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ABSTRACT
We review recent results in literature data mining for
biology and discuss the need and the steps for a chal-
lenge evaluation for this field. Literature data mining has
progressed from simple recognition of terms to extraction
of interaction relationships from complex sentences, and
has broadened from recognition of protein interactions to
a range of problems such as improving homology search,
identifying cellular location, and so on. To encourage
participation and accelerate progress in this expanding
field, we propose creating challenge evaluations, and we
describe two specific applications in this context.
Contact: wuc@georgetown.edu; tsujii@is.s.u-tokyo.ac.jp;
park@nlp.kaist.ac.kr; lynette@mitre.org; limsoon@lit.org.sg.

INTRODUCTION
Despite the rapid growth in number and size of sequence
databases, most new information relevant to biology re-
search is still recorded as free text in journal articles and
in comment fields of databases like the GenBank feature
tables. Today, new kinds of databases that contain infor-
mation beyond simple sequences are needed, e.g. cellular
localization and protein-protein interactions. The forerun-
ners include KEGG (Kanehisa et al., 2002), DIP (Xenar-
ios et al., 2002), and BIND (Bader et al., 2001). They are
still small in size and are largely hand curated. The de-
velopment of good literature data mining technologies can
accelerate their growth.

Here, we review literature data mining in biology.
The earliest works focused on tasks needing limited
linguistic context and processing at the level of words,
like identifying protein names (Fukuda et al., 1998) or on
tasks relying on word co-occurrence (Stapley and Benoit,
2000) and pattern matching (Ng and Wong, 1999). Later
we see linguistic techniques that could handle relations
in complex sentences (Park et al., 2001; Yakushiji et al.,
2001). Finally we see the emergence of natural language
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technologies that can handle more complex relations
across sentences (Ding et al., 2002; Hahn et al., 2002;
Leroy and Chen, 2002; Putejovsky and Castano, 2002;
Stapley et al., 2002; Wilbur, 2002).

It is apparent from these papers that there is no common
yardstick for assessing and comparing the performance
of these systems. Nor are there tools that can be easily
applied to biologists’ diversed needs for information
extraction and text data mining. It is crucial to the
development of the field to set up biologically signifi-
cant challenge problems and corresponding evaluation
benchmarks, for both technical component-level and user-
centered evaluations. Let us draw from the experience
in the newswire domain, where literature data mining
techniques have been successful. For example, results
from various evaluations show that information extraction
systems can identify and classify names of person, orga-
nization, location, etc. at accuracies exceeding 90%; and
they can successfully extract binary relations among these
at over 75% accuracy (DARPA, 1998; Aone et al., 1998).

Much of that progress has arisen due to systematic com-
mon evaluations conducted at the Message Understanding
Conferences and Text REtrieval Conferences (Hirschman,
1998). A ‘challenge evaluation’ for literature data min-
ing in biology can benefit us, just as the CASP evaluation
has accelerated progress in computational protein folding.
Here, we also discuss the goals of a challenge evaluation
and the ingredients for a successful evaluation. Then we
show how a challenge evaluation can be set up in the areas
of biological pathway extraction and automated database
curation.

RECENT ACCOMPLISHMENTS: NATURAL
LANGUAGE PROCESSING PERSPECTIVE
We provide a brief survey on extracting interactions be-
tween proteins, drugs, and other molecules. The surveyed
works illustrate the progress of the field and show the in-
creasing complexity of the relations that can be extracted.
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Fukuda et al. (1998) pioneered identification of protein
names. They encountered many protein names that were
long compound names; also, different names were used
to identify the same protein, even within the same article;
and furthermore, some protein names were also common
English words. Their solution was to use special properties
such as the occurrence of uppercase letters, numerals, and
special endings to pinpoint protein names. Similar work
at Molecular Connections Pvt Ltd of India suggested that
a specificity of over 70% was easily obtainable at an
estimated sensitivity of over 70%. The development of a
large biology-specific corpus by Ohta et al. (2000), and
techniques like Hidden Markov Models (Collier et al.,
2000) or Bayesian classifiers trained on k-grams (Wilbur
et al., 1999), would further raise sensitivity and specificity
in recognizing protein names.

The field has now progressed beyond recognizing names
and has entered the realm of recognizing interactions
between proteins and other molecules. The early works
could be roughly divided into two main approaches. The
first approach, represented by Stapley and Benoit (2000),
extracted co-occurrences of gene names from MEDLINE
documents and used them to predict their connections
based on their occurrence statistics. This approach was
followed up by Ding et al. (2002), who systematically
examined the impact on recall and precision of mining
interaction information when an abstract, a sentence, or
a phrase is used as the unit in which to check for term
co-occurrence. The second approach, represented by Ng
and Wong (1999), used templates that matched specific
linguistic structures to recognize and extract protein
interaction information from MEDLINE documents.

The work of Ng and Wong (1999) was followed by natu-
ral language processing techniques of increasing sophisti-
cation. Wong (2001) expanded the number of templates to
increase sensitivity. Park et al. (2001) introduced a bidi-
rectional incremental parsing technique based on combi-
natory categorial grammar. Yakushiji et al. (2001) used a
full parser with a large-scale general-purpose grammar to
analyze MEDLINE abstracts. While no extensive valida-
tion results were available on these systems, their speci-
ficity was estimated at 60–80%. Another recent system is
GENIES (Friedman et al., 2001). It extracts a broad set
of biological relations, including embedded relations. It
reached 96% precision at 63% recall on a hand-annotated
8 000 word article from Cell. All these papers could handle
sentences whose structures were more complex than those
of Ng and Wong (1999). However, none of them handle
pronouns. Their overall sensitivity also remains an issue.

Most recently, research has gone beyond treatment of
single sentences to look at relations that span multiple
sentences through the use of coreference. Putejovsky and
Castano (2002) focused on relations of the word inhibit
and showed that it was possible to extract biologically

important information from free text reliably, using a
corpus-based approach to develop rules specific to a class
of predicates. A strength of this system was its anaphora
resolution module. Hahn et al. (2002) described the
MEDSYNDIKATE system for acquiring knowledge from
medical reports. It could analyze co-referring sentences
and extract new concepts given a set of grammatical
constructs. Leroy and Chen (2002) presented GeneScene.
It used prepositions as entry points into phrases in the
text, in contrast to the main trend that used verbs. It then
filled in a set of templates of patterns of prepositions
around verbs and nominalized verbs. It also had rules for
combining these templates to extract information from
more complex sentences. Based on small-scale experi-
ments, these systems should have higher performance. For
example, Putejovsky and Castano (2002) reported 90%
specificity at 57% sensitivity for extraction of ‘inhibit’
relations.

However, it is unclear how to compare the different
approaches; it is also unclear how well a system has to
perform to be useful. To compare technical approaches,
different systems must be applied to the same domain via
common evaluations. To know how good a system has to
be, prototypes must be given to biologists in user-centered
evaluations. As learned from previous evaluations in the
information retrieval community (Hersh et al., 2001), it
is hard to extrapolate from results of batch experiments
to predict complex issues of utility and user acceptance of
interactive tools. However, even imperfect tools are useful,
if they give improved functionality at low cost.

RECENT ACCOMPLISHMENTS: BIOMEDICAL
APPLICATIONS
Besides the recognition of protein interactions from scien-
tific text, natural language processing has been applied to
a broad range of information extraction problems in biol-
ogy. We briefly describe here some of these results.

We begin with systems that capture specific relations
in databases. Hahn et al. (2002) used natural language
techniques and nomenclatures of the Unified Medical
Language System (UMLS) to learn ontological relations
for a medical domain. Baclawski et al. (2000) is a
diagrammatic knowledge representation method called
keynets. The UMLS ontology was used to build keynets.
Using both domain-independent and domain-specific
knowledge, keynets parsed texts and resolved references
to build relationships between entities. Humphreys et al.
(2000) described two information extraction applications
in biology based on templates: EMPathIE extracted
from journal articles details of enzyme and metabolic
pathways; PASTA extracted the roles of amino acids and
active sites in protein molecules. This work illustrated the
importance of template matching, and applied the tech-
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nique to terminology recognition. Rindflesch et al. (2000)
described EDGAR, a system that extracted relationships
between cancer-related drugs and genes from biomedical
literature. EDGAR drew on a stochastic part of speech
tagger, a syntactic parser able to produce partial parses,
a rule-based system, and semantic information from the
UMLS. The metathesaurus and lexicon in the knowledge
base were used to identify the structure of noun phrases in
MEDLINE texts. Thomas et al. (2000) customized an in-
formation extraction system called Highlight for the task
of gathering data on protein interactions from MEDLINE
abstracts. They developed and applied templates to every
part of the texts and calculated the confidence for each
match. The resulting system could provide a cost-effective
means for populating a database of protein interactions.

The next papers focus on improving retrieval and clus-
tering in searching large collections. Chang et al. (2001)
modified PSI-BLAST to use literature similarity in each
iteration of its search. They showed that supplementing
sequence similarity with information from biomedical lit-
erature search could increase the accuracy of homology
search result. Illiopoulos et al. (2001) gave a method for
clustering MEDLINE abstracts based on a statistical treat-
ment of terms, together with stemming, a ‘go-list’, and
unsupervised machine learning. Despite the minimal se-
mantic analysis, clusters built here gave a shallow descrip-
tion of the documents and supported concept discovery.
Wilbur (2002) formalized the idea of a ‘theme’ in a set of
documents as a subset of the documents and a subset of
the indexing terms so that each element of the latter had a
high probability of occurring in all elements of the former.
An algorithm was given to produce themes and to cluster
documents according to these themes.

Finally, text processing has been used for classification.
Stapley et al. (2002) used a support vector machine
to classify terms derived by standard term weighting
techniques to predict the cellular location of proteins from
description in abstracts. The accuracy of the classifier on a
benchmark of proteins with known cellular locations was
better than that of a support vector machine trained on
amino acid composition and was comparable to a hand-
crafted rule-based classifier (Eisenhaber and Bork, 1999).

ORGANIZING A CHALLENGE EVALUATION
We showed earlier the potential of literature data mining
techniques in biology. However, few of these techniques
have made it into routine use to help manage biological in-
formation. To know which techniques will work on which
problems, we need a systematic evaluation. We can do this
via biologically motivated common challenge problems
that will attract researchers. A challenge problem would
focus on a task of biological importance; the organizers of
the challenge problem would provide training data, blind

test data and evaluation metrics. These would be presented
to the research community, who would provide running
systems that would be evaluated using a standard set of
evaluation metrics. The participants would then meet, to
discuss their experiences, and to understand what worked
and what didn’t work. This approach has already produced
great progress in the realms of text processing, machine
learning, etc. and in biology, protein structure prediction.

We identify the ingredients for a successful evaluation.
CHALLENGE PROBLEM. It must be a problem of bio-

logical significance, such as literature search to assemble
biological pathways, or creation of specialized databases
to organize information.

TASK DEFINITION. This defines the criteria for
evaluation—what constitutes a ‘correct’ answer in the
context of the challenge problem, including a formal
specification of the target output.

TRAINING DATA. To build systems to solve the ‘chal-
lenge problem,’ developers need annotated data for ‘prac-
tice tests’—with the right answers provided. The training
data could also specify the linkage between the extracted
information and the occurrences (phrases or sentences) in
the associated article that provide the evidence for the ex-
tracted information. These linkages, expressed as annota-
tions, would facilitate the creation of information extrac-
tion rules that map from the free text occurrence of infor-
mation to the required target output.

TEST DATA. Once a system is built, it must be evaluated
on blind test data—data that neither the system nor the
developers have previously seen. This makes it possible to
assess the generality of the solution.

EVALUATION METHODOLOGY. There must be a repro-
ducible method of evaluating system performance on the
defined problem. Ideally, there would be an automated
evaluation method and supporting software. This would
allow participants to grade themselves on the training
data (the ‘practice tests’); automated evaluation also sup-
ports system development techniques such as iterative hill
climbing and machine learning. In addition, the evaluation
methods must also be accompanied by statistical tests to
assess the significance of statistical differences among
systems.

EVALUATOR. There must be a neutral group who is
responsible for providing the test data, for collecting the
system runs on the test data, and for evaluating those runs.

PARTICIPANTS. Any evaluation is only as good as the
groups (and systems) that participate in it. Therefore, it is
critical to identify beforehand a core set of groups who
would be willing to perform such an evaluation, if the rest
of the infrastructure were provided.

FUNDING. To create a successful challenge evaluation,
there must be funding for the infrastructure. The evalua-
tion itself must be funded, especially the designated eval-
uator group. Researchers are also more likely to join if
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funding is associated with the evaluation, even if the fund-
ing is indirect such as a government or private funded pro-
gram that rewards good results in the evaluation.

We next look at two sample challenge problems: the
extraction of biological pathways from the literature and
techniques for automating database curation.

EXTRACTION OF BIOLOGICAL PATHWAYS
We consider biological pathways as a network of inter-
actions and events between proteins, drugs, and other
molecules. We propose three layers of challenges. First,
the task is to recognize names of proteins, drugs, and other
molecules. Next, the task is to recognize basic interaction
events between molecules. Last, the task is to recognize
the relationships between the basic interaction events.

Let us first set up the benchmarking framework. It is
oriented towards information extraction rather than natural
language understanding—we see each task as filling in a
set of prescribed templates for each problem, as opposed
to obtaining detailed parse trees and complete semantic
representations of each sentence. We have three reasons.
First, filling in a template is closer to the application
scenario of filling in a database table. Second, information
extraction need not be syntax based, so this choice allows
us to assess a broader range of techniques. Third, the
articles may not be written in grammatical English.

The framework is as follows. A number of test databases
are built. Each database is a set of records. Each record
has a text to be tested and a list of expected facts. The
text can be a sentence, an abstract, or a whole article. The
list of expected facts are all the correct or actual facts that
a ‘perfect’ information extractor for the task on hand can
extract from the given text and nothing else. Each fact can
be thought of as a short sentence in a highly standardized
form such as ‘P1 activate P2’. More abstractly, we see a
test database db as a set {(t1, F1), . . . , (tm, Fm)}, where ti
are the texts and Fi = { fi,1, . . . , fi,ni } are expected facts.
There are two levels of evaluation: the level of individual
records, and the level of the entire test database.

In a traditional evaluation of information retrieval sys-
tems, at either level, we evaluate the sensitivity (or recall)
and specificity (or precision) of an information extractor
E against the list of expected facts, where

recall(E) = TP(E)/[TP(E) + FN(E)]
precision(E) = TP(E)/[TP(E) + FP(E)].

The definitions for TP(E) (true positives), FN(E) (false
negatives), and FP(E) (false positives) depend on whether
we are evaluating at the record level or at the database
level.† At the record level, each expected fact in a separate

† It is impossible to define the usual notion of true negatives because there is
no theoretical bound on the number of ‘facts’ that can be generated from a
sentence and it is unreasonable to use the closed world assumption here.

record is counted as a separate instance. If E(t) is the set
of facts that E extracts from a text t , then

TP(E) =
∑

(t,F)∈db

|E(t) ∩ F |

FN(E) =
( ∑

(t,F)∈db

|F |
)

− TP(E)

FP(E) =
( ∑

(t,F)∈db

|E(t)|
)

− TP(E).

At the database level, all different instances of an expected
fact are counted as one. Then we have instead

TP(E) =
∣∣∣∣∣

⋃
(t,F)∈db

E(t) ∩ F

∣∣∣∣∣
FN(E) =

∣∣∣∣∣
⋃

(t,F)∈db

F

∣∣∣∣∣ − TP(E)

FP(E) =
∣∣∣∣∣

⋃
(t,F)∈db

E(t)

∣∣∣∣∣ − TP(E).

It is hard to compare two information extractors each
characterized by two numbers. The usual method in
diagnostic systems is to obtain a range of precision
values over a range of recall values to get the area under
the relative operating characteristic curve (aROC) and
compare the aROC of two systems (Swets, 1988). But it
is hard to get the aROC of information extractors we are
considering as they often do not have adjustable decision
thresholds. Two conditions are imposed in choosing
an alternative (Bajic, 2000): to distinguish the ideal
information extractor from the worst one, and to show a
gradual monotonic change in value when the information
extractor is changed from the worst to the best one.

Many choices satisfy these two conditions (Bajic, 2000).
However, many of them rely on the definition for ‘true
negatives’ unavailable in our context. So we propose a
variation of the simple matching coefficient (SMC).‡ It is
defined below and satisfies the two conditions above:

SMC(E) = T P(E)/[T P(E) + F N (E) + F P(E)]
‡ A related metric been proposed in the spoken language processing for
measuring transcription accuracy for transcribing audio input into text (word
error rate) and for identifying entities and relations among entities (slot
error rate) (Makhoul et al., 1999). The error rate is the sum of insertions,
deletions and substitution errors divided by the true positives. In our context,
we can interpret insertions as false positives and deletions as false negatives;
substitutions are not directly relevant. Another related measure is the F-
measure, which is the harmonic mean of recall and precision, F(E) =
(2 × recall(E) × precision(E))/(recall(E) + precision(E)). Applying
the definitions for recall and precision, this reduces to F(E) = (2 ×
T P(E))/(2 × T P(E) + F N (E) + F P(E)). There is no intuitive statistical
reason for having the multiplicative factor of 2 on TP(E). However, if we
drop this multiplicative factor, the result is precisely SMC(E).
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Now we return to our three information extraction tasks.
The first task is obvious. We want to recognize names
of proteins, drugs, and other molecules mentioned in the
texts. We do not want to recognize names of authors,
processes, and any other entities mentioned in the texts.

For the second task, we want to recognize interaction
events between proteins, drugs, or other molecules. These
events include transcription, translation, post translational
modification, complexing, dissociation, etc. If we view
each fact as a highly standardized sentence, we can
propose a grammar for them below,§ where P stands for
proteins, or other molecules; T for amino acids; L for
positions; F for biological function; and C for cellular
locations:

PosEvent ::= P phosphorylate P [on T] [at L]
| P dephosphorylate P [on T] [at L]
| P ubiquinate P
| P acetylate P
| ...
| P interact-with P [to-produce P]
| P [at L] bind-to P [at L] [to-produce P]
| P dissociate [to-produce P+]
| P degrade P
| P activate-transcription P [to-produce P]
| P inhibit-transcription P
| P activate [F activity-of] P
| P inhibit [F activity-of] P
| P transport P [from C] [to C]

Event ::= PosEvent [mediated-by P+] [independent-of P+]
| not PosEvent [mediated-by P+] [independent-of P+]

The grammar is not for parsing. It is a grammar defining
a set of target representations; the goal is to convert perti-
nent parts of scientific texts into these relations. An infor-
mation extractor should convert different expressions of
the same fact into the semantically closest standard form in
the grammar. It should not make fine distinctions between
different sentence forms. For example, it should convert
‘camptothecin, an inhibitor of TOP1’ to ‘camptothecin in-
hibit TOP1’. It should not make fine distinctions between
shades of meanings. For example, ‘caspase8 was stimu-
lated by NB506’ is mapped to ‘NB506 activate caspase8’.

The third task is to recognize relationships between
basic events. In contrast to basic events which focus on
interactions between molecules, this task is focused on
the causality between two such events. The grammar we
propose for them is:

Relationship ::= Event [is-caused-by Event+] [provided Event+]
| Event [is-independent-of Event+] [provided Event+]
| Event [is-inhibited-by Event+] [provided Event+]

§ A biological pathway may contain events, such as the opening of a vesicle,
that are not molecular interactions. However, it is better to start with a
more focused class of events. We choose molecular interactions based on a
straw poll of several researchers from the pharmaceutical and biotechnology
industry and because these interactions are already familiar from works
reported at the past Pacific Symposiums on Biocomputing.

The intention of a relationship like ‘E1 is-caused-by E2
provided E3’ is as follows. The event E3 is assumed
to have taken place some time ago and its resultant
conditions have remained true. This allows E2 to take
place and thus E1 will take place at the end of E2. An
information extractor should convert different expressions
of the same event relationships into the semantically
closest standard form in the grammar. For example,
statement A8 in Kohn (1999), ‘c-Abl tyrosine kinase
activity is blocked by pRb, which binds to the c-Abl kinase
domain’, would be mapped as ‘(pRb inhibit tyrosine
kinase activity-of c-Abl) is-caused-by (pRb bind-to c-Abl
at kinase domain).’

Having described the three tasks, we now propose some
candidates for the benchmark databases for these tasks.
We suggest the appendix of Kohn (1999) as a candidate.
It lists about 200 statements of interaction events and has
sentences of a fairly complex form. Another candidate
is the set of MEDLINE abstracts on ‘Topoisomerase
inhibitors.’ 150–200 new abstracts on this topic appear in
MEDLINE each year. A rough analysis shows that each
year’s worth of abstracts have less than 1000 names and
less than 200 interaction events, small enough for a small
team of experts to build a benchmark database manually.

AUTOMATED DATABASE CURATION AND
ONTOLOGY DEVELOPMENT
As with automated database curation, ontology develop-
ment can exploit the knowledge accumulated in curated
databases and literature. A protein name ontology may
be constructed from a data dictionary and thesaurus of
terms and their relationships. Such an ontology is impor-
tant because the protein name is often how a protein ob-
ject is referred to in the scientific literature and biological
databases. There is, however, a long-standing problem of
nomenclature for proteins, where profligate and undisci-
plined labeling is hampering communication, as discussed
in Nature (1997). Scientists may name a newly discov-
ered protein based on its function, sequence features, gene
name, cellular location, molecular weight, or other prop-
erties, as well as their combinations or abbreviations. On-
tology development, therefore, requires knowledge acqui-
sition from scientific literature and substantial human ef-
fort. Natural language processing technologies in infor-
mation extraction, classification and ontology induction
can be applied to the protein domain for automated con-
struction of synonym relations among protein names and
subsequent classification in terms of the functional hierar-
chy of Gene Ontology (GO) (Gene Ontology Consortium,
2001). This would permit greatly enhanced retrieval, using
the many synonyms and hypernyms (superordinates) for a
given protein name.

Database curation is also interesting since curated
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databases represent a repository of ‘gold standard’ data.
Craven and Kumlien (1999) reported an experiment where
they used the subcellular localization field of the Yeast
Protein Database (Hodges et al., 1998). They collected
instances of this relation from the database, traced the
references associated with each database entry back to
the PubMed abstract, and then within each abstract,
identified the sentence that gave rise to the annotation.
This gave them a set of extracted relations (from the
database) and the underlying text sources (sentences
from the abstracts). They were then able to train and
compare several classifiers that extracted the desired
localization information. This experiment suggests how
curated databases might be exploited to create ‘cheap’
annotated corpora. It is easy to associate an entry in a
database field with the underlying article from which it is
derived. It is harder to provide an explicit linkage from the
database entry to the phrases and sentences from which it
is derived. When the database uses a controlled vocabulary
or an ontology to define legal entries for each field, the
phrases appearing in the article may not correspond to the
actual entry in the database.

We see below some possible relations between the
mention in the literature and its representation in the fields
of the database. The example is from FlyBase (Flybase
Consortium, 2002), where each entry contains attributed
data with links to the source articles. The first list shows
three fields from the Appl+P130kD (FBpp0002057) entry,
each having an associated reference ‘Luo et al., 1990’.

(1) Protein size (kD): Luo et al, 1990 130
(2) Cell location: Luo et al, 1990 axon
(3) Expression pattern: Luo et al, 1990

Stage Tissue/Position
Embryo Embryonic Central Nervous System
Embryo Peripheral Nervous System

The next list contains sentences extracted from the abstract
of Luo et al. (1990). The phrases in boldface pinpoint the
source of information within each sentence.

(1) APPL ... is converted to a 130-kDa secreted form ...

(2) APPL ... was observed in ... axonal tracts, ...

(3) In the embryo, APPL proteins are expressed exclu-
sively in the CNS and PNS neurons ...

Simple pattern matching suffices in phrase 1 to find 130-
kDa. Complex morphology is needed in phrase 2 to asso-
ciate axonal tract with ‘cell location: axon’. But we must
decode abbreviations (CNS = central nervous system, PNS
= peripheral nervous system) and also use information de-
rived from multiple parts of the sentence in phrase 3. A
larger sample would have many more complex mappings

between database fields and the underlying literature ref-
erence, including entries that require resolution of coref-
erence across sentences or entries that require an analysis
of the underlying syntactic relations among entities.

This exploration has led to a dataset for the Knowledge
Discovery and Data Mining Challenge Cup 2002; see
http://www.biostat.wisc.edu/∼craven/kddcup/tasks.html.
The challenge task, based on activities performed by
Flybase curators, requires that participants build systems
to automatically process the journal articles to answer the
following questions, given a collection of articles, each
labeled with the genes mentioned in the article:

• Does the article contain any experimental results about
gene expression that should be put in the database?

• If so, for each gene in the article, is there experimen-
tal evidence for any transcripts (RNA), protein, or
polypeptide products of that gene?

The participants are given an 800-document training set of
full text articles with their associated Flybase entries. The
test set consists of several hundred more articles whose
database entries have not yet been published in Flybase,
so that they constitute blind test data. The provision
of database entries and associated full text for use as
training and evaluation sets enables many researchers to
participate in building tools for database curation. Each
participating system will be evaluated by how well it
can distinguish articles that should be curated from those
without experimental evidence (a classification task). It
will also be evaluated on how well it can determine which
genes in a given article have information that should be
curated, which will require more fine-grained analysis.

For ontology development and challenge tasks, a protein
knowledge base could be built from PIR protein databases
(iProClass and PIR-NREF) (Wu et al., 2002), GO, and
MEDLINE abstracts (Fig. 1¶). NREF provides compre-
hensive protein sequence data with source attribution and
minimal redundancy (Fig. 2). It currently contains more
than 930 000 sequences organized from PIR, Swiss-Prot
(Bairoch and Apweiler, 2000), TrEMBL, RefSeq (Pruitt
and Maglott, 2001), GenPept, and PDB (Westbrook et
al., 2002). The protein names from all underlying protein
databases, including synonyms, alternate names, and even
misspellings, constitute an initial dictionary of terms that
can help ontology development. The iProClass database
(Wu et al., 2001) provides comprehensive protein family
relationships and structural and functional features, with
links to GO via enzyme (EC) number and keywords.
Given the association of database entries and underlying
articles, the knowledge base would be ideal for creating

¶ See http://pir.georgetown.edu/pirwww/doc/bioinf02 figure.pdf for all the
figures.
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annotated corpora containing both protein names (terms)
and relationships (isa, homologous-to, has-function)
among the protein terms.

As shown in Fig. 2A, a protein may be named based on
its function at different levels (‘ATP-dependent RNA he-
licase’ versus ‘RNA helicase’), motif sequence similarity
(‘DEAD/H box-5’), molecular weight (‘protein p68’), or
combinations of names (‘RNA helicase p68’). The differ-
ent protein names assigned by different source databases
may also reveal relationships among terms or annotation
errors. The mixed occurrence of two protein names, ‘eu-
karyotic translation initiation factor eIF-4A’ and ‘RNA he-
licase’ (Fig. 2B) for the protein entry reveals sequence
similarity (i.e. a relationship) shared by common domains
and motifs. There are also many examples of discrepant
annotations (not shown) that provide clues for potentially
incompletely or mis-annotated proteins.

The NREF bibliography and associated PubMed
links allow online abstract retrieval and extraction of
synonyms or related terms by identifying the sentences
within abstracts that contain the protein names and
their relationships. Information extraction techniques
could associate a set of relations (from the database)
with their underlying text sources (sentences from the
abstracts). The data can be used for developing extraction
systems for protein names and relations, for automated
classification into existing ontologies (For example, GO),
or for development of ontology induction algorithms.
Fig. 3 shows terms and relationships retrievable from
MEDLINE abstracts based on protein names in NREF.
The reference (PMID: 2451786) cited in the entry shown
in Fig. 2A asserts that ‘p68’ has extensive homology with
‘translation initiation factor eIF-4A’ and that ‘eIF-4A’
acts as an ‘ATP-dependent RNA helicase.’ The phrase
‘acts as’ implies a new functional relationship between
‘eIF-4A’ and ‘RNA helicase’, extending beyond the
extensive homology relationship, and provides a basis for
the interchangeable use of the two names in the example
entry in Fig. 2B.

The GO consists of ontologies for molecular functions,
cellular locations, and biological processes. The terms are
organized in a network. As many proteins are variably
named based on their functions or similarity to proteins
of known functions, aligning protein names to the widely
used molecular function GO will help address the database
interoperability issue for protein nomenclature. The map-
ping of protein names to the GO functional hierarchy can
also help resolve names that reflect functional characteri-
zation at different granularity or alternative functions. For
example, ‘ATP-dependent RNA helicase’ is identified as a
kind of (isa) ‘RNA helicase’ (Fig. 4A). As stated in ref-
erence PMID: 9592148 (abstract not shown), the protein
has also been identified alternatively as a kind of ‘ATPase’
(Fig. 4B).

In order to benchmark how such extended ontologies
could improve retrieval, database interoperability and
consistency checking, ‘gold-standard’ data sets could be
generated using members of well-characterized protein
families that contain positive identifications of sequence
features. Protein family classification allows systematic
detection of annotation errors when it is based on both
global and local similarities at the superfamily (whole
protein), domain, and motif levels. Such comprehensive
family relationships are described in iProClass. As shown
in the iProClass report (Fig. 5), the protein in Fig. 2A is a
member of the PIR superfamily SF001321, with several
characteristic sequence features, including two domains
(PF00270 and PF00271), one motif (PCM00039), and
three sites (nucleotide-binding motifs A and B, and DEAD
motif).

The evaluation of ontologies is a challenging task, in
part because there is no established metric for measuring
knowledge in terms of content or value. The protein
ontology can be evaluated at two levels (Sparck-Jones and
Galliers, 1996). An intrinsic evaluation, where the protein
name ontology induction procedure is evaluated without
reference to a particular task, may involve the comparisons
of the terms and ontological relations discovered by the
system against those found by humans. As illustrated in a
MITRE prototype (Mani et al., 2002), direct comparison
can also be made between a sample of a machine ontology
and of a human ontology built for the same domain
corpus, with time measurements for the creation of each.
An extrinsic (task-oriented) evaluation may evaluate the
ontology’s usefulness in manual query expansion. Users
of the protein-name based bibliography search using
PubMed can be offered related terms from the protein
name ontology for manual query expansion. The accuracy
of retrieval can then be measured by the percentage of
relevant documents in the top n hits under different types
of query expansion.

CONCLUSION
This review shows the promise of literature data mining
and the need for challenge evaluations. It shows how
current language processing approaches can be success-
fully used to extract and organize information from the
literature. It also illustrates the diversity of applications
and evaluation metrics. By defining several biologically
important challenge problems and by providing the
associated infrastructure, we can accelerate progress in
this field. This will allow us to compare approaches, to
scale up the technology to tackle important problems, and
to learn what works and what areas still need work.

We should also point out that in this review we
have primarily used papers from Proceedings of Pacific
Symposium on Biocomputing as this has been the only
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conference that has a dedicated track on natural language
processing in biology. There are other papers (Andrade
and Valencia, 1998; Blaschke et al., 1999; Craven and
Kumlien, 1999; Marcotte et al., 2001, etc.) that we did not
discuss and they would be worth further reading to gain a
more comprehensive understanding of the field.
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