
Machine Learning Appouehes
to Gene Recognition

Mark W. Craven and Jude W. Shavlik, Universityof Wisconsin

B IOLOGISTS ARE TAKING THE
first steps toward knowing the functions and
locations of all the genes and regulatory sites
in the genomes of several organisms. As these
researchers determine the nucleotide se-
quence of large stretches of human and other
DNA, they are producing great volumes of
sequence data. Direct laboratory analysis of
this data is difficult and expensive, making
computational techniques essential. But the
variation, complexity, and incompletely un-
derstood nature of genes make it impractical
to hand-code the algorithms.

Several researchers are exploring how to
apply machine learning techniques to gene
recognition. Machine learning methods are
well suited to sequence analysis because they
can learn useful descriptions of genetic con-
cepts when given only instances, rather than
explicit definitions, of those concepts. This
article looks at several such approaches to
gene recognition in two broad classes: search
bx signal and search by content. (For the
uninitiated in either field, two sidebars offer
some background in molecular biology and
the type of machine learning known as em-
piricnl learning.)

Search by signal

Search by signal locates genes indirectly
by finding signals (localized regions of DNA

As LABOZ?ATOZUES AROUND THE WORLD PRODUCE
EVER-GREATER VOLUMES OF DNA SEQUENCE DATA,

EFFICZENT COMPUTATZONAL ANALYSZS TECHNZQUES
ARE BECOMZNG ESSENTIAL. THIS ARTZCLE SURVEYS
SEVERAL EFFORTS THAT APPLY MACHINE LZIARNZNG

TECHNIQUES TO GENE RECOGNITION.

with specific functions) that are associated
with gene expression. The approaches we de-
scribe here formulate their task as classifi-
cation: They view a DNA sequence through
a fixed-length “window” to see if the signal
of interest occupies a particular position in
the window. In Figure 1, for example, a pos-
itive example occurs when a promoter begins
at position 3.

Several signals are especially germane to
identifying genes:

l transcription initiation sites (promoters),
l transcription termination sites (terminators),
l translation initiation sites (start codons),
l translation termination sites (srop

codons), and
l splice-junction sites

The difficulty of identifying these sites varies
considerably. Translation termination sites
are trivial to identify: We only need to find a
stop codon in the reading frame of a coding

region. However, identifying the other t
of sites is more complex.

ypes

‘Ikanslation initiation sites. Aribosome does
not begin to translate mRNA to protein with its
first nucleotide triplet, but rather somewhere
downstream, usually with the codon A-U-G,
which encodes the amino acid methionine.
However, the first A-U-G codon is not neces-
sarily the start codon, and A-U-G may also
occur in the middle of a coding region.

The problem is even more difficult for
prokaryotic organisms, where a single
mRNA molecule may have several transla-
tion initiation sites because consecutive
genes may be transcribed into a single
mRNA chain. Furthermore, translation in
prokaryotes sometimes begins with codons
other than A-U-G. Fortunately, a so-called
Shine-Dalgarno region-a sequence that is
complementary to the part of the ribosome
that binds to mRNA - usually precedes a

2 0885.9000/94/$4.00 0 1994 IEEE IEEE EXPERT

start codon in a prokaryotic organism. But
recognizing the translation initiation site is
still not straightforward: The location of
Shine-Delgardo sequences can vary relative
to the start codons, and the nucleotides in the
region vary as well.

An early application of machine learning
to molecular biology involved training per-

LYJI~~UIIS to recognize translation initiation
sites in the DNA of the bacterium E. co/i.’
(Although translation initiation sites are fea-
tures of mRNA, we can easily recognize
them in DNA sequences by applying our
knowledge of how a given DNA sequence is
transcribed to an RNA sequence.) A percep-
tron is a neural network with only one out-
put unit and no hidden units. The input units
represent the problem’s features and their
possible values. For example, the input units
in Figure 2 represent three features (the nu-
cleotides in the window) with four possible
values each (A. C. G, or T).

The state of each unit is called its ncriva-

rior7. and is typically a real-valued number in
the range IO.1 1. In Figure 2. the shaded input
units have activations of 1, indicating that
those feature instances have those values: the
others have activations of 0. Real-valued
weights connect the input units to the output
unit. The output unit’s activation for a given
feature instance p is computed with an acri-

~,trrio77.fic77ction:

~I,,, = 1 if Cj~v,,nJ,, > 8
0 otherwise

where n,, is the activation of the ith unit in
response to instancep, II’!, is the weight con-
necting unit j to the output unit i. and 8 is a
threshold. The output activation is then con-
sidered the perceptron’s “answer.” For ex-
ample. an activation of 1 typically indicates
a positive instance (such as a translation ini-
tiation site). whereas an activation of 0 indi-
cates a negative instance.

Teaching a perceptron involves adjusting
the netivork weights and threshold to maxi-
mize the number of training instances that it
correctly classifies. Specifically, it makes
se\ era1 pasqes through the training set, and
its M-eights are updated for each instance:

where r,,, is the reclchil7g signal (correct re-
sponse) for instance p. and q is a step-size
parameter that determines the learning rate.

One \vay to think about a perceptron is as

Feature
representation

.
Position 1 = “C” i

i Position 2 = “T”
j

i
Position 3 = “T”

j Position 4 = “A’
;

i
i

Position 5 = “C”
j

i
Position 6 = “G” j

DNA sequence

Figure 1. Search by signal as classification.

A C G T A C G T

. ..ATCGTGC~CGCGTCCA....

