
Electronic Notes in Theoretical Computer Science 70 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 20 pages

Refactoring by Transformation

Márcio Cornélio 1

Centre of Informatics
Federal University of Pernambuco

P.O. Box 7851, 50732-970 Recife-PE, Brazil

Ana Cavalcanti 2

Computing Laboratory
University of Kent at Canterbury
Canterbury, Kent CT2 7NF, UK

Augusto Sampaio 3

Centre of Informatics
Federal University of Pernambuco

P.O. Box 7851, 50732-970 Recife-PE, Brazil

Abstract

In this paper we present how refactoring of object-oriented programs can be ac-
complished by using refinement. Our approach is based on algebraic laws of an
object-oriented language for refinement similar to Java. We follow a strategy in-
volving data and algorithmic refinement of classes.

1 Introduction

Object-oriented programming has been acclaimed as a means to obtain soft-
ware that is easier to modify [16]. However, maintaining an object-oriented
program often requires structural changes such as moving attributes and meth-
ods between classes, and partitioning a complex class into several ones. This
activity is called refactoring [13]. Work on refactoring usually describes the
steps used for program modification in a rather informal way [13,18,20]. Other
refactorings are still on the minds of object-oriented programmers that use
them intuitively.

1 Email: mlc2@cin.ufpe.br
2 Email: A.Cavalcanti@ukc.ac.uk
3 Email: acas@cin.ufpe.br

c©2002 Published by Elsevier Science B. V.

mailto:mlc2@cin.ufpe.br�
mailto:A.Cavalcanti@ukc.ac.uk�
mailto:acas@cin.ufpe.br�


Cornélio, Cavalcanti, and Sampaio

The work presented in this paper is in the context of the Co-op (Calcu-
lus of Object-Oriented Programming) project, jointly funded by CNPq and
NSF, which aims at proposing and proving basic, design and compilation laws
for object-oriented programming. In particular, we are interested in formal
refactoring of object-oriented programs and formalisation of design patterns.

In our approach, refactoring is achieved by the application of object-
oriented programming rules that transform programs preserving correctness.
In this paper we present rules for refactoring of object-oriented programs.
These rules precisely indicate the modifications that can be done to a pro-
gram, with corresponding proof obligations. With the use of such rules, a
program update is justified and documented. Moreover, in a rule-based ap-
proach a suite of tests is not compulsory. Also, it is not necessary to rely on
compiling in order to check if errors were introduced. Clearly, to ensure the
correctness of the transformations, each rule must be formally justified itself.

In this paper, we consider a subset of sequential Java called rool [6,7,5],
an acronym for Refinement Object-Oriented Language. We prove each rule
from more basic algebraic laws [3,4,11] of rool. These laws constitute an
algebraic semantics of the language, and are themselves justified [11] from
a denotational semantics in the weakest precondition style [6,5]. Some rules
express very simple transformations, and are proved direct from the weakest
precondition semantics.

This paper is organised as follows. We first present an overview of rool

with some basic laws. After that, we present rules for object-oriented pro-
grams refactoring. This is followed by the derivation of a refactoring rule
from the basic laws of rool. Finally, we summarise our results and indicate
some directions for future work.

2 rool and Its Laws

rool [6,7,5] is an object-oriented language based on Java, that allows rea-
soning about object-oriented programs. A program in rool is a sequence of
classes followed by a main command. Classes are related by single inheritance.
Attributes can be private, protected, or public, like in Java. Methods are pub-
lic and can be recursive; they are defined using procedure abstractions [1,8]
and can have the form val x : T • c, res x : T • c, or vres x : T • c,
which correspond to the call-by-value, call-by-result, and call-by-value-result
parameter passing mechanisms.

Presently, rool has a copy semantics rather than a reference semantics. Of
course, pointers are ubiquitous in practice. We decided, however, to concen-
trate initially on other aspects of object-orientation like inheritance, dynamic
binding, visibility, and type tests and casts. The results we obtain are still
valid in the presence of pointers, but, in general, would need to be revised to
consider sharing; this is left as future work. In particular, the use of pointers
does not intrude in the formalisation of many refactorings we have already

2



Cornélio, Cavalcanti, and Sampaio

cds ,C B (res vl : T • c[vl/x ])(x ) = c

provided
vl is a list of fresh variables whose types are given by the list T ,
where the types of the variables in list x are subtypes of, or equal to,
the types in T .

Fig. 1. Law 〈pcom elimination-res〉

considered.

Classes are declared in rool as follows.

class N1 extends N2

pri x1 : M ;
prot x2 : T2;
pub x3 : T3;
meth m =̂ (pds • c)
new =̂ (pds • c)

end

The class N1 is a subclass of N2; this is expressed by the clause extends
which determines the immediate superclass of N1. If this clause is omitted, N1

extends the class object which is a superclass of every class in rool. The pri,
prot, and pub clauses introduces private, protected and public attributes of
N1, respectively. The visibility mechanism is similar to that of Java. The
method introduced by meth m =̂ (pds • c) has name m and its body is
(pds • c), where pds is a parameter declaration as explained above. All
methods in rool are considered to be public. Initialisers (class constructors)
are declared with the new clause.

A set of algebraic laws for rool has already been defined in [3,4,11]. Many
laws of commands are similar to the laws of imperative programming pre-
sented, for example, in [15], but rool has laws that support object-oriented
features such as method calls, classes, and type cast and test.

