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B IOLOGISTS ARE TAKING THE 
first steps toward knowing the functions and 
locations of all the genes and regulatory sites 
in the genomes of several organisms. As these 
researchers determine the nucleotide se- 
quence of large stretches of human and other 
DNA, they are producing great volumes of 
sequence data. Direct laboratory analysis of 
this data is difficult and expensive, making 
computational techniques essential. But the 
variation, complexity, and incompletely un- 
derstood nature of genes make it impractical 
to hand-code the algorithms. 

Several researchers are exploring how to 
apply machine learning techniques to gene 
recognition. Machine learning methods are 
well suited to sequence analysis because they 
can learn useful descriptions of genetic con- 
cepts when given only instances, rather than 
explicit definitions, of those concepts. This 
article looks at several such approaches to 
gene recognition in two broad classes: search 
bx signal and search by content. (For the 
uninitiated in either field, two sidebars offer 
some background in molecular biology and 
the type of machine learning known as em- 
piricnl learning.) 

Search by signal 

Search by signal locates genes indirectly 
by finding signals (localized regions of DNA 

As LABOZ?ATOZUES AROUND THE WORLD PRODUCE 
EVER-GREATER VOLUMES OF DNA SEQUENCE DATA, 

EFFICZENT COMPUTATZONAL ANALYSZS TECHNZQUES 
ARE BECOMZNG ESSENTIAL. THIS ARTZCLE SURVEYS 
SEVERAL EFFORTS THAT APPLY MACHINE LZIARNZNG 

TECHNIQUES TO GENE RECOGNITION. 

with specific functions) that are associated 
with gene expression. The approaches we de- 
scribe here formulate their task as classifi- 
cation: They view a DNA sequence through 
a fixed-length “window” to see if the signal 
of interest occupies a particular position in 
the window. In Figure 1, for example, a pos- 
itive example occurs when a promoter begins 
at position 3. 

Several signals are especially germane to 
identifying genes: 

l transcription initiation sites (promoters), 
l transcription termination sites (terminators), 
l translation initiation sites (start codons), 
l translation termination sites (srop 

codons), and 
l splice-junction sites 

The difficulty of identifying these sites varies 
considerably. Translation termination sites 
are trivial to identify: We only need to find a 
stop codon in the reading frame of a coding 

region. However, identifying the other t 
of sites is more complex. 

ypes 

‘Ikanslation initiation sites. Aribosome does 
not begin to translate mRNA to protein with its 
first nucleotide triplet, but rather somewhere 
downstream, usually with the codon A-U-G, 
which encodes the amino acid methionine. 
However, the first A-U-G codon is not neces- 
sarily the start codon, and A-U-G may also 
occur in the middle of a coding region. 

The problem is even more difficult for 
prokaryotic organisms, where a single 
mRNA molecule may have several transla- 
tion initiation sites because consecutive 
genes may be transcribed into a single 
mRNA chain. Furthermore, translation in 
prokaryotes sometimes begins with codons 
other than A-U-G. Fortunately, a so-called 
Shine-Dalgarno region-a sequence that is 
complementary to the part of the ribosome 
that binds to mRNA - usually precedes a 
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start codon in a prokaryotic organism. But 
recognizing the translation initiation site is 
still not straightforward: The location of 
Shine-Delgardo sequences can vary relative 
to the start codons, and the nucleotides in the 
region vary as well. 

An early application of machine learning 
to molecular biology involved training per- 

LYJI~~UIIS to recognize translation initiation 
sites in the DNA of the bacterium E. co/i.’ 
(Although translation initiation sites are fea- 
tures of mRNA, we can easily recognize 
them in DNA sequences by applying our 
knowledge of how a given DNA sequence is 
transcribed to an RNA sequence.) A percep- 
tron is a neural network with only one out- 
put unit and no hidden units. The input units 
represent the problem’s features and their 
possible values. For example, the input units 
in Figure 2 represent three features (the nu- 
cleotides in the window) with four possible 
values each (A. C. G, or T). 

The state of each unit is called its ncriva- 

rior7. and is typically a real-valued number in 
the range IO.1 1. In Figure 2. the shaded input 
units have activations of 1, indicating that 
those feature instances have those values: the 
others have activations of 0. Real-valued 
weights connect the input units to the output 
unit. The output unit’s activation for a given 
feature instance p is computed with an acri- 

~,trrio77.fic77ction: 

~I,,, = 1 if Cj~v,,nJ,, > 8 
0 otherwise 

where n,, is the activation of the ith unit in 
response to instancep, II’!, is the weight con- 
necting unit j to the output unit i. and 8 is a 
threshold. The output activation is then con- 
sidered the perceptron’s “answer.” For ex- 
ample. an activation of 1 typically indicates 
a positive instance (such as a translation ini- 
tiation site). whereas an activation of 0 indi- 
cates a negative instance. 

Teaching a perceptron involves adjusting 
the netivork weights and threshold to maxi- 
mize the number of training instances that it 
correctly classifies. Specifically, it makes 
se\ era1 pasqes through the training set, and 
its M-eights are updated for each instance: 

where r,,, is the reclchil7g signal (correct re- 
sponse) for instance p. and q is a step-size 
parameter that determines the learning rate. 

