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Review: Protein Secondary Structure Prediction Continues to Rise
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Methods predicting protein secondary structure
improved substantially in the 1990s through the use
of evolutionary information taken from the diver-
gence of proteins in the same structural family. Re-
cently, the evolutionary information resulting from
improved searches and larger databases has again
boosted prediction accuracy by more than four per-
centage points to its current height of around 76%
of all residues predicted correctly in one of the
three states, helix, strand, and other. The past year
also brought successful new concepts to the field.
These new methods may be particularly interesting
in light of the improvements achieved through sim-
ple combining of existing methods. Divergent evo-
lutionary profiles contain enough information not
only to substantially improve prediction accuracy,
but also to correctly predict long stretches of iden-
tical residues observed in alternative secondary
structure states depending on nonlocal conditions.
An example is a method automatically identifying
structural switches and thus finding a remarkable
connection between predicted secondary structure
and aspects of function. Secondary structure pre-
dictions are increasingly becoming the work horse
for numerous methods aimed at predicting protein
structure and function. Is the recent increase in
accuracy significant enough to make predictions
even more useful? Because the recent improvement
yields a better prediction of segments, and in par-
ticular of b strands, I believe the answer is affirma-
ive. What is the limit of prediction accuracy? We
hall see. © 2001 Academic Press

INTRODUCTION

History. Linus Pauling correctly guessed the for-
ation of helices and strands (14, 15) (and falsely
ypothesized other structures). Three years before
auling’s guess was verified by the publications of

he first X-ray structures (16, 17), one group had
lready ventured to predict secondary structure
rom sequence (18). The first-generation prediction

ethods following in the 1960s and 1970s were all
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based on single amino acid propensities (19). The
second-generation methods dominating the scene
until the early 1990s used propensities for segments
of 3–51 adjacent residues (19). Basically any imag-
inable theoretical algorithm had been applied to the
problem of predicting secondary structure from se-
quence. However, it seemed that prediction accuracy
stalled at levels slightly above 60% (percentage of
residues predicted correctly in one of the three
states: helix, strand, and other). The reason for this
limit was the restriction to local information. Can
we introduce some global information into local
stretches of residues?

Secondary structure prediction profits from diver-
gence. Early on, Dickerson et al. (20) realized that
information contained in multiple alignments can
improve predictions. Zvelebil et al. (21) incorporated
this concept into an automatic prediction method.
However, the breakthrough of the third-generation
methods to levels above 70% accuracy required a
combination of larger databases with more ad-
vanced algorithms (19, 22). The major component of
these new methods was the use of evolutionary in-
formation. All naturally evolved proteins with more
than 35% pairwise identical residues over more than
100 aligned residues have similar structures (23).
This seemingly implies an amazing stability of
structure with respect to sequence divergence. How-
ever, this average figure hides the fact that neutral
mutations are extremely unlikely. Supposedly most
mutations result in proteins that will not adopt any
globular structure, at all. In other words, only a tiny
fraction of all possible proteins exist. Hence, posi-
tion-specific profiles describing which residues can
be exchanged against which others at which posi-
tions contain crucial information about protein
structure. One consequence is that stretches of say
17 adjacent residues implictly contain some infor-
mation about long-range interactions and environ-
ment since the profile reflects evolutionary con-
straints. Using evolutionary divergence was the
start key to the third-generation prediction meth-
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ods. Knowing 3D structure,1 we can identify very
distant relationships between proteins that would
improve accuracy even further (24). Can we build
larger and more diverged families without knowing
structure?

1 Abbreviations used: 3D structure, three-dimensional (coordi-
nates of protein structure); 1D structure, one-dimensional (e.g.,
sequence or string of secondary structure); ASP, method identi-
fying regions of structure ambivalent in response to global
changes (1); DSSP, database and method converting 3D coordi-
nates into secondary structure (2); HMMSTR, hidden Markov
model-based prediction of secondary structure (3); JPred, method
combining other prediction methods (4, 5); JPred2, divergent
profile (PSI-BLAST)-based neural network prediction (6); PHD,
simple profile-based neural network prediction (7); PHDpsi, di-
vergent profile (PSI-BLAST)-based neural network prediction (7,
8); PROF, divergent profile-based neural network prediction
trained and tested with PSI-BLAST (9); PSI-BLAST, gapped and
iterative specific profile-based, fast and accurate alignment
method (10); PSIPRED, divergent profile (PSI-BLAST)-based
neural network prediction (11); SAM-T99sec, neural network pre-
diction, using hidden Markov models as input (12); SSpro, profile-
based advanced neural network prediction method (13).

FIG. 1. Profile-based searches extend evolutionary informatio
U, i.e., all proteins that have a similar 3D structure. A simple pa
sequence alignment (gray circle around U). This zone can be defi
identical residues over long alignments. Assume that there are on
side of U. For example, PSI-BLAST starts the next iteration with
Searching the database again with this profile reaches safely into
in figure). However, no current method generally reaches all me
region may fall outside of the initial safe zone (black subregion
sequence-space hopping or intermediate sequence searches (dash
the profile-based search. The tricky bit is to avoid the possibility
connect two separate structural families (U and X). Conclusions
family members. (ii) Close homologues may be lost during the exte
New database searches extend family divergence.
It was also recognized very early on that information
from the position-specific evolutionary exchange
profile of a particular protein family facilitates dis-
covering more distant members of that family (20).
Automatic database search methods successfully
used position-specific profiles for searching (25).
However, the breakthrough for large-scale routine
searches was achieved with the development of PSI-
BLAST (10) and hidden Markov models (12, 26). In
particular, the gapped, profile-based, and iterated
search tool PSI-BLAST continues to revolutionize
the field of protein sequence analysis through its
unique combination of speed and accuracy. More
distant relationships are found through iteration
starting from the safe zone of comparisons and in-
truding deeply and reliably into the twilight zone
(Fig. 1).