Some laws involving object-oriented features of rool depend on the context
in which they are applied. We use the notation cds ,N B c v c ′ to mean
that in the class N declared in the sequence of class declarations cds , the
command c is refined by c ′. In other words, c ′ satisfies every specification
satisfied by c. A refinement relation between class declarations, denoted by
cds1, c B cds2 �= cds ′2, is defined for when, in the program cds1cds2 • c,
the class declaration sequence cds2 can be replaced with cds ′2. We omit the
command c when there are no restrictions on it. These refinement relations
are formalised in [6].

Some conditions may be associated to a law application; we use the fol-
lowing notation to express the conditions. Using the notation C ′ ≤cds C we

3



Cornélio, Cavalcanti, and Sampaio

cds ,C B le.m(e) = {le 6= null}; D .m[le/self ](e)

provided
cds ,C B le : D , notRedefinedMethod(cds ,D ,m),methodSuperFree(m),
and all attributes free in D.m are public.

Fig. 2. Law 〈method call elimination〉

express that class C ′ is a subclass of C in the sequence of class declarations
cds. Expressions le (allowed to appear as target of assignments and method
calls, and as result and value-result arguments) are called left expressions.
The notation cds ,N B e : T asserts that in the class N present in cds , the
expression e has type T . These notations are formally defined in [7,5].

In the following we present three basic algebraic laws of rool in order
to briefly illustrate its algebraic semantics. The first law allows changing a
non-parameterised command into a parameterised one. For instance, we use
law 〈pcom elimination-res〉 (Figure 1) to introduce a parameterised command
with result arguments.

To illustrate the behaviour of a method call in rool, we present a simplified
version of the law for method calls (Figure 2). The first condition to be
satisfied for the application of this law is that the type of le is D . This law
applies when the call le.m does not require dynamic binding. The function
notRedefinedMethod(cds ,D ,m) assures that the method m declared in class
D is not redefined in any of its subclasses. In order to assure that super does
not appear in the body of method m of class D which is present in cds , we
use the function methodSuperFree(cds ,D ,m). In this situation, if le does not
denote a null object, we can replace the call with the body of m in D , after
a few changes. The command {le 6= null} is an assumption; it checks if le
is non-null and aborts if it is null. The notation D .m stands for the body of
method m in class D . With the substitution, we replace every occurrence of
self in D .m with le; every reference to a method n and to an attribute a,
declared in the class itself, must be replaced with le.n and le.a, as well. This
is indicated by the notation D .m[le/self ]. If the attribute a is private, this
replacement would cause a compilation error. This is the reason for requiring
the attributes to be public.

As an example of a law for classes, we present the law for introducing pri-
vate attributes in an existing class (Figure 3). With this law we can introduce
a fresh private attribute or remove a private attribute that is not used. The
notation pri a : T ; ads denotes the set of attribute declarations containing
pri a : T and all declarations in ads ; the declaration of operations (object
initialiser and methods) is denoted by mts . For declaring the new attribute
a in class C , a cannot be declared in C nor in its superclass and subclasses.
For removing the attribute a from C ; it cannot be referred to inside C . The
arrows → and ← annotate the conditions required for the right to left and

4



Cornélio, Cavalcanti, and Sampaio

class C ads mts end =cds,c class C pri a : T ; ads mts end

provided
(→ ) notDeclaredAttr(cds ,C , a), notDeclaredAttrSuperclass(cds ,C , a),
notDeclaredAttrSubclasses(cds ,C , a)
(←) notReferredAttribute(cds ,C , a)

Fig. 3. Law 〈introduce private attribute〉

left to right application of the law, respectively. A comprehensive set of laws
can be found in [3,4,11].

3 Refactoring Rules

Refactoring programs has been an activity in which transformed programs are
not guaranteed to preserve the behaviour of the original programs. Refactor-
ing usually relies on program compilation and on a suite of tests. Program
compilation intends to detect any type error introduced during the refactor-
ing; the suite of tests is used in order to check that no functional error was
introduced. These two activities, however, are insufficient to assure that a
refactored program preserves the behaviour of the original program as compi-
lation is related only to type errors and a suite of tests is not reliable enough.

In our rule-based approach, refactoring corresponds to the application of
rules that can only be applied if a set of conditions associated to each rule is
satisfied. Moreover, each rule is proved in the weakest precondition semantics
of rool [6,7,5] or is derived from laws [10]. Here we present rules for program
transformation that correspond to refactorings described by Fowler [13].

Extract Method. This rule turns a command c2, which is present in a
method, into a new method m2. The occurrences of the command in the
original method m1 are replaced by calls to the new method. This rule is
represented in Figure 4.

The variable a represents the free variables that appear in the command
c1 of method m1 which are not attributes of class A. This is obtained by the
function freeLocalVariablesExcptAttr(N ,m, c) that gives the free variables of
a command c that occurs in a method m which is present in a class N . We
use the notation c[c ′] to express that in the command c there is an occurrence
of the command c ′. The notation c[exp] expresses that we have an occurrence
of the expression exp in the command c. In the same way, exp1[exp2] expresses
that the expression exp2 occurs in the expression exp1. On the left-hand side of
this rule, c1[c2[a]] represents the occurrence of the variable a in the command
c2 that occurs in the command c1. We assume that a is read and written
in the command c2. The class C that appears as argument of the extends
clause in this rule, and in the others that follow, is present in the sequence of

5



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
ads ; ads ;
meth m1 =̂ (pds1 • c1[c2[a]]) meth m1 =̂ (pds1 • c1[self .m2(a)])
mts meth m2 =̂ (vres arg : T • c2[arg ])

end =cds,c mts
end

where
a ⊆ freeLocalVariablesExcpAttr(A,m1, c1) and a : T
C ∈ cds
provided
(→)notDeclaredMethSupercls(cds ,A,m2), notDeclaredMethod(cds ,A,m2),
notDeclaredMethSubcls(cds ,A,m2)
(←)noRecursiveCall(cds ,A,m2), notCalledMethod(cds ,A,m2),
notCalledInsideClass(cds ,A,m2)

Fig. 4. Rule 〈Extract Method〉

class declarations cds .