One \vay to think about a perceptron is as 

Feature 
representation 

. 
Position 1 = “C” i 

i Position 2 = “T” 
j 

i 
Position 3 = “T” 
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i 
i 

Position 5 = “C” 
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i 
Position 6 = “G” j 

DNA sequence 

Figure 1. Search by signal as classification. 

A C G T A C G T 

. ..ATCGTGC~CGCGTCCA.... 

Figure 2. A perceptron. 

a matrix whose rows represent A, C, G, and 
T, and whose columns represent positions in 
the window. Each element of this matrix is a 
number that represents the associated weight 
for a particular nucleotide in a particular win- 
dow position. Descriptions of such weight 
matrices are common in the biological liter- 
ature. Another way to think about a percep- 
tron is as an (n-1).dimensional hyperplane 
where II is the number of input units. An ac- 
tivation pattern on the input units corre- 
sponds to a point in the II-dimensional space, 
and the class that the perceptron predicts is 
determined by which side of the hyperplane 
the point is on. Thus, a perceptron can accu- 
rately represent only concepts that are 
lirleurlx separable; that is, concepts for 
which a hyperplane can completely separate 
the positive and negative instances. 

In training perceptrons to recognize trans- 
lation initiation sites. Stormo and his col- 
leagues experimented with windows that 
were 101,7 1. and 5 1 nucleotides wide.’ As in 
Figure 2. they used four input units to repre- 

sent each nucleotide in the window. The set 
of positive instances was 124 known initia- 
tion sites, and the set of negative instances 
was 167 sites that a rule-based technique had 
falsely identified as initiation sites. The re- 
searchers aligned the positive instances so that 
the start codon of each instance occupied the 
same window positions. They found that the 
perceptron with the lOl-nucleotide window 
generalized best. Not surprisingly, the most 
significant weights were those connected to 
the units representing the initiation codon and 
the nucleotides in the Shine-Dalgamo region. 

Since this early work. researchers have de- 
veloped backpropagation and other learning 
algorithms for nzu/ti/m~rr networks (with hid- 
den units) and have applied these networks to 
recognize translation initiation sites and other 
signals. Hidden units can transform the space 
defined by input unit activations into one in 
which output units can more profitably make 
linear discriminations, thereby enabling 
more complex concept descriptions than per- 
ceptrons allow. 

- 
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From DNA to protein 
A DNA molecule usually comprises two 

strands that coil around each other into a dou- 
ble helix. Each strand is a linear sequence 
composed from four different nucleorides- 
adenine, guanine, thymine, and cytosine- 
commonly abbreviated as A, G, T, and C. The 
two strands are held together by bonds that 
connect each nucleotide to its complementaq 
nucleotide on the other strand: A always 
bonds to T, and C always bonds to G. 

Certain subsequences of a DNA strand, 
called genes, are blueprints forproteins, which 
provide most of a cell’s structure, function, 
and regulatory mechanisms. Proteins are also 
linear sequences; they are composed from 
among 20 amino acids. Between the genes are 
noncoding regions that do not encode proteins. 

The process by which genes produce pro- 
teins is called gene expression. The process is 
somewhat different for prokaryotic organisms, 
such as bacteria, which lack cell nuclei, and 
higher, or eukaryotic, organisms. Here we dis- 

cuss only the differences that are germane to 
finding genes. 

As shown in Figure A, the first step in gene 
expression is transcription, which uses DNA 
as a template to synthesize an RNA molecule. 
RNA is similar to DNA: Each ribonucleotide 
of an RNA strand matches the DNA from 
which it was transcribed, except that a uracil 
(U) nucleotide replaces each thymine 
nucleotide. The synthesized RNA is therefore 
complementary to one strand of the DNA and 
identical to the other strand (except for T + U 
substitutions). We follow biological conven- 
tion here by referring to the gene as being on 
the strand that is identical to the RNA. 

The transcription from DNA to RNA is per- 
formed by the enzyme RNA polymerase. It be- 
gins transcription after it binds to a promoter, 
a regulatory signal on a DNA molecule. (A 
signal is a localized region of DNA that has a 
specific function.) In eukatyotic DNA, each 
gene is transcribed independently, so there is a 

Noncoding region /I RNA polymerase 

DNA 

Transcription I mRNA 
Promoter 

ProreIn 

Figure A. Gene expression. 
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Figure B. mRNA splicing in eukaryotic organisms. 

promoter before every gene. In prokaryotic 
DNA, several consecutive genes may be tran- 
scribed into a single, continuous RNA mole- 
cule, so a promoter does not necessarily pre- 
cede each gene. 

The translation process uses the RNA 
strand as a template to synthesize a protein 
molecule. RNA used this way is called mes- 
senger RNA (mRNA). A complex molecule 
called a ribosome “reads” an mRNA strand 
and uses each string of three consecutive nu- 
cleotides in mRNA to encode a single amino 
acid. These triplets are codons, and the map- 
ping from codons to amino acids is the 
genetic code. The nucleotides can be grouped 
into triplets in three ways: a given nucleotide 
can occupy the first, second, or third position 
in a codon. The ribosome reads only one of 
the groupings, which is the gene’s reading 
frame. (As an analogy, a bit stream that con- 
tains a message encoded in ASCII has eight 
possible reading frames, and the correct frame 
must be known to decode the message.) 

