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Abstract 
 

Gene-expression microarrays, commonly called “gene chips,” make it possible to 
simultaneously measure the rate at which a cell or tissue is expressing – 
translating into a protein – each of its thousands of genes.  One can use these 
comprehensive snapshots of biological activity to infer regulatory pathways in 
cells, identify novel targets for drug design, and improve the diagnosis, prognosis, 
and treatment planning for those suffering from disease.  However, the amount of 
data this new technology produces is more than one can manually analyze.  
Hence, the need for automated analysis of microarray data offers an opportunity 
for machine learning to have a significant impact on biology and medicine.  This 
article describes microarray technology, the data it produces, and the types of 
machine-learning tasks that naturally arise with this data.  It also reviews some of 
the recent prominent applications of machine learning to gene-chip data, points to 
related tasks where machine learning may have a further impact on biology and 
medicine, and describes additional types of interesting data that recent advances 
in biotechnology allow biomedical researchers to collect. 
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Introduction 
Almost every cell in the body of an organism has the same DNA.  Genes are portions of this 

DNA that code for proteins or (less commonly) other large biomolecules.  As Hunter (2003) 

covers in his introductory article in this special issue (and, for completeness, we review in the 

next section of this article), a gene is expressed through a two-step process in which the gene’s 

DNA is first transcribed into RNA, which is then translated into the corresponding protein. A 

novel technology of gene-expression microarrays – whose development started in the second 

half of the 1990’s and is having a revolutionary impact on molecular biology – allows one to 

monitor the DNA-to-RNA portion of this fundamental biological process. 

Why should this new development in biology interest researchers in machine learning 

and other areas of artificial intelligence?  While the ability to measure transcription of a single 

gene is not new, the ability to measure at once the transcription of all the genes in an organism is 

new.  Consequently, the amount of data that biologists need to examine is overwhelming.  Many 

of the data sets we describe in this article consist of roughly 100 samples, where each sample 

contains about 10,000 genes measured on a gene-expression microarray.  Suppose 50 of these 

patients have one disease, and the other 50 have a different disease.  Finding some combination 

of genes whose expression levels can distinguish these two groups of patients is a daunting task 

for a human, but a relatively natural one for a machine-learning algorithm.  Of course, this 

example also illustrates a challenge that microarray data poses for machine-learning algorithms – 

the dimensionality of the data is high compared to the typical number of data points. 

The preceding paragraph gives one natural example of how one can apply machine 

learning to microarray data.  There are many other tasks that arise in analyzing microarray data 

and correspondingly many ways in which machine learning is applicable.  We present a number 

of such tasks, with an effort to describe each task concisely and to give concrete examples of 

how researchers have addressed such tasks, together with brief summaries of their results.  

Before discussing these particular tasks and approaches, we summarize the relevant biology and 

biotechnology.  This article closes with future research directions, including the analysis of 

several new types of high-throughput biological data, similar to microarray data, that are 

becoming available based on other advances in biotechnology. 
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Some Relevant Introductory Biology 
The method by which the genes of an organism are expressed is through the production of 

proteins, the building blocks of life.  This is true whether the organism is a bacterium, a plant, or 

a human being.  Each gene encodes a specific protein1, and at each point in the life of a given 

cell, various proteins are being produced.  It is through turning on and off the production of 

specific proteins that an organism responds to environmental and biological situations, such as 

stress, and to different developmental stages, such as cell division. 

Genes are contained in the DNA of the organism.  The mechanism by which proteins are 

produced from their corresponding genes is a two-step process – see Figure 1.  The first step is 

the transcription of a gene from DNA into a temporary molecule known as RNA.  During the 

second step – translation - cellular machinery builds a protein using the RNA message as a 

blueprint.  Although there are exceptions to this process, these steps (along with DNA 

replication) are known as the central dogma of molecular biology. 

One property that DNA and RNA have in common is that each is a chain of chemicals 

known as bases.2  In the case of DNA these bases are Adenine, Cytosine, Guanine and Thymine, 

commonly referred to as A, C, G and T, respectively.  RNA has the same set of four bases, except 

that instead of Thymine, RNA has Uracil – commonly referred to as U. 

Another property that DNA and RNA have in common is called complementarity.  Each 

base only binds well with its complement: A with T (or U) and G with C.  As a result of 

complementarity, a strand of either DNA or RNA has a strong affinity for what is known as its 

reverse complement.  This is a strand of either DNA or RNA that has bases exactly 

complementary to the original strand, as Figure 2 illustrates.  (Just like in English text, there is a 

directionality for reading a strand of DNA or RNA.  Hence in Figure 2, the DNA would be read 

from left-to-right, whereas the RNA would be read from right-to-left, which is why reverse is in 

the phrase reverse complement.) 

                                                 
1 This is not strictly true.  Due to a process in higher organisms called alternate splicing, a single gene can encode 
multiple proteins.  However, for the purposes of gene detection by microarrays, each part of such genes (called 
exons) can be detected separately.  We do not discuss the detection of splice variants in this article. 
2 Though it is often useful to think of DNA and RNA as chains of bases, technically, they are chains of sugars.  In 
the case of DNA, the sugar is Deoxyribose; in the case of RNA it is Ribose.  Hence the full names: 
Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA).  The bases are actually attached to the sugars. 
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Figure 1.  The central dogma of molecular biology.  When a gene is expressed, it 
is first transcribed into an RNA sequence, and the RNA is then translated into a 
protein, a sequence of amino acids.  DNA is also replicated when a cell divides, 
but this article only focuses on the DNA-to-RNA-to-Protein process. 

DNA GTAAGGCCCTCGTTGAGTCGTATT 
RNA CAUUCCGGGAGCAACUCAGCAUAA 

 
Figure 2.  Complementary binding between DNA and RNA sequences. 

Complementarity is central to the double-stranded structure of DNA and the process of 

DNA replication.  It is also vital to transcription.  In addition to its role in these natural 

processes, molecular biologists have, for decades, taken advantage of complementarity to detect 

specific sequences of bases within strands of DNA and RNA.  One does this by first synthesizing 

a probe, a piece of DNA3 that is the reverse complement of a sequence one wants to detect, and 

then introducing this probe to a solution containing the genetic material (DNA or RNA) to be 

searched.  This solution of genetic material is called the sample.  In theory, the probe will bind to 

the sample if and only if the probe finds its complement in the sample (but as we later discuss in 

some detail, this does not always happen in practice and this imperfect process provides an 

excellent opportunity for machine learning). The act of binding between probe and sample is 

called hybridization.  Prior to the experiment, one labels the probes using a fluorescent tag.  

After the hybridization experiment, one can easily scan to see if the probe has hybridized to its 

                                                 
3 One could also make probes out of RNA, but they tend to degrade much faster. 
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reverse complement in the sample.  In this way, the molecular biologist can determine the 

presence or absence of the sequence of interest in the sample. 

What are Gene Chips? 
More recently, DNA probe technology has been adapted for detection of, not just one sequence, 

but tens of thousands simultaneously.  This is done by synthesizing a large number of different 

probes and either carefully placing each probe at a specific position on a glass slide (so called 

spotted arrays) or by attaching the probes to specific positions on some surface.  Figure 3 

illustrates the latter case, which has become the predominant approach as the technology has 

matured.  Such a device is called a microarray or gene chip4.   

Utilization of these chips involves labeling the sample rather than the probe, spreading 

thousands of copies of this labeled sample across the chip, and washing away any copies of the 

sample that do not remain bound to some probe.  Since the probes are attached at specific 

locations on the chip, if labeled sample is detected at any position on the chip, it can be easily 

determined which probe has hybridized to its complement.  