On the right-hand side of this rule, in the command c1 of method m1, the
method call self .m2(a) replaces the command c2[a]. In the command c2 of
method m2, the variable a is replaced with the argument arg . The parameter
passing mechanism for arg is value-result because we assume that the variable
a is read and written on the left-hand side of the rule. Variables that are only
read or written are treated as special cases of the situation we describe here.
If a variable is only read, it should be passed as a value argument. A variable
that is only written should be passed as a result argument.

This rule applies when the method m2 is new: not declared in the superclass
of A, in A itself, nor in any of its subclasses. Applying this rule from right to
left replaces method calls to m2 with the body of this method and removes m2

from class A. To apply this rule in this direction, there should be no recursive
call in the method m2. Also, the method m2 cannot be called in cds , c, and A.
These conditions and others that follow are formalised in [10].

The application of this rule improves the legibility and maintenance of a
class. If a command is present in several methods of a class, this command
can be extracted into a new method. The methods in which the command
occurred just call this new method. Consequently, these methods are shorter
than they were before the application of the rule. This improves legibility.
On the other hand, changing a command that appears in several methods can
lead to inconsistency if one of the methods is not properly modified, whereas
changing only one method avoids inconsistency. This improves maintenance.

Move Method. One of the most disseminated practices along the develop-
ment of object-oriented programs is moving methods between classes. The

6



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
adsa ; pri b : B ; adsa ;
meth m1 =̂ (vres arg1 : T1 meth m1 =̂ (vres arg1 : T1 •

c1[self .m2(ai)]) b.m1(an , self))
meth m2 =̂ (vres arg2 : T2 • c2) meth m2 =̂ (vres arg2 : T2 • c2)
mtsa new =̂ b := new B()

end =cds,c mtsa

class B end
adsb ; class B
mtsb adsb ;

end meth m1 =̂ (vres arg1 : T1;
val obj : A • c1[obj .m2(ai)])
mtsb

end

where
an ⊆ FV (c1) and C ∈ cds
provided
(→) notDeclaredMethSupercls(cds ,B ,m1),notDeclaredMethod(cds ,B ,m1),
notDeclaredMethSubcls(cds ,B ,m1), notDeclaredAttribute(cds ,A, b),
readerMethod(cds ,A,m2)
(←) notCalledMethod(cds ,B ,m1), notCalledInsideClass(cds ,B ,m1)

Fig. 5. Rule 〈Move Method〉

rule 〈Move Method〉 (Figure 5) moves the method m1 declared in class A to
the class B . This can only be done if m1 is not declared in B . Also, it cannot
be declared in the superclass of B nor in any of its subclasses. The attribute
b, whose type is B , cannot be already declared in class A. Another condition
is that the method m2 is a reader method: it only reads the attributes of
class A.

The attribute b of type B is introduced in class A so that it can call on b
the method that was moved from A to B . The attribute b has to be fresh, not
declared in A. This attribute is initialised in the method new with an object
of class B . We turn the old method m1 into a delegating method, it just calls
the method m1 of class B , thus delegating its previous functionality to m1.
The argument an of this method call are the free variables of the command c1

originally present in the method m1 of class A. The extra parameter obj of
method m1 of class B is target of calls to methods of class A. These methods
were originally called having self as target. To apply this rule from right to
left, we have to guarantee that m1 is not called in cds , c, and B .

The method m1 of class B , on the right-hand side, calls the method m2 of
class A with the object denoted by obj as target of the call. The parameter
obj has a copy of the object denoted by self because the call to the method

7



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
pri x : T ; adsa ; pri b : B ; adsa ;
meth m1 =̂ (pds1 • meth m1 =̂ (pds1 •
c[le := exp[self .x ], c[var aux : T • b.getX (aux );
self .x := exp]) le := exp[aux ]end, b.setX (exp)])
mtsa new =̂ b := new B();

end =cds,c mtsa

class B end
adsb ; class B
mtsb pri x : T ; adsb ;

end meth getX =̂ (res arg : T • arg := self .x )
meth setX =̂ (val arg : T • self .x := arg)
mtsb

end

where
C ∈ cds
provided
(→) notDeclaredAttribute(cds ,B , x ), notDeclaredAttribute(cds ,A, b),
notDeclaredMethSupercls(cds ,B , getX ), notDeclaredMethod(cds ,B , getX ),
notDeclaredMethSubcls(cds ,B , getX ),
notDeclaredMethSupercls(cds ,B , setX ), notDeclaredMethod(cds ,B , setX ),
notDeclaredMethSubcls(cds ,B , setX )
(←) notDeclaredAttribute(cds ,A, x ), notCalledMethod(cds ,B , getX ),
notCalledMethod(cds ,B , setX ), notCalledInsideClass(cds ,B , getX ),
notCalledInsideClass(cds ,B , setX )

Fig. 6. Rule 〈Move Attribute〉

m1 that occurs in class A passes self as argument. If the method m2 could
change the values of the attributes of the object on which the call is done,
these changes would not be reflected on the object passed as argument in the
call b.m1(an , self). This is the reason for requiring the method m2 to be a
reader method.

The purpose of this refactoring is to reduce the dependence between classes.
This may occur when a method is more used by methods of another class than
by those of the class in which it is declared. This suggests that the method
should be moved to another one. This can improve reuse of a class as this is
more independent of the functionality provided by another class. The coupling
between classes is reduced.