Topics left out here. This review focuses on meth-
ods predicting secondary structure for globular pro-
teins, in general. At the infancy of analyzing the

cloud signifies a protein structural family for the query protein
comparison of U with all other proteins covers the “safe zone” of
.g., by BLAST scores below 10210 or by more than 35% pairwise
other proteins (small white circles) in the safe zone falling on one
mily-specific profile given by the proteins found in the safe zone.
ilight zone (zone reached marked by double-lined egg indicated

of family U. Furthermore, in particular for PSI-BLAST the new
safe zone). Finally, the regions that could have been reached by
les around five initial hits; (120, 121)) are not entirely covered by
e profile will pick unrelated proteins (transparent egg) and thus
erated PSI-BLAST searches can safely identify fairly divergent
f the family. (iii) The advanced search can lead the results astray.
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proteome of entirely sequenced organisms, the most
useful structure prediction methods are those that
focus on particular classes of proteins, such as pro-
teins containing membrane helices and coiled-coil
regions (27–30). For predicting the topology of heli-
cal membrane proteins, a number of new methods
add interesting new facets (31–36). However, no
method has truly used the flood of recent experimen-
tal information about membrane proteins (37).
Overall, membrane helices can be predicted much
more accurately than globular helices. The current
state of the art is to correctly predict all membrane
helix topology for more than 80% of the proteins and
to falsely predict membrane helices for less than 4%
of all globular proteins. We have recently come
across evidence suggesting that this figure overesti-
mates performance (Rost, unpublished). Clearly,
methods developed to predict helices in globular pro-
teins go completely wrong for membrane helices! In
contrast, porins appear to be predicted relatively
accurately by methods developed for globular pro-
teins (38, 39). Few methods specifically predicting
coiled-coil regions have been published recently (old-
er review in (40)). Two interesting developments are
the prediction of the dimeric state of coiled-coils (41)
and a method predicting 3D structure for coiled-coil
regions (42). In fact, the latter is the only existing
method predicting 3D structure below 2-Å main
chain deviation over more than 30 residues. Another
example of successful specialized secondary struc-
ture prediction methods is the focus on b turns (43,
44). The method from the Thornton group appears to
be the most accurate current means of predicting
turns. Successful methods specialized in predicting
a-helix propensities have resulted from the experi-
mental studies of short peptides in solution (45, 46).
Neither the turn nor the helix-in-solution methods
have yet been combined with other secondary struc-
ture prediction methods.

MORE DATA 1 REFINED SEARCH 5 BETTER
PREDICTION

Jones broke through by using PSI-BLAST
searches of large databases. David Jones pioneered
the use of iterated PSI-BLAST searches automati-
cally (11). The most important step achieved by the
resulting method PSIPRED has been the detailed
strategy of avoiding pollution of the profile through
unrelated proteins (Fig. 1). To avoid this trap, the
database searched must be filtered first (11). At the
CASP meeting at which David Jones introduced
PSIPRED, Kevin Karplus and colleagues presented
their prediction method (SAM-T99sec), finding more
diverged profiles through hidden Markov models
(47, 48). Recently, Cuff and Barton also successfully
used PSI-BLAST alignments for JPred2 (see 49).
Jennings et al. (50) explore an alternative to increas-
ing divergence: they started with a safe zone align-
ment through ClustalW (51) and HMMer (26) and
iteratively refined the alignment using the second-
ary structure prediction from DSC (52). The result-
ing alignment is reported to be more accurate and to
yield higher prediction accuracy than the initial
ClustalW/HMMer alignments (50). How accurate is
secondary structure prediction in 2000?

Prediction accuracy peaks at 76% accuracy. The
current best methods reach a level of 76% three-
state per-residue accuracy (Table I). This constitutes
a sustained level more than four percentage points
above the last century’s best method not using di-
verged profiles (PHD in Table I). Fortunately, the
improvement is valid for helix, strand, and nonregu-
lar regions (information and correlation indices in
Table I). Furthermore, significantly fewer residues
are confused between the states helix and strand
(BAD score, Table I). Finally, some new methods
also improve in a more global sense by improving
the accuracy of assigning the secondary structural
class (all-alpha, all-beta, alpha/beta, and other)
based on the predicted content of regular secondary
structure (Class score, Table I).