The most common use of gene chips is to measure the expression level of various genes 

in an organism, and in this article we will focus on that task (however, the reader should be 

aware that novel uses of microarrays will be continually devised, offering new opportunities for 

machine learning).  Eache expression level provides a snapshot of the rate at which a particular 

protein is being produced within an organism’s cells at a given time. 

Ideally, biologists would measure the protein-production rate directly, but doing so is 

currently very difficult and impractical on a large scale.  So one instead measures the expression 

level of various genes by estimating the amount of RNA for that gene that is currently present in 

the cell.  Since the cell degrades RNA very quickly, this level will accurately reflect the rate at 

which the cell is producing the corresponding protein.  In order to find the expression level of a 

group of genes, one labels the RNA from a cell or a group of cells and spreads the RNA across a 

                                                 
4 The word chip might be confusing to those familiar with integrated circuits.  Microarrays can be about the size of a 
computer chip, and some approaches for creating them do use the masking technology used for etching integrated 
circuits.  However, a single gene chip is typically only used once, unlike a computer chip.  It might be better to 
conceptually view a gene chip as holding thousands of miniature test tubes.  (One should also not confuse gene 
chips with DNA computing, where one uses DNA to solve computational tasks such as the traveling-salesman 
problem.  In this article we address using computer science to solve biomedical tasks, rather than using molecular-
biology processes to solve computational tasks.) 
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chip that contains probes for the genes of interest.  For an organism like the bacterium E. coli, 

which has a relatively small genome, a single gene chip can contain enough probes to detect each 

of the 4000 or so genes in the organism.  For a human, currently a single chip can only contain a 

subset of the genes present in the genome. 

 

 
 

Figure 3.  Hybridization of sample to probe.  Probes are typically on the order of 
25-bases long, whereas samples are usually about 10 times as long, with a large 
variation due to the process that breaks up long sequences of RNA into small 
samples (one way this is done by sonication, the use of sound waves). 

Data Collection and Preprocessing 
When one runs a microarray experiment, an optical scanner records the fluorescence-intensity 

values – the level of fluorescence at each spot on the gene chip.  In the case of gene-expression 

arrays, there will typically be many experiments measuring the same set of genes under various 

circumstances (e.g., under normal conditions, when the cell is heated up or cooled down, or 

when some drug is added) or at various time points (e.g., 5, 10, and 15 minutes after adding an 

antibiotic; due the steps one needs to manually perform to produce an RNA sample, sub-minute 

resolution is not current feasible). 

From the perspective of machine learning, one can organize the measured expression 

values in several ways, as Table 1 illustrates. Tables 1a and 1c show that one can view each gene 

as an example; here the expression levels measured under various conditions constitute each 

example’s features.  Alternatively (Table 1b and 1d), one can view each experiment as an 

Gene Chip Surface 

Probes (DNA) 

Hybridization 

Labeled Sample (RNA) 
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example; in this case, the features are the expression values for all the genes on the microarray.  

In either case the examples can be unlabeled (Tables 1a and 1b) or labeled (Tables 1c and 1d) 

according to some category of interest; for example, some sets of measurements might come 

from normal cells and the others from cancerous cells.  As we will discuss throughout this 

article, the specific learning task of interest will dictate which among these is the most 

appropriate perspective on the data.  We describe, for each of the four scenarios shown in Table 

1, at least one published project that views microarray data according to that scenario. 

So far we have been presenting the process of measuring gene-expression levels as 

simply creating one probe per gene and then computing how much RNA is being made by 

measuring the fluorescence level of the probe-sample hybrid.  Not surprisingly, there are 

complications, and the remainder of this section summarizes the major ones. 

Probes on gene chips (see Figure 3) are typically on the order of 25 bases long, since 

synthesizing longer probes is not practical.  Genes are on the order of a 1000 bases long, and 

while it may be possible to find a unique 25-base-long probe to represent each gene, most probes 

do not hybridize to their corresponding sample as well as one would like.  For example, a given 

probe might partially hybridize to other samples, even if the match is not perfect, or the sample 

might fold up and hybridize to itself.  For these reasons, microarrays typically use about a dozen 

or so probes for each gene, and an algorithm combines the measured fluorescence levels for each 

probe in this set to estimate the expression level for the associated gene. 

Due to the nature of these experiments, including the fact that microarrays are still a 

nascent technology, the raw signal values typically contain a great deal of noise.  Noise can be 

introduced during the synthesis of probes, the creation and labeling of samples, or the reading of 

the fluorescent signals.  So ideally the data illustrated by Table 1 will include replicated 

experiments.  However, each gene-chip experiment can cost several hundred dollars, and so in 

practice one only replicates each experiment a very small number of times (and, unfortunately, 

often no replicated experiments are done). 
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Table 1. Different ways of representing microarray expression data for machine learning.  In 
Panel (a) each example contains the measured expression levels of a single gene under a variety 
of conditions.  In Panel (b) each example contains the measured expression levels of thousands 
of genes under one condition.  Panels (c) and (d) illustrate that one can also associate categories 
with each example, such as the type of cell from which the genes came (e.g., normal vs. 
diseased).   Panels (a) and (b) illustrate the structure of datasets for unsupervised learning, while 
Panels (c) and (d) do so for supervised learning. 

 (a) 
 
                                Features → 

 Experiment 1 Experiment 2 … Experiment N 
Gene 1 1083        .   1464        . … 1115        . 
Gene 2 1585        . 398        . … 511        . 

…        …        … …        … 

 ←
E
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m

pl
es

 

Gene M 170        . 302        . … 751        . 

 

(b) 

 
 
                                Features → 

 Gene 1 Gene 2 … Gene M 
Experiment 1 1083        . 1585        . … 170        . 
Experiment 2 1464        . 398        . … 302        . 

…        …        … …        … 

 ←
E

xa
m
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es

 

Experiment N 1115        . 511        . … 751        . 

 

(c) 

 
 
                                Features → 

 Experiment 1 Experiment 2 … Experiment N Category 
Gene 1 1083        . 1464        . … 1115        . Y 
Gene 2 1585        . 398        . … 511        . X 

…        …        … …        … … 

 ←
E

xa
m

pl
es

 

Gene M 170        . 302        . 

… 751        . X 

(d) 

 
 
                                Features → 

 Gene 1 Gene 2 … Gene M Category 
Experiment 1 1083        . 1585        . … 170        . B 
Experiment 2 1464        . 398        . … 302        . A 

…        …        … …        … … 

 ←
E

xa
m

pl
es

 

Experiment N 1115        . 511        . … 751        . B  
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Currently it is not possible to accurately estimate the absolute expression level of a given 

gene.  One work-around is to compute the ratio of fluorescence levels under some experimental 

condition to those obtained under normal or control conditions.  For example, one might 

compare gene expression under normal circumstances to that when the cell is heated to a higher 

than normal temperature (so called heat shock); experimenters may say such things as “when E. 

coli is heated, gene X is expressed at twice its normal rate.”  When dealing with such ratios the 

problem of noise is exacerbated, especially when the numerator or denominator are small 

numbers.  Newton and Kendziorski (2001) have developed a Bayesian method for more reliably 

estimating these ratios.  So in some studies the numbers in Table 1 are gene-expression ratios, 

hopefully corrected to minimize the problems that arise from creating ratios of small, noisy 

numbers. 

Another approach is to partner each probe with one or more mismatch probes; these are 

probes that have different bases from the probe of interest in one or more positions.  Each gene’s 

expression score is then a function of the fluorescence levels of the dozen or so match and 

mismatch probes (Li and Wong 2000). 

Table 2 contains World-Wide Web URL’s for some freely available, gene-expression 

data sets, many of which we further discuss in this article. 
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Table 2.  URL’s for some publicly available microarray data sets.  

          URL (viable as of 2003)                                 Brief Description 

www.ebi.ac.uk/arrayexpress/        EBI microarray data repository 
 
www.ncbi.nlm.nih.gov/geo/        NCBI microarray data  repository 
 
genome-www5.stanford.edu/MicroArray/SMD/      Stanford microarray database  
 
rana.lbl.gov/EisenData.htm        Eisen-lab’s yeast data, (Spellman et al. 1998) 
 
www.genome.wisc.edu/functional/microarray.htm      University of Wisconsin E. coli Genome Project 
 
llmpp.nih.gov/lymphoma/data.shtml       Diffuse large B-cell lymphoma  
           (Alizadeh et al. 2000) 
 
llmpp.nih.gov/DLBCL/         Molecular profiling (Rosenwald et al. 2002) 
 
www.rii.com/publications/2002/vantveer.htm      Breast cancer prognosis (Van't Veer et al. 2002) 
 
www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi       MIT Whitehead Center for Genome 
           Research, including data in Golub et al. (1999) 
 
lambertlab.uams.edu/publicdata.htm       Lambert Laboratory data for multiple myeloma 
 
www.cs.wisc.edu/~dpage/kddcup2001/       KDD Cup 2001 data; Task 2 includes correlations 
           in genes’ expression levels 
 
www.biostat.wisc.edu/~craven/kddcup/       KDD Cup 2002 data; Task 2 includes 
           gene-expression data 
 
clinicalproteomics.steem.com/        Proteomics data (mass spectrometry of proteins) 
 
snp.cshl.org/          Single nucleotide polymorphism (SNP) data 
 

 

Machine Learning to Aid the Design of Microarrays 
As described in the previous section, one typically uses a dozen or so probes to represent one 

gene because the probe-sample binding process is not perfect (Breslauer, Frank, Blocker, and 

Marky 1986).  If one did a better job of picking good probes, one could not only use fewer 

probes per gene (and hence test for more genes per microarray), but also get more accurate 

results. 

Tobler, Molla, Nuwaysir, Green, and Shavlik (2002) have used machine learning to 

address the task of choosing good probes.  It is easy to get training examples for this task; simply 

place all possible probes for a given set of genes (e. g., every 24-base subsequence of each gene) 
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on a microarray and see which probes produce strong fluorescence levels when the 

corresponding gene’s RNA is in the sample applied to the gene chip.  Figure 4 shows a portion 

of the data that Tobler et al. used and Table 3 illustrates how they cast probe selection as a 

machine-learning task. 

 
Figure 4. The result of an actual microarray experiment where all possible 24-
base-long probes from eight bacterial genes are on the chip.  Shown is one 
quadrant of the chip.  The darker the point, the greater the fluorescence was in the 
original sample. In the ideal case, all the points would have equally strong 
fluorescence values; one can use these mappings from probe sequence to 
fluorescence value as training examples for a machine-learning system. This data 
was supplied through the courtesy of NimbleGen Systems, Inc. 

Table 3.  Probe-quality prediction. 

Given: A set of probes, each associated with a fluorescence value. 

Tobler et al. represent each probe as a vector of 67 feature values: the 
specific base at each of the 24 positions in the probe sequence; the pair 
of adjacent bases at each of 23 positions in the probe (e.g., the first two 
bases in a probe might be AG); the percentage of A’s, C’s, G’s and T’s 
in the probe; and the percentage of each of the 16 possible pairs of 
adjacent bases in the probe. 

They discretize the fluorescence values into three groups: good, 
ambiguous, and bad (they discard ambiguous probes during training, 
but group them with bad during testing). 

Do: Learn to choose the best among the possible probes one could use for a 
new gene. 
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Tobler et al. used a microarray supplied by NimbleGen Systems (Nuwaysir et al. 2002), a 

microarray company, containing all possible probes from eight different bacterial genes.  They 

exposed that chip to a sample of RNA known to contain all eight of those genes.  They then 

measured the fluorescence level at each location on the chip.  If the probes all hybridized equally 

well, then there would be a uniformly high signal across the entire chip.  However, as is clear in 

Figure 4, this is not the case.  Instead, some probes hybridize well and others do not.  They used 

67 features (see Table 4) to represent each probe and used several well-known learning 

algorithms to learn how to predict whether a candidate probe sequence is likely to be a good one. 

Tobler et al. found that of the ten probes predicted by a trained neural network to be the 

best for each gene, over 95% satisfy their definition for being a good probe.  When randomly 

selecting probes, only 13% satisfy their good-probe definition. 

Machine Learning in Biological Applications of Microarrays 
In this section, we provide some examples of the use of microarrays to address questions in 

molecular biology, focusing on the role played by machine learning.  We cover both supervised 

and unsupervised learning, as well as discuss some research where microarray data is just one of 

several types of data given to machine-learning algorithms. 

Supervised Learning and Experimental Methodology 

Supervised learning methods train on examples whose categories are known in order to 

produce a model that can classify new examples that have not been seen by the learner.  

Evaluation of this type of learner is typically done through the use of a method called N-fold 

cross-validation, a form of hold-out testing.  In hold-out testing, some (e.g., 90%) of the 

examples are used as the training data for a learning algorithm, while the remaining (“held 

aside”) examples are used to estimate the future accuracy of the learned model. In N-fold cross 

validation, the examples are divided into N subsets, and then each subset is successively used as 

the held-aside test set, while the other (N-1) subsets are pooled to create the training set.  The 

results of all N test-set runs are averaged to find the total accuracy.  The typical value for N is 10.  

In fact the probe-selection project the previous section describes is an application of supervised 

learning, and the described results are measured on held-aside data (in that project, there were 

eight genes and eight times the learning algorithms trained on seven genes and the resulting 

models are tested on the held-out gene). 
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Another application of supervised learning (Brown et al. 1999) deals with the functional 

classifications of genes.  They use a representation of the data similar to the one pictured in 

Table 1c.  Genes are the examples and functional classifications are the classes.  The features are 

the gene-expression values under various experimental conditions.  Functional classifications are 

simply the classes of genes, defined by the genes’ function, that have been described by 

biologists over the years through various methods.  Given expression profiles, across multiple 

experiments, of multiple genes whose functional class is known, Brown et al. train a learner to 

predict the functional classification of genes whose functional class is not known – see Table 4.  

In order to do this, they use a machine-learning technique known as a support vector machine, or 

SVM. 

Table 4.  Predicting a gene’s biological function. 

Given: A set of genes represented similarly to Table 1c.  Each gene is an 
example, whose features are the numeric expression levels measured 
under multiple experimental circumstances. These experimental 
conditions include stresses like temperature shock, change in pH, or the 
introduction of an antibiotic; other experimental circumstances include 
different developmental stages of the organism or time points in a 
series. 

The category of each gene is simply that gene’s functional category.  
One possible set of functional categories contains these six: TCA cycle, 
Respiration, Cytoplasmic Ribosome, Proteasome, Histone, and Helix-
Turn-Helix (see Brown et al. (1999) for explanations of these classes). 

Do: Learn to predict the functional category of additional genes given a 
vector of expression levels under the given set of experimental 
conditions. 

 

In its simplest form, a support vector machine is an algorithm that attempts to find a 

linear separator between the data points of two classes, as Figure 5 illustrates.  SVM’s seek to 

maximize the margin, or separation between the two classes, in order to improve the chance of 

accurate predictions on future data.  Maximizing the margin can be viewed as an optimization 

task solvable using linear or quadratic programming techniques.  Of course, in practice there may 

be no good linear separator of the data.  Support vector machines based on kernel functions can 

efficiently produce separators that are non-linear.   
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Often kernel functions improve the accuracy of SVM’s, however Brown et al. 

empirically found that for their gene-expression data simple linear SVM’s produce more accurate 

predictions.  Linear SVM’s also generalize better than non-SVM supervised learning methods on 

their data.  For example, out of the 2,467 genes in the data set, the trained SVM correctly 

identifies 116 of the 121 Ribosomal proteins and only produces six false positives.  The next best 

supervised learner correctly identifies the same number, but produces eight false positives. 

 
Figure 5.  A support vector machine for differentiating genes involved in 
respiration from those involved in the TCA cycle by maximizing the margin, W.  
This is done in the N-dimensional space defined by the expression levels of the 
genes across N experimental conditions.  In this simple example, there are only 
two experimental conditions: time 1 and time 2.  So N = 2. Normally, however, 
N would be much greater.  For example, in the paper by Brown et al. (1999), N 
= 79.   The number of genes to categorize would also be much higher.  In the 
Brown et al. paper, the number of genes is 2,467.  

Unsupervised Learning 
Unsupervised learning is learning about a set of examples from their features alone; no 

categories are specified for the examples.  Examples of this type are commonly called unlabeled 

examples.  In the context of gene chips, this means learning models of biological processes and 

relationships among genes based entirely on their expression levels without being able to 

Respiration Genes 

TCA Cycle Genes 

W 
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improve models by checking the learners’ answers against some sort of externally provided 

ground truth. 

Clustering methods 
Many successful efforts in unsupervised learning involve clustering algorithms, including 

much of the work in the algorithmic analysis of microarray data.  Due to the nature of evolution, 

clustering of biological data makes sense, and this task has a long history in computational 

biology (in the past, individual protein or DNA sequences were most commonly clustered).  

Clustering algorithms group, or cluster, examples based on the similarity of their feature values, 

such as gene-expression values.   

Eisen, Spellman, Brown, and Botstein (1998) describe one such method.  Table 5 

presents the problem that they address. 

Table 5.  Clustering genes based on their expression levels. 

Given: A set of genes in an organism represented similarly to Table 1a.  Each 
gene is an example.  An example’s features are the gene’s numeric 
expression levels under various experimental circumstances 
(environmental stresses, development stage, etc.). 

Do: Cluster genes based on the similarity of their expression values. 

 

For example, Eisen et al. clustered the expression patterns across a number of 

experiments of all of the genes of the yeast Saccharomyces cerevisiae (Spellman et al. 1998).   

Some of these experiments measure the genetic response to environmental stresses like cold 

shock.   Others measure transcription during various stages in the life cycle of the organism, such 

as cell division.  Each gene is an example, and the measured expression levels of the gene during 

each of the experiments are the features (i.e., the data is in the format of Table 1a).  They use a 

standard statistical technique to describe the similarity between any two examples in terms of 

these features and use that as their distance metric.  

More specifically, Eisen et al. perform hierarchical clustering.  Their algorithm clusters 

by repeatedly pairing the two most similar examples, removing those two from the data set, and 

adding their average to the set of examples.  Their method pairs examples and can then later pair 

these “average” examples, producing a hierarchy of clusters. 
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Figure 6 shows a hypothetical output of such a hierarchical-clustering algorithm.  The x-

axis spans the experimental conditions, whereas the y-axis spans the genes. The measured 

expression level of the gene during that experiment relative to that of the organism under normal 

conditions dictates the shading of the graph; the higher the expression level, the lighter the point.  

The genes are ordered so that similar genes, with regard to these experimentally derived values, 

are grouped together visually.  The result is an intuitive visual guide for the researcher to quickly 

discern the blocks of similar genes with regard to a set of experiments. 

 

 

 
 

Figure 6.  The graphical output of a cluster analysis.  It is similar to the 
representation in Table 1a, where integers are represented by gray-scale intensity.  
However unlike Table 1a, the genes here are sorted by similarity (more similar 
genes, with respect to their vector of expression values, are grouped together).  
For a more realistic diagram made from real data, see Eisen et al. (1998). 

Due to their flexibility and intuitive nature, clustering methods have proven popular 

among biologists.  In many laboratories that conduct microarray experiments, clustering of genes 

in microarray experiments is now a standard practice.  Clustering of experiments is also a 

common practice – see Table 6.  For example, Thomas et al. (2001) ran microarrays on RNA 

from mice subjected to a variety of toxic compounds, with one microarray per compound.  They 

hierarchically clustered the microarray experiments and found that the clusters correspond 

closely to the different toxicological classes of the compounds (Thomas et al. also report some 

supervised learning experiments). 
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Table 6.  Clustering experimental conditions based on gene-expression levels they produce. 

Given: A set of microarray experiments represented similarly to Table 1b.  
Each experiment is an example.  For instance, in Thomas et al. (2001) 
each experiment involves subjecting mice to one toxic compound.  An 
example’s features are the numeric expression levels of the 
microarray’s genes. 

Do: Cluster experimental conditions based on the similarity of the gene-
expression vectors they produce. 

 

Bayes Networks 
Another unsupervised learning algorithm used for the analysis of microarray data is 

known as the Bayesian network, or Bayes net.  A Bayes net is a directed acyclic graph that 

specifies a joint probability distribution over its variables.   Arcs between nodes specify 

dependencies among variables, while the absence of arcs can be used to infer conditional 

independencies; Figure 7 contains a simple example.  By capturing conditional independence 

where it exists, a Bayes net can provide a much more compact representation of the joint 

probability distribution than a full joint table.  Every node in a Bayes net has an associated 

conditional probability table that specifies the probability distribution for that variable (A) given 

the values of its parents (values of the set of nodes with arcs going to A, denoted by Pa(A)).  The 

probability distribution specified by a Bayes net over variables X1,…,Xp is defined as: 

∏ ====
i

iiipp XPaxXPxXxXP ))(|(),...,( 11  

Friedman and Halpern (1999) were the first to use this technique in the area of 

microarray expression data.  Using the same S. cerevisiae data as was used by Eisen et al. for 

clustering, Friedman et al. show that, using statistical methods, a Bayes network representing the 

observed relationships between the expression levels of different genes can be learned 

automatically from the expression levels of the genes across a variety of experiments – see Table 

7. 
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Table 7.  Learning Bayes networks. 

Given: A set of genes in an organism represented similarly to Table 1a.  Each 
of these genes is an example.  Each example’s numeric expression 
levels under various experimental circumstances (environmental 
stresses, developmental stage, etc.) are its features.  

Do: Learn a Bayesian network that captures the joint probability distribution 
over the expression levels of these genes. 

 

Figure 7.  A simple Bayesian network.  This illustrative example of a Bayes 
network describes the relationships between four hypothetical genes.  Each of the 
probabilities P(X) refers to the probability that the gene X is expressed.  Note that 
the conditional probabilities rely only on the parent variables (i.e., other gene’s 
expression levels).  For simplicity, in this figure we consider genes to be either 
expressed or not expressed.  In a richer model, the variables could correspond to a 
numeric expression level. 

The application of learning Bayes nets to gene expression microarray data is receiving a 

great deal of attention because the resulting Bayes nets potentially provide insight into the 

interaction networks within cells that regulate the expression of genes.  Others have since 

developed other algorithms to construct Bayes network models from data and have also had 

substantial success. 

One might interpret the graph in Figure 7 to mean that Gene A causes Gene B and Gene 

C to be expressed, in turn influencing Gene D.  However, caution must be exercised in 
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interpreting arcs as specifying causality in such automatically constructed models.  The presence 

of an arc merely represents correlation – that one variable is a good predictor of another.  This 

correlation may arise because the parent node influences the behavior of the child node, but it 

may also arise because of a reverse influence, or because of an indirect chain of influence 

involving other features. 

One method for addressing causality in Bayes net learning is to use genetic mutants, in 

which some gene is “knocked out.”  Pe'er, Regev, Elidan, and Friedman (2001) use this approach 

to model expression in S. cerevisiae (i.e., baker’s yeast).  For almost every gene in S. cerevisiae, 

biologists have created a “knock-out mutant,” or a genetic mutant lacking that gene.  If the parent 

of a gene in the Bayes net is knocked out, and the child’s status remains unchanged, then it is 

unlikely that the arc from parent to child captures causality.  A current limitation of this approach 

is that no other organism has such an extensive set of knock-out mutants. 

Another method for addressing the issue of causality ─ explored by Ong, Glasner and 

Page (2002) ─ is through the use of time-series data.  Time-series data is simply data from the 

same organism at various time points.  Ong et al. use time-series data from the tryptophan 

regulon of E. coli (Khodursky et al. 2000).  A regulon is a set of genes that are co-regulated.  

The tryptophan regulon regulates metabolism of the amino acid tryptophan in the cell.  Ong et al. 

use this data to infer a temporal direction for gene interactions, thereby suggesting possible 

causal relations.  In order to model this temporal directionality, they employ a representation 

known as a dynamic Bayesian Network.  In a dynamic Bayesian network, genes are each 

represented, not by only one node, but by T nodes, where T is the number of time points.  Each 

of these T nodes represents the gene’s expression level at a different time point.  This way the 

algorithm can learn relationships between genes at time t and at time t+1.  This also makes it 

possible for the network to identify feedback loops, cases where a gene either directly or through 

some chain of influence, actually influences its own regulation. Feedback loops are common in 

gene regulation. 

Using Additional Source of Data 
A recent trend in computational biology is to use more than just microarray data as the 

source of input to a learning algorithm.  In this section we briefly describe a few such 

investigations. 
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Some recent approaches to clustering genes rely not only on the expression data, but also 

on background knowledge about the problem domain.  Hanisch, Zien, Zimmer, and Lengauer 

(2002) present one such approach.  They add a term to their distance metric that represents the 

distance between two genes in a known biological-reaction network. A biological-reaction 

network is a set of proteins, various intermediates, and reactions among them; together these 

chemicals carry out some cooperative function such as cell respiration or metabolism.  They can 

function like assembly lines where one protein turns chemical X into chemical Y by adding or 

removing atoms or changing its conformation; the next protein turns chemical Y into chemical Z 

in a similar fashion, and so on.  One often depicts the entities in such biological networks as 

edges in a graph and the reactions among them as vertices.  Biologists have discovered many of 

these networks through other experimental means and some of these networks are now well 

understood.  Genes that are nearer to one another in such a biological network can be considered, 

for the purposes of clustering, more similar than genes that are farther apart. 

The BIOLINGUA system of Shrager, Langley, and Pohorille (2002) also uses a network 

graph describing a known biological pathway and updates it using the results of microarray 

experiments.  Their algorithm adds and removes links in the biological pathway based on each 

link’s experimental support in the microarray data, which is a form of theory revision, a small 

subtopic within machine learning (see Chapter 12 of Mitchell, 1997).  The network structures in 

BIOLINGUA are similar to a dynamic Bayes network in that the links imply causality – not just 

correlation – between the expression of one particular gene and another.  Shrager et al. achieve 

this perspective through a combination of domain knowledge and their use of time-series data; if 

there is a causal connection between two events, they require that it can only go in the forward 

temporal direction.  One way that their representation differs from Bayesian approaches is that 

BIOLINGUA’s links are qualitative rather than quantitative.  Instead of a joint statistical 

distribution on probabilities between linked nodes, their algorithm uses a qualitative 

representation that simply specifies influences as either positive or negative.  Along with the 

causal links, their representation mirrors the type of network description that biologists are 

familiar with, thereby making the resulting model more useful. 

Another source of data is the DNA sequence itself.  Many organisms, including E. coli, 

fruit fly, yeast, mouse, and humans, have already been (nearly) completely sequenced; in other 

words, the sequence of the entire string of the millions to billions of bases constituting their 
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genomes is known.  Many others, though not complete, are in progress and have large amounts 

of data available.  The DNA sequence surrounding a gene can have an impact on its regulation 

and, through this regulation, its function.  Craven, Page, Shavlik, Bockhorst, and Glasner (2000) 

use machine learning to integrate E. coli DNA sequence data, including geometric properties 

such as the spacing between adjacent genes and the predicted DNA binding sites of important 

regulatory proteins, with microarray expression data in order to predict operons.  An operon is a 

set of genes that are transcribed together.  Operons provide important clues to gene function 

because functionally related genes often appear together in the same operon. 

DNA sequence information is also used in a method that Segal, Taskar, Gasch, Friedman, 

and Koller (2001) developed.  Their goal is to jointly model both gene-expression data and 

transcription factor binding sites.  Transcription factors are proteins that bind to a subsequence 

of the DNA before a gene and encourage the start of transcription.  The subsequence to which a 

transcription factor binds is called the “transcription factor binding site.”  If two genes have 

similar expression profiles, it is likely that they are controlled by the same transcription factor 

and therefore have similar transcription factor binding sites in the sequence preceding them. In 

order to model both gene expression information and sequence information jointly, Segal et al. 

use what are known as Probabilistic Relational Models (PRM’s).  A PRM can be thought of as 

Bayesian network whose variables are fields in a relational database.  The strength of this 

representation is that PRM’s can be learned from a relational database with multiple relational 

tables, whereas learning algorithms for ordinary Bayes nets require the data to be in a single 

table.  The different tables may be used to represent different types of data, for example sequence 

data and expression data.  The approach of Segal et al. uses an EM (expectation-maximization) 

algorithm to learn a PRM that models both clusters of genes and, for each such cluster, the likely 

transcription factor binding sites in front of those genes in the DNA. 

Another excellent source of supplementary material is the large amount of human-

produced text about the genes on a microarray (and their associated proteins) that is contained in 

biomedical digital libraries and in the expert-produced annotations in biomedical databases.  

Molla, Andrae, Glasner, Blattner, and Shavlik (2002) investigate using the text in the curated 

SwissProt protein database (Bairoch and Apweiler 2000) as the features characterizing each gene 

on an E. coli microarray.  Using these text-based features, they employ a machine-learning 
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algorithm to produce rules that “explain” which genes’ expression levels increase when E. coli is 

treated with an antibiotic. 

There is a wealth of data – known reaction pathways, DNA sequences, genomic structure, 

information gleaned from protein-DNA and protein-protein binding experiments, carefully 

annotated databases and the scientific literature, etc. – that one can use to supplement Table 1’s 

meager representation of microarray experimental data.  Exploiting such richness offers an 

exciting opportunity for machine learning. 

Machine Learning in Medical Applications of Microarrays 
Having seen how both supervised and unsupervised learning methods have proven useful in the 

interpretation of microarray data in the context of basic molecular biology, we next turn to the 

application of microarrays in medicine.  Microarrays are improving the diagnosis of disease, 

facilitating more accurate prognosis for particular patients, and guiding our understanding of the 

response of a disease to drugs in ways that already improve the process of drug design.  It is 

quite possible that these technologies could someday even lead to medicines personalized at the 

genetic level (Mancinelli, Cronin, and Sadee 2000), and in this section we attempt to provide a 

sense of the large number of future opportunities for machine learning as the medical 

applications of microarray technology expand. 

Disease Diagnosis 

A common issue in medicine is to distinguish accurately between similar diseases in order to 

make an accurate diagnosis of a patient.  Molecular-level classification using gene microarrays 

has already proven useful for this task.  This technique has been used in two tasks that we will 

discuss in the context of cancer diagnosis: class discovery and class prediction.  Class discovery 

– Table 8 – is the task of identifying new classes of cancer; class prediction –Table 9 – is the task 

of assigning a new tumor to a known class.  Accurate diagnosis is crucial for obtaining an 

accurate prognosis, as well as for assigning appropriate treatment for the disease. 
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Table 8.  Discovering new disease classes. 

Given: A set of microarray experiments, each done with cells from a different 
patient.  This data is represented similarly to Table 1d.  The patients 
have a group of closely related diseases.  Each patient’s numeric 
expression levels from the microarray experiment constitute the 
features of an example.  The corresponding disease classification for 
each patient is that patient’s category.  

Do: Using clustering (ignoring the disease category), find those cells that do 
not fit well in their current disease classification.  Assume these cells 
belong to new disease classifications. 

 

Table 9.  Predicting existing disease classes. 

Given: The same data as in Table 8. 

Do: Learn a model that can accurately classify a new cell into its appropriate 
disease classification. 

 

Golub et al. (1999) use microarray technology for class discovery and class prediction on 

two types of closely related cancers: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid 

Leukemia (AML).  The distinction between these two cancers has long been well established, but 

no single test is sufficient to accurately diagnose between them.  Current medical practice is to 

use a series of separate, highly specialized tests.  When combined, the results of these tests are 

fairly accurate, but misdiagnoses do occur. 

The Golub group used microarrays to address this diagnostic issue by analyzing samples 

from patients' tumors.  Up to this time, microarrays had been primarily used only on highly 

purified cell lines grown in laboratories.  When using microarrays to analyze samples taken 

directly from patients, the “noise” due to the genetic variation between the patients can obscure 

the results.  For this reason, when working with samples from patients, it is very important to 

have a large number of patients from which to sample, so that the genetic variation unrelated to 

the disease does not obscure the results. 

One can use any of the many supervised-learning techniques to induce a diagnosis model 

from the gene-expression data of a number of patients and the associated disease.  Once an 

accurate predictive model is obtained, new patients – and those who were previously 

undiagnosable – can be classified.  Using an ensemble of 50 weighted voters (see Figure 8b) on 
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this AML/ALL diagnosis task, Golub et al. are able to correctly classify 29 of the 34 samples in 

their test set.  Their ensemble rejects the other 5 samples in the test set as “too close to call.”   

This same type of gene microarray data can also be used in a class-discovery task.  

Commonly, one discovers classes by using an unsupervised learning technique to cluster the 

examples.  One then matches the clusters produced with known disease types and considers any 

remaining clusters as new, unstudied disease classes.  The primary challenge in class discovery is 

ensuring that the clustering is biologically meaningful.  Because unsupervised learning is done 

without considering the current disease classification of the example, it is very possible that the 

clustering will be based on the wrong variations among patients.  For example, when performing 

unsupervised learning on a group of patients with similar cancers, obtaining a clustering based 

on the ethnicity of the patients could result.  Although this grouping may be optimal according to 

the algorithm used, it offers no insight into the diseases being studied.  A second important 

challenge when doing unsupervised learning, which can also significantly affect the usefulness 

of the results obtained, is the granularity at which the examples are clustered.  Since one can find 

an optimal clustering for any specified number of clusters, it is important to find a clustering that 

accurately captures the level of differentiation sought – in this case, the distinction among 

diseases. 

Whenever gene-microarray technology is used on patient samples, instead of on highly 

purified laboratory samples, one must exercise caution to ensure that the genes chosen as 

predictors are biologically relevant to the process being studied.  This is especially relevant in 

solid-tumor analysis.  Due to the method in which they are obtained, tumor-biopsy specimens 

can have large variations in the amount of the surrounding connective tissue that is obtained 

along with the tumor cells5.  Applying class discoveries or predictions made on the data from 

these cells, without first analyzing the learned predictive model, may result in making decisions 

using the wrong basis – such as the skill of the person who performed the biopsy – instead of the 

desired basis – the underlying tumor biology.  For this reason, those learning techniques that 

create directly comprehensible models (such as decision trees – Figure 8a;  ensembles of voters – 

Figure 8b; and Bayesian networks) are, in these types of applications, preferred to those whose 

                                                 
5 This problem is specific to the collection of specimens from solid tumors and is not the case when dealing with 
cancers of the blood.  For this reason, higher accuracies are generally found when using machine learning on cancers 
of the blood than on solid tumor cancers. 



 25

induced models cannot be as easily comprehended by humans (such as neural networks and 

support vector machines). 

Although primarily used for diagnosis, molecular-level classification is not limited 

simply to distinguishing among diseases.  The methods of class prediction and class discovery 

can also be used to predict a tumor's site of origin, stage, or grade. 

 
 

Figure 8.  Comprehensible models for disease diagnosis.  (a) A two-level decision 
tree for discriminating between Myeloma cells and normal cells, based on the gene-
expression levels from those cells.  (b) An ensemble of voting decision “stumps” 
(one-level decision trees) for the same task.  In the case of unweighted voting, each 
decision stump is given a single vote and a simple majority vote is taken to 
distinguish Myeloma cells from normal cells.  In the case of weighted voting, some 
decision stumps have their votes counted more than others.  One can choose from a 
variety of methods to determine how to weight the votes. 

Disease Prognosis 

As we saw when discussing molecular-level classification, one can use supervised 

learning to more accurately diagnose a patient who may have one of a set of similar diseases.  

These same types of techniques can also be used to predict the future course and outcome, or 

prognosis, of a disease.  Making an accurate prognosis can be a complicated task for physicians, 

since it depends upon a very large number of factors, some of which may not be known by the 

physician at the time of diagnosis.  By more accurately diagnosing the disorder and, as we will 
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see later, predicting the response that the disorder will have to particular drugs, we can make a 

more accurate prognosis for a patient.   

Microarray analysis is already being used to predict the prognosis of patients with certain 

types of cancer.  Investigators have chosen cancer as a model disease for a variety of reasons.  

First, the prognosis for a patient with cancer is highly dependant upon whether or not the cancer 

has metastasized.  Second, it has been shown that important components of the biology of a 

malignant cell are inherited from the type of cell that initially gave rise to the cancer and the life-

cycle stage at which that cell was in during at the time of its transformation; Figure 9 illustrates 

this process.  Finally, providing an accurate prognosis to a patient is crucial in deciding how 

aggressive of a treatment should be used.  Because of these reasons, researchers typically employ 

supervised learning techniques to address this problem – see Table 10. 

 
 

Normal Cells 
DNA damage 

Tumor Cells 
Further 

DNA damage Cancer Cells 
Metastasis 

 
Figure 9.  Transformation: the development of cancerous cells from normal 
cells.  In the first step of this transformation, DNA damage causes normal cells to 
keep multiplying uncontrollably – forming a benign tumor.  If further DNA 
damage occurs, these cells convert from benign to cancerous.  The final stage of 
this progression is the cells’ metastasis.  This is the process whereby the cancer 
gains the ability to spread to other locations within the body. 

One group to use this supervised learning approach for prognosis prediction is Van’t 

Veer et al. (2002).  They employ an ensemble of voters to classify breast cancer patients into two 

groups: good prognosis (no metastasis within five years after initial diagnosis), and poor 

prognosis (distant metastases found within five years).  To begin, they select those 231 genes 

from the 25,000 genes on the microarray with the highest degree of association with the disease 

outcome (calculated by correlation coefficient over the full set of 78 examples).  They then rank 

these genes by their correlation coefficients.  They repeat “leave-one-out” cross-validation over 
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all 78 examples using various ensemble sizes.  They found that an ensemble size of 70 genes 

gives the best cross-validated accuracy (83%).   

Table 10.  Predicting the prognosis for cancer patients. 

Given:  A set of microarray experiments, each done with cells from a different 
patient.  This data is represented similarly to Table 1d.  All of these 
patients have the same type of cancer, but are in different stages of 
progression.  Each patient is an example and the numeric expression 
levels for all the genes on the microarray are the features.  The true 
prognosis of that patient6 is that patient’s category. 

Possible categories include (a) whether or not a cancer is likely to 
metastasize and (b) the prognosis of that patient (for example, will the 
patient survive for at least five years.  One could also formulate this as a 
real-valued prediction task, such as years until recurrence of the cancer. 

Do:  Learn a model that accurately predicts to which category new patients 
belong.   

 

Their methodology contains two errors from the perspective of current machine-learning 

practice.  First, they chose the 231 features using the entire set of 78 examples.  This constitutes 

“information leakage” because all 78 of the examples – including those that will later appear in 

test sets during the cross validation – are used to guide the selection of these 231 features.  

Second, they report the best ensemble size by seeing which size works best in a cross-validation 

experiment.  This again constitutes “information leakage” because they optimized one of the 

parameters of the learning system – namely the size of the ensemble – using examples that will 

appear in the test sets.  These two errors mean that their estimated accuracy is likely to be an 

overestimation, since they “overfit” their test data.  A better methodology is to separately select 

parameters for each fold during their N-fold cross-validation experiments.  Recognizing these 

issues after publication, Van’t Veer et al. reported a modified version of their algorithm in the 

online supplement to their article in order to address these two concerns; their changes reduced 

the cross-validated accuracy from 83% to 73% (and one might still question whether their 

revised approach leads to an overestimate of future accuracy). 

                                                 
6 Since the true prognosis of a patient may not be known for years, collecting labeled training examples can be a 
challenging task.  The fact that the gene-expression measurement technology is rapidly changing also complicates 
the creation of good training sets for prognosis tasks. 
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Although prognosis prediction is commonly thought of as a supervised learning task, 

valuable information about a disease can also be gained through unsupervised learning.  

Alizadeh et al. (2000) utilized unsupervised learning techniques to cluster patients with diffuse 

large B-cell lymphoma into two clusters.  They discovered that the average five-year survival for 

the patients in one cluster was 76%, compared to 16% in the other cluster (average five-year 

survival for all patients was 52%).  These results illustrate that the clusters found through 

unsupervised learning can be biologically and medically relevant ones.  However, before (solely) 

employing clustering algorithms, users of machine learning should consider whether their task 

can be cast in the form of the more directed supervised learning, where training examples are 

labeled with respect to an important property of interest. 

Response to Drugs 

Drugs are typically small molecules that bind to a particular protein in the body and act to 

inhibit or activate its activity; Figure 10 contains an example.  Currently, pharmaceutical 

companies are limited to designing drugs that have a high level of success and a low level of side 

effects when given to the "average" person.  However, the way that an individual responds to a 

particular drug is very complex and is influenced by their unique genetic makeup, as Figure 11 

summarizes. Because of this, there are millions of cases annually of adverse reactions to drugs7, 

and far more cases where drugs are ineffective.  The field of pharmacogenomics addresses this 

tight interrelation between an individual's genetic makeup and their response to a particular drug 

– see Table 11 to see how microarrays can play a role. 

An area related to pharmacogenomics is molecular-level profiling.  The main difference 

between these two fields is that, while pharmacogenomics deals with finding genetic variations 

among individual people that predict an individual person's response to a particular drug, the 

goal of molecular-level profiling is to find genetic variations among individual diseased cells that 

predict that cell's response to a particular drug.  Analyzing specific cells is important for 

predicting drug response, since – due to the highly variable nature of cancer – significant 

variation exists among tumors of the same type of cancer, just as significant variation exists 

between organisms of the same species. 

                                                 
7 In 1994 there were over 2.2 million serious cases of adverse drug reactions and over 100,000 deaths in the United 
States (Lazarou et al. 1998). 
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Figure 10.  A drug binding to a protein.  Inhibitor Drug U-89360E (shown as a 
stick model in dark gray) bound to protein HIV-1 Protease mutant G48H 
(shown as a space-filling model in lighter gray). 

Molecular-level profiling has been found to be effective in treating certain types of 

cancers.  A recent example of this is Rosenwald et al.’s (2002) lymphoma/leukemia project.  

This study investigates large-B-cell lymphoma – a type of cancer curable by chemotherapy in 

only 35-40% of patients.  It is thought that large-B-cell lymphoma is not a single disease, but 

actually a class that contains several different diseases that, although morphologically the same, 

differ in response to certain types of therapy. 

 

 
Figure 11.  The major factors that affect a person’s response to a drug. 

Genetic 
Variation

Age 
Nutrition

Health Status 
Environmental 

Exposures 

Concurrent 
Therapy 

Drug 
Response 



 30

Table 11.  Predicting the drug response of different patients with a given disease. 

Given: A set of microarray experiments, each done with cells from a patient 
infected with a given disease.  This data is represented similarly to Table 
1d.  Each microarray experiment is an example, with each gene’s 
numeric expression level during that experiment serving as a feature.  
(One might want to augment the gene-expression features with 
additional features such as the age, gender, and race of each patient.) 

The drug-response classification of each patient is that example’s 
category.  Typical categories are good response (i.e., improved health), 
bad response (i.e., bad side effects), and no response. 

Do: Build a model that accurately predicts the drug response of new patients. 

 

By analyzing gene-expression profiles of cells from different large-B-cell lymphoma 

tumors, Rosenwald et al. developed a method to predict the survival rates of diffuse large-B-cell 

lymphoma based on this microarray data.  Using training data from 160 patents whose outcomes 

on anthracycline-based chemotherapy are known, they predict which of 80 held-out test-set 

patients would respond well to this type of chemotherapy.  The actual five-year survival rate 

among those who were predicted to respond was 60%.  Those who were predicted not to respond 

had an actual five-year survival rate of only 39%. 

Currently, this investigation into large-B-cell lymphoma has yielded prognosis 

information only.  However, this type of insight into how the genetic variations between cells 

can affect their response to particular drugs will eventually suggest new drugs to treat the types 

of cells that currently do not respond to chemotherapy and can also lead to the deeper 

understanding of a disease’s mechanism.  

As we gain a deeper insight into the diseases that we study, the lines among molecular-

level classification, pharmacogenomics, and molecular-level profiling will blur.  More accurate 

sub-typing of a single disease may ultimately lead to it being considered as two separate 

diseases.  A deeper understanding of the underlying mechanisms of diseases may lead to the 

discovery that two previously distinct diseases are different manifestations of the same 

underlying disease.  Personalized medicine could eventually lead not just to classifying patients 

based upon the drug that will work best for them, but to designing a drug specifically tailored to 

a patient’s exact disorder and genetic makeup. 
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New Data Types from High-Throughput Biotechnology Tools 
In this section we briefly discuss three other novel types of high-throughput, molecular-level 

biological data to which machine learning is applicable.  (High-throughput techniques are those 

that permit scientists to make thousands of measurements from a biological sample in about the 

time and effort it traditionally took to make at most a handful of measurements.)  Data sets 

arising from these additional techniques are similar to gene microarrays in that they have a 

similar tabular representation and high dimensionality. 

Single Nucleotide Polymorphisms (SNP’s) 

Genome researchers have learned that much of the variation between individuals is the 

result of a number of discrete, single-base changes in the human genome.  Since that discovery, 

there has been intense effort to catalog as many of these discrete genetic differences as possible.  

These single positions of variation in DNA are called single nucleotide polymorphisms, or 

SNP’s, and are illustrated in Figure 12.  While it is presently infeasible to obtain the sequence of 

all the DNA of a patient, it is feasible to quickly measure that patient’s SNP pattern, the 

particular DNA bases at a large number of these SNP positions. 

Machine learning can be applied to SNP data in a manner similar to its application to 

microarray data.  For example, given a SNP data file as in Table 12, one can employ supervised 

learning to identify differences in SNP patterns between people who respond well to a particular 

drug versus those who respond poorly.  Or if the data points are classified instead by disease 

versus healthy, one can use supervised learning to identify SNP patterns predictive of disease.  If 

the highly predictive SNP’s appear within genes, these genes may be important for conferring 

disease resistance or susceptibility, or the proteins they encode may be potential drug targets.   

 

 

 
 

 
Figure 12.  Single nucleotide polymorphism.  The differences between the 
genomes of two individuals are generally discrete, single-base changes.  Shown 
is a simplified example of what the corresponding genomes of two people might 
look like.  The differences are highlighted – all other DNA bases are identical 
between the twos sequences. 
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One challenge of SNP data is that it is collected in unphased form.  For example, suppose 

that, instead of coming from two different people, the two DNA strands in Figure 12 refer to the 

two copies of chromosome 1 in a single person (humans has two copies of each chromosome).  

Current SNP technology would return the first row of Table 12 – it would not provide any 

information about which SNP variants are on which chromosome.  Should this “phase” 

information be necessary for the particular prediction task, the machine-learning algorithm will 

be unsuccessful. 

Table 12.  A sample single nucleotide polymorphism data file.  Since humans 
have paired chromosomes, one needs to record the base on each chromosome at 
a SNP position (notice that each of the two chromosomes contains a pair of 
DNA strands – the famous double-helix - but due to the complementarity of 
these paired strands there is no need to record all four bases at a given SNP 
position).  While biologists have already identified over a million SNP positions 
in the human genome, currently a typical SNP data file will contain only 
thousands of SNP’s, because of the cost of data gathering. 

 

 

Proteomics 

Gene microarrays measure the degree to which every gene is being transcribed.  This 

measure is a useful surrogate for gene expression (i.e. the complete process of transcription 

followed by translation), particularly because protein levels are more difficult to measure than 

RNA levels.  Nevertheless, increased transcription does not always mean increased protein 

production.  Therefore it is desirable to instead measure protein directly, and this is called 

proteomics in contrast to genomics, which is the rubric under which gene microarrays falls.  An 

organism’s proteome is its full complement of proteins. 

Mass spectrometry makes it possible to detect the presence of various proteins in a 

sample.  The details of mass spectrometry are beyond the scope of this article; however, Figure 

13 provides a sense of this type of data.  To convert such an example into a feature vector, it is 

necessary to perform some type of “peak picking.”  The result of picking peaks in mass-

 SNP 1 SNP 2 … SNP M Response 
Person 1 C      T. A     G. … T      T. positive 
Person 2 C      C. A     A. … C      T. negative 

… … … … … … 
Person N T      T. A     G. … C      C. positive 
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spectrometry data is a feature vector of x-y pairs, where each entry corresponds to a mass-to-

charge ratio (the x-axis) and the associated peak height (the y-axis). 

Mass / Charge
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Figure 13.  Sample mass-spectrometry output.  Different protein fragments 
appear at different mass/charge values on the horizontal axis.  The vertical axis 
reflects the amount of the protein fragment in the sample.  The plotted peak 
heights are typically normalized relative to the highest intensity.   

Mass-spectrometry data presents at least three major challenges.  First, in raw form the 

peaks typically correspond to pieces of proteins – peptides – rather than to entire proteins.  One 

can either work with these features or preprocess the data by attempting to map from a set of 

peaks to a (smaller) set of proteins.  Second, currently mass spectrometry is extremely poor at 

giving quantitative values; peak heights are not calibrated from one sample to another.  Hence 

while the normalized peak height at a particular mass-to-charge ratio may be much greater in 

example 1 than example 2, the amount of protein at that ratio actually may be greater in example 

2.  Therefore, often it is desirable to use binary features instead of continuous ones – at a 

particular mass-to-charge ratio, either there is a peak or there is not one.  The third major 

challenge of mass spectrometry data is that peaks from lower-concentration proteins cannot be 

distinguished from the background noise.   

While this discussion has focused on mass-spectrometry data, because of its similarities 

to gene-microarray data, the phrase proteomics actually refers to a broader range of data types.  

Most significantly, it also includes data on protein-protein interactions.  Such data also poses 

interesting opportunities and challenges for machine learning.  KDD Cup 2001 (Cheng et al. 

2002) contained one challenging task involving protein-protein interaction data. 



 34

Metabolomics 

It is tempting to believe that, with data about DNA (SNP’s), RNA (microarrays), and 

proteins (mass spectrometry), one has access to all the important aspects of cell behavior.  But in 

fact many other aspects remain unmeasured with these high-throughput techniques.  These 

aspects include post-translational modifications to proteins (e.g., phosphorylation), cell structure, 

and signaling among cells.  For most such aspects there exist no high-throughput measurement 

techniques at present.  Nevertheless, some insight into these other aspects of cell behavior can be 

obtained by examining the various small molecules (i.e., those with low molecular weight) in the 

cell.  Such molecules often are important inputs and outputs of metabolic pathways in the cell.  

High-throughput techniques for measuring these molecules exist.  The area of studying data on 

these molecules is called metabolomics (Oliver, Winson, Kell, and Baganz 1998).  High-

throughput metabolomics data can be represented naturally in feature vectors in a manner similar 

to gene-microarray data and mass-spectrometry data.  In metabolomics data the features 

correspond to small molecules, and each feature takes a value that expresses the quantity of that 

molecule in a given type of cell. 

Systems Biology 

Additional forms of high-throughput biological data are likely to become available in the 

future.  Much of the motivation for these developments is a shift within biology towards a 

systems approach, commonly referred to as systems biology.  As Hood and Galas (2003) note, 

whereas in the past biologists could study a “complex system only one gene or one protein at a 

time,” the “systems approach permits the study of all elements in a system in response to genetic 

(digital) or environmental perturbations.”  They go on to state: 

The study of cellular and organismal biology using the systems 
approach is at its very beginning.  It will require integrated teams 
of scientists from across disciplines – biologists, chemists, 
computer scientists, engineers, mathematicians and physicists.  
New methods for acquiring and analyzing high-throughput 
biological data are needed (Hood and Galas 2003).  

Constructing models of biological pathways or even an entire cell – an in silico cell – is a 

goal of systems biology.  Perhaps the preeminent example to date of the systems approach is a 

gene-regulatory model Davidson et al. (2002) developed for embryonic development in the sea 

urchin.  Nevertheless, this model was developed over years using data collected without the 
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benefit of high-throughput techniques.  Machine learning has the potential to be a major player in 

systems biology, because learning algorithms can be used to construct or modify models based 

on the vast amounts of data generated by high-throughput techniques. 

Conclusion 
Machine learning has much to offer to the revolutionary new technology of gene microarrays.  

From microarray design itself to basic biology to medicine, researchers have employed machine 

learning to make gene chips more practical and useful. 

Gene chips have already changed the field of biology.  Data that might have taken years 

to collect, now takes a week.  Biologist are aided greatly by the supervised and unsupervised 

learning methods that many are using to make sense of the large amount of data now available to 

them, and additional challenging learning tasks will continue to arise as the field further matures.  

As a result, we have seen a rapid increase in the rate at which biologists are able to understand 

the molecular processes that underlie and govern the function of biological systems. 

Although their impact will progress more slowly in medicine than in molecular biology, 

microarray technology coupled with machine learning is also being used for a variety of 

important medical applications: diagnosis, prognosis, and drug response.  These applications are 

similar in that they all deal with predicting some aspect of a disease by differentiating at the 

molecular level among individuals in a population – either patients or cells.  The difference 

among these applications concerns what is being predicted.  In disease classification, one focuses 

on distinguishing among cells with different, but possibly related, diseases.  In disease prognosis, 

one is predicting long-range results.  In pharmacogenomics and molecular profiling, one uses 

molecular-level measurements to differentiate among patients or cells with the same disease 

based on their reaction to particular drugs. 

As our vast amount of genomic and similar types of data continues to grow, the role of 

computational techniques, especially machine learning, will grow with it.  These algorithms will 

enable us to handle the task of analyzing this data to yield valuable insight into the biological 

systems that surround us and the diseases that affect us.  
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