Move Attribute. Moving attributes between classes is also a common activ-
ity done during program development. If an attribute is more used by methods
of another class—through getting and setting methods—than by those of the

8



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
pri x : T ; adsa ; pri b : B ; adsa ;
meth getX =̂ (res arg : T • meth getX =̂ (res arg : T •

arg := self .x ) b.getX (arg))
meth setX =̂ (val arg : T • meth setX =̂ (val arg : T •

self .x := arg) b.setX (arg))
meth m1 =̂ (pds1 • meth m1 =̂ (pds1 •

c[le := exp1[self .x ], c[var aux : T • self .getX (aux );
self .x := exp2]) le := exp1[aux ]end,

meth m2 =̂ (pds2 • c2[x ]) =cds,c self .setX (exp2)])
mtsa [exp1[self .x ], meth m2(pds2 • b.m2(an))

self .x := exp2] new =̂ b := new B();
end mtsa [var aux : T • self .getX (aux );

exp1[aux ]end, self .setX (exp2)]
end
class B

pri x : T ;
meth getX =̂ (res arg : T •

arg := self .x )
meth setX =̂ (val arg : T •

self .x := arg)
meth m2 =̂ (pds2 • c2)

end

where
FV (c2) ⊆ x and an ⊆ FV (c2)
C ∈ cds
provided
(→) notDeclaredClass(cds ,B), notDeclaredAttribute(cds ,A, b)
(←) onlyClientOfClass(cds ,A,B), notParameterType(cds ,A,m1,B)
notParameterTypeMts(cds ,A,mtsa ,B), notDeclaredAttribtue(cds ,A, x )

Fig. 7. Rule 〈Extract Class〉

class in which it is declared, this suggests that the attribute belongs to another
class, it is intrinsic to the concept described by another class. We can apply
the rule 〈Move Attribute〉 (Figure 6) for moving attributes between classes.
The class A, from which we move the attribute x , after the application of this
rule, has an attribute b of type B that has to be not declared in A. This
attribute is initialised in the method new of class A with an object of B . The
attribute to be moved cannot be declared in class B , the target class. Getting
and setting methods are declared in B in order to access x . These methods
could not be declared in the superclass of B , in B itself, and in any of its
subclasses. Commands that read and write the attribute x in the source class

9



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
pri x : T ; adsa pri x : T ; adsa

meth m1 =̂ (pds1 • meth m1 =̂ (pds1 •
c[le1 := exp1[self .x ], c[var aux : T • self .getX (aux );
self .x := exp2]) =cds,c le1 := exp1[aux ]end, self .setX (exp2)])

mtsa meth getX =̂ (res arg : T • arg := self .x )
end meth setX =̂ (val arg : T • self .x := arg)

mtsa

end

where
C ∈ cds
provided
(→)
notDeclaredMethSupercls(cds ,A, getX ), notDeclaredMethod(cds ,A, getX ),
notDeclaredMethSubcls(cds ,A, getX ),
notDeclaredMethSupercls(cds ,A, setX ), notDeclaredMethod(cds ,A, setX ),
notDeclaredMethSubcls(cds ,A, setX )
(←) notCalledMethod(cds ,A, getX ), notCalledInsideClass(cds ,A, getX ),
notCalledMethod(cds ,A, setX ), notCalledInsideClass(cds ,A, setX )

Fig. 8. Rule 〈Self Encapsulate Field〉

A do these operations using the getting and setting methods introduced in B .
In order to call these methods in class A, we use the attribute b. To apply this
rule from right to left, x cannot be an attribute of class A, and the getting
and setting methods cannot be called inside class B , nor in cds and c.

Extract Class. Another common practice is partitioning a class into several
ones. This can be done by using the rule 〈Extract Class〉 (Figure 7). To apply
this rule, we have to satisfy the condition that the class B , which is being
extracted from class A, is not declared in the sequence of class declarations
cds . Also, the attribute b cannot be already declared in A.

Some attributes declared in A, which are represented here by x , have to
be declared in B along with getting and setting methods. An attribute b
of type B is introduced in the class A and initialised in the new method
with an object of B . This attribute is the target of calls to the getting and
setting methods of class B . Original getting and setting methods that act on
attributes that are declared in B must use the corresponding methods of class
B . In this way, there are no impacts to clients of class A that calls the getting
and setting methods. Methods declared in A that act on attributes present in
B uses the getting and setting methods present in A itself. Applying this rule
from right to left requires that the class B is client only of class A, and that
B is not type of parameters of methods declared in A. Also, the attribute x

10



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
pub x : T ; adsa ; pri x : T ; adsa ;
mtsa meth getX =̂ (res arg : T • arg := self .x )

end =cds,c meth setX =̂ (val arg : T • self .x := arg)
mtsa

end

where
C ∈ cds
provided
(→) le.x does not appear in cds, except for class A, and c, where

le is any left expression of a type B such that B ≤cds A.
notDeclaredMethSupercls(cds ,A, getX ), notDeclaredMethod(cds ,A, getX ),
notDeclaredMethSubcls(cds ,A, getX ),
notDeclaredMethSupercls(cds ,A, setX ), notDeclaredMethod(cds ,A, setX ),
notDeclaredMethSubcls(cds ,A, setX )
(←) notCalledMethod(cds ,A, getX ), notCalledInsideClass(cds ,A, getX ),
notCalledMethod(cds ,A, setX ), notCalledInsideClass(cds ,A, setX )

Fig. 9. Rule 〈Encapsulate Field〉

cannot be already declared in class A.