There are three special codons, called stop 
codons, that cause the translation process to 
terminate. Unlike the other codons, which are 
translated to amino acids, stop codons signal 
the ribosome to release the mRNA chain, thus 
terminating translation. 

In eukaryotic organisms, certain nucleotide 
sequences are spliced out of the mRNA before 
it is translated to protein (see Figure B). Thus, 
genes in eukaryotes consist of alternating seg- 
ments of exons, the sequences that are 
expressed, and introns, the sequences that are 
spliced out. Introns range in length from fewer 
than 100 to more than 1,000 nucleotides. The 
boundary points where splicing occurs are 
splice junctions. 

An organism’s genome is the complete 
complement of DNA found in each of its cells. 
The human genome contains about 6 billion 
nucleotides and 100,000 genes. The genome is 
often called an organism’s blueprint because 
each gene is a plan for a protein, and proteins 
are an organism’s key building blocks. How- 
ever, unlike a blueprint, a large part of the 
genome does not contain such plans, but con- 
tains sequences that regulate protein construc- 
tion, and sequences that may have no useful 
function. So, a fundamental problem in ana- 
lyzing DNA sequences is locating those plans. 

Further reading 

1, N.G. Cooper, ed., Los Alamo.7 Science, 
Number 20: The Human Genome 
Project, Los Alamos Nat’1 Laboratory, 
Los Alamos, N.M., 1992. 

2. J.D. Watson et al., Molecular Biology of 
the Gene, Vol. 1, Benjamin Cummings, 
Menlo Park, Calif., 1987. 
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Figure 3. The promoter rules and initial neural network. 

Transcription initiation sites. Promoters are 
another type of signal that is useful for locat- 
ing genes in DNA because transcription be- 
gins just downstream from where RNA poly- 

Towell, Shavlik, and Noordewier have 
used the Kbmn algorithm, a novel approach 

merase binds to a promoter. Several research 

that combines neural network and symbolic 

groups have investigated using neural net- 

learning.? The algorithm initializes a neural 
network’s topology and weights using a set 
of approximately correct. propositional rules. 

works to recognize promoters. 

Ordinary neural network learning techniques 
then adjust the weights. Compared with con- 
ventional networks-where the weights are 
initially assigned small random values, and 
a suitable topology is determined through ex- 
perimentation - Kbann provides a way to 
use problem-specific knowledge during 
learning. The resulting networks often learn 
faster and. more importantly. find solutions 
that result in better generalization. 

The first real-world problem to which 
To%ell and Shavlik applied their algorithm 
was recognizing promoters in E. co/i DNA. 
They used a window of 57 nucleotides, and 
they aligned the positive instances (promoter 
sequences) so that each instance’s transcrip- 
tion initiation site occurred seven nucleotides 
from the window’s right edge. Noordewier, 
a computational biologist. derived an ap- 
proximately correct rule set for recognizing 
E. co/i promoters from the biological litera- 
ture. These rules identified two sets of se- 
quence patterns that should occur about 10 
and 35 nucleotides upstream from where 
transcription begins. These two pattern sets, 
commonly referred to as the -10 and -35 re- 
gions. are where RNA polymerase binds to 
the DNA sequence and are widely accepted 

as defining characteristics of promoters. (The 
rule set also specified patterns for several 
other upstream regions of controversial sig- 
nificance: These conformation rules try to 

Figure 3 shows the promoter rule set (in a 
Prolog-like syntax) and an initial Kbann net- 

capture the effect of DNA’s helical structure 

work (links with small weights are not 
shown). The notation Q-37 “cttgac” indi- 

on the spatial alignment of the -10 and -3.5 

cates that the rule is looking for the sequence 
C-T-T-G-A-C, starting 37 nucleotides before 
the putative transcription initiation site. An 

regions.) 

“x” indicates that any nucleotide at that po- 
sition will match the rule. 

Although this promoter rule set repre- 
sented textbook characteristics of promoters, 
it did not correctly classify any of the pro- 
moter sequences in the set of instances used 
to train and test the algorithm. Neural- 
network training, however, refined the rules 
50 that they more accurately represented the 
essential characteristics of the promoters. 

The researchers found that networks ini- 
tialized by the Kbann algorithm generalized 
better than conventional neural networks, de- 
cision trees, and nearest-neighbor classifiers 
(we’ll discuss these later). Their results in- 
dicate that Kbann’s approximately correct, 
task-specific rules assist learning by identi- 
fying important problem features and their 
significant relationships. They also discov- 
ered that the networks learned to discard the 
conformation rules during training, indicat- 
ing that those rules do not represent a salient 
aspect of promoters. 

Splice junctions. Because eukaryotic genes 
may contain introns. determining the extent 
of coding regions in their DNA involves 

more than just finding start and stop codons. 
The splice junctions must also be located and 
classified. Identifying these junctions is im- 
portant because, to determine the protein that 
a gene produces, it is necessary to precisely 
demarcate the segments of the DNA se- 
quence that are eventually translated. 

Lapedes and his colleagues used several 
approaches - neural networks, decision 
trees, and k-nearest neighbor classifiers - 
to recognize splice junctions in human 
DNA.j They used the ID3 algorithm’ to in- 
duce decision trees (see Figure 4). Each in- 
ternal node in a decision tree represents a test 
applied to one of the problem features. The 
branches emanating from a node represent 
the test’s possible outcomes. With nominal 
features, the test commonly results in a 
branch for each possible feature value. Each 
leaf represents a predicted class. In Figure 4 
the classes are donor (an exon/intron border) 
and negative (not a donor). 

Classification using a decision tree in- 
volves following a path from the root down to 
a leaf. using the decisions made at each node 
to determine which branches to follow. De- 
cision-tree learning is a recursive process that 
involves adding nodes until the tree suffi- 
ciently separates the training data by class. 
The ID3 learning algorithm uses an informa- 
tion-theoretic measure to determine which 
feature to branch on at each node. and then 
makes recursive calls to build subtrees for 
each created branch. It uses all the training 
instances to select the test at the root node, 
but it uses smaller subsets of the training data 
to select the tests at subsequent nodes. Specif- 
ically, as ID3 constructs the tree, it also uses 
the tree to classify the training instances; it 
uses only those training instances that reach 
a node to select the test at that node. An ad- 
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1, - 
nPqatl?‘p neaa!ive donor inegatIve 

~-- 
Figure 4. A simple decision tree. 

vantage of using decision trees is that they 
can be transformed easily into sets of rules. 

Lapedes and his colleagues also investi- 
gated a k-nearest neighbor approach,5 a sim- 
ple learning technique that does not require 
any training per se. The concept representa- 
tion is the entire training set, and a new in- 
stance is classified by identifying the k “near- 
est” training instances; the class label 
associated with the majority of these in- 
stances is the predicted class. The effective- 
ness of this approach depends on the metric 
used to measure the distance between two in- 
stances, The researchers cleverly used a 
weighted Hamming distance. An ordinary 
Hamming metric defines the distance as the 
number of window positions in which the in- 
stances have different nucleotides. A 
weighted Hamming distance also associates 
a weight with each window position. The 
weight is calculated by an information-theo- 
retic metric that uses the training instances 
to measure the average amount of informa- 
tion contributed by each window position. 

The researchers used windows of 11,2 1, 
and 41 nucleotides to evaluate the neural net- 
work, decision tree, and nearest-neighbor ap- 
proaches. They trained separate classifiers to 
recognize exomintron borders (donors) and 
intronfexon borders (acceptors). The in- 
stances were aligned so the splice junctions 
were in the center of the window. Donors and 
acceptors have a pair of nucleotides that is 
highly conserved (G-T for donors and A-G 
for acceptors) on the intron side of the splice 
junction. A highly conserved sequence is one 
that occurs with high frequency in a given 
location. The negative training instances, 
which the researchers took from known 
exons, were selected so that they had A-G or 
G-T in the center of the window. This pre- 
vented the classifiers from learning a trivial 
distinction such as “A-G in the center of the 

A C G T 
:. 

neqatlve donor negative negattve 

~~ 
. 

window indicates acceptor.” 
Lapedes and his colleagues found that 

neural networks generalized better than de- 
cision trees or k-nearest neighbor classifiers. 
The acceptor-recognition networks correctly 
classified 91 percent of the test set instances, 
and the donor-recognition networks correctly 
classified 95 percent. Although the decision 
trees were not as accurate as the neural net- 
works, their concept representations were 
more comprehensible. The splice-junction 
trees were transformed into rule sets that 
were found to be relatively small and bio- 
logically interpretable. 

Search by content 

Like the search-by-signal methods we’ve 
described, many search-by-content methods 
slide a fixed-sized input window along a se- 
quence to generate predictions for the entire 
sequence. But unlike search by signal, which 
looks for specific functional sites in DNA, 
search by content identifies genes by recog- 
nizing general patterns in their nucleotide se- 
quences. For prokaryotic DNA, this involves 
distinguishing genes from the noncoding re- 
gions that are interspersed between them. For 
eukaryotic DNA, the goal is not only to dis- 
tinguish genes from intergenic noncoding re- 
gions, but also to distinguish introns from 
exons. Search-by-content methods address 
three questions: Which regions are coding 
and, for a given region, which strand and 
which reading frame encode the protein? (As 
noted in the sidebar, a gene’s reading frame 
refers to how consecutive nucleotides are 
grouped into triplets.) 

Search by content takes advantage of sev- 
eral properties that can significantly distin- 
guish coding regions from introns and non- 
coding regions: 

6 

By definition, a coding region encodes a 
protein, so the fact that some amino acids 
appear in proteins more frequently than 
others influences the nucleotide compo- 
sition of coding regions. 
A protein’s shape largely determines its 
function, and that shape is partly deter- 
mined by electrostatic interactions among 
neighboring amino acids. So. some amino 
acids are more likely to be neighbors than 
others, and thus some codons are more 
likely to be neighbors. 
Due to the degeneracy of genetic code, 
there are different numbers of codons for 
different amino acids. There are 64 dif- 
ferent codons, since there are four differ- 
ent nucleotides and each codon consists 
of three nucleotides. Sixty-one of the 
codons map to amino acids; the other 
three are the stop codons. There are, how- 
ever, only 20 amino acids. Consequently, 
many amino acids are encoded by several 
different codons. 
The codons that map to an amino acid are 
not used equally in most organisms. This 
bias is the organism’s codon preference. 
Coding regions cannot contain stop 
codons. 

Bayesian approaches. Several search-by- 
content methods, such as Staden and 
McLachlan’s codon usage method,6 are 
based on Bayes’ theorem. Given a window 
of nucleotides, their approach estimates the 
probability that each of a strand’s three read- 
ing frames encodes a protein. For a sequence 
S in the window, the probability that frame i 
is coding (C,) is 

P(Ci 1 S) = 
p(slci)xP(Ci) 

c;=~~(slcf)xp(cf) 

The prior probability that each frame is cod- 
ing, P(C,), is estimated as the number of 
triplets in the window in frame i, divided by 
the number of triplets that can be formed in 
the window in all three frames. As the win- 
dow size increases, P(C,) approaches 113 for 
all three frames. Each conditional probabil- 
ity, P(SIC,), is the probability that we would 
get sequence S if we arbitrarily selected a 
coding sequence the same length as S. 

These conditional probabilities are esti- 
mated by compiling a table of the frequen- 
cies of each codon in the organism’s known 
genes. Each codon’s frequency value is an 
estimate of the conditional probability that 
the codon occupies a given position in se- 
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quence S. given that 5 encodes a protein. 
Staden and McLachlan make the simplify- 
ing assumption that a gene’s codons are in- 
dependent of each other. and thus arrive at 
the estimate 

J=1 

where S,(i) is the jth triplet in frame i in se- 
quence S. and n is the number of triplets in 

Frame 3 

0~ 

frame i in S. That is. to determine the proba- c 
bility of finding sequence .S in a coding re- Figure 5. Reoding frome plots. 

DNA sequence position 

gion. we calculate the joint probability of 
finding S’s individual codons in such a region, 

This approach assumes that the given se- 
quence encodes a protein in one of the three 
reading frames on the strand under consid- 
eration Although this assumption is not gen- 
erally valid because the window may be po- 
sitioned over a noncoding region, the 
approach still works well in practice. More- 
over. it is straightforward to extend the codon 
usage method to consider noncoding as a hy- 
pothesis. This requires estimating the prior 
probability of the noncoding hypothesis and 
the conditional probabilities of each codon, 
given the noncoding hypothesis. Estimating 
these is problematic for some species, how- 
ever. Sequencing efforts often concentrate 
on areas that are dense with genes, so there 
may be a dearth of noncoding sequence data. 
Also. it is sometimes difficult to ascertain 
that a stretch of putative noncoding DNA 
does not actually contain a gene. 

Typically. researchers use the codon usage 
method to generate a plot for each reading 
frame (see Figure 5). Each plot is a series of 
connected points that represents the predicted 
probability that a frame encodes a protein. 
Sharp changes in these plots indicate coding- 
region boundaries. For example. in Figure 5, 
the start of the first frame’s coding region cor- 
responds to a steep increase in the topmost 
plot’s predicted probabilities. Although this 
method assumes that a given sequence en- 
codes a protein in one of its reading frames, 
it can usually help detect noncoding regions 
because they tend to produce wildly fluctu- 
ating predictions, whereas coding regions 
produce consistently high probabilities. 

These plots can also detect,frurneshif er- 
rors: laboratory errors during sequencing that 
insert or delete nucleotides in the sequence 
data. Because of the genetic code’s triplet na- 
ture. a frameshift error can have a devastating 
effect on the prediction of the amino acid se- 
quence translated from a gene. Once the com- 
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puted translation is out of frame, the predicted 
protein will bear no resemblance to the actual 
protein. However, we can often detect 
frameshift errors by noting a sharp drop in the 
plot of one reading frame accompanied by a 
steep increase in another. Figure 5 shows a 
frameshift error that shifts the predicted read- 
ing frame from frame 1 to frame 2. 

Borodovsky and Mclninch have applied 
a related statistical method, Markov chain 
models, to gene recognition.’ Like the 
Bayesian method, this approach computes a 
given sequence’s likelihood in each reading 
frame and in noncoding DNA. In this ap- 
proach, however, a DNA sequence can be 
thought of as being generated by a state- 
based model. Borodovsky and McIninch 
use a four-state model where each state cor- 
responds to one of the four nucleotides. 
They calculate the prior probabilities of the 
states and the probabilities of the transitions 
from the sequences in training set. They 
then calculate a sequence’s likelihood as 
the product of the initial state probability 
(the probability of the sequence’s first ele- 
ment) and the probabilities of successive 
state transitions. Markov chain models can 
use statistics that describe sequences of 
transitions through several states: A kth- 
order model uses statistics that describe 
transition chains that link k+l states. 

Neural network approaches. Perhaps the 
most problematic assumption of the codon 
usage method is that the codons in the win- 
dow are independent. Neighboring codons are 
certainly not independent: Interactions among 
neighboring amino acids partly determine a 
protein’s shape, and hence its function. 

Farber, Lapedes, and Sirotkin showed that 
accounting for the joint probabilities of 
neighboring codons can produce better cod- 
ing-region predictions8 In one experiment, 

they compared the prediction accuracy of a 
Bayesian method with that of perceptrons 
using windows that ranged from 5 to 90 
codons long. The Bayesian method formu- 
lated the prediction task as a two-class prob- 
lem: Given a sequence, it determined 
whether it occurs in an intron or an exon. 
This assumes that the gene’s reading frame is 
known; the classifiers must simply distin- 
guish introns frotn exons. Given a sequence 
S, the probability that S is in an exon is 

P( E/S) = 
P(S(E) x P(E) 

P(SIE)xP(E)+P(Sp)xP(I) 

where E represents exon, and I represents in- 
tron. The conditional probabilities PCS ( E) 
and P(S 1 r) are estimated using the indepen- 
dence assumption and codon frequencies tab- 
ulated from sets of known introns and exons. 

The perceptrons used the same feature rep- 
resentation as the Bayesian approach: Sixty- 
four features represent each codon‘s fre- 
quency of occurrence. These features are 
represented using 64 input units, so that the 
activation of each input unit is effectively a 
count of the number of times that the corre- 
sponding codon occurs in the window. 

The researchers found that the perceptrons 
were significantly more accurate, especially 
with larger windows, because the assumption 
of codon independence does not bind them. 
They showed that a perceptron’s weights can 
be set by hand so that it calculates the same 
probabilities (their networks had continuous 
activation functions) as Bayes‘ theorem under 
the independence assumption. Although these 
weights are not optimal when the indepen- 
dence assumption is not true (as in this prob- 
lem), the perceptron-training algorithm can 
find optimal weights for the given training in- 
stances and feature representation, even when 
the assumption is violated. 
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Empirical learning 
Empirical learning (also called supervised 

learning, learningfrom examples, and similar- 
iv-based learning) is an inductive process that 
forms a general description of a rurger concept, 
using a set of known positive instances of the 
concept and, usually, a set of negative instances 
known to not belong to the concept class. 
(Some tasks involve more than two classes. In 
such a case, each instance is labeled by its 
class.) These sets compose a fraining set. In- 
ductive learning aims to synthesize a concept 
description that can correctly classify the train- 
ing instances and (most importantly) novel in- 
stances that are not in the training set. The 
ability to classify previously unseen instances 
is called generalization. 

For example, we might want to learn the 
concept of poisonous mushrooms. The posi- 
tive examples are known poisonous species, 
and the negative examples are known edible 
species. We are most concerned that our clas- 
sifier correctly identifies newly found species 
as poisonous or edible. 

Empirical-learning methods are character- 
ized by an instance-representation language, a 
concept-representation language, a learning 
algorithm, and a classification algorithm. The 
instance-representation language is used to 
describe the instances processed during train- 
ing and classification. Often, a fixed-length 
list of feature-value pairs represents instances. 
For example, the following feature-value pairs 
describe one. mushroom instance: 

[cap-shape = conical, 
odor = almond, 
gill-attachment = free] 

cap-shape, odor, and gill-attachment are the 
features; conical, almond, and free are the cor- 
responding values. 

Using such a language, we must select the 
features that are potentially relevant to learning 
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In a second experiment, Farber and his 
colleagues trained perceptrons that captured 
some codon dependencies in their feature 
representation. The features were all of the 
possible dicodons; that is, adjacent pairs of 
codons. There are 64 codons, so there are 
4,096 dicodons; the perceptrons had 4,096 
corresponding input units. The researchers 
used the same training sets and window sizes 
as in the first experiment, but found that these 
perceptrons generalized significantly better 
than those that used only codon features. This 
illustrates a common theme in machine 
learning research: A leaming system’s abil- 
ity to find a good solution to a problem de- 
pends highly on the representation used for 
the problem’s features. Even when the re- 

the target concept, and specify each feature’s 
type. Real-world instances of the problem are 
then mapped to this “feature space” so the 
learning algorithm can process them. Common 
feature types include Boolean, real, and nomi- 
nal. (A nominal feature is one whose possible 
values are not ordered. In our example, gill- 
attachment is a nominal feature whose possible 
values are attached, descending, free, or 
notched.) For training, the instance representa- 
tion also specifies each instance’s class. 

The concept-representation language de- 
fines the space of possible concepts that can 
be represented by the learning algorithm. The 
language’s richness determines the range of 
concepts it can represent. For example, the 
language of first-order logic has more expres- 
sive power than that of propositional conjunc- 
tions. The richness of the concept-description 
language determines the number of concept 
descriptions that are likely to provide a good 
fit to the training data, as well as the complex- 
ity of searching the concept description space. 

“Fit” is the degree to which the concept de- 
scription correctly classifies the training 
instances. When there are many concept de- 
scriptions that fit the training set, there is a 
high probability that the learning algorithm 
will find a description that does not generalize 
well. Poor generalization (overfining) results 
when the concept description captures too 
much information about the specific training 
instances and not enough about the concept’s 
general characteristics. 

The learning algorithm searches the con- 
cept representation space to find a description 
that covers most or all positive instances and 
few or no negative instances. For many real- 
world problems, it is not possible to cover all 
positive and no negative instances because the 
concept representation language is not rich 
enough or there is noise in the training data. 

Noise may result from error or imprecision in 
measuring feature values or assigning class 
labels to instances. Noise may also occur 
when the mapping of real-world objects to in- 
stances in the instance-description language is 
many-to-one. Even if it is possible to find a 
concept description that fits all of the training 
instances, it is not necessarily desirable. To 
avoid overfitting, a simple description that 
does not fit all the training examples is often 
preferable to a complex one that does. 

The classification algorithm takes two in- 
puts: a learned concept description, and 
instances described using the instance-repre- 
sentation language. The algorithm outputs a 
prediction of an instance’s class or a probabil- 
ity distribution that indicates how likely it is 
that an instance is a member of each class. 

To evaluate how well a classifier has 
learned a target concept, it is important to 
measure how it generalizes to instances that it 
has never seen. This is typically estimated by 
setting aside a test set of instances before 
training. Unlike training instances, the test set 
is used not for learning the concept descrip- 
tion, but instead to get an unbiased estimate of 
the trained classifier’s prediction accuracy. 
More sophisticated methods such as cross- 
validation are sometimes used to better esti- 
mate how well an algorithm generalizes. 

Further reading 
I. J.W. Shavlik and T.G. Dietterich, Read- 

ings in Machine Learning, Morgan Kauf- 
mann, San Mateo, Calif., 1990. 

2. S.M. Weiss and C.A. Kulikowski, Com- 
puter Systems that Learn: Classification 
and Prediction Methodsfrom Statistics, 
Neural Nets, Machine Learning, and Ex- 
pert Systems, Morgan Kaufmann, San 
Mateo, Calif., 1991. 

searchers added hidden units to the networks 
that used the single-codon feature represen- 
tation, those networks did not learn to repre- 
sent dicodon frequencies as well as the net- 
works that used the dicodon feature 
representation. Similarly, using a feature rep- 
resentation of the individual nucleotides in 
the input window resulted in networks that 
did not generalize as well as those that used 
a codon feature representation. 

Uberbacher and Mural have also applied 
neural networks to recognizing coding re- 
gions in eukaryotic DNA.9 Their coding 
recognition module (CRM) is a component 
of Grail, an automated sequence-analysis 
server.‘O The heavily used server accepts 
DNA sequences via electronic mail, analyzes 

them, and then returns e-mail messages de- 
scribing its results. (A document available by 
anonymous ftp provides addresses and brief 
descriptions of Grail and other e-mail servers 
that perform DNA analysis. The file is 
pub/databases/info/ serv-ema.txt, at expasy. 
hcuge.ch.) 

Uberbacher and Mural’s research has also 
focused on finding features that lead to good 
coding region predictions. Seven algorithms 
called sensors calculate the input features of 
the coding recognition module by evaluating 
seven aspects of a DNA sequence, including 
the frequency with which each nucleotide oc- 
cupies each position in a codon, the likeli- 
hood of finding the window’s dicodons in 
coding and noncoding DNA, and the simi- 
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larity of the sequence to repetitive patterns in 
noncoding regions. Each sensor indicates the 
sequence’s coding potential. During training, 
the coding recognition module learns to 
weight the individual sensors and recognize 
meaningful correlations in their values. Uber- 
bather and Mural evaluated their coding 
recognition module using 19 human genes 
that were not in the training set; it located 90 
percent (71 of 79) of the genes’ long (more 
than 100 nucleotides) exons. 

Grail also uses modules that predict splice 
junctions and translation initiation sites. An 
expert system with a blackboard control struc- 
ture assembles the predictions of the individ- 
ual modules into coherent predictions of the 
location and intron/exon structure of genes. 

Case-based approaches. Researchers have 
also applied the indexing and retrieval as- 
pects of case-based reasoning to gene recog- 
nition: These systems take a new nucleotide 
or amino acid sequence (a quey sequence) 
and search the case memory for similar se- 
quences. They interpret a significant partial 
match between the query sequence and an el- 
ement of the case memory as a prediction of 
a coding region in the query sequence. The 
case memory is usually not limited to se- 
quences from the same organism as the query 
sequence because, due to evolution, many 
different species have highly similar genes. 
A matching gene in the case memory can also 
provide insight into the function of a newly 
discovered gene, which distinguishes this ap- 
proach from the others we’ve discussed. 

The effectiveness of a case-based algo- 
rithm hinges on its method for assessing se- 
quence similarity. The two most important 
aspects of similarity determination are the se- 
quence level at which comparisons are made, 
and the algorithm used to measure similarity. 
The level of comparisons refers to whether 
the algorithm compares untranslated nu- 
cleotide or translated protein (amino acid) se- 
quences. Sequence comparisons are more 
commonly made at the protein level because 
that level determines a gene’s function. Dif- 
ferences at the nucleotide level do not neces- 
sarily indicate differences at the protein level; 
due to the genetic code’s degeneracy, differ- 
ent nucleotide sequences can map to the same 
amino acid sequence. There are biologically 
justified scoring schemes, based on evolu- 
tionary and chemical similarity, for measur- 
ing the similarity of pairs of amino acids. 

Unlike the other gene-recognition ap- 
proaches we discuss, the case-based ap- 
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preach does not use a fixed-size list of fea- 
tures to describe instances. Instead, it com- 
pares a query sequence of arbitrary size to 
case sequences of varying sizes. Although 
dynamic programming methods can find the 
optimal partial match between two different- 
sized sequences, these methods are too ex- 
pensive for large-sequence databases. There 
are, however, several fast approximations to 
dynamic programming that are commonly 
used to search for similar sequences.” 

So far, we have assumed that each case is 
an entire protein sequence. Another approach 
is to store protein domains as cases. Domains 
are amino acid sequences that act as modu- 
lar components of proteins. Domains are 
analogous to subroutines in programs: Each 
has a specific function, and different combi- 
nations of domains (subroutines) give rise to 
different proteins (programs). This approach 
provides finer-grained units for predicting a 
query sequence’s function. 

How can a case memory of proteins and 
domains be assembled from a database of 
protein sequences? Hunter, Harris, and States 
developed an unsupervised learning system 
that clusters related amino acid sequences 
into domains and “families” of proteins.i2 
Unlike the supervised learning methods on 
which we have focused so far, unsupervised 
learning approaches are not told what the 
“correct” classes are; they form their own 
class definitions. Unsupervised learning aims 
to cluster the training set so that similar in- 
stances are in the same class, and dissimilar 
instances are in different classes. In an ex- 
periment of impressive scale, Hunter, Har- 
ris, and States applied their method to a set of 
more than 60,000 protein sequences. Their 
unsupervised algorithm formed about 12,000 
clusters; some of these corresponded to pro- 
tein families, some represented functional 
domains, and some contained a mixture of 
whole and partial proteins. They have also 
developed ClassX, a tool for matching novel 
sequences against a case memory consisting 
of the clusters formed by their algorithm. l3 

Combined methods 

Although we have discussed the search- 
by-signal and search-by-content methods 
separately, the most promising approaches 
combine predictions of several different sig- 
nals and coding regions. Grail (described 
previously) is one such approach; another is 
the GeneId system, which predicts start 

codons, stop codons, donor sites, and accep- 
tor sites, and then assembles these predic- 
tions into possible genes.t4 GeneId, like 
Grail, is publicly available as an e-mail 
server on the Internet. 

Snyder and Stormo’s GeneParser system 
also integrates signal and content predictions 
to identify introns and exons.t5 A dynamic- 
programming algorithm predicts the extent 
of individual exons and introns in a given 
DNA sequence. This method uses two arrays 
that contain estimates of the likelihood that 
each subsequence of a given sequence is an 
intron or an exon. Neural networks, which 
take as input both content and signal mea- 
sures, calculate those estimates. 

AL THOUGH MACHINE LEARNING 
approaches have shown great promise at rec- 
ognizing genes in uncharacterized DNA, 
there is still room for improvement. It is dif- 
ficult to train signal classifiers to be both 
highly sensitive (predicting few false nega- 
tives) and highly specific (predicting few 
false positives). Similarly, search-by-content 
methods often fail to recognize short exons. 

However, applying machine learning to 
gene recognition is fruitful for both molecu- 
lar biologists and computer scientists. Biolo- 
gists gain effective, automated methods for an- 
alyzing sequence data; machine learning 
researchers gain important, real-world test- 
beds. (Data sets for several of the gene-finding 
problems we’ve discussed are available by 
anonymous ftp from the University of Cali- 
fornia at Irvine’s Repository of Machine 
Learning Databases and Domain Theories: 
ftp.ics.uci.edu.) Because of these mutual in- 
terests, computational biology is a rapidly 
growing field.t6 We expect that this marriage 
of computer science and biology will continue 
to advance the state of the art in both fields. 
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R&D 
Engineers 
Martin Marietta, the world’s largest aerospace 
electronics firm, is in search of professionals to 
join our world-class research and development 
staff in suburban Philadelphia. Requirements 
exist in the following disciplines: 
Distributed Systems - Distributed real-time 
systems, fault-tolerant distributed systems, and 
instrumentation and monitoring of large distrib- 
uted systems. Mid- through senior-level openings 
available, 
Artificial Intelligence - Distributed, real-time AI 
applications, sensor fusion, scene understanding, 
response planning and embedded systems; 3-S 
years experience. 

Processing Applications Project Engineer/ 
BDBMS Specialist - Parallel relational database 
management system, distributed heterogeneous 
DBMS, object-oriented DBMS, and federated 
systems; 3-5 years experience. 

Embedded Signal Processing - Hierarchical 
methodology for rapid prototyping of signal 
processors that can be supported by CAD/CAE/ 
CASE tools; 5+ years experience. 
Signal Processing Architecture/Design Tool 
Expert - Methodology that allows tools to be 
integrated in support of rapid prototyping of 
Sigh processors; 5+ years experience. 
Hardware/!5oftware Design Environment - 
Design environment that supports concurrent 
engineering designs of hardware and software; 
5+ years experience. 
Successful candidates will be innovative and 
independent thinkers with defense-related 
(preferably) experience in concept development, 
design. implementation and demonstration, A 
U.S. security clearance, or ability to obtain one, is 
required. You can expect a competitive compen- 
sation package. 
To experience the challenge and reward of a 
Martin Marietta career, please fax your resume 
and salary history to Dept. OA9404N at (703) 821- 
3521 or mail to: Martin Marietta, Dept. OA9404N, 
P.O. Box 9621, McLean, VA 22102. An equal 
opportunity employer. 
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