Figure 2. A perceptron.

a matrix whose rows represent A, C, G, and
T, and whose columns represent positions in
the window. Each element of this matrix is a
number that represents the associated weight
for a particular nucleotide in a particular win-
dow position. Descriptions of such weight
matrices are common in the biological liter-
ature. Another way to think about a percep-
tron is as an (n-1).dimensional hyperplane
where II is the number of input units. An ac-
tivation pattern on the input units corre-
sponds to a point in the II-dimensional space,
and the class that the perceptron predicts is
determined by which side of the hyperplane
the point is on. Thus, a perceptron can accu-
rately represent only concepts that are
lirleurlx separable; that is, concepts for
which a hyperplane can completely separate
the positive and negative instances.

In training perceptrons to recognize trans-
lation initiation sites. Stormo and his col-
leagues experimented with windows that
were 101,7 1. and 5 1 nucleotides wide.’ As in
Figure 2. they used four input units to repre-

sent each nucleotide in the window. The set
of positive instances was 124 known initia-
tion sites, and the set of negative instances
was 167 sites that a rule-based technique had
falsely identified as initiation sites. The re-
searchers aligned the positive instances so that
the start codon of each instance occupied the
same window positions. They found that the
perceptron with the lOl-nucleotide window
generalized best. Not surprisingly, the most
significant weights were those connected to
the units representing the initiation codon and
the nucleotides in the Shine-Dalgamo region.

Since this early work. researchers have de-
veloped backpropagation and other learning
algorithms for nzu/ti/m~rr networks (with hid-
den units) and have applied these networks to
recognize translation initiation sites and other
signals. Hidden units can transform the space
defined by input unit activations into one in
which output units can more profitably make
linear discriminations, thereby enabling
more complex concept descriptions than per-
ceptrons allow.

-
APRIL 1994 3

From DNA to protein
A DNA molecule usually comprises two

strands that coil around each other into a dou-
ble helix. Each strand is a linear sequence
composed from four different nucleorides-
adenine, guanine, thymine, and cytosine-
commonly abbreviated as A, G, T, and C. The
two strands are held together by bonds that
connect each nucleotide to its complementaq
nucleotide on the other strand: A always
bonds to T, and C always bonds to G.

Certain subsequences of a DNA strand,
called genes, are blueprints forproteins, which
provide most of a cell’s structure, function,
and regulatory mechanisms. Proteins are also
linear sequences; they are composed from
among 20 amino acids. Between the genes are
noncoding regions that do not encode proteins.

The process by which genes produce pro-
teins is called gene expression. The process is
somewhat different for prokaryotic organisms,
such as bacteria, which lack cell nuclei, and
higher, or eukaryotic, organisms. Here we dis-

cuss only the differences that are germane to
finding genes.

As shown in Figure A, the first step in gene
expression is transcription, which uses DNA
as a template to synthesize an RNA molecule.
RNA is similar to DNA: Each ribonucleotide
of an RNA strand matches the DNA from
which it was transcribed, except that a uracil
(U) nucleotide replaces each thymine
nucleotide. The synthesized RNA is therefore
complementary to one strand of the DNA and
identical to the other strand (except for T + U
substitutions). We follow biological conven-
tion here by referring to the gene as being on
the strand that is identical to the RNA.

The transcription from DNA to RNA is per-
formed by the enzyme RNA polymerase. It be-
gins transcription after it binds to a promoter,
a regulatory signal on a DNA molecule. (A
signal is a localized region of DNA that has a
specific function.) In eukatyotic DNA, each
gene is transcribed independently, so there is a

Noncoding region /I RNA polymerase

DNA

Transcription I mRNA
Promoter

ProreIn

Figure A. Gene expression.

EX0n Intron Exon lIltTOn EX0n

DNA

I Transcription

Figure B. mRNA splicing in eukaryotic organisms.

promoter before every gene. In prokaryotic
DNA, several consecutive genes may be tran-
scribed into a single, continuous RNA mole-
cule, so a promoter does not necessarily pre-
cede each gene.

The translation process uses the RNA
strand as a template to synthesize a protein
molecule. RNA used this way is called mes-
senger RNA (mRNA). A complex molecule
called a ribosome “reads” an mRNA strand
and uses each string of three consecutive nu-
cleotides in mRNA to encode a single amino
acid. These triplets are codons, and the map-
ping from codons to amino acids is the
genetic code. The nucleotides can be grouped
into triplets in three ways: a given nucleotide
can occupy the first, second, or third position
in a codon. The ribosome reads only one of
the groupings, which is the gene’s reading
frame. (As an analogy, a bit stream that con-
tains a message encoded in ASCII has eight
possible reading frames, and the correct frame
must be known to decode the message.)

There are three special codons, called stop
codons, that cause the translation process to
terminate. Unlike the other codons, which are
translated to amino acids, stop codons signal
the ribosome to release the mRNA chain, thus
terminating translation.

In eukaryotic organisms, certain nucleotide
sequences are spliced out of the mRNA before
it is translated to protein (see Figure B). Thus,
genes in eukaryotes consist of alternating seg-
ments of exons, the sequences that are
expressed, and introns, the sequences that are
spliced out. Introns range in length from fewer
than 100 to more than 1,000 nucleotides. The
boundary points where splicing occurs are
splice junctions.

An organism’s genome is the complete
complement of DNA found in each of its cells.
The human genome contains about 6 billion
nucleotides and 100,000 genes. The genome is
often called an organism’s blueprint because
each gene is a plan for a protein, and proteins
are an organism’s key building blocks. How-
ever, unlike a blueprint, a large part of the
genome does not contain such plans, but con-
tains sequences that regulate protein construc-
tion, and sequences that may have no useful
function. So, a fundamental problem in ana-
lyzing DNA sequences is locating those plans.

Further reading

1, N.G. Cooper, ed., Los Alamo.7 Science,
Number 20: The Human Genome
Project, Los Alamos Nat’1 Laboratory,
Los Alamos, N.M., 1992.