This refactoring improves reuse and extensibility. Classes should describe
single concepts of the real world. Describing different concepts in one class
mingles attributes and methods that are intrinsic to distinct concepts. This
can result in complex classes that are hard to reuse and extend. Extracting
a class from a complex class simplifies the last one and favours reuse and
extensibility of both resultant classes.

Self Encapsulate Field. Accessing attributes of a superclass from a sub-
class is only allowed if the attributes are declared as protected or public. In
order to allow subclasses—and all other classes—to have access to private at-
tributes already declared in a superclass, getting and setting methods have to
be declared. The rule 〈Self Encapsulate Field〉 (Figure 8) introduces getting
and setting methods for an attribute x declared in class A. In the method
m1 on the left-hand side of the rule, the attribute x appears in the expression
exp1 and also there is an assignment to this attribute. On the right-hand side
of the rule, the occurrence of self .x in the expression exp1 is replaced by the
local variable aux declared in m1. This variable receives the result of the call
to method getX . The assignment is accomplished by a call to method setX ,
passing by value the expression exp2. To apply this rule from left to right, the
method getX and setX cannot be declared in the superclass of A, in A itself,
nor in any of its subclasses. To apply this rule in the reverse direction, the
methods getX and setX cannot be called in cds , c, and A.

11



Cornélio, Cavalcanti, and Sampaio

class A extends C class A extends C
adsa ; adsa ;
meth m1 =̂ (pds1 • c1; meth m1 =̂ (pds1 • c1;

var x , y : T1,T2 • c[x ]; =cds,c var y : T2 • self .m2(y)end)
self .m2(x , y)end) meth m2 =̂ (res arg2 : T2 •

meth m2 =̂ var x : T1 • self .m3(x );
(val arg1 : T1; res arg2 : T2 • c2[x , arg2] end)

c2[arg1, arg2]) meth m3 =̂ (res arg : T1 • c[arg ])
end end

where
C ∈ cds
provided
(→) notDeclaredMethSupercls(cds ,A,m3),notDeclaredMethod(cds ,A,m3),
notDeclaredMethSubcls(cds ,A,m3), calledOnlyInsideClass(cds ,A,m2)
(←) notCalledMethod(cds ,A,m3), notCalledInsideClass(cds ,A,m3)

Fig. 10. Rule 〈Replace Parameter with Method〉

Encapsulate Field. Public attributes reduces the modularity of object-
oriented programs. They break data hiding, separating data from behaviour
as client classes can have direct access to them. The rule 〈Encapsulate Field〉
(Figure 9) hides a public attribute and provides getting and setting methods
for it. If a client of class A directly reads the attribute x , this reference to x
must be replaced with a call to the method getX ; if a client directly assigns
to x , this assignment must be made using the method setX . To apply this
rule from left to right there must be no direct access to the attribute x . Also,
the methods getX and setX cannot be declared in the superclass of A, in A
itself, nor in any subclass of A. To apply the rule 〈Encapsulate Field〉, from
right to left, the methods getX and setX cannot be called in cds , c, and A.

Replace Parameter with Method. If a method m2 can get a value that
is passed as argument to it by means of a method call, this really should be
done. The consequence of this change is that the parameter list of the method
m2 is reduced, thus improving readability. This is the purpose of the rule
〈Replace Parameter with Method〉 (Figure 10). The method m1 on the left-
hand side of the rule calls the method m2 passing x , a locally declared variable,
as a value argument. After application of this rule, the method m1 still calls
m2. The major changes occur in m2. The command in which x occurs in the
original m1 is extracted into the method m3. Instead of passing the result of
the call to m3 as an argument in the call to m2, the method m1 just calls m2

which is responsible for calling m3. Consequently, the number of parameters
is lesser than in the original m2. The local variable x present in the method

12



Cornélio, Cavalcanti, and Sampaio

class A class C
pri x : T1; prot x , y : T1,T2;
prot y : T2; pub z : T3

pub z : T3; adsa ; meth m1 =̂ A.m1

meth m1 =̂ (pds1 • c1) meth m2 =̂ B .m2

meth m2 =̂ (pds2 • c2) meth m3 =̂ (pds3 • abort)
meth m3 =̂ (pds3 • c3) new =̂ (val a1, a2, a3 : T1,T2,T3 •
new =̂ x , y , z := a1, a2, a3)
(val a1, a2, a3 : T1,T2,T3 • end

x , y , z := a1, a2, a3) class A extends C
mtsa adsa ;

end =cds,c meth m3 =̂ (pds3 • c3)
class B new =̂ (val a1, a2, a3 : T1,T2,T3 •

pri x : T1; super.new(a1, a2, a3))
prot y : T2; mtsa

pub z : T3; adsb ; end
meth m1 =̂ (pds1 • c1) class B extends C
meth m2 =̂ (pds2 • c2) adsb ;
meth m3 =̂ (pds3 • c3) meth m3 =̂ (pds3 • c3)
new =̂ new =̂ (val a1, a2, a3 : T1,T2,T3 •
(val a1, a2, a3 : T1,T2,T3 • super.new(a1, a2, a3))

x , y , z := a1, a2, a3) mtsb

mtsb end
end

provided
(→) notDeclaredClass(cds ,C ), refinedMethods(cds ,A,m1,B ,m1)
refinedMethods(cds ,B ,m2,A,m2), notRefinedMethods(cds ,A,m3,B ,m3)
equalMethodParameters(cds ,A,m3,B ,m3)
(←) unusedClass(cds ,C )

Fig. 11. Rule 〈Extract Superclass〉

m2, on the right-hand side, replaces the occurrences of arg1 in the original
m2. In order to apply this rule, from left to right, the method m3 cannot be
declared in the superclass of A, in A itself, nor in any of its subclasses. Also,
the method m2 cannot be called outside class A. For applying this rule from
right to left, the following conditions must be satisfied: the method m3 is not
called in cds , c, and A.