Sources of improvement: Four parts database
growth, three parts extended search, two parts other.
Jones solicited two causes for the improved accu-
racy: (i) training and (ii) testing the method on PSI-
BLAST profiles. Cuff and Barton examined in detail
how different alignment methods improve (6). How-
ever, which fraction of the improvement results from
the mere growth of the database, which fraction
results from using more diverged profiles, and which
fraction results from training on larger profiles? Us-
ing PHD from 1994 to separate the effects (8), we
first compared a noniterative standard BLAST (53)
search against SWISS-PROT (54) with one against
SWISS-PROT 1 TrEMBL (54) 1 PDB (55). The
larger database improves performance by about two
percentage points (8). Second, we compared the
standard BLAST against the large database with an
iterative PSI-BLAST search. This yielded less than
two percentage points in additional improvement
(8). Thus, overall, the more divergent profile search
against today’s databases supposedly improves any
method using alignment information by almost four
percentage points (PHDpsi in Table I). The improve-
ment gained by using PSI-BLAST profiles to develop
the method is relatively small: PHDpsi was trained
on a small database of not very divergent profiles in
1994; e.g., PROF was trained on PSI-BLAST profiles
of a 20 times larger database in 2000. The two differ
by only one percentage point (Table I), and part of
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this difference resulted from implementing new con-
cepts into PROF (Rost, unpublished; 9).

CAUTION: OVEROPTIMISM HAS BECOME EVEN
MORE LIKELY!2

Seemingly improving accuracy by ignoring short
segments. There are many ways to publish higher
levels of accuracy. Among the simplest for secondary
structure prediction is to convert 310 helices and b
bulges assigned by DSSP (2) to nonregular struc-
ture. This yields higher levels of accuracy since all
methods—on average—are better at predicting the
middle of helices and strands than their caps and
hence are more accurate for longer regular second-
ary structure segments (56, 57). When predicted
secondary structure is used to predict 3D structure,

2 Note: I added this section listing “what not-to do” primarily
for developers of methods, since many of the recently published
methods fall prey to one of the problems mentioned.

TA
Accuracy of Secondary S

Methodb Q3
c Q3 Claimd SOVe Info

PROF 77.0 73 0.3
PSIPRED 76.6 76.5–78.3m 73 0.3

Spro 76.3 76 71 0.3
Pred2 75.2 76.4 70 0.3
HDpsi 75.1 70 0.2
HD 71.9 71.6 68 0.2
openhagen 78n 77.8
ang/Yuan

a Data set and sorting: The results are compiled by EVA (58). A
new protein structures (EVA version February 2001). None of th
method. This set comprised the largest such set by February 1, 20
concept: if the data set is too small to distinguish between two m
yielded three groups. Inside of each group, results are sorted alp
SAM-T99sec (48); on a set of 105 proteins SAM-T99sec appears co
results from the Copenhagen method are set apart, since they
available); rather they were provided by the group in Denmark
sequence databases.

b See abbreviations footnote in text; Copenhagen refers to the m
predicting secondary structural class from the amino acid compo

c Three-state per-residue accuracy, i.e., number of residues p
(conversion of DSSP states (HG) 3 helix, (EB) 3 strand; note
nonregular structure).

d Three-state per-residue accuracy published in original public
e Three-state per-segment score measuring the overlap betwee
f Per-residue information content (22).
g Matthew’s correlation coefficient for state helix (124).
h Matthew’s correlation for state strand (124).
i Matthew’s correlation coefficient for state other (124).
k Percentage of proteins correctly sorted into one of the four clas

60, helix ,5%, strand .45%), alpha/beta (length . 60, helix .30%
l Percentage of helical residues predicted as strand and of stra
m PSIPRED results were published for different conversions of
n P.
o The class accuracy for the method based on amino acid compos

data set than all other methods.
short helices are important. Thus, I suggest bearing
with the more conservative conversion strategy.

Comparing apples and oranges or too few apples
with one another. To overstate the point: there is
NO value in comparing methods evaluated on dif-
ferent data sets. Most secondary structure predic-
tion methods are available. Thus, developers may
want to compare their results to public methods
based on the same data set (not previously used for
either of the two). Many methods predicting aspects
of protein structure and function must fight with
limited data availability. This is not at all the case
for secondary structure prediction. Hundreds of new
protein structures are added every year (55). If for
some reason or another, small data sets must be
used, developers should painstakingly try to esti-
mate what “significant difference” means for their
data set. For example, 16 new protein structures are
clearly too few! We currently have results from

I
re Prediction Methodsa

CorrHg CorrEh CorrLi Classk BADl

0.67 0.65 0.56 82 2.2
0.66 0.64 0.56 81 2.5
0.67 0.64 0.56 83 2.5
0.65 0.63 0.54 77 2.4
0.64 0.62 0.53 80 2.9
0.59 0.59 0.49 77 4.1

53o

ods for which details are listed have been tested on 195 different
oteins was similar to any protein used to develop the respective
which we had results. Sorting and grouping reflect the following

s, these two are grouped. For the given set of 195 proteins, this
ically. Due to a lack of data, I could not add the performance of
ble to the best three methods: PSIPRED, SSpro, and PROF. The
not collected continuously by EVA (the method is not publicly
s review and thus may have been based on marginally differing

from the group in Denmark (63); Wang/Yuan refers to a method
which may be the most accurate such method (59).

ed correctly in one of the three states, helix, strand, or other
e per-residue accuracy tends to favour methods overpredicting

f method: PSIPRED (11), SSpro (13), JPred2 (6), PHD (122).
icted and observed segments (75, 123).

