure of . . . ’.

Furthermore we will use the standard abbreviations of algebra, i.e. leave
out the multiplication dot, superfluous brackets, etc., when no confusion arises.
We will also write ‘n’ instead of ‘n’.

The basic operations satisfy the well-known laws:

Lemma 7.4.1 . Addition and multiplication are associative and commuta-
tive, and · distributes over +.

(i) � (x+ y) + z = x+ (y + z)
(ii) � x+ y = y + x
(iii) � x(yz) = (xy)z
(iv) � xy = yx
(v) � x(y + z) = xy + xz
(vi) � xy+z = xyxz

(vii) � (xy)z = xyz

1 . Routine. �

Lemma 7.4.2 (i) � x = 0 ∨ ∃y(x = Sy)
(ii) � x+ z = y + z → x = y
(iii) � z �= 0→ (xz = yz → x = y)
(iv) � x �= 0→ (xy = xz → y = z)
(v) � y �= 0 → (xy = zy → x = z)

Proof. Routine. �
A number of useful facts is listed in the exercises.

Although the language of PA is modest, many of the usual relations and
functions can be defined. The ordering is an important example.
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Definition 7.4.3 x < y := ∃z(x+ Sz = y)

We will use the following abbreviations:
x < y < z stands for x < y ∧ y < z
∀x < yϕ(x) , , ∀x(x < y → ϕ(x)
∃x < yϕ(x) , , ∃x(x < y ∧ ϕ(x)
x > y , , y < x
x ≤ y , , x < y ∨ x = y.

Theorem 7.4.4 (i) � ¬x < x
(ii) � x < y ∧ y < z → x < z
(iii) � x < y ∨ x = y ∨ y < x
(iv) � 0 = x ∨ 0 < x
(v) � x < y → Sx = y ∨ Sx < y
(vi) � x < Sx
(vii) � ¬x < y ∧ y < Sx
(viii) � x < Sy ↔ (x = y ∨ x < y)
(ix) � x < y ↔ x+ z < y + z
(x) � z �= 0→ (x < y ↔ xz < yz)
(xi) � x �= 0→ (0 < y < z → xy < xz)
(xii) � z �= 0→ (x < y → xz < yz)
(xiii) � x < y ↔ Sx < Sy

Proof: routine. �

Quantification with an explicit bound can be replaced by a repeated dis-
junction or conjunction.

Theorem 7.4.5 � ∀x < nϕ(x) ↔ ϕ(0) ∧ . . . ∧ ϕ(n− 1), (n > 0),
� ∃x < nϕ(x) ↔ ϕ(0) ∨ . . . ∨ ϕ(n− 1), (n > 0)

Proof. Induction on n. �
Theorem 7.4.6 (i) well-founded induction

� ∀x(∀y < x ϕ(y) → ϕ(x)) → ∀xϕ(x)
(ii) least number principle (LNP)

� ∃xϕ(x) → ∃x(ϕ(x) ∧ ∀y < x¬ϕ(y)))

Proof: (i) Let us put ψ(x) := ∀y < xϕ(y). We assume ∀x(ψ(x) → ϕ(x)) and
proceed to apply induction on ψ(x).
Clearly � ψ(0).
So let by induction hypothesis ψ(x).
Now ψ(Sx) ↔ [∀y < Sxϕ(y)] ↔ [∀y((y = x ∨ y < x) → ϕ(y))] ↔
[∀y((y = x→ ϕ(y)) ∧ (y < x→ ϕ(y)))] ↔ [∀y(ϕ(x) ∧ (y < x→ ϕ(y)))] ↔
[ϕ(x) ∧ ∀y < xϕ(y)] ↔ [ϕ(x) ∧ ψ(x)]
Now ψ(x) was given and ψ(x) → ϕ(x). Hence we get ψ(Sx). This shows
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∀xψ(x), and thus we derive ∀xϕ(x).
(ii) Consider the contraposition and reduce it to (i). �

In our further considerations the following notions play a role.

Definition 7.4.7 (i) Divisibility
x|y := ∃z(xz = y)

(ii) Cut-off subtraction.
z = y

.− x := (x < y ∧ x+ z = y) ∨ (y ≤ x ∧ z = 0)
(iii) Remainder after division.

z = rem(x, y) := (x �= 0 ∧ ∃u(y = ux+ z) ∧ z < x) ∨ (x = 0 ∧ z = y)
(iii) x is prime.

Prime(x) := x > 1 ∧ ∀yz(x = yz → y = x ∨ y = 1)

The right hand sides of (ii) and (iii) indeed determine functions, as shown in

Lemma 7.4.8 (i) � ∀xy∃!z((x < y ∧ z + x = y) ∨ (y ≤ x ∧ z = 0))
(ii) � ∀xy∃!z((x �= 0 ∧ ∃u(y = ux+ z) ∧ z < y) ∨ (x = 0 ∧ z = 0)).

Proof. In both cases induction on y. �
There is another characterization of the prime numbers.

Lemma 7.4.9 (i) � Prime(x) ↔ x > 1 ∧ ∀y(y|x→ y = 1 ∨ y = x)
(ii) � Prime(x) ↔ x > 1 ∧ ∀yz(x|yz → x|y ∨ x|z)

Proof (i) is a mere reformulation of the definition.
(ii) → is a bit tricky. We introduce a bound on the product yz, and do wf -
induction on the bound. Put ϕ(w) = ∀yz ≤ w(x|yz → x|y ∨ x|z). We now
show ∀w(∀ν < wϕ(v) → ϕ(w))

Let ∀v < wϕ(v) and assume ¬ϕ(w), i.e. there are y, z ≤ w such that
x|yz,¬ x|y,¬ x|z We will ‘lower’ the y such that the w is also lowered. Since
¬ x|y,¬ x|z, we have z �= 0. Should y ≥ x, then we may replace it by y =
rem(x, y) and carry on the argument. So let y < x. Now we once more get
the remainder, x = ay + b with b < y. We consider b = 0 and b > 0.