Extract Superclass. As software systems often follow similar patterns, their
development can be guided to explore what they have in common. This avoids
looking for solutions that have already been encountered. On the other hand,

13



Cornélio, Cavalcanti, and Sampaio

duplicate code is a hindrance to software maintenance. This may occur when
classes have similar behaviour and indicates that an inheritance hierarchy can
be extracted.

The rule 〈Extract Class〉 is adequate for delegation. Inheritance is adequate
when two classes share behaviour. The rule 〈Extract Superclass〉 (Figure 11)
extracts attributes and methods common to two classes A and B , declaring
them in a new class C that is declared to be the superclass of A and B . Private
attributes are declared as protected in C ; protected and public attributes are
declared with the same visibility. The class C has to be not declared. To
choose which method body is moved to the superclass between two common
methods of classes A and B , we have to verify which method is the most
abstract. For instance, the body of method m1 of class C is the body of
method m1 of class A because this is more abstract than method m1 of class B .
This is checked by the condition refinedMethods(cds ,A,m1,B ,m1) that checks
that A.m1 is refined by the B .m1. Recall that the notation A.m1 stands for the
body of method m1 in class A. In the case of method m2, B .m2 is refined by
A.m2, indicating that the body of method m2 in class C is that of B .m2. If two
methods have the same signature, but there is no refinement between them,
we declare a method in the superclass with the same signature and define the
body to be abort. This is the case of method m3. The method new of class
C initialises the common attributes of A and B that were initialised in the
original classes. The method new of class A and B just calls the new of the
superclass, having super as target of the call. To remove the class C from
the sequence of class declarations cds , we have to assure that it is not used in
cds and c: it is not type of any variable and it has no subclasses.

Refactoring rules as those presented in this Section can be derived from
the basic laws proposed for rool [3,4], and other laws, also presented in [9].
We give an example of such derivation in the next section.

4 Correctness

Here we present the derivation of the rule 〈Extract Class〉. Initially the class A
contains attributes and methods that describe a specific concept (see left-hand
side of Figure 7). The first step of the derivation is to introduce the class B
to describe this specific concept.

To introduce a new class, we use the law 〈introduce class〉 to declare the
class B with the attributes that describe the concept we want to extract from
A. These attributes are declared as public because the law for introducing
method calls requires attributes that appear in methods of the target object
to be public. We can declare B only with these attributes and then, applying
a law for method introduction, we can declare getting and setting methods
for these attributes. However, as we are declaring a new class, we can do this

14



Cornélio, Cavalcanti, and Sampaio

class A extends C
pri x , b : T ,B ; adsa ;
meth getX =̂ (res arg : T • arg := b.x )end
meth setX =̂ (val arg : T • b.x := arg)end
meth m1 =̂ (pds1 • c[le := exp1[b.x ], b.x := exp2])end
new =̂ b := new B()
mtsa [exp1[b.x ], b.x := exp2]

end

Fig. 12. An intermediary class A

with all attributes and necessary methods. The class B is as follows.

class B
pub x : T ;
meth getX =̂ (res arg : T • arg := self .x )end
meth setX =̂ (val arg : T • self .x := arg)end

end

Afterwards, we turn the class A into a client of class B by declaring an
attribute of type B in A. In fact, we use the new attribute to relate the at-
tributes of A to those declared in B . This relation is established by a coupling
invariant. The law 〈introduce attribute-coupling invariant〉 allows introducing
attributes and requires their types to be classes declared in cds . The attributes
cannot be declared in the superclass of A nor in any of its subclasses. We ap-
ply this law to add the attribute b of type B . The coupling invariant CI below
is used to relate the attribute x of class A with attribute x of class B .

CI =̂ x = b.x

It guarantees that the values or objects recorded in x are the same as those
in the attribute b of class B .

The law 〈introduce attribute-coupling invariant〉 changes not only the at-
tributes of a class, but also its methods. Every condition is extended with the
coupling invariant, and assignments are extended by modifications to the new
variables that maintain the coupling invariant. The modifications follow the
laws for data refinement in [17]. Afterwards, we refine the commands, in the
traditional way, so that original attributes do not occur in them, but only the
attributes declared in B accessed through b. The assignment self .x := arg in
the method setX becomes self .x , b.x := arg , arg . Then, it is diminished to the
assignment b.x := arg . Assignments like le := c[self .x ] become le := c[b.x ].
The class A after all these changes is presented in the Figure 12.

Now we have to introduce calls, in class A, to the getting and setting
methods declared in B . We proceed in the following way: we introduce a
local variable that substitutes the variable we want to pass as argument. If

15



Cornélio, Cavalcanti, and Sampaio

the argument is a result one, the last command in the local variable block is
an assignment of the variable introduced in this block to the variable that was
substituted.

var p arg : T • p arg := b.x ; arg := p arg end

Then, we introduce a parameterised command that corresponds to the local
variable block. Based on this parameterised command we introduce a method
call. All these steps are carried out by using appropriate laws.

The assignment arg := b.x present in method setX is the same as the one
of method getX of class B , so we can introduce a method call. Applying law
〈pcom elimination - res〉 in Figure 1, from left to right, we obtain the following
parameterised command.