-alpha (length . 60, helix .45%, strand ,5%), all-beta (length .
d .20%), other (thresholds for classification from (122, 125, 126).
idues predicted as helix (127).
ght DSSP states to three states.

taken from the original publication (59), i.e., based on a different
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many prediction methods for 16 proteins. For that
set, JPred2, PHD, PROF, PSIPRED, SAM-T99sec,
and SSpro are indistinguishable (58)!

Seemingly achieve 100% accuracy by using corre-
lated sets. Many publications on predicting second-
ary structural class from amino acid composition
allowed correlations between “training” and testing
sets. Consequently, levels of prediction accuracy
published far exceeded the possible theoretical mar-
gins (59). A very simple operational definition for
“independent sets” is the following: Two proteins A
and B are correlated if the sequence similarity be-
tween A and B suffices to predict the structure of B
knowing A’s structure. Assume we have two uncor-
related sets of proteins S1 and S2. Can we train the
method on set S1 and develop it on set S2 without
further ado? While developing PROF, I realized that
the answer is negative. In fact, I trained neural
networks on about 2000 structures that had no sig-
nificant level of sequence similarity to our original
set of 126 proteins (22). I used the 126 proteins only
after I had completed developing the method and
found a prediction accuracy exceeding 80% (unpub-
lished). When I tested PROF on a set of about 200
new structures that had been added to PDB in the
meantime (different from that given in Table I),
prediction accuracy dropped. Do the 126 proteins
differ from the set used for Table I? I failed to an-
swer this question. Conclusion: test as test can; i.e.,
use as many independent sets of new structures as
possible!

EVA: Automatic evaluation of automatic predic-
tion servers. In collaboration with Volker Eyrich
(Columbia), Marc Marti-Renom and Andrej Sali
(both from Rockefeller), and Florencio Pazos and
Alfonso Valencia (both from CNB Madrid), we have
started to address the above problems through the
automatic server EVA (58). Leszek Rychlewski
(IIMCB Warsaw) and Dani Fischer (Ben-Gurion
University) are implementing similar ideas in Live-
Bench (60). The simple concept is the following:
Take the N newest experimental structures added to

DB, send the sequences to all prediction servers,
ollect the results, and accumulate a continuous
valuation of prediction accuracy every week. EVA
as been evaluating secondary structure prediction
ethods for more than 6 months now. I found it

nstructive to see how the “ranking” of methods ini-
ially changed from week to week due to too small
ets. Currently, EVA also provides results for eval-
ating comparative modeling (Sali group) and resi-
ue–residue contacts (Valencia group). We hope that
VA will eventually simplify life for developers, ref-
rees, editors, and users.
CLEVER METHODS CAN BE MORE ACCURATE

SSpro: Advanced recursive neural network system.
The only method published recently that appears to
improve prediction accuracy significantly not
through more divergent profiles but through the
particular algorithm is SSpro (13). The major idea of
the method aims at solving the following problem.
When, e.g., training neural networks it is important
to avoid correlations between training samples pre-
sented successively to the system. A neural network
may be presented with the window around residue
11 in protein X at time step T and residue 7 in
protein Y at step T 1 1. Thus, the system never
earns that secondary structure correlates between
djacent residues. The result is that regular second-
ry structure segments are predicted—on aver-
ge—at a length half that observed (19). PHD ad-
ressed this problem by a second-level structure-to-
tructure network that was trained on the predicted
econdary structure from the first-level sequence-to-
tructure network (22). Most authors have since im-
lemented this idea (in particular PSIPRED and
Pred2). Pierre Baldi and colleagues deviated sub-
tantially from this concept. Instead of using an
dditional network, they embedded the correlation
nto one single recursive neural network. In princi-
le, the idea of a recursive network had been imple-
ented before (61). However, the particular details

f the algorithm implemented in SSpro are novel
nd—as Table I illustrates—prove highly success-
ul.

HMMSTR: Hidden Markov models for connecting
ibrary of structure fragments. Can we predict sec-
ndary structure for protein U by local sequence
imilarity to segments of known structures {S} even
hen overall U differs from any of the known struc-

ures {S}? Yes, as shown by many nearest-neighbor-
ased prediction methods, the most successful of
hich seems to be NSSP (62). A conceptually quite
ifferent realization of the same concept has been
mplemented in HMMSTR by Chris Bystroff, David
aker, and colleagues (3). First, build a library of

ocal stretches (3–19) of residues with “basic struc-
ural motifs” (I sites). Second, assemble these local
otifs through hidden Markov models introducing

tructural context on the level of supersecondary
tructure. Thus, the goal is to predict protein struc-
ure through identification of “grammatical units of
rotein structure formation.” Although HMMSTR
ntrinsically aims at predicting higher order aspects
f 3D structure, a side result is the prediction of 1D
econdary structure. I find two results surprising. (i)
he authors do not find any significant effect of
overoptimizing” their method; i.e., HMMSTR ap-
ears as accurate in predicting secondary structure
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for proteins known today as it will be for those
known next year. (ii) Three-state per-residue accu-
racy is reported to be about 74% (3). If this estimate
is correct, HMMSTR is more accurate at predicting
secondary structure than most existing methods and
almost as accurate as the state-of-the-art methods
(Table I).