If b = 0, then x = ay; hence y = 1∨y = x. If y = 1, then x|z. Contradiction.
If y = x then x|y. Contradiction.
Now if b > 0, then bz = (x − ay)z = xz − ayz. Since x|yz, we get x|bz.

Observe that bz < yz < w, so we have a contradiction with ∀v < wϕ(v).
Hence by RAA we have established the required statement.

For ← we only have to apply the established facts about divisibility. �

Can we prove in Peano’s arithmetic that there are any primes? Yes, for
example PA � ∀x(x > 1 → ∃y(Prime(y) ∧ y|x)
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Proof. Observe that ∃y(y > 1 ∧ y|x). By the LNP there is a least such y:
∃y(y > 1 ∧ y|x ∧ ∀z < y(z > 1→ ¬ z|y))
Now it is easy to show that this minimal y is a prime.

Primes and exponents are most useful for coding finite sequences of natural
numbers, and hence for coding in general. There are many more codings, and
some of them are more realistic in the sense that they have a lower complexity.
For our purpose, however, primes and exponents will do.

As we have seen, we can code a finite sequence (n0 . . . , nk−1) as the number
2n0+1 · 3n1+1 . . . p

nk−1+1
k−1

We will introduce some auxillary predicates.

Definition 7.4.10 (Successive primes) Succprimes(x, y) := x < y ∧
Prime(x) ∧ Prime(y) ∧ ∀z(x < z < y → ¬Prime(z))

The next step is to define the sequence of prime numbers 2, 3, 5, . . . pn, . . . ,.
The basic trick here is that we consider all successive primes with ascending
exponents: 20, 31, 52, 73, . . . pxx. We form the product and then pick the last
factor.

Definition 7.4.11 (The xth prime number, px) px = y := ∃z(¬2|z ∧
∀v < y
∀u ≤ y(Succprime(v, u)→ ∀w < z(vw|z → uw+1|z)) ∧ yx|z ∧ ¬ yx+1|z)

Observe that, as the definition yields a function, we have to show

Lemma 7.4.12 � ∃z(¬2|z ∧ ∀v < y0∀u ≤ y0(Succprime(v, u) → ∀w <
z(vw|z → uw+1|z)) ∧ yx0 |z ∧ ¬ yx+1

0 |z) ∧
∃z(¬2|z ∧ ∀v < y1∀u ≤ y1(Succprime(v, u) → ∀w < z(vw|z → uw+1|z)) ∧
yx1 |z ∧ ¬ yx+1

1 |z)→ y0 = y1

The above definition just mimicks the informal description. Note that we
can bound the existential quantifier as ∃z < yx

2
We have now justified the

notation of sequence numbers as products of the form

p0
n0+1 · p1

n1+1 · . . . · pk−1
nk−1+1

The reader should check that according to the definition p0 = 2. The decoding
can also be defined. In general one can define the power of a prime factor.

Definition 7.4.13 (decoding) (z)k = v := pv+1
k |z ∧ ¬pv+2

k |z
The length of a coded sequence can also be extracted from the code:

Definition 7.4.14 (length) lth(z) = x := px|z ∧ ∀y < z(py|z → y < x)

Lemma 7.4.15 � Seq(z)→ (lth(z) = x↔ (px|z ∧ ¬px+1|z))
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We define separately the coding of the empty sequence: 〈〉 := 1
The coding of the sequence (x0, . . . , xn−1) is denoted by 〈x0, . . . , xn−1〉

Operations like concatenation and restriction of coded sequences can be
defined such that
〈x0 . . . xn−1〉 ∗ 〈y0 . . . ym−1〉 = 〈x0, . . . xn−1, y0 . . . ym−1〉
〈x0 . . . xn − 1〉|m = 〈x0 . . . xm − 1〉, where m ≤ n (warning: here | is used

for the restriction relation, do not confuse with divisibility).
The tail of a sequence is defined as follows:

tail(y) = z ↔ (∃x(y = 〈x〉 ∗ z) ∨ (lth(y) = 0 ∧ z = 0)).

Closed terms of PA can be evaluated in PA:

Lemma 7.4.16 For any closed term t there is a number n such that � t = n.

Proof. External induction on t, cf. lemma 2.3.3. Observe that n is uniquely
determined. �

Corollary 7.4.17 N |= t1 = t2 ⇒ � t1 = t2 for closed t1, t2.

Gödel’s theorem will show that in general ‘true in the standard model’ (we will
from now on just say ‘true’) and provable in PA are not the same. However
for a class of simple sentences this is correct.

Definition 7.4.18 (i) The class ∆0 of formulas is inductively defined by

ϕ ∈ ∆0 for atomic ϕ
ϕ,ϕ ∈ ∆0 ⇒ ¬ϕ,ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ ∈ ∆0

ϕ ∈ ∆0 ⇒ ∀x < yϕ, ∃x < yϕ ∈ ∆0

(ii) The class Σ1 is given by:

ϕ,¬ϕ ∈ Σ1 for atomic ϕ
ϕ, ψ ∈ Σ1 ⇒ ϕ ∨ ψ, ϕ ∧ ψ ∈ Σ1

ϕ ∈ Σ1 ⇒ ∀x < yϕ, ∃x < yϕ, ∃xϕ ∈ Σ1

A formula is called strict Σ1 if it is of the form ∃�xϕ(�x), where ϕ is ∆0.

We will call formulas in the classes ∆0 and Σ1, ∆0, Σ1-formulas respec-
tively. Formulas, provably equivalent to Σ1 formulas, will also be called Σ1

formulas.
For Σ1-formulas we have that ‘true = provable’.

Lemma 7.4.19 � ϕ or � ¬ϕ, for ∆0-sentences ϕ.

Proof. Induction on ϕ.
(i) ϕ atomic. If ϕ ≡ t1 = t2 and t1 = t2 is true, see corr. 7.4.17.
If t1 = t2 is false, then t1 = n and t2 = m, where, say, n = m+ k with k > 0.
Now assume (in PA) t1 = t2, then m = m+ k. By 7.4.2 we get 0 = k, 7.4.19
But since k = S(l) for some l, we obtain a contradiction. Hence � ¬t1 = t2.
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(ii) The induction cases are obvious. For ∀x < tϕ(x), where t is a closed term,
use the identity ∀x < nϕ(x) ↔ ϕ(0)∧ . . .∧ϕ(n− 1). Similarly for ∃x < tϕ(x).
�

Theorem 7.4.20 (Σ1-completeness) |=ϕ⇔ PA � ϕ, for Σ1 sentences ϕ.

Proof. Since the truth of ∃xϕ(x) comes to the truth of ϕ(n) for some n, we
may apply the above lemma. �

7.5 Representability

In this section we will give the formalization of all this in PA, i.e. we will show
that definable predicates exist corresponding with the predicates introduced
above (in the standard model) – and that their properties are provable.

Definition 7.5.1 (representability) – a formula ϕ(x0, . . . , xn−1, y) rep-
resents an n-ary function f if for all k0, . . . , kn−1

f(k0, . . . , kn−1) = p⇒ � ∀y(ϕ(k̄0, . . . , k̄n−1, y)↔ y = p̄)

– a formula ϕ(x0, . . . , xn−1) represents a predicate P if for all k0, . . . , kn−1

P (k0, . . . , kn−1)⇒ � ϕ(k̄0, . . . , k̄n−1)

and
¬P (k1, . . . , kn)⇒ � ¬ϕ(k̄0, . . . , k̄n−1)

– a term t(x0, . . . , xn−1) represents f if for all k0, . . . , kn−1

f(k0, . . . , kn−1) = p⇒ � t(k̄0, . . . , k̄n−1) = p̄

Lemma 7.5.2 If f is representable by a term, then f is representable by a
formula.

Proof: Let f be represented by t. Let f(k) = p. Then � t(k̄) = p̄. Now de-
fine the formula ϕ(�x, y) := t(�x) = y. Then we have � ϕ(k̄, p̄). And hence
p̄ = y → ϕ(k̄, y). This proves � ϕ(k̄, y)↔ p̄ = y. �

Sometimes it is convenient to split the representability of functions into
two clauses.

Lemma 7.5.3 A k-ary function is representable by ϕ iff
f(n0 − nk−1) = m⇒� ϕ(n0, . . . , nk−1, m̄) and � ∃!zϕ(n0 . . . nk−1, z).
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Proof. Immediate. Note that the last clause can be replaced by
� ϕ(n0 . . . nk−1, z)→ z = m̄. �

The basic functions of arithmetic have their obvious representing terms.
Quite simple functions can however not be represented by terms. E.g., the
sigma function is represented by ϕ(x, y) := (x = 0∧y = 0)∨(¬x = 0∧y = 1),
but not by a term. However we can easily show � ∀x∃!yϕ(x, y), and therefore
we could conservatively add the sg to PA (cf. 3.4.6). Note that quite a number
of useful predicates and functions have ∆0 formulas as a representation.

Lemma 7.5.4 P is representable ⇔ KP is representable.

Proof: Let ϕ(�x) represent P . Define ψ(�x, y) = (ϕ(�x)∧(y = 1))∨(¬ϕ(�x)∧(y =
0)). Then ψ represents KP , because if KP (k) = 1, then P (k), so � ϕ(k̄)
and � ψ(k̄, y) ↔ (y = 1), and if KP (k) = 0, then ¬P (k), so � ¬ϕ(k̄)
and � ψ(k̄, y) ↔ (y = 0). Conversely, let ψ(�x, y) represent KP . Define
ϕ(�x) := ψ(�x, 1). Then ϕ represents P . �

There is a large class of representable functions, it includes the primitive
recursive functions.

Theorem 7.5.5 The primitive recursive functions are representable.

Proof. Induction on the definition of primitive recursive function. It is sim-
ple to show that the initial functions are representable. The constant function
Ckm is represented by the term m̄, the successor function S is represented by
x+ 1, and the the projection function P ki is represented by xi.
The representable functions are closed under substitution and primitive re-
cursion We will indicate the proof for the closure under primitive recursion.

Consider
{
f(�x, 0) = g(�x)
f(�x, y + 1) = h(f(�x, y), �x, y)

g is represented by ϕ, h is represented by ψ :

g(�n) = m⇒
{� ϕ(�n,m) and
� ϕ(�n, y)→ y = m

h(p, �n, q) = m⇒
{� ψ(p, �n, q,m) and
� ψ(p, �n, q, y)→ y = m

Claim: f is represented by σ(�x, y, z), which is mimicking ∃w ∈ Seq(lth(w) =
y + 1 ∧ ((w)0 = g(�x) ∧ ∀i ≤ y((w)i+1 = h((w)i, �x, i) ∧ z = (w)y)

σ(�x, y, z) := ∃w ∈ Seq(lth(w) = y + 1 ∧ ϕ(�x, (w)0)∧
∀i ≤ y(ψ((w)i, �x, i, (w)i+1) ∧ z = (w)y)



244 7 Gödel’s theorem

Now let f(�n, p) = m, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(�n, 0) = g(�n) = a0

f(�n, 1) = h(f(�n, 0), �n, 0) = a1

f(�n, 2) = h(f(�n, 1), �n, 1) = a2

...
f(�n, p) = h(f(�n, p− 1), �n, p− 1) = ap = m

Put w = 〈a0, . . . , ap〉; note that lth(w) = p+ 1.

g(�n) = f(�n, 0) = a0 ⇒� ϕ(�n, a0)
f(�n, 1) = a1 ⇒� ψ(a0, �n, 0, a1)

.

.

.
f(�n, p) = ap ⇒� ψ(ap−1, �n, p− 1, ap)

Therefore we have � lth(w) = p + 1 ∧ ϕ(�n, a0) ∧ ψ(a0, �n, 0, a1) ∧ . . . ∧
ψ(ap−1, �n, p− 1, ap) ∧ (w)p = m and hence � σ(�n, p,m).

Now we have to prove the second part: � σ(�n, p, z) → z = m. We prove
this by induction on p.
(1) p=0. Observe that � σ(�n, 0, z)↔ ϕ(�n, z), and since ϕ represents g, we get
� ϕ(�n, z)→ z = m
(2) p = q + 1. Induction hypothesis: � σ(�n, q, z)→ z = f(�n, q)(= m)
σ(�n, q + 1, z) = ∃w ∈ Seq(lth(w) = q + 2 ∧ ϕ(�n, (w)0) ∧
∀i ≤ y(ψ((w)i, �n, i, (w)i+1) ∧ z = (w)q+1).
We now see that
� σ(�n, q + 1, z)→ ∃u(σ(�n, q, u) ∧ ψ(u, �n, q, z).

Using the induction hypothesis we get
� σ(�n, q + 1, z)→ ∃u(u = f(�n, q) ∧ ψ(u, �n, q, z))

And hence � σ(�n, q + 1, z)→ ψ(f(�n, q), �n, q, z)
Thus by the property of ψ: � σ(�n, q + 1, z)→ z = f(�n, q + 1)

It is now one more step to show that all recursive functions are repre-
sentable, for we have seen that all recursive functions can be obtained by a
single minimalization from a primitive recursive predicate. �

Theorem 7.5.6 All recursive functions are representable.

Proof. We show that the representable functions are closed under minimaliza-
tion. Since representability for predicates is equivalent to representability for
functions, we consider the case f(�x) = µyP (�x, y) for a predicate P represented
by ϕ, where ∀�x∃yP (�x, y).
Claim: ψ(�x, y) := ϕ(�x, y) ∧ ∀z < y¬ϕ(�x, z) represents µyP (�x, y).
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m = µyP (�n, y) ⇒ P (�n,m) ∧ ¬P (�n, 0) ∧ . . . ∧ ¬P (�n,m− 1)
⇒ � ϕ(�n,m) ∧ ¬ϕ(�n, 0) ∧ . . . ∧ ¬ϕ(�n,m− 1)
⇒ � ϕ(�n,m) ∧ ∀z < m¬ϕ(�n, z)
⇒ � ψ(�n,m)

Now let ϕ(�n, y) be given, then we have ϕ(�n, y) ∧ ∀z < y¬ϕ(�n, z). This
immediately yields m ≥ y. Conversely, since ϕ(�n,m), we see that m ≤ y.
Hence y = m. This informal argument is straightforwardly formalized as
� ϕ(�n, y)→ y = m. �

We have established that recursive sets are representable. One might per-
haps hope that this can be extended to recursively enumerable sets. This
happens not to be the case. We will consider the RE sets now.

Definition 7.5.7 R(�x) is semi-representable in T if R(�n)⇔ T � ϕ(�n) for a
ϕ(�x).

Theorem 7.5.8 R is semi-representable ⇔ R is recursively enumerable.

For the proof see p. 250.

Corollary 7.5.9 R is representable ⇔ R is recursive.

Exercises

1. Show
� x+ y = 0 → x = 0 ∧ y = 0
� xy = 0→ x = 0 ∨ y = 0
� xy = 1→ x = 1 ∧ y = 1
� xy = 1 → y = 0 ∨ x = 1
� xy = 0 → x = 0 ∧ y �= 0
� x+ y = 1 → (x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 0)

2. Show that all Σ1-formulas are equivalent to prenex formulas with the ex-
istential quantifiers preceding the bounded universal ones (Hint. Consider
the combination ∀x < t∃yϕ(x, y), this yields a coded sequence z such that
∀x < tϕ(x, (z)x)). I.e. in PA Σ1 formulas are equivalent to strict Σ1 for-
mulas.

3. Show that one can contract similar quantifiers. E.g. ∀x∀yϕ(x, y) ↔
∀zϕ((z)0, (z)1).
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7.6 Derivability

In this section we define a coding for a recursively enumerable predicate
Thm(x), that says “x is a theorem”. Because of the minimization and up-
per bounds on quantifiers, all predicates and functions defined along the way
are primitive recursive. Observe that we are back in recursion theory, that is
in informal arithmetic.

Coding of the syntax

The function �−� codes the syntax. For the alphabet, it is given by

∧ → ∀ 0 S + · exp = ( ) xi
2 3 5 7 11 13 17 19 23 29 31 p11+i

Next we code the terms.

�f(t1, . . . , tn)� := 〈�f�, �(�, �t1�, . . . , �tn�, �)�〉
Finally we code the formulas. Note that {∧,→,∀} is a functionally complete
set, so the remaining connectives can be defined.

�(t = s)� := 〈�(�, �t�, �=�, �s�, �)�〉
�(ϕ ∧ ψ)� := 〈�(�, �ϕ�, �∧�, �ψ�, �)�〉

�(ϕ→ ψ)� := 〈�(�, �ϕ�, �→�, �ψ�, �)�〉
�(∀xiϕ)� := 〈�(�, �∀�, �xi�, �ϕ�, �)�〉

Const(x) and V ar(x) characterize the codes of constants and variables, re-
spectively.

Const(x) := x = �0�
V ar(x) := ∃i ≤ x(p11+i = x)
Fnc1(x) := x = �S�
Fnc2(x) := x = �+� ∨ x = �·� ∨ x = �exp�

Term(x) — x is a term — and Form(x) — x is a formula — are primi-
tive recursive predicates according to the primitive recursive version of the
recursion-theorem. Note that we will code according to the standard function
notation, e.g. +(x, y) instead of x+ y.

Term(x) := Const(x) ∨ V ar(x)∨(
Seq(x) ∧ lth(x) = 4 ∧ Fnc1((x)0)∧

(x)1 = �(� ∧ Term((x)2) ∧ (x)3 = �)�
)
∨

(
Seq(x) ∧ lth(x) = 5 ∧ Fnc2((x)0)∧

(x)1 = �(� ∧ Term((x)2) ∧ Term((x)3) ∧ (x)4 = �)�
)
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Form(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Seq(x) ∧ lth(x) = 5 ∧ (x)0 = �(� ∧ (x)4 = �)�∧
[(
Term((x)1) ∧ (x)2 = �=� ∧ Term((x)3)

)
∨

(
Form((x)1) ∧ (x)2 = �∧� ∧ Form((x)3)

)
∨

(
Form((x)1) ∧ (x)2 = �→� ∧ Form((x)3)

)
∨

(
(x)1 = �∀� ∧ V ar((x)2) ∧ Form((x)3)

)]

All kinds of syntactical notions can be coded in primitive recursive predicates,
for example Free(x, y) — x is a free variable in y, and FreeFor(x, y, z) — x
is free for y in z.

Free(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
V ar(x) ∧ Term(y) ∧ ¬Const(y)∧

(V ar(y) → x = y)∧
(Fnc1((y)0)→ Free(x, (y)2))∧
(Fnc2((y)0)→ (Free(x, (y)2) ∨ Free(x, (y)3)))

)

or(
V ar(x) ∧ Form(y)∧

((y)1 �= �∀�→ (Free(x, (y)1) ∨ Free(x, (y)3)))∧
((y)1 = �∀�→ (x �= (y)2 ∧ Free(x, (y)4)))

)

FreeFor(x, y, z):=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Term(x) ∧ V ar(y) ∧ Form(z)∧
[(

(z)2 = �=�
)
∨

(
(z)1 �=�∀�∧FreeFor(x, y, (z)1)∧FreeFor(x, y, (z)3

)
∨

(
(z)1 = �∀� ∧ ¬Free((z)2, x)∧

(Free(y, z)→ (Free((z)2, x) ∧ Free(x, y, (z)3)))
)]

Having coded these predicates, we can define a substitution-operator Sub such
that Sub(�ϕ�, �x�, �t�) = �ϕ[t/x]�.
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Sub(x, y, z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if Const(x)
x if V ar(x) ∧ x �= y
z if V ar(x) ∧ x = y

〈(x)0, �(�, Sub((x)2, y, z), �)�〉 if Term(x)∧
Fnc1((x)0)

〈(x)0, �(�, Sub((x)2, y, z), Sub((x)3, y, z), �)�〉 if Term(x)∧
Fnc2((x)0)

〈�(�, Sub((x)1, y, z), (x)2, Sub((x)3, y, z), �)�〉 if Form(x)∧
FreeFor(x, y, z)∧
(x)0 �= �∀�

〈�(�, (x)1, (x)2, Sub((x)3, y, z), �)�〉 if Form(x)∧
FreeFor(z, y, x)∧
(x)0 = �∀�

0 else

Clearly Sub is primitive recursive (course of value recursion).

Coding of derivability

Our next step is to obtain a primitive recursive predicate Der that says that
x is a derivation with hypotheses y0, . . . , ylth(y)−1 and conclusion z. Before
that we give a coding of derivations.

initial derivation
[ϕ] = 〈0, ϕ〉

∧ I ⎡

⎣
D1 D2

ϕ ψ
(ϕ ∧ ψ)

⎤

⎦ = 〈〈0, �∧�〉,
[
D1

ϕ

]

,

[
D2

ψ

]

, �(ϕ ∧ ψ)�〉

∧ E ⎡

⎣
D

(ϕ ∧ ψ)
ϕ

⎤

⎦ = 〈〈1, �∧�〉,
[

D
(ϕ ∧ ψ)

]

, �ϕ�〉

→ I ⎡

⎢
⎢
⎣

ϕ
D
ψ

(ϕ→ ψ)

⎤

⎥
⎥
⎦ = 〈〈0, �→�〉,

[
D
ψ

]

, �(ϕ→ ψ)�〉

→ E
⎡

⎣
D1 D2

ϕ (ϕ→ ψ)
ψ

⎤

⎦ = 〈〈1, �→�〉,
[
D1

ϕ

]

,

[
D2

(ϕ→ ψ)

]

, �ψ�〉
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RAA ⎡

⎢
⎢
⎣

(ϕ→ ⊥)
D
⊥
ϕ

⎤

⎥
⎥
⎦ = 〈〈1, �⊥�〉,

[
D
⊥
]

, �ϕ�〉

∀ I ⎡

⎣
D
ϕ

(∀xϕ)

⎤

⎦ = 〈〈0, �∀�〉,
[
D
ϕ

]

, �(∀xϕ)�〉

∀ E ⎡

⎣
D

(∀xϕ)
ϕ[t/x]

⎤

⎦ = 〈〈1, �∀�〉,
[

D
(∀xϕ)

]

, �ϕ[t/x]�〉

For Der we need a device to cancel hypotheses from a derivation. We con-
sider a sequence y of (codes of) hypotheses and successively delete items u.

Cancel(u, y) :=

⎧
⎨

⎩

y if lth(y) = 0
Cancel(u, tail(y)) if (y)0 = u
〈(y)0, Cancel(u, tail(y))〉 if (y)0 �= u

Here tail(y) = z ⇔ (lth(y) > 0 ∧ ∃x(y = 〈x〉 ∗ z) ∨ (lth(y) = 0 ∧ z = 0)

Now we can code Der, where Der(x, y, z) stands for ‘x is the code of a
derivation of a formula with code z from a coded sequence of hypotheses y’.
In the definition of Der ⊥ is defined as (0=1).

Der(x, y, z) := Form(z) ∧∧lth(y)−1
i=0 Form((i)v) ∧

[[(
∃i < lth(y)(z = (y)i ∧ x = 〈0, z〉

)

or
(
∃x1x2 ≤ x∃y1y2 ≤ x∃z1z2 ≤ xy = y1 ∗ y2 ∧
Der(x1, y1, z1) ∧Der(x2, y2, z2) ∧
z = 〈�(�, z1, �∧�, z2, �)�〉 ∧ x = 〈〈0, �∧�〉, x1, x2, z〉

)

or
(
∃u ≤ x∃x1 ≤ x∃z1 ≤ xDer(x1, y, z1) ∧

(z1 = 〈�(�, z, �∧�, u, �)�〉 ∨ (z1 = 〈�(�, u, �∧�, z, �)�〉)∧
x = 〈〈1, �∧�〉, x1, z〉

)

or
(
∃x1 ≤ x∃y1 ≤ x∃u ≤ x∃z1 ≤ x(y = Cancel(u, y1) ∨
y = y1) ∧Der(x1, y1, z1) ∧ z = 〈�(�, u, �→�, z1, �)�〉 ∧
x = 〈〈0, �→�〉, x1, z1〉

)

or
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(
∃x1x2 ≤ x∃y1y2 ≤ x∃z1z2 ≤ x (y = y1 ∗ y2 ∧
Der(x1, y1, z1) ∧Der(x2, y2, z2) ∧
z2 = 〈�(�, z1, �→�, z, �)�〉 ∧ x = 〈〈1, �→�〉, x1, x2, z〉)

)

or
(
∃x1 ≤ x∃z1 ≤ x∃v ≤ x(Der(x1, y, z1) ∧ V ar(v) ∧
∧lth(y)−1
i=0 ¬Free(v, (y)i) ∧ z = 〈�∀�, v, �(�, z1, �)�〉 ∧

x = 〈〈0, �∀�〉, x1, z1〉)
)

or
(
∃t ≤ x∃v ≤ x∃x1 ≤ x∃z1 ≤ x(V ar(v) ∧ Term(t) ∧
Freefor(t, v, z1) ∧ z = Sub(z1, v, t) ∧
Der(x1, y, 〈�∀�, v, �(�, z1, �)�〉 ∧ x = 〈〈1, �∀�〉, y, z〉)

)

or(
∃x1 ≤ x∃y1 ≤ x∃z1 ≤ x(Der(x1, y1, 〈�⊥�〉) ∧
y = Cancel(〈z, �→�, �⊥�〉, y1) ∧ x = 〈〈1, �⊥�〉, x1, z1〉)

)]]

Coding of provability

The axioms of Peano’s arithmetic are listed on page 236. However, for
the purpose of coding derivability we have to be precise; we must include the
axioms for identity. They are the usual ones (see 2.6 and 2.10.2), including
the ‘congruence axioms’ for the operations:
(x1 = y1 ∧ x2 = y2)→

(
S(x1) = S(y1) ∧ x1 + x2 = y1 + y2 ∧

x1 · x2 = y1 · y2 ∧ xx2
1 = yy21

)

These axioms can easily be coded and put together in a primitive recursive
predicate Ax(x) — x is an axiom. The provability predicate Prov(x, z) - x is
a derivation of z from the axioms of PA - follows immediately.

Prov(x, z) := ∃y ≤ x
(
Der(x, y, z) ∧

lth(y)−1∧

i=0

Ax((y)i)
)

Finally we can define Thm(x) — x is a theorem. Thm is recursively enumer-
able.

Thm(z) := ∃xProv(x, z)
Having at our disposition the provability predicate, which is Σ0

1 , we can
finish the proof of ‘semi-representable = RE’ (Theorem 7.4.9).

Proof. For convenience let R be unary recursively enumerable set.
⇒: R is semi-representable by ϕ. R(n) ⇔ � ϕ(n) ⇔ ∃yProv (�ϕ(n)�, y

)
.

Note that �ϕ(n)� is a recursive function of n. Prov is primitive recursive, so
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R is recursively enumerable.
⇐: R is recursively enumerable ⇒ R(n) = ∃xP (n, x) for a primitive re-
cursive P . P (n,m) ⇔ � ϕ(n,m) for some ϕ. R(n) ⇔ P (n,m) for some
m ⇔ � ϕ(n,m) for some m ⇒ � ∃yϕ(n, y). Therefore we also have
� ∃yϕ(n, y)⇒ R(n). So ∃yϕ(n, y) semi-represents R. �

7.7 Incompleteness

Theorem 7.7.1 (Fixpoint theorem) For each formulaϕ(x) (withFV (ϕ) =
{x}) there exists a sentence ψ such that � ϕ(�ψ�)↔ ψ.

Proof. Popular version: consider a simplified substitution function s(x, y) which
is the old substitution function for a fixed variable: s(x, y) = Sub(x, �x0�, y).
Then define θ(x) := ϕ

(
s(x, x)

)
. Let m := �θ(x)�, then put ψ := θ

(
m
)
. Note

that ψ ↔ θ
(
m
) ↔ ϕ

(
s(m,m)

) ↔ ϕ
(
s(�θ(x)�,m)

) ↔ ϕ
(�θ(m)�

) ↔ ϕ
(�ψ�

)
.

This argument would work if there were a function (or term) for s in the
language. This could be done by extending the language with sufficiently
many functions (“all primitive recursive functions” surely will do). Now we
have to use representing formulas.
Formal version: let σ(x, y, z) represent the primitive recursive function s(x, y).
Now suppose θ(x) := ∃y(ϕ(y) ∧ σ(x, x, y)

)
,m = �θ(x)� and ψ = θ(m). Then

ψ ↔ θ(m)↔ ∃y(ϕ(y) ∧ σ(m,m, y)
)

(7.1)

� ∀y(σ(m,m, y)↔ y = s(m,m)
)

� ∀y(σ(m,m, y)↔ y = �θ(m)�
)

(7.2)

By logic (1) and (2) give ψ ↔ ∃y(ϕ(y) ∧ y = �θ(m)�
)

so ψ ↔ ϕ
(
�θ(m)�

) ↔
ϕ
(�ψ�

)
. �

Definition 7.7.2 (i) PA (or any other theory T of arithmetic) is called
ω-complete if � ∃xϕ(x) ⇒ � ϕ(n) for some n ∈ N.

(ii) T is ω-consistent if there is no ϕ such that (� ∃xϕ(x) and � ¬ϕ(n) for
all n) for all ϕ.

Theorem 7.7.3 (Gödel’s first incompleteness theorem)
If PA is ω-consistent then PA is incomplete.

Proof. ConsiderthepredicateProv (x, y)representedbytheformulaProv (x, y).
Let Thm (x) := ∃yProv (x, y). Apply the fixpoint theorem to ¬Thm (x): there
exists a ϕ such that � ϕ↔ ¬Thm (�ϕ�). ϕ, the so-called Gödel sentence, says
in PA: “I am not provable.”
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Claim 1: If � ϕ then PA is inconsistent.

Proof. � ϕ⇒ there is a n such that Prov (�ϕ�, n), hence � Prov (�ϕ�, n)⇒
� ∃yProv (�ϕ�, y)⇒ � Thm (�ϕ�)⇒ � ¬ϕ. Thus PA is inconsistent. �

Claim 2: If � ¬ϕ then PA is ω-inconsistent.

Proof. � ¬ϕ ⇒ � Thm (�ϕ�) ⇒ � ∃xProv (�ϕ�, x). Suppose PA is
ω-consistent; since ω-consistency implies consistency, we have � ϕ and
therefore ¬Prov (�ϕ�, n) for all n. Hence � ¬Prov (�ϕ�, n) for all n. Con-
tradiction. �

Remarks. In the foregoingwe made use of the representability of the provability-
predicate, which in turn depended on the representability of all recursive
functions and predicates.

For the representability of Prov (x, y), the set of axioms has to be re-
cursively enumerable. So Gödel’s first incompleteness theorem holds for all
recursively enumerable theories in which the recursive functions are repre-
sentable. So one cannot make PA complete by adding the Gödel sentence,
the result would again be incomplete.

In the standard model N either ϕ, or ¬ϕ is true. The definition enables
us to determine which one. Notice that the axioms of PA are true in N, so
� ϕ ↔ ¬Thm (�ϕ�). Suppose N � Thm (�ϕ�) then N � ∃xProv (�ϕ�, x) ⇔
N � Prov (�ϕ�, n) for some n ⇔ � Prov (�ϕ�, n) for some n ⇔ � ϕ⇒
� ¬Thm (�ϕ�) ⇒ N � ¬Thm (�ϕ�). Contradiction. Thus ϕ is true in N. This
is usually expressed as ‘there is a true statement of arithmetic which is not
provable’.

Remarks. It is generally accepted that PA is a true theory, that is N is a
model of PA, and so the conditions on Gödel’s theorem seem to be super-
fluous. However, the fact that PA is a true theory is based on a semantical
argument. The refinement consists in considering arbitrary theories, without
the use of semantics.

The incompleteness theorem can be freed of the ω-consistency-condition. We
introduce for that purpose Rosser’s predicate:

Ros (x) := ∃y(Prov (neg (x), y) ∧ ∀z < y ¬Prov (x, z)
)
,

with neg(�ϕ�) = �¬ϕ�. The predicate following the quantifier is represented
by Prov (neg (x), y) ∧ ∀z < y ¬Prov (x, z). An application of the fixpoint
theorem yields a ψ such that



7.7 Incompleteness 253

� ψ ↔ ∃y[ Prov (�¬ψ�, y) ∧ ∀z < y ¬Prov (�ψ�, z) ]
(1)

Claim: PA is consistent ⇒ � ψ and � ¬ψ

Proof. (i) Suppose � ψ then there exists a n such that Prov (�ψ�, n) so
� Prov(�ψ�, n) (2)
From (1) and (2) it follows that � ∃y < nProv

(�¬ψ�, y), i.e. � Prov (�¬ψ�, 0)∨
. . . ∨ Prov (�¬ψ�, n− 1

)
. Note that Prov is ∆0, thus the following holds:

� σ ∨ τ ⇔ � σ or � τ , so � Prov (�¬ψ�, 0) or . . . or � Prov (�¬ψ�, n− 1
)

hence Prov
(�¬ψ�, i) for some i < n ⇒ � ¬ψ ⇒ PA is inconsistent.

(ii) Suppose � ¬ψ then � ∀y[ Prov (�¬ψ�, y) → ∃z < y Prov
(�ψ�, z

) ]

also � ¬ψ ⇒ Prov
(�¬ψ�, n) for some n ⇒ � Prov

(�¬ψ�, n) for some n
⇒ � ∃z < nProv

(�ψ�, z
)⇒ (as in the above) Prov

(�ψ�, k
)

for some k < n,
so � ψ ⇒ PA is inconsistent. �

We have seen that truth in N does not necessarily imply provability in PA
(or any other (recursively enumerable) axiomatizable extension). However, we
have seen that PA IS Σ0

1 complete, so truth and provability still coincide for
simple statements.

Definition 7.7.4 A theory T (in the language of PA) is called Σ0
1 -sound if

T � ϕ⇒ N � ϕ for Σ0
1 -sentences ϕ.

We will not go into the intriguing questions of the foundations or philosophy
of mathematics and logic. Accepting the fact that the standard model N is a
model of PA, we get consistency, soundness and Σ

)
1-soundness for free. It is

an old tradition in proof theory to weaken assumptions as much as possible,
so it makes sense to see what one can do without any semantic notions. The
interested reader is referred to the literature.

We now present an alternative proof of the incompleteness theorem. Here
we use the fact that PA is Σ0

1 -sound.

Theorem 7.7.5 PA is incomplete.

Consider an RE set X which is not recursive. It is semi-represented by a a Σ0
1

formula ϕ(x). Let Y = {n|PA � ϕ(n)}.
By Σ0

1 -completeness we get n ∈ X ⇒ PA � ϕ(n). Since Σ0
1 -soundness im-

plies consistence, we also get PA � ¬ϕ(n) ⇒ n �∈ X , hence Y ⊆ Xc. The
provability predicate tells us that Y is RE. Now Xc is not RE, so there is a
number k with k ∈ (X ∪ Y )c. For this number k we know that PA �� ¬ϕ(k)
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and also PA �� ϕ(k), as PA � ϕ(k) would imply by Σ0
1 -soundness that k ∈ X .

As a result we have established that ¬ϕ(k) is true but not provable in PA,
i.e. PA is incomplete. �

We almost immediately get the undecidability of PA.

Theorem 7.7.6 PA is undecidable.

Proof. Consider the same set X = {n|PA � ϕ(n)} as above. If PA were de-
cidable, the set XS would be recursive. Hence PA is undecidable. �

Note we get the same result for any axiomatizable Σ0
1 -sound extension of

PA. For stronger results see Smorynski’s Logical number theory
that f with f(n) = �ϕ

(
n
)� is pr. rec.

Remarks. The Gödel sentence γ “I am not provable” is the negation of a strict
Σ0

1 -sentence (a so-called Π0
1 -sentence). Its negation cannot be true (why ?).

So PA + ¬γ is not Σ0
1 -sound.

We will now present another approach to the undecidability of arithmetic,
based on effectively inseparable sets.

Definition 7.7.7 Let ϕ and ψ be existential formulas: ϕ = ∃xϕ′ and ψ =
∃xψ′. The witness comparison formulas for ϕ and ψ are given by:

ϕ ≤ ψ := ∃x(ϕ′(x) ∧ ∀y < x ¬ψ′(y)
)

ϕ < ψ := ∃x(ϕ′(x) ∧ ∀y ≤ x ¬ψ′(y)
)
.

Lemma 7.7.8 (Informal Reduction Lemma) Let ϕ and ψ be strict Σ0
1 ,

ϕ1 := ϕ ≤ ψ and ψ1 := ψ < ϕ. Then
(i) N � ϕ1 → ϕ
(ii) N � ψ1 → ψ
(iii) N � ϕ ∨ ψ ↔ ϕ1 ∨ ψ1

(iv) N � ¬ (ϕ1 ∧ ψ1).

Proof. Immediate from the definition. �

Lemma 7.7.9 (Formal Reduction Lemma) Let ϕ, ψ, ϕ1 and ψ1 be as
above.
(i) � ϕ1 → ϕ
(ii) � ψ1 → ψ
(iii) N � ϕ1 ⇒ � ϕ1

(iv) N � ψ1 ⇒ � ψ1

(v) N � ϕ1 ⇒ � ¬ψ1

(vi) N � ψ1 ⇒ � ¬ϕ1

(vii) � ¬(ϕ1 ∧ ψ1).
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Proof. (i)—(iv) are direct consequences of the definition and
Σ0

1 -completeness.
(v) and (vi) are exercises in natural deduction (use ∀uv(u < v ∨ v ≤ u)) and
(vii) follows from (v) (or (vi)). �

Theorem 7.7.10 (Undecidability of PA) The relation ∃yProv (x, y) is
not recursive. Popular version: � is not decidable for PA.

Proof. Consider two effectively inseparable recursively enumerable sets A and
B with strict Σ0

1 -defined formulas ϕ(x) and ψ(x). Define ϕ1(x) := ϕ(x) ≤
ψ(x) and ψ1(x) := ψ(x) < ϕ(x).
then n ∈ A⇒ N � ϕ(n) ∧ ¬ψ(n)

⇒ N � ϕ1(n)
⇒ � ϕ1(n)

and n ∈ B ⇒ N � ψ(n) ∧ ¬ϕ(n)
⇒ N � ψ1(n)
⇒ � ¬ϕ1(n).

Let Â = {n | � ϕ1(n)}, B̂ = {n | � ¬ϕ1(n)} then A ⊆ Â and B ⊆ B̂.
PA is consistent, so Â ∩ B̂ = ∅. Â is recursively enumerable, but because of
the effective inseparability of A and B not recursive. Suppose that {�σ� | � σ}
is recursive, i.e. X = {k | Form(k) ∧ ∃zProv (k, z)} is recursive. Consider f
with f(n) = �ϕ1(n)�, then {n | ∃zProv (�ϕ1(n)�, z

)} is also recursive, i.e. Â
is a recursive separator of A and B. Contradiction. Thus X is not recursive. �

From the indecidability of PA we immediately get once more the incom-
pleteness theorem:

Corollary 7.7.11 PA is incomplete.

Proof. (a) If PA were complete, then from the general theorem “complete
axiomatizable theories are decidable” it would follow that PA was decidable.
(b) Because Â and B̂ are both recursively enumerable, there exists a n with
n /∈ Â ∪ B̂, i.e. � ϕ(n) and � ¬ϕ(n). �

Remark. The above results are by no means optimal; one can represent the
recursive functions in considerably weaker systems, and hence prove their
incompleteness. There are a number of subsystems of PA which are finitely
axiomatizable, for example the Q of Raphael Robinson, (cf. Smorynski, Logical
number theory, p. 368 ff.), which is incomplete and undecidable. Using this
fact one easily gets

Corollary 7.7.12 (Church’s theorem) Predicate logic is undecidable.

Proof. Let {σ1, . . . , σn} be the axioms of Q, then σ1, . . . , σn � ϕ ⇔
� (σ1 ∧ . . . ∧ σn)→ ϕ. A decision method for predicate logic would thus pro-
vide one for Q. �
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Remark. (1) Since HA is a subsystem of PA the Gödel sentence γ is cer-
tainly independent of HA. Therefore γ ∨ ¬γ is not a theorem of HA. For
if HA � γ ∨ ¬γ, then by the disjunction property for HA we would have
HA � γ or HA � ¬γ, which is impossible for the Gödel sentence.. Hence we
have a specific theorem of PA which is not provable in HA.
(2) Since HA has the existence property, on can go through the first ver-
sion of the proof of the incompleteness theorem, while avoiding the use of
ω-consistency.

Exercises

1. Show that f with f(n) = �t
(
n
)� is primitive recursive.

2. Show that f with f(n) = �ϕ
(
n
)� is primitive recursive.

3. Find out what ϕ→ ϕ ≤ ϕ means for a ϕ as above.
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interpretation, 154

canonical model, 108
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characteristic function, 139
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Church-Rosser property, 208
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commutativity, 21
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dummy variables, 210
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existence property, 173, 206, 207
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extension by definition, 139
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falsum, 7, 17
fan, 127
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field, 87, 180
filtration, 182
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first-order logic, 58
fixed point theorem, 250
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functional completeness, 28
functionally complete, 25
functions, 58

Gödel’s coding, 214
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permutation of variables, 211
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