(res arg : T • arg := b.x )(arg)

To introduce the method call, we need a program in the same format as the
one on the right-hand side of law 〈method call elimination〉 in Figure 2. We
have the same parameterised command as the body of method getX of class
B . We need to introduce the assumption {b 6= null}. This is carried out
using a class invariant: a predicate that is valid along the whole lifetime of
an object. Above, the class invariant is b 6= null: if we begin the execution
of a method in a state in which b 6= null, its execution terminates without
changing this fact. Moreover the initialiser of class A establishes b 6= null. In
other words, null is not assigned to b in any method of A.

With this we can introduce the assumption we need. After these steps, we
have the following command

{b 6= null}(res arg : T • arg := b.x )(arg)

which is in the format required by law 〈method call elimination〉. Then, ap-
plying this law, we introduce the method call b.getX (arg) in the method getX
of class A. Similar steps are followed to introduce calls to the method setX
of class B .

We further refine assignments in m1 so that they make use of the setX and
getX methods. For an assignment le := exp1[b.x ], we declare a variable aux
to be used as argument for getX . We assign to it the expression b.x .

var aux : T • aux := b.x ; le := exp1[b.x ] end

As the expression b.x is assigned to aux and appears in le := exp1[b.x ], we
can replace b.x with aux . We obtain the following program.

var aux : T • aux := b.x ; le := exp1[aux ] end

All these changes are carried out using laws that we omit here due to lack
of space, but that can be found elsewhere [11,9]. The assignment aux := b.x

16



Cornélio, Cavalcanti, and Sampaio

class A extends C
pri b : B ; adsa ;
meth getX =̂ (res arg : T • b.getX (arg))
meth setX =̂ (val arg : T • b.setX (arg))
meth m1 =̂ (pds1 • c[var aux : T • self .getX (aux );

le := exp1[aux ]end, self .setX (exp2)])
new =̂ b := new B();
mtsa [var aux : T • self .getX (aux );

le := exp1[aux ]end, self .setX (exp2)]
end
class B

pri x : T ;
meth getX =̂ (res arg : T • arg := self .x )
meth setX =̂ (val arg : T • self .x := arg)

end

Fig. 13. The final classes A and B

can be transformed into a call to method getX of class B , as we have already
discussed. The resulting call b.getX (aux ) is the command present in the
method getX of class A. Using the same step for introducing method call, we
can introduce a call to getX of class A having self as target. The resulting
program is the following.

var aux : T • self .getX (aux ); le := exp1[aux ] end

Similar steps refine assignments b.x := exp2 to self .setX (exp2). At this
point, we do not use the attribute x declared in A, this attribute can be
removed using the law 〈introduce private attribute〉 in Figure 3, from right to
left. The public attribute x of class B can hidden by using a specific law for
this [3]. The resulting classes are presented in the Figure 13.

The rule 〈Extract Class〉 is applied by means of very small transforma-
tion steps in [9], a case study on integration of object-oriented programming
languages and relational databases.

5 Conclusions

This paper has presented some refactoring rules for object-oriented programs
and illustrated their correctness by deriving one of the rules. This derivation is
based on a set of algebraic laws [3,4] for our language. The proposed strategy
involves classical data refinement [17] and algorithmic refinement with new
features, such as the introduction of classes and method calls. New laws have
been proposed for rool as a consequence of this effort.

In [13], 68 refactorings are presented, organised as 6 groups according to the
kind of refactoring. The first group is related to the composition of methods;

17



Cornélio, Cavalcanti, and Sampaio

the second to moving features between classes; the third to data organisation;
the fourth is related to the simplification of conditional expressions; the fifth is
intended to make method calls simpler; and the sixth deals with generalisation.
Of these, we have captured 42 as transformation rules. The others cannot
be captured because rool currently does not support references and static
methods.

Our general aim is formalising object-oriented design practices. This is im-
portant for the practice of refactoring of object-oriented programs and also for
justifying the validity of changes accomplished by the use of design patterns.
Notwithstanding the fact that we work with a language with a copy semantics,
our experience until now reveals that this is not a hindrance to many refac-
torings. A distinguishing feature of our research is the justification of design
practices using a simple, uniform, and modular reasoning mechanism: a set
of basic algebraic laws of rool.

The literature related to refactoring of object-oriented programs includes
work such as that of Opdyke [18], which proposes a set of seven properties
that must be satisfied in order to guarantee behaviour preservation. How-
ever, there is no proof in that work that satisfying these properties preserves
program semantics. Our approach to refactoring is based on rules. Each rule
establishes the restrictions that must be satisfied allowing its application. The
application of a rule modifies a program guaranteedly leaving its behaviour
unchanged, since each rule is proved from more basic laws or against a weakest
precondition semantics of rool [11] and a refinement relation defined in [6,7,5].

Tokuda [20,21] uses the properties proposed by Opdyke for behaviour
preservation. The insufficiency of Opdyke’s properties for preserving be-
haviour is recognised, and enabling conditions are added to guarantee that
these properties are satisfied. Tokuda also takes the position that refactorings
are behaviour-preserving due to good engineering and not to any mathemat-
ical guarantee. He argues that given a mature refactoring implementation,
refactorings should be treated as trusted tools in the same way as compilers
transform source code to assembly even without mathematical proof to guar-
antee correctness. In our project, we are also concerned with a mathematical
proof of compiler correctness [12].

Roberts [19] gives a definition of refactoring that focuses on precondition
and postconditions of the refactorings. He also examines techniques for using
runtime analysis to assist refactoring. He takes the position that a refactor-
ing is correct if a program that meets its specification continues to meet its
specification after the refactoring. A suite of tests is understood as a form of
specification. The definition of correctness is based on test suites. A refactor-
ing is correct if a program that passes a test suite continues to pass the test
suite after the refactoring. There is no semantic-based proof that refactoring
preserves the behaviour of a program or continues meeting its specification.