2. J.D. Watson et al., Molecular Biology of
the Gene, Vol. 1, Benjamin Cummings,
Menlo Park, Calif., 1987.

4 IEEE EXPERT

minus-35 :-
minus-35 :- a-37 5

minus-10 :- 63-14 Yi3taEe.
minus-l 0 :- @-I 4 “xtaxaxt”.
minus-10 :- @-I 4 tx&&lsr.
minus-10 :- a-14 “W.

conformation :- G-45 “aaxxa”.
conformation :- Q-45 “axxtxa”, Q-4 ‘7,

@-28 “txxxtxaaxxtx”.
conformation :- Q-49 “axxxxt”, Q-1 “a”,

Q-27 Txxxxaxxtxtg”.
CA I ̂ ^.. 1I.. 7

conformation :- 0-47 “caaxttxac”, 63-22 “gxxxtxc”,
La n,s---.. .-II
w-0 gcgccxcc

-‘”

Figure 3. The promoter rules and initial neural network.

Transcription initiation sites. Promoters are
another type of signal that is useful for locat-
ing genes in DNA because transcription be-
gins just downstream from where RNA poly-

Towell, Shavlik, and Noordewier have
used the Kbmn algorithm, a novel approach

merase binds to a promoter. Several research

that combines neural network and symbolic

groups have investigated using neural net-

learning.? The algorithm initializes a neural
network’s topology and weights using a set
of approximately correct. propositional rules.

works to recognize promoters.

Ordinary neural network learning techniques
then adjust the weights. Compared with con-
ventional networks-where the weights are
initially assigned small random values, and
a suitable topology is determined through ex-
perimentation - Kbann provides a way to
use problem-specific knowledge during
learning. The resulting networks often learn
faster and. more importantly. find solutions
that result in better generalization.

The first real-world problem to which
To%ell and Shavlik applied their algorithm
was recognizing promoters in E. co/i DNA.
They used a window of 57 nucleotides, and
they aligned the positive instances (promoter
sequences) so that each instance’s transcrip-
tion initiation site occurred seven nucleotides
from the window’s right edge. Noordewier,
a computational biologist. derived an ap-
proximately correct rule set for recognizing
E. co/i promoters from the biological litera-
ture. These rules identified two sets of se-
quence patterns that should occur about 10
and 35 nucleotides upstream from where
transcription begins. These two pattern sets,
commonly referred to as the -10 and -35 re-
gions. are where RNA polymerase binds to
the DNA sequence and are widely accepted

as defining characteristics of promoters. (The
rule set also specified patterns for several
other upstream regions of controversial sig-
nificance: These conformation rules try to

Figure 3 shows the promoter rule set (in a
Prolog-like syntax) and an initial Kbann net-

capture the effect of DNA’s helical structure

work (links with small weights are not
shown). The notation Q-37 “cttgac” indi-

on the spatial alignment of the -10 and -3.5

cates that the rule is looking for the sequence
C-T-T-G-A-C, starting 37 nucleotides before
the putative transcription initiation site. An

regions.)

“x” indicates that any nucleotide at that po-
sition will match the rule.

Although this promoter rule set repre-
sented textbook characteristics of promoters,
it did not correctly classify any of the pro-
moter sequences in the set of instances used
to train and test the algorithm. Neural-
network training, however, refined the rules
50 that they more accurately represented the
essential characteristics of the promoters.

The researchers found that networks ini-
tialized by the Kbann algorithm generalized
better than conventional neural networks, de-
cision trees, and nearest-neighbor classifiers
(we’ll discuss these later). Their results in-
dicate that Kbann’s approximately correct,
task-specific rules assist learning by identi-
fying important problem features and their
significant relationships. They also discov-
ered that the networks learned to discard the
conformation rules during training, indicat-
ing that those rules do not represent a salient
aspect of promoters.

Splice junctions. Because eukaryotic genes
may contain introns. determining the extent
of coding regions in their DNA involves

more than just finding start and stop codons.
The splice junctions must also be located and
classified. Identifying these junctions is im-
portant because, to determine the protein that
a gene produces, it is necessary to precisely
demarcate the segments of the DNA se-
quence that are eventually translated.

Lapedes and his colleagues used several
approaches - neural networks, decision
trees, and k-nearest neighbor classifiers -
to recognize splice junctions in human
DNA.j They used the ID3 algorithm’ to in-
duce decision trees (see Figure 4). Each in-
ternal node in a decision tree represents a test
applied to one of the problem features. The
branches emanating from a node represent
the test’s possible outcomes. With nominal
features, the test commonly results in a
branch for each possible feature value. Each
leaf represents a predicted class. In Figure 4
the classes are donor (an exon/intron border)
and negative (not a donor).

Classification using a decision tree in-
volves following a path from the root down to
a leaf. using the decisions made at each node
to determine which branches to follow. De-
cision-tree learning is a recursive process that
involves adding nodes until the tree suffi-
ciently separates the training data by class.
The ID3 learning algorithm uses an informa-
tion-theoretic measure to determine which
feature to branch on at each node. and then
makes recursive calls to build subtrees for
each created branch. It uses all the training
instances to select the test at the root node,
but it uses smaller subsets of the training data
to select the tests at subsequent nodes. Specif-
ically, as ID3 constructs the tree, it also uses
the tree to classify the training instances; it
uses only those training instances that reach
a node to select the test at that node. An ad-

APRIL 1994 5

A C G T .

A C G T

1, -
nPqatl?‘p neaa!ive donor inegatIve

~--
Figure 4. A simple decision tree.

vantage of using decision trees is that they
can be transformed easily into sets of rules.

Lapedes and his colleagues also investi-
gated a k-nearest neighbor approach,5 a sim-
ple learning technique that does not require
any training per se. The concept representa-
tion is the entire training set, and a new in-
stance is classified by identifying the k “near-
est” training instances; the class label
associated with the majority of these in-
stances is the predicted class. The effective-
ness of this approach depends on the metric
used to measure the distance between two in-
stances, The researchers cleverly used a
weighted Hamming distance. An ordinary
Hamming metric defines the distance as the
number of window positions in which the in-
stances have different nucleotides. A
weighted Hamming distance also associates
a weight with each window position. The
weight is calculated by an information-theo-
retic metric that uses the training instances
to measure the average amount of informa-
tion contributed by each window position.

The researchers used windows of 11,2 1,
and 41 nucleotides to evaluate the neural net-
work, decision tree, and nearest-neighbor ap-
proaches. They trained separate classifiers to
recognize exomintron borders (donors) and
intronfexon borders (acceptors). The in-
stances were aligned so the splice junctions
were in the center of the window. Donors and
acceptors have a pair of nucleotides that is
highly conserved (G-T for donors and A-G
for acceptors) on the intron side of the splice
junction. A highly conserved sequence is one
that occurs with high frequency in a given
location. The negative training instances,
which the researchers took from known
exons, were selected so that they had A-G or
G-T in the center of the window. This pre-
vented the classifiers from learning a trivial
distinction such as “A-G in the center of the

A C G T
:.

neqatlve donor negative negattve

~~
.

window indicates acceptor.”
Lapedes and his colleagues found that

neural networks generalized better than de-
cision trees or k-nearest neighbor classifiers.
The acceptor-recognition networks correctly
classified 91 percent of the test set instances,
and the donor-recognition networks correctly
classified 95 percent. Although the decision
trees were not as accurate as the neural net-
works, their concept representations were
more comprehensible. The splice-junction
trees were transformed into rule sets that
were found to be relatively small and bio-
logically interpretable.

Search by content

Like the search-by-signal methods we’ve
described, many search-by-content methods
slide a fixed-sized input window along a se-
quence to generate predictions for the entire
sequence. But unlike search by signal, which
looks for specific functional sites in DNA,
search by content identifies genes by recog-
nizing general patterns in their nucleotide se-
quences. For prokaryotic DNA, this involves
distinguishing genes from the noncoding re-
gions that are interspersed between them. For
eukaryotic DNA, the goal is not only to dis-
tinguish genes from intergenic noncoding re-
gions, but also to distinguish introns from
exons. Search-by-content methods address
three questions: Which regions are coding
and, for a given region, which strand and
which reading frame encode the protein? (As
noted in the sidebar, a gene’s reading frame
refers to how consecutive nucleotides are
grouped into triplets.)

Search by content takes advantage of sev-
eral properties that can significantly distin-
guish coding regions from introns and non-
coding regions:

6

By definition, a coding region encodes a
protein, so the fact that some amino acids
appear in proteins more frequently than
others influences the nucleotide compo-
sition of coding regions.
A protein’s shape largely determines its
function, and that shape is partly deter-
mined by electrostatic interactions among
neighboring amino acids. So. some amino
acids are more likely to be neighbors than
others, and thus some codons are more
likely to be neighbors.
Due to the degeneracy of genetic code,
there are different numbers of codons for
different amino acids. There are 64 dif-
ferent codons, since there are four differ-
ent nucleotides and each codon consists
of three nucleotides. Sixty-one of the
codons map to amino acids; the other
three are the stop codons. There are, how-
ever, only 20 amino acids. Consequently,
many amino acids are encoded by several
different codons.
The codons that map to an amino acid are
not used equally in most organisms. This
bias is the organism’s codon preference.
Coding regions cannot contain stop
codons.

Bayesian approaches. Several search-by-
content methods, such as Staden and
McLachlan’s codon usage method,6 are
based on Bayes’ theorem. Given a window
of nucleotides, their approach estimates the
probability that each of a strand’s three read-
ing frames encodes a protein. For a sequence
S in the window, the probability that frame i
is coding (C,) is

P(Ci 1 S) =
p(slci)xP(Ci)

c;=~~(slcf)xp(cf)

The prior probability that each frame is cod-
ing, P(C,), is estimated as the number of
triplets in the window in frame i, divided by
the number of triplets that can be formed in
the window in all three frames. As the win-
dow size increases, P(C,) approaches 113 for
all three frames. Each conditional probabil-
ity, P(SIC,), is the probability that we would
get sequence S if we arbitrarily selected a
coding sequence the same length as S.

These conditional probabilities are esti-
mated by compiling a table of the frequen-
cies of each codon in the organism’s known
genes. Each codon’s frequency value is an
estimate of the conditional probability that
the codon occupies a given position in se-

IEEE EXPERT

quence S. given that 5 encodes a protein.
Staden and McLachlan make the simplify-
ing assumption that a gene’s codons are in-
dependent of each other. and thus arrive at
the estimate

J=1

where S,(i) is the jth triplet in frame i in se-
quence S. and n is the number of triplets in

Frame 3

0~

frame i in S. That is. to determine the proba- c
bility of finding sequence .S in a coding re- Figure 5. Reoding frome plots.

DNA sequence position

gion. we calculate the joint probability of
finding S’s individual codons in such a region,

This approach assumes that the given se-
quence encodes a protein in one of the three
reading frames on the strand under consid-
eration Although this assumption is not gen-
erally valid because the window may be po-
sitioned over a noncoding region, the
approach still works well in practice. More-
over. it is straightforward to extend the codon
usage method to consider noncoding as a hy-
pothesis. This requires estimating the prior
probability of the noncoding hypothesis and
the conditional probabilities of each codon,
given the noncoding hypothesis. Estimating
these is problematic for some species, how-
ever. Sequencing efforts often concentrate
on areas that are dense with genes, so there
may be a dearth of noncoding sequence data.
Also. it is sometimes difficult to ascertain
that a stretch of putative noncoding DNA
does not actually contain a gene.

Typically. researchers use the codon usage
method to generate a plot for each reading
frame (see Figure 5). Each plot is a series of
connected points that represents the predicted
probability that a frame encodes a protein.
Sharp changes in these plots indicate coding-
region boundaries. For example. in Figure 5,
the start of the first frame’s coding region cor-
responds to a steep increase in the topmost
plot’s predicted probabilities. Although this
method assumes that a given sequence en-
codes a protein in one of its reading frames,
it can usually help detect noncoding regions
because they tend to produce wildly fluctu-
ating predictions, whereas coding regions
produce consistently high probabilities.

These plots can also detect,frurneshif er-
rors: laboratory errors during sequencing that
insert or delete nucleotides in the sequence
data. Because of the genetic code’s triplet na-
ture. a frameshift error can have a devastating
effect on the prediction of the amino acid se-
quence translated from a gene. Once the com-

APRIL 1994

puted translation is out of frame, the predicted
protein will bear no resemblance to the actual
protein. However, we can often detect
frameshift errors by noting a sharp drop in the
plot of one reading frame accompanied by a
steep increase in another. Figure 5 shows a
frameshift error that shifts the predicted read-
ing frame from frame 1 to frame 2.

Borodovsky and Mclninch have applied
a related statistical method, Markov chain
models, to gene recognition.’ Like the
Bayesian method, this approach computes a
given sequence’s likelihood in each reading
frame and in noncoding DNA. In this ap-
proach, however, a DNA sequence can be
thought of as being generated by a state-
based model. Borodovsky and McIninch
use a four-state model where each state cor-
responds to one of the four nucleotides.
They calculate the prior probabilities of the
states and the probabilities of the transitions
from the sequences in training set. They
then calculate a sequence’s likelihood as
the product of the initial state probability
(the probability of the sequence’s first ele-
ment) and the probabilities of successive
state transitions. Markov chain models can
use statistics that describe sequences of
transitions through several states: A kth-
order model uses statistics that describe
transition chains that link k+l states.

Neural network approaches. Perhaps the
most problematic assumption of the codon
usage method is that the codons in the win-
dow are independent. Neighboring codons are
certainly not independent: Interactions among
neighboring amino acids partly determine a
protein’s shape, and hence its function.

Farber, Lapedes, and Sirotkin showed that
accounting for the joint probabilities of
neighboring codons can produce better cod-
ing-region predictions8 In one experiment,

they compared the prediction accuracy of a
Bayesian method with that of perceptrons
using windows that ranged from 5 to 90
codons long. The Bayesian method formu-
lated the prediction task as a two-class prob-
lem: Given a sequence, it determined
whether it occurs in an intron or an exon.
This assumes that the gene’s reading frame is
known; the classifiers must simply distin-
guish introns frotn exons. Given a sequence
S, the probability that S is in an exon is

P(E/S) =
P(S(E) x P(E)

P(SIE)xP(E)+P(Sp)xP(I)

where E represents exon, and I represents in-
tron. The conditional probabilities PCS (E)
and P(S 1 r) are estimated using the indepen-
dence assumption and codon frequencies tab-
ulated from sets of known introns and exons.

The perceptrons used the same feature rep-
resentation as the Bayesian approach: Sixty-
four features represent each codon‘s fre-
quency of occurrence. These features are
represented using 64 input units, so that the
activation of each input unit is effectively a
count of the number of times that the corre-
sponding codon occurs in the window.

The researchers found that the perceptrons
were significantly more accurate, especially
with larger windows, because the assumption
of codon independence does not bind them.
They showed that a perceptron’s weights can
be set by hand so that it calculates the same
probabilities (their networks had continuous
activation functions) as Bayes‘ theorem under
the independence assumption. Although these
weights are not optimal when the indepen-
dence assumption is not true (as in this prob-
lem), the perceptron-training algorithm can
find optimal weights for the given training in-
stances and feature representation, even when
the assumption is violated.

7

Empirical learning
Empirical learning (also called supervised

learning, learningfrom examples, and similar-
iv-based learning) is an inductive process that
forms a general description of a rurger concept,
using a set of known positive instances of the
concept and, usually, a set of negative instances
known to not belong to the concept class.
(Some tasks involve more than two classes. In
such a case, each instance is labeled by its
class.) These sets compose a fraining set. In-
ductive learning aims to synthesize a concept
description that can correctly classify the train-
ing instances and (most importantly) novel in-
stances that are not in the training set. The
ability to classify previously unseen instances
is called generalization.

For example, we might want to learn the
concept of poisonous mushrooms. The posi-
tive examples are known poisonous species,
and the negative examples are known edible
species. We are most concerned that our clas-
sifier correctly identifies newly found species
as poisonous or edible.

Empirical-learning methods are character-
ized by an instance-representation language, a
concept-representation language, a learning
algorithm, and a classification algorithm. The
instance-representation language is used to
describe the instances processed during train-
ing and classification. Often, a fixed-length
list of feature-value pairs represents instances.
For example, the following feature-value pairs
describe one. mushroom instance:

[cap-shape = conical,
odor = almond,
gill-attachment = free]

cap-shape, odor, and gill-attachment are the
features; conical, almond, and free are the cor-
responding values.

Using such a language, we must select the
features that are potentially relevant to learning

/
~

~ i
L

In a second experiment, Farber and his
colleagues trained perceptrons that captured
some codon dependencies in their feature
representation. The features were all of the
possible dicodons; that is, adjacent pairs of
codons. There are 64 codons, so there are
4,096 dicodons; the perceptrons had 4,096
corresponding input units. The researchers
used the same training sets and window sizes
as in the first experiment, but found that these
perceptrons generalized significantly better
than those that used only codon features. This
illustrates a common theme in machine
learning research: A leaming system’s abil-
ity to find a good solution to a problem de-
pends highly on the representation used for
the problem’s features. Even when the re-

the target concept, and specify each feature’s
type. Real-world instances of the problem are
then mapped to this “feature space” so the
learning algorithm can process them. Common
feature types include Boolean, real, and nomi-
nal. (A nominal feature is one whose possible
values are not ordered. In our example, gill-
attachment is a nominal feature whose possible
values are attached, descending, free, or
notched.) For training, the instance representa-
tion also specifies each instance’s class.

The concept-representation language de-
fines the space of possible concepts that can
be represented by the learning algorithm. The
language’s richness determines the range of
concepts it can represent. For example, the
language of first-order logic has more expres-
sive power than that of propositional conjunc-
tions. The richness of the concept-description
language determines the number of concept
descriptions that are likely to provide a good
fit to the training data, as well as the complex-
ity of searching the concept description space.

“Fit” is the degree to which the concept de-
scription correctly classifies the training
instances. When there are many concept de-
scriptions that fit the training set, there is a
high probability that the learning algorithm
will find a description that does not generalize
well. Poor generalization (overfining) results
when the concept description captures too
much information about the specific training
instances and not enough about the concept’s
general characteristics.

The learning algorithm searches the con-
cept representation space to find a description
that covers most or all positive instances and
few or no negative instances. For many real-
world problems, it is not possible to cover all
positive and no negative instances because the
concept representation language is not rich
enough or there is noise in the training data.

Noise may result from error or imprecision in
measuring feature values or assigning class
labels to instances. Noise may also occur
when the mapping of real-world objects to in-
stances in the instance-description language is
many-to-one. Even if it is possible to find a
concept description that fits all of the training
instances, it is not necessarily desirable. To
avoid overfitting, a simple description that
does not fit all the training examples is often
preferable to a complex one that does.

The classification algorithm takes two in-
puts: a learned concept description, and
instances described using the instance-repre-
sentation language. The algorithm outputs a
prediction of an instance’s class or a probabil-
ity distribution that indicates how likely it is
that an instance is a member of each class.

To evaluate how well a classifier has
learned a target concept, it is important to
measure how it generalizes to instances that it
has never seen. This is typically estimated by
setting aside a test set of instances before
training. Unlike training instances, the test set
is used not for learning the concept descrip-
tion, but instead to get an unbiased estimate of
the trained classifier’s prediction accuracy.
More sophisticated methods such as cross-
validation are sometimes used to better esti-
mate how well an algorithm generalizes.

Further reading
I. J.W. Shavlik and T.G. Dietterich, Read-

ings in Machine Learning, Morgan Kauf-
mann, San Mateo, Calif., 1990.

2. S.M. Weiss and C.A. Kulikowski, Com-
puter Systems that Learn: Classification
and Prediction Methodsfrom Statistics,
Neural Nets, Machine Learning, and Ex-
pert Systems, Morgan Kaufmann, San
Mateo, Calif., 1991.

searchers added hidden units to the networks
that used the single-codon feature represen-
tation, those networks did not learn to repre-
sent dicodon frequencies as well as the net-
works that used the dicodon feature
representation. Similarly, using a feature rep-
resentation of the individual nucleotides in
the input window resulted in networks that
did not generalize as well as those that used
a codon feature representation.

Uberbacher and Mural have also applied
neural networks to recognizing coding re-
gions in eukaryotic DNA.9 Their coding
recognition module (CRM) is a component
of Grail, an automated sequence-analysis
server.‘O The heavily used server accepts
DNA sequences via electronic mail, analyzes

them, and then returns e-mail messages de-
scribing its results. (A document available by
anonymous ftp provides addresses and brief
descriptions of Grail and other e-mail servers
that perform DNA analysis. The file is
pub/databases/info/ serv-ema.txt, at expasy.
hcuge.ch.)

Uberbacher and Mural’s research has also
focused on finding features that lead to good
coding region predictions. Seven algorithms
called sensors calculate the input features of
the coding recognition module by evaluating
seven aspects of a DNA sequence, including
the frequency with which each nucleotide oc-
cupies each position in a codon, the likeli-
hood of finding the window’s dicodons in
coding and noncoding DNA, and the simi-

r
~ 8 IEEE EXPERT

larity of the sequence to repetitive patterns in
noncoding regions. Each sensor indicates the
sequence’s coding potential. During training,
the coding recognition module learns to
weight the individual sensors and recognize
meaningful correlations in their values. Uber-
bather and Mural evaluated their coding
recognition module using 19 human genes
that were not in the training set; it located 90
percent (71 of 79) of the genes’ long (more
than 100 nucleotides) exons.

Grail also uses modules that predict splice
junctions and translation initiation sites. An
expert system with a blackboard control struc-
ture assembles the predictions of the individ-
ual modules into coherent predictions of the
location and intron/exon structure of genes.

Case-based approaches. Researchers have
also applied the indexing and retrieval as-
pects of case-based reasoning to gene recog-
nition: These systems take a new nucleotide
or amino acid sequence (a quey sequence)
and search the case memory for similar se-
quences. They interpret a significant partial
match between the query sequence and an el-
ement of the case memory as a prediction of
a coding region in the query sequence. The
case memory is usually not limited to se-
quences from the same organism as the query
sequence because, due to evolution, many
different species have highly similar genes.
A matching gene in the case memory can also
provide insight into the function of a newly
discovered gene, which distinguishes this ap-
proach from the others we’ve discussed.

The effectiveness of a case-based algo-
rithm hinges on its method for assessing se-
quence similarity. The two most important
aspects of similarity determination are the se-
quence level at which comparisons are made,
and the algorithm used to measure similarity.
The level of comparisons refers to whether
the algorithm compares untranslated nu-
cleotide or translated protein (amino acid) se-
quences. Sequence comparisons are more
commonly made at the protein level because
that level determines a gene’s function. Dif-
ferences at the nucleotide level do not neces-
sarily indicate differences at the protein level;
due to the genetic code’s degeneracy, differ-
ent nucleotide sequences can map to the same
amino acid sequence. There are biologically
justified scoring schemes, based on evolu-
tionary and chemical similarity, for measur-
ing the similarity of pairs of amino acids.

Unlike the other gene-recognition ap-
proaches we discuss, the case-based ap-

APRIL1994

preach does not use a fixed-size list of fea-
tures to describe instances. Instead, it com-
pares a query sequence of arbitrary size to
case sequences of varying sizes. Although
dynamic programming methods can find the
optimal partial match between two different-
sized sequences, these methods are too ex-
pensive for large-sequence databases. There
are, however, several fast approximations to
dynamic programming that are commonly
used to search for similar sequences.”

So far, we have assumed that each case is
an entire protein sequence. Another approach
is to store protein domains as cases. Domains
are amino acid sequences that act as modu-
lar components of proteins. Domains are
analogous to subroutines in programs: Each
has a specific function, and different combi-
nations of domains (subroutines) give rise to
different proteins (programs). This approach
provides finer-grained units for predicting a
query sequence’s function.

How can a case memory of proteins and
domains be assembled from a database of
protein sequences? Hunter, Harris, and States
developed an unsupervised learning system
that clusters related amino acid sequences
into domains and “families” of proteins.i2
Unlike the supervised learning methods on
which we have focused so far, unsupervised
learning approaches are not told what the
“correct” classes are; they form their own
class definitions. Unsupervised learning aims
to cluster the training set so that similar in-
stances are in the same class, and dissimilar
instances are in different classes. In an ex-
periment of impressive scale, Hunter, Har-
ris, and States applied their method to a set of
more than 60,000 protein sequences. Their
unsupervised algorithm formed about 12,000
clusters; some of these corresponded to pro-
tein families, some represented functional
domains, and some contained a mixture of
whole and partial proteins. They have also
developed ClassX, a tool for matching novel
sequences against a case memory consisting
of the clusters formed by their algorithm. l3

Combined methods

Although we have discussed the search-
by-signal and search-by-content methods
separately, the most promising approaches
combine predictions of several different sig-
nals and coding regions. Grail (described
previously) is one such approach; another is
the GeneId system, which predicts start

codons, stop codons, donor sites, and accep-
tor sites, and then assembles these predic-
tions into possible genes.t4 GeneId, like
Grail, is publicly available as an e-mail
server on the Internet.

Snyder and Stormo’s GeneParser system
also integrates signal and content predictions
to identify introns and exons.t5 A dynamic-
programming algorithm predicts the extent
of individual exons and introns in a given
DNA sequence. This method uses two arrays
that contain estimates of the likelihood that
each subsequence of a given sequence is an
intron or an exon. Neural networks, which
take as input both content and signal mea-
sures, calculate those estimates.

AL THOUGH MACHINE LEARNING
approaches have shown great promise at rec-
ognizing genes in uncharacterized DNA,
there is still room for improvement. It is dif-
ficult to train signal classifiers to be both
highly sensitive (predicting few false nega-
tives) and highly specific (predicting few
false positives). Similarly, search-by-content
methods often fail to recognize short exons.

However, applying machine learning to
gene recognition is fruitful for both molecu-
lar biologists and computer scientists. Biolo-
gists gain effective, automated methods for an-
alyzing sequence data; machine learning
researchers gain important, real-world test-
beds. (Data sets for several of the gene-finding
problems we’ve discussed are available by
anonymous ftp from the University of Cali-
fornia at Irvine’s Repository of Machine
Learning Databases and Domain Theories:
ftp.ics.uci.edu.) Because of these mutual in-
terests, computational biology is a rapidly
growing field.t6 We expect that this marriage
of computer science and biology will continue
to advance the state of the art in both fields.

Acknowledgments
Our research is partially supported by Depart-

ment of Energy Grant DE-FG02-91ER61129, Na-
tional Science Foundation Grant IRI-90024 13, and
Office of Naval Research Grant N00014-93-l-
0998. We thank Carolyn Allex, Rich Maclin, and
Steve Gallant for their helpful comments. This ar-
ticle was submitted to IEEE Expert on March 8,
1993, and was accepted for publication on De-
cember 1, 1993.

Q

R&D
Engineers
Martin Marietta, the world’s largest aerospace
electronics firm, is in search of professionals to
join our world-class research and development
staff in suburban Philadelphia. Requirements
exist in the following disciplines:
Distributed Systems - Distributed real-time
systems, fault-tolerant distributed systems, and
instrumentation and monitoring of large distrib-
uted systems. Mid- through senior-level openings
available,
Artificial Intelligence - Distributed, real-time AI
applications, sensor fusion, scene understanding,
response planning and embedded systems; 3-S
years experience.

Processing Applications Project Engineer/
BDBMS Specialist - Parallel relational database
management system, distributed heterogeneous
DBMS, object-oriented DBMS, and federated
systems; 3-5 years experience.

Embedded Signal Processing - Hierarchical
methodology for rapid prototyping of signal
processors that can be supported by CAD/CAE/
CASE tools; 5+ years experience.
Signal Processing Architecture/Design Tool
Expert - Methodology that allows tools to be
integrated in support of rapid prototyping of
Sigh processors; 5+ years experience.
Hardware/!5oftware Design Environment -
Design environment that supports concurrent
engineering designs of hardware and software;
5+ years experience.
Successful candidates will be innovative and
independent thinkers with defense-related
(preferably) experience in concept development,
design. implementation and demonstration, A
U.S. security clearance, or ability to obtain one, is
required. You can expect a competitive compen-
sation package.
To experience the challenge and reward of a
Martin Marietta career, please fax your resume
and salary history to Dept. OA9404N at (703) 821-
3521 or mail to: Martin Marietta, Dept. OA9404N,
P.O. Box 9621, McLean, VA 22102. An equal
opportunity employer.

References
1. G.D. Stormo et al., “Use of the Perceptron Algorithm to Distinguish Trans-

lational Initiation Sites in E. coli,” Nucleic Acids Research, Vol. 10, No. 9,
1982, pp. 2997-3011.

2. G. Towell, J. Shavlik, and M. Noordewier, “Refinement of Approximate Do-
main Theories by Knowledge-Based Neural Networks,” Pmt. Eighth Nat’1 Conf
Artificial Intelligence, AAAI Press, Menlo Park, Cahf., 1990, pp. 861-866.

3. A. Lanedes et al., “Annlication of Neural Networks and Other Machine Learn
ing Algorithms to DNA Sequence Analysis,” in Computers and DNA, SF1
Studies in the Sciences of Complexity, Vol. VII, G. Bell and T. Marr, eds.,
Addison-Wesley, Reading, Mass., 19d9, pp. 157-182.

4. J.R. Quinlan, “Induction of Decision Trees,” Machine Leaning, Vol. 1,1986,
pp. 81-106

5. T.M. Cover and P.E. Hart, “Nearest-Neighbor Pattern Classification,” IEEE
Trans. Information Theory, Vol. 13, No. 1, 1967, pp. 21-27.

6. R. Staden and A.D. McLachlan, “Codon Preference and Its Use in Identify-
ing Protein Coding Regions in Long DNA Sequences,” Nucleic Acids Re-
search, Vol. 10, No. 1, 1982, pp. 141-156.

7. M. Borodovsky and J. McIninch, “Prediction of Gene Locations Using DNA
Markov Chain Models,” Proc. Second Int’f Conf. Bioinformatics, Super-
computing, and Complex Genome Analysis, World Scientific, Singapore,
1993, pp. 231-248.

8. R. Farber, A. Lapedes, and K. Sirotkin, “Determination of Eucaryotic Pro-
tein Coding Regions Using Neural Networks and Information Theory,” J.
Molecular Biology, Vol. 226, No. 2, 1992, pp. 471479.

9. EC. Uberbacher and R.J. Mural, “Locating Protein Coding Regions in Human
DNA Sequences by a Multiple-Sensor-Neural Network Approach,” Proc.
Nat’lAcademyofSciences,Vol.88,No.24, 1991,~~. 11261-11265.

10. EC. Uberbacher et al., “Gene Recognition and Assembly in the Grail System:
Progress and Challenges,” Proc. Second Int’l Conf Bioinformatics, Super-
computing, and Complex Genome Analysis, World Scientific, Singapore,
1993, pp. 465476.

11. SE Altscbul et al., “Basic Local Alignment Search Tool,” J. Molecular Bi-
ology,Vol. 215, No. 3, 199O,pp.403+!10.

12. L. Hunter, N. Harris, and D.J. States, “Efficient Classification of Massive,
Unsegmented Datastreams,” Proc. Ninth Znt’l Conf Machine Learning, Mor-
gan Kanfmann, San Mateo, Calif., 1992, pp. 224-232.

13. N.L. Harris, D.J. States, and L. Hunter, “ClassX: A Browsing Tool for Pro-
tein Sequence Megaclassification,” Proc. 26th Hawaii Int’/ Conj System Sci-
PIICCS, IEEE Computer Society Press, Los Alamitos, Calif., 1993, pp.
554-563.

14. R. Guigo et al., “Prediction of Gene Structure,” J. Molecular Biology, Vol.
226, No. 1, 1992, pp. 141-157.

15. E.E. Snyder and G.D. Stormo, “Identification of Coding Regions in Genomic
DNA Sequences: An Application of Dynamic Programming and Neural Net-
works,” Nucleic Acids Research, Vol. 21, No. 3, 1993, pp. 607-613.

16. L. Hunter, D. Searls, and J. Shavlik, eds., Proc. First Int’l Cant Zntelligent
Systemsfor Molecular Biology, AAAI Press, Menlo Park, Calif., 1993.

Mark W. Craven is a PhD student and research assis-
tant in the Department of Computer Sciences at the Uni-
versity of Wisconsin-Madison. His research interests
center around machine learning and computational biol-
ogy. He holds an MS in computer science from the Uni-
versity of Wisconsin and a BA in political science from
the University of Colorado. He is a member of AAAI and
ACM. He can be contacted at the Dept. of Computer Sci-
ences, Univ. of Wisconsin-Madison, 1210 West Dayton
Street, Madison, WI 53706; Internet craven@cs.wisc.edu

Jude W. Shavlik is an associate professor in the De-
partment of Computer Sciences at the University of Wis-
consin-Madison. His research interests include machine
learning, neural networks, and computational biology.
He received his PhD in computer science at the Univer-
sity of Illinois in 1987, his MS in molecular biophysics
and biochemistry from Yale in 1980, and his BS in elec-
trical engineering and BS in life sciences from MIT in
1979. He is a member of IEEE, ACM, and AAAI. He can

-- . - be contacted at the Dept. of Computer Sciences, Univ. of
Wisconsin-Madison, 1210 West Dayton Street, Madison,
WI 53706; Internet shavlik@cs.wisc.edu

IEEE EXPERT