And the winner is? The reason for the particular
focus of this review on a small number of methods is
largely that I could compare the selected methods to
one another based on new proteins. A particular
method that was not available to me may turn out to
mark the most substantial breakthrough in the
field. A Danish group developed a neural network-
based method that is most amazing in many re-
spects (63). (i) The authors estimate the method to
yield levels above 77% prediction accuracy (the title
of their article is slightly misleading). If true, this is
the best current method. Like PSIPRED, JPred2,
and PROF, the method uses PSI-BLAST profiles as
input and like most methods since PHD a two-level
approach addressing the problem of predicting short
segments. (ii) A concept that had not been published
before is to replace the standard three output units
(for helix, strand, and other), by nine output units
additionally coding for the secondary structure
states of the residues before and after the central
one (dubbed “output expansion”). (iii) Also new is the
particular way of weighting the average over differ-
ent networks by the overall reliability of the predic-
tion for that network and the mere number of dif-
ferent networks considered (up to 800!). This
impressive number of networks may prevent large-
scale genome analyses based on this method. How-
ever, the major point is: Did the authors overesti-
mate performance? The authors tested their method
in a way that most developers would assume to be
error-proof. However, their testing protocol is very
similar to the one that I applied when significantly
overestimating the accuracy of PROF (.81%). Obvi-
usly, the similarity of these two situations may
ery well be purely coincidental!

Plethora of new concepts for secondary structure
rediction. The following five methods are a small
ubset of new ideas explored to improve secondary
tructure prediction. (i) Ouali and King (64) combine
eural networks and rule-based statistics in a cas-
ade of classifiers. Based on a similar data set they
stimate a level of prediction accuracy comparable
o that of JPred2 (see Table I). (ii) Chandonia and
arplus (57) combined simplified output schemes

two output states) with networks trained on differ-
nt tasks and a particular variant of early stopping;
nput is nondivergent alignments picked from the
afe zone (Fig. 1). Based on a protocol similar to that
applied by the Danish group (63), the authors esti-
mate a level of .76% accuracy, i.e., a level that if it
holds up is similar to SSpro (Table I). (iii) Suppos-
edly the simplest new method that claims to almost
approach the performance of PHD combines the in-
formation for secondary structure formation con-
tained in amino acid singlets, doublets, and triplets.
(iv) Schmidler et al. (65) use a simple statistical
model; the novel aspect is to replace compiling sta-
tistics over fixed stretches of N residues by segments
signifying regular secondary structure (helix,
strand). The underlying formalism resembles a hid-
den semi-Markov model allowing one to explicitly
incorporate particular propensities such as helix
caps (66). Based on noncomparable data sets the
authors estimated prediction accuracy to be 69%; if
correct, this is impressive for a method not using
alignment information. (v) Without claims to sur-
prising levels of accuracy, Figureau et al. (67) com-
bine cleverly chosen pentapeptides from the data-
base to obtain the final prediction.

Secondary structural class predicted almost as ac-
curately as by experiment. Grouping proteins into
secondary structure classes (all-alpha, all-beta, al-
pha/beta, and other) appears to be a useful initial
approach for classifying proteins (27, 68). Surpris-
ingly, such classes can be predicted successfully
based merely on the overall amino acid composition
of a protein (59, 69, 70). More and more increasingly
complex and genial methods address this reduced
goal; reported levels of prediction accuracy approach
100%. Recently, Wang and Yuan explained these
high values by insufficient testing schemes and chal-
lenged that a four-state accuracy of 60% comprises
the maximum for methods based solely on composi-
tion (59). Obviously, it is much easier to predict class
starting from the detailed information about evolu-
tionary profiles for the entire sequence than by re-
stricting the input to composition. In fact, the best
current methods also improve the accuracy in pre-
dicting secondary structure class considerably (Ta-
ble I). The differences between observed and pre-
dicted composition of secondary structure are now
below 6% for helix and strand. This is fairly close to
what experimental low-resolution (circular dichro-
ism, Fourier transform-induced spectroscopy) meth-
ods achieve at their best (57).

COMBINING MEDIOCRE AND GOOD METHODS
MAY BE BEST

Combination improves on nonsystematic errors.
Any prediction method has two sources of errors: (i)
systematic errors, e.g., through nonlocal effects, and
(ii) white noise errors caused by, e.g., the succession
of the examples during training neural networks.



l
l
i
m
F
d
s
b
(
g
F
r
o
(

210 BURKHARD ROST
Theoretically, combining any number of methods
improves accuracy as long as the errors of the indi-
vidual methods are mutually independent and are
not only systematic (71). PHD—and more recently
other methods (6, 57, 63)—used this fact in combin-
ing different neural networks. The idea of combining
different prediction methods has been around in
secondary structure prediction for a long time (19);
Cuff and Barton (see 4, 5) implemented it in JPred
for different third-generation methods. In particu-
lar, JPred uses a simple expert rule for compiling
the final average. King et al. (72) have tested a
variety of different combination strategies. Selbig et
al. (73) have compiled the jury through an elabo-
rated decision-tree-based system. Guermeur et al.
(74) have used a more refined variant of the JPred
idea of weighting methods. Overall, combinations of
independent prediction methods seem to yield levels
of accuracy higher than that of the single best
method. However, for every protein one method
tends to be clearly superior to the combined predic-
tion (Fig. 2B). Is it really wise to include signifi-
cantly inferior methods into a combined prediction?
No: averaging over all methods used for EVA de-
creased accuracy over the best individual methods,
although averaging over the better ones was better
than averaging the best ones (Rost, unpublished
results). Is there any criterion for when to include a
method and when not to do so? Concepts weighting
the individual methods based on their accuracy and
“entropy” (63) appear successful only for large num-
bers of methods (63; Rost, unpublished results).
Nevertheless, methods that are significantly over-
trained can improve when combined (Krogh, unpub-
lished results). More rigorous studies for the optimal
combination may provide a better picture. The tech-
nical problem of utilizing many methods in a public
server is that the field is advancing too fast: today’s
methods are more accurate than averages over yes-
terday’s methods (hence the JPred server now re-
turns JPred2 results by default).

WHAT DOES 76% ACCURACY MEAN, IN PRACTICE?

Your protein may be predicted worse or better than
average. A few problems in estimating expected
prediction accuracy are described above. However,
another problem is relevant for users of prediction
methods: A sustained level of 76% accuracy does
NOT mean that 76% of the residues in your protein
of unknown structure U are correctly predicted. In
contrast, prediction accuracy varies substantially
between proteins (Fig. 2A). It seems that such vari-
ations are intrinsic to any method predicting aspects
of protein structure and function. What can you then
expect as accuracy for your protein when using a
state-of-the-art method? Given a divergent family
(Table II), the answer is 66–86%. Do you learn from
comparing different methods?

Combining methods improves on average but you
may also lose. Averaging over many methods
helps, on average. However, most often some meth-
ods are more accurate than the average (Fig. 2B).
Furthermore, there are examples of proteins pre-
dicted poorly by all methods (Fig. 2B), i.e., for which
all methods agree by mistake (data not shown).
Thus, trying to use many methods may not provide
the answer to the question whether the prediction
for your protein is more likely to be below or above
average. Are there alternative ways to spot more
reliably predicted regions?

More reliable predictions are more accurate. Re-
iability indices as provided by most methods corre-
ate very well with prediction accuracy (Fig. 3). This
mplies that you can easily identify regions that are

ore likely to be predicted accurately than others.
urthermore, if your protein has many residues pre-
icted at low levels of reliability, you may correctly
uspect that your protein is predicted at a level
elow average. Plotting coverage versus accuracy
Fig. 3) also illustrates how beneficial more diver-
ent profiles are to make predictions more useful.
or example, PSIPRED has more than half of all
esidues predicted at levels that would be reached
n average when comparing two known structures
75) (Fig. 3, dotted line).

ARE SECONDARY STRUCTURE PREDICTIONS
USEFUL, IN PRACTICE?

Regions likely to undergo structural change pre-
dicted successfully. Young et al. (1) have unraveled
an impressive correlation between local secondary
structure predictions and global conditions. The au-
thors monitor regions for which secondary structure
prediction methods give equally strong preferences
for two different states. Such regions are processed
combining simple statistics and expert rules. The
final method is tested on 16 proteins known to un-
dergo structural rearrangements and on a number
of other proteins. The authors report no false posi-
tives and identify most known structural switches.
Subsequently, the group applied the method to the
myosin family, identifying putative switching re-
gions that were not known before, but appeared to
be reasonable candidates (76). I find this method
most remarkable in two ways: (i) it is the most
general method using predictions of protein struc-
ture to predict some aspects of function and (ii) it
illustrates that predictions may be useful even when
structures are known (as in the case of the myosin
family).
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Classifying proteins based on secondary structure
predictions in the context of genome analysis. Pro-
teins can be classified into families based on pre-
dicted and observed secondary structure (27, 68).
However, such procedures have been limited to a
very coarse-grained grouping only exceptionally use-
ful for inferring function (Table II). Nevertheless, in
particular, predictions of membrane helices and
coiled-coil regions are crucial for genome analysis.
Recently, we came across an observation that may
have important implications for structural genom-
ics, in particular: More than one-fifth of all eukary-
otic proteins appeared to have regions longer than
60 residues apparently lacking any regular second-
ary structure (77). Most of these regions were not of
low complexity, i.e., not composition-biased. Sur-
prisingly, these regions appeared evolutionarily as
conserved as all other regions in the respective pro-
teins. This application of secondary structure pre-
diction may aid in classifying proteins, in separating
domains, and possibly even in identifying particular
functional motifs.

FIG. 2. Prediction accuracy varies substantially for different
o develop any of the methods shown (58). The considerable differ
ll methods (A, percentage of all 150 proteins predicted at a given
oints). On average, different methods predict different proteins
etween the per-protein average over all six methods is shown;
verage). Conclusions: (i) If you predict secondary structure for yo
rotein may be anywhere between 50 and 90%. (ii) As to be expec
any methods.
Aspects of protein function predicted based on ex-
pert analysis of secondary structure. The typical
scenario in which secondary structure predictions
facilitate learning about function is one in which
experts combine their predictions and their intu-
ition, most often to find similarities to proteins of
known function but insignificant sequence similar-
ity (39, 78–89). Usually, such applications are based
on very specific details about predicted secondary
structure (some examples are shown in Table II).
Thus, these successful correlations of secondary
structure and function appear difficult to incorpo-
rate into automatic methods.

Exploring secondary structure predictions to im-
prove database searches. Initially, three groups in-
dependently applied secondary structure predic-
tions for fold recognition, i.e., the detection of
structural similarities between proteins of unrelated
sequences (90–92). A few years later, almost every
other fold recognition/threading method has
adopted this concept (93–102). Two recent methods

s. All results are based on 150 novel protein structures not used
n the three-state accuracy between different proteins is valid for
accuracy; one standard deviation is on the order of 10 percentage
her levels (B, for each protein and each method, the difference
ive values imply that the respective method is better than the
tein with a method of 76% accuracy, the actual accuracy for that
ost often some methods are more accurate than the average over
protein
ence i

level of
at hig
negat
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ted: m
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extended the concept by not only refining the data-
base search, but by actually refining the quality of
the alignment through an iterative procedure (50,
103). A related strategy has been implored by Ng
and the Henikoffs to improve predictions and align-
ments for membrane proteins (104).

TA
Using Secondary Struc

How to obtain the best results? The m
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Particu
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How
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For
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Second
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From 1D predictions to 2D and 3D structure. Are
secondary structure predictions accurate enough to
help predict higher order aspects of protein struc-
ture automatically? For 2D (interresidue contacts)
predictions, Baldi et al. (105) have recently im-
proved the level of accuracy in predicting b-strand

II
redictions, in Practice

urce of improvement is the divergence of the multiple sequence
used for prediction. Thus, if you have a small family, the
rediction accuracy is lower.
sensitive to divergence are the reliability indices; i.e., less
yields overestimated reliability indices.
cessful strategy to find the most reliably predicted regions may

he reliability index provided by a method rather than the
between different methods.

there are nonglobular or structural domains in your protein,
before you build the alignment.
prove the alignment, try to do so before the prediction.
mbrane helices indicate that your protein is not globular. The
embrane predictions are usually more reliable than those for
oteins. Thus, membrane helix predictions should be given

. Globular methods often do not predict globular helices at
f membrane helices; rather, often membrane helices are
s strand by mistakenly applied globular methods. In contrast,
ethods appear relatively more accurate for porin-like beta-

brane regions.
membrane proteins has less than a 3% error rate for the best

ost helices are correctly predicted, yet the number of helices
theless vary. Helix caps are clearly predicted inaccurately. Note
al methods predicting three-state secondary structure for
oteins also predict caps less accurately.
f long coiled-coil regions clearly indicate that your protein is
globular. Long coiled-coil proteins are likely to be structural
onger regions are predicted more accurately.
roteins according to the secondary structure composition is
t arbitrary. One hope may be to infer from the predicted
structure content that a particular protein is not typical.
his attempt fails, since known protein structures vary
ly between 10 and 90% of regular secondary structure (helix,
us, secondary structure composition does not help to predict
.
o separate secondary structure patterns, you may suspect that
has two structural domains. An extreme example is an N-

ll-alpha region and a C-terminal all-beta region.
o cut your protein, stay more than two residues away from
elices and strands.
ructure prediction methods are—on average—as accurate in
the overall content of secondary structure as are careful CD
methods. However, such methods allow you to monitor in detail
responses to mutations. Such changes are less likely to be
s accurately by prediction methods.
inding sites lie in nonregular secondary structure elements.
le, we have not predicted regular secondary structure for any
n nuclear localization signals (128).

ructure predictions do not suffice to identify binding motifs,
zinc-finger II motif. However, the combination of sequence
redicted secondary structure may be very helpful.
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pairings over earlier work (106) by using another
elaborate neural network system. For 3D predic-
tions, the following list of five groups exemplifies
that secondary structure predictions are now a pop-
ular first step toward predicting 3D structure. (i)
Ortiz et al. (107) successfully use secondary struc-
ture predictions as one component of their 3D struc-
ture prediction method. (ii) Eyrich et al. (108, 109)
minimize the energy of arranging predicted rigid
secondary structure segments. (iii) Lomize et al.
(110) also start from secondary structure segments.
(iv) Chen et al. (111) suggest using secondary struc-
ture predictions to reduce the complexity of molecu-
lar dynamics simulations. (v) Levitt and co-workers
(see 112, 113) combine secondary structure-based
simplified presentations with a particular lattice
simulation attempting to enumerate all possible
folds.

AND WHAT IS THE LIMIT OF PREDICTION
ACCURACY?

88% is a limit, but shall we ever reach close to
there? Protein secondary structure formation is in-
fluenced by long-range interactions (45, 46, 114) and
by the environment (1, 115). Consequently,

FIG. 3. Prediction accuracy correlates with reliability. The co
performs when applied to your protein of unknown structure. For
an index measuring the reliability of the prediction for each residu
predicted at a given level of reliability (coverage vs accuracy). For
of all residues (dashed line). This particular line is chosen since se
of similar structure. Although JPred2 is only marginally less accu
for less than half of all residues. Conclusions: (i) Reliability indi
predictions. (ii) These indices also address the problem of variati
more likely to be predicted more accurately than average (Fig. 2
stretches of up to 11 adjacent residues (dubbed cha-
meleon after (114)) can be found in different second-
ary structure states (116–118). Implicitly, such non-
local effects are contained in the exchange patterns
of protein families. This is reflected by the fact that
strand is predicted almost as accurately as helix
(Table I), although sheets are stabilized by more
nonlocal interactions than helices. Local profiles can
even suffice to identify structural switches (1, 76).
Surprisingly, we can find some traces of folding
events in secondary structure predictions (119).
Even more amazing is a study suggesting that align-
ment-based methods achieve levels of accuracy for
chameleon regions similar to those for all other re-
gions (118). Secondary structure assignments may
vary for two versions of the same structure. One
reason is that protein structures are not rocks but
dynamic objects with some regions being more mo-
bile than others. Another reason is that any assign-
ment method must choose particular thresholds
(e.g., DSSP chooses a cut-off in the Coulomb energy
of a hydrogen bond). Consequently, assignments dif-
fer by about 5–15 percentage points between differ-
ent X-ray versions or different NMR models for the

n from Fig. 2A is that you have a poor idea of how well a method
ly, there is a way out of this dilemma: Most methods now provide
wn is the accuracy versus the cumulative percentages of residues
ple, PSIPRED and PROF reach a level above 88% for about 60%
y structure assignments by DSSP agree to about 88% for proteins
an PSIPRED and PROF (Table I), it reaches this level of accuracy
e extremely valuable to spot regions of more-likely-to-be-correct

any residues are predicted with high reliability, your protein is
nclusio
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same protein (Andersen and Rost, unpublished re-
sults), and by about 12 percentage points between
structural homologues (75). The latter number pro-
vides the upper limit for secondary structure predic-
tion of error-free comparative modeling. I doubt that
ab initio predictions of secondary structure will ever
become more accurate than that. Hence, I believe a
value of around 88% constitutes an operational up-
per limit for prediction accuracy. After the advances
over the past 2 years we reached greater than 76%
accuracy. Thus, we need to achieve another 12 per-
centage points (or even less). What is the major
obstacle to reaching another 6 percentage points
higher? The size of the experimental database as
suggested (117)? I doubt this, since PHDpsi trained
on only 200 proteins using PSI-BLAST input is al-
most as accurate as PSIPRED trained on 2000 pro-
teins (Table I). Will the current explosion of se-
quences boost accuracy? In fact, current databases
have less than 10 homologues for more than one
third of the 150 proteins tested (Table I) and more
than 100 for only 20% of the proteins. Although
based on too a small set to draw conclusions, for
these 20% highly populated families the accuracy of
PROF was 4 percentage points above average (data
not shown). Thus, larger databases may get us 6
percentage points higher, and it may not. The an-
swer remains nebulous.

DISCUSSION

Methods improved significantly over the past 2
years. Growing databases and improved search
echniques (Fig. 1)—predominantly through the it-
rated PSI-BLAST tool—yielded a substantial im-
rovement in secondary structure prediction accu-
acy over the past 2 years. State-of-the-art methods
ow reach sustained levels of 76% prediction accu-
acy (Table I). Even more impressively, about 60% of
ll residues are predicted at levels reaching the level
f agreement between X-ray and NMR structures
Fig. 3). However, novel ideas have also been shown
o improve prediction accuracy. A standard way to
ncrease the confidence in a particular prediction is
o look at the results from many different prediction
ethods. This strategy is frequently successful and
as been brought to perfection over recent years.
owever, often the best method is better than the
verage over many methods (Fig. 2B). While struc-
ure prediction is coming of age, developers and us-
rs slowly learn to reduce overestimations. How-
ver, the correlations between proteins at times of
atabase explosions are becoming more difficult to
ontrol. It seems that only continuous, automatic
valuation servers will be able to handle this chal-
enge in the future (58, 60).
Secondary structure predictions are at the base of
structure-based sequence analysis. Almost a de-
cade after the original breakthrough, prediction
methods are now increasingly explored by wet-lab
biologists to analyze their protein of interest. Sec-
ondary structure predictions are used automatically
by methods aiming at higher dimensional aspects of
protein structure and at improving database
searches and alignment accuracy. One method has
successfully related secondary structure predictions
automatically to functional aspects (1, 76). However,
secondary structure-based identifications of binding
sites or other functional aspects are still restricted to
single-case expert analyses.

And now we run human? The field has advanced
considerably over the past 2 years, and more im-
provement appears to lie ahead. Prediction methods
are fast enough to analyze entire genomes, and for
particular examples the resulting classifications are
relevant to structural and functional genomics (28,
68). Nevertheless, to play the devil’s advocate: The
field is not up to the challenge of the human se-
quences to be dubbed into the database very soon.
We are missing a variety of approaches relating
secondary structure predictions explicitly to func-
tion, such as given by ASP (1). Obviously, this re-
mark may apply to bioinformatics, in general: The
year 2001 will commence with the publication of the
entire human genome; we must rush to get ready for
the data flood.
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computer assistance and the collection of genome data sets; to
Jinfeng Liu and Dariusz Przybylski (Columbia University) for
providing preliminary information and programs; and to Claus
Andersen and Søren Brunak (CBS Copenhagen) for helpful com-
ments on the manuscript. Particular thanks are due to Volker
Eyrich (Columbia University) for programming and maintaining
most of the immensely valuable software that runs the EVA and
META-PredictProtein servers!
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