Fowler [13] suggests that before starting refactoring one should have a
solid suite of tests that must be self-checking. Every change must be followed

18



Cornélio, Cavalcanti, and Sampaio

by program compilation and test. There are no conditions to be satisfied
in order to guarantee behaviour preservation. The use of algebraic rules for
refactoring eliminates the need of compiling the program as the result of a law
application is correct by construction, both from the syntactic and from the
semantic points of view. The use of a suite of tests is optional.

Back [2] studies a method for software construction that is based on incre-
mentally extending the system with a new feature at a time. A layered software
architecture is proposed to support this method. He also takes into account
correctness conditions and reason about their satisfaction in the refinement
calculus. Although the approach seems similar to ours, no concrete laws or
case studies have been presented in [2].

The proof of the validity of some rules is based on the application of others.
More elaborate refactorings than those presented here in fact constitute case
studies. Refactoring a poorly structured program into a program structured
according to a layered architecture is an already developed case study [9].
Using refactoring rules like those we present here to develop well-established
design patterns is the next activity in which we are going to be involved. We
have already started on this and considered 4 of the design patterns in [14].
Adapting this approach to deal with pointers is also a topic for further re-
search. rool is already being extended in this direction.

References

[1] Back, R. J. R., “Procedural Abstraction in the Refinement Calculus,” Ser. A
No. 55. Department of computer Science, Åbo - Finland, 1987.

[2] Back, R. J. R., Software Construction by Stepwise Feature Introduction, ZB
2002: Formal Specification and Development in Z and B, Didier Bert et. al.,
Lecture Notes in Computer Science 2272 (2002), 162-183.

[3] Borba, P., and A. Sampaio, Basic Laws of ROOL: an Object-Oriented
Language, Revista de INFORMÁTICA TEÓRICA e APLICADA, Instituto de
Informática-UFRGS, 7 (2000) 1:49-68.

[4] Borba, P., and A. Sampaio, “The basic laws of ROOL,”
Technical report, Centre of Informatics-UFPE, 2000,
URL: http://www.cin.ufpe.br/∼lmf/coop/papers.

[5] Cavalcanti, A. L. C., and D. Naumann, A weakest precondition semantics for
an object-oriented language of refinement, FM’99 - Formal Methods, Lecture
Notes in Computer Science 1709 (1999), 1439-1459.

[6] Cavalcanti, A. L. C., and D. A. Naumann, A Weakest Precondition Semantics
for Refinement of Object-oriented Programs, IEEE Transactions on Software
Engineering 8 (2000), 713-728.

19

http://www.cin.ufpe.br/~lmf/coop/papers�


Cornélio, Cavalcanti, and Sampaio

[7] Cavalcanti, A. L. C., and D. Naumann, “A Weakest Precondition Semantics
for an Object-oriented Language of Refinement - Extended Version,” CS 9903,
Stevens Institute of Technology, 1999.

[8] Cavalcanti, A. L. C., A. Sampaio, and J. C. P. Woodcock, An Inconsistency in
Procedures, Parameters, and Substitution in the Refinement Calculus, Science
of Computer Programming 33 (1999), 1:87-96.

[9] Cornélio, M., A. Cavalcanti, and A. Sampaio, “Program Development
in ROOL,” Technical report, Centre of Informatics - UFPE, 2001,
URL: http://www.cin.ufpe.br/∼mlc2/papers/progDevelopROOL.ps.

[10] Cornélio, M., A. Cavalcanti, and A. Sampaio, “Refactoring Rules
in ROOL,” Technical report, Centre of Informatics - UFPE, 2002,
URL: http://www.cin.ufpe.br/∼mlc2/papers/refactRulesROOL.ps.

[11] Cornélio, M., A. Cavalcanti, A. Sampaio, and P. Borba,
“Proving the basic laws of ROOL in a weakest precondition semantics,”
Technical report, Centre of Informatics - UFPE, 2000,
URL: http://www.cin.ufpe.br/∼lmf/coop/papers.

[12] Duran, A., A. C. A. Sampaio, and A. L. C. Cavalcanti, “Formal Bytecode
Generation for a ROOL Virtual Machine,” 4th Brazilian Workshop on Formal
Methods, 2001.

[13] Fowler, M., “Refactoring: Improving the Design of Existing Code,” Addison-
Wesley, 1999.

[14] Gamma, E. et al., “Design Patterns: elements of reusable object-oriented
software,” Addison-Wesley Professional Computing Series, Addison-Wesley,
1994.

[15] Hoare, C.A.R. et al., Laws of programming, Communications of the ACM 30
(1987), 8:672-686.

[16] Meyer, B., “Object-Oriented Software Construction,” 2nd Ed., Prentide-Hall,
1997.

[17] Morgan, C. C., “Programming from Specifications,” 2nd Ed., Prentice Hall,
1994.

[18] Opdyke, W., “Refactoring Object-Oriented Frameworks,” Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1992.

[19] Roberts, D. B., “Practical Analysis for Refactoring,” Ph.D. thesis, University
of Illinois an Urbana-Champaign, 1999.

[20] Tokuda, L. A., “Evolving Object-Oriented Designs with Refactoring,” Ph.D.
thesis, The Department of Computer Sciences, The University of Texas at
Austin, 1999.

[21] Tokuda, L., and D. Batory, Evolving Object-Oriented Designs with Refactoring,
Journal of Automated Software Engineering, 8 (2001), 89-120.

20

http://www.cin.ufpe.br/~mlc2/papers/progDevelopROOL.ps�
http://www.cin.ufpe.br/~mlc2/papers/refactRulesROOL.ps�
http://www.cin.ufpe.br/~lmf/coop/papers�

