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Measuring the expression of most or all of the genes in a
biological system raises major analytic challenges. A wealth of
recent reports uses microarray expression data to examine
diverse biological phenomena — from basic processes in
model organisms to complex aspects of human disease. After
an initial flurry of methods for clustering the data on the basis
of similarity, the field has recognized some longer-term
challenges. Firstly, there are efforts to understand the sources
of noise and variation in microarray experiments in order to
increase the biological signal. Secondly, there are efforts to
combine expression data with other sources of information to
improve the range and quality of conclusions that can be
drawn. Finally, techniques are now emerging to reconstruct
networks of genetic interactions in order to create integrated
and systematic models of biological systems.
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Abbreviation
SOM self-organizing map

Introduction
The enthusiasm about microarray expression data analysis in
the bioinformatics community has been remarkable. The
peer-reviewed conference proceedings in the field have
often provided the initial presentation of new methods,
including the early application of clustering [1], linear
decomposition [2] and algorithms to discern genetic net-
works [3•–5•]. (All references to the Pacific Symposium on
Biocomputing can be found at http://www.smi.stanford.edu/
projects/helix/psb-online/) The public release of expression
data sets [6–8] created a de facto set of benchmarks for analy-
sis by the bioinformatics community. There remains a risk,
however, that the community has tuned these algorithms to
perform well on this small set of training examples and that
the algorithms will not perform well on entirely new data
sets. Thus, the continued release of data from different
groups using different detailed methods, and even measure-
ments from redundant experiments, will be critical [9].

In a typical array experiment, many genes (frequently all
known) in an organism are assayed under multiple condi-
tions. The data can be represented as a matrix in which the
rows are genes and the columns are conditions. These con-
ditions may be different time points during a biological
process, such as the yeast cell cycle [7,8] and Drosophila
development [10], or they can be different tissue samples

with some common phenotype, such as tissue type or
malignancy. Although the amount of data generated in an
expression experiment is tremendous, this is not yet a
data-rich analytical task by statistical standards. The com-
plexity of genomic systems, with N genes and thus N2

potential pairwise interactions (not to mention higher
order interactions), is even larger than the expression data
sets and thus the ratio of data to unknown variables is still
small. The major initial efforts at clustering and linear
decomposition (such as principal components analysis) not
only assist humans in understanding the data, but also
demonstrate that the amount of independent new infor-
mation may be much smaller than the number of raw data
points suggests [2,11]. (Some microarray analysis tools are
available at http://classify.stanford.edu/)

Whole-genome expression data affect structural biology by
providing valuable functional information about when and
where a protein is expressed, when it is degraded and with
which other proteins it may interact. Early work has sur-
veyed the ability of expression data to yield clues about
common sequential/structural motifs for regulatory ele-
ments (as reviewed below). It also addresses issues such as
protein localization or the justifiability of predicting func-
tion using ‘guilt-by-association’ techniques, whereby
similar expression may be a component of the association (as
reviewed below). Jansen and Gerstein [12] have analyzed
the sequential and structural features of highly expressed
genes and found biases (more alanine/glycine, less
asparagine, shorter sequences, more TIM barrels) in a group
of highly expressed proteins. 

Although not the main focus of this review, there has been a
satisfying focus on maximizing the reproducibility and analyz-
ability of microarray experiments [9,13–15]. The ‘fold
difference’ is widely used as a quantitative measure of the dif-
ferential expression. The fold difference is the ratio of the
expression in cells of interest versus the control cells. Genes
expressed at low levels require higher fold differences in order
to rise above the noise [16•,17] and duplicate measurements of
identical experiments can be very valuable for reducing noise
and simplifying subsequent analysis [9]. There are also emerg-
ing methods for assigning confidence to differentially
expressed genes [18]. The noise in expression data can con-
found analyses and rank data are often more robust than
absolute measured values because of the variation in methods
for subtracting out background noise and quantifying expres-
sion levels [19,20]. Methods have emerged for imputing
missing data in incomplete data sets (O Troyanskaya et al.,
unpublished data; see Now in press). Finally, aneuploidy (and
therefore the number of copies of a gene in the effective
genome) has been shown to affect the expression level of a
gene, either confounding the analysis or providing insight into
the mechanisms of abnormal biology [21,22].
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The remainder of our review is organized around the result
of a hierarchical clustering of the literature, in which the
word counts are the features of articles used to cluster
them, as shown in Figure 1.

A breadth of applications in biology and
medicine
The number and diversity of microarray expression data
measurements in the literature are impressive, and reports
now appear in speciality journals in both biology and med-
icine. Initial data sets are often reported as genome-scale
‘reviews’ of a specific process, with subsequent analysis

focusing on particular biological questions. Many reports,
however, compare only a single pair of conditions and
these are more difficult to evaluate because not all the dif-
ferences between the two conditions are necessarily
statistically or biologically significant.

The use of expression arrays to understand cancer has
been attractive because most cancers are complex multi-
genic diseases and there is a natural ‘control’ group for the
analysis — the noncancerous tissues. Initial studies have
demonstrated the potential power of this technology for
typing cancers and predicting prognosis. Golub et al. [23]

Figure 1

A clustering of 101 recent articles on whole-
genome expression. For each article, the
words in the titles and abstracts were
extracted and filtered. 614 words that showed
up in fewer than 90 and more than 3 articles
were selected. Word vectors consisting of
word counts for each article were created and
normalized to avoid biases resulting from
length. Complete linkage hierarchical
clustering was used with an uncentered
correlation metric and the tree was generated
with TreeView [35]. Labels (left) indicating the
subject of the paper were added manually
based on our understanding of the contents
of the papers that clustered together. The
articles (right) are identified by first author,
year and first words of title. Red spots
indicate the presence of one of the 614
words in the associated article. The data used
to create the figure, as well as a full online
bibliography, are presented at
http://www.smi.stanford.edu/projects/helix/
pubs/cosb-01/. 
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analyzed two subtypes of leukemia and created a classifi-
cation algorithm that distinguished between the two
subclasses, based only on expression patterns. They intro-
duced self-organizing maps (SOMs) for clustering and
rediscovered a known leukemia subclass. Alizadeh et al.
[24] looked at diffuse B-cell lymphomas and identified a
subtype with a distinct expression pattern correlating with
particular clinical implications, such as the expected sur-
vival time. Bittner et al. [25••] looked at human genes in
melanoma cells and found a group associated with lower
invasive ability, reduced motility and (possibly) lower
death rates. The genes that distinguished these groups are
involved in the motility and invasion processes. This work
is notable because the clusters were tested for robustness
by assessing the sensitivity of the results to pertubations
with random noise. Ross et al. [26] analyzed the expression
of 8000 genes over 60 cancer cell lines from the National
Cancer Institute (NCI) and showed that the cell lines clus-
tered into groups that reflected the tissues of origin,
suggesting that expression data may assist in assigning the
primary tumor to metastases of unknown primary origin.
Other classification techniques have an ability to distin-
guish between normal and malignant tissue using
expression data at >90% accuracy [27]. Expression patterns
may also explain mechanisms of sensitivity to drugs, as
suggested by an analysis of sensitivity to L-asparaginase
and 4-fluorouracil in the study of 60 NCI cell lines with
known drug sensitivities [28••]. That report concluded
with an intriguing table relating 1376 gene expression pat-
terns to 118 drugs.

Other biological applications
Starting with the seminal observational papers [6–8] study-
ing basic processes in yeast, such as metabolism, cell cycle
and sporulation, there has been a new round of more
directed studies involving wide-scale genetic manipula-
tions. Holstege et al. [29] knocked out components of the
transcription initiation machinery and studied essential
cofactors and genes that modulate the response to envi-
ronmental conditions. Roberts et al. [30••] perturbed
elements of the mitogen-activated protein (MAP) kinase
pathways and found interactions and shared elements
between them. Their work is significant because it moves
away from observational studies to a more hypothesis-dri-
ven mode of expression analysis — thus combining the
strengths of traditional genetics with genome-wide high-
throughput analysis. In an impressive study, Hughes et al.
[31••] systematically studied the effect of 300 conditions,
mostly gene deletions, on expression. They were able to
assign the function of unknown genes by comparing the
expression profiles from strains in which the gene is delet-
ed with those from other deletion strains.

Other biologically significant studies include analysis of
the fibroblast cell response to serum [32], the expression
patterns following activation of the C-MYC helix-loop-
helix protooncogene [33], and the expression program of
hemapoietic stem cells [34]. White et al. [10] have followed

the whole organism expression of Drosophila genes over
time in order to understand the program of development
and have found novel genes that appear to be associated
with metamorphosis.

Clustering
The early uses of hierarchical clustering and SOMs on
expression data provided a focal point for the introduction
of alternative clustering methods. As with BLAST, cluster-
ing has become a basic tool for biologists in the field of
expression analysis. Although there is a mature statistical
literature about clustering, microarray data has sparked the
development of multiple new methods. The initial excite-
ment generated by the papers using hierarchical clustering
[1,35] and SOMs (which arrange clusters spatially) [36,37]
lead to a flurry of papers on fast and robust clustering meth-
ods [27,38–40]. The most promising innovations in this area
may be the cluster methods that combine clustering of
genes along with the conditions in a two-dimensional clus-
tering. These address the limitation of some tree-based
clusters that do not provide information about the degree of
similarity between branches, and may be useful in recog-
nizing reusable genetic ‘modules’ that are mixed and
matched in order to create more complex genetic respons-
es. For example, glucose metabolism may be invoked for a
variety of otherwise disparate conditions (normal growth,
stress, particular developmental stages) and so partial simi-
larities among these conditions may be due to the shared
glucose metabolism module, and not to a more general sim-
ilarity. If such modules exist, cluster methods will need to
associate genes in the context of particular conditions, in
order to tease apart these associations. Thus, methods that
can pull out subsets of genes associated with subsets of con-
ditions are likely to be useful. Alon et al. [41] describe a
two-way hierarchical clustering in which the order of sub-
trees is determined by the similarities of their associated
conditions. Cheng et al. [42••] show a true biclustering
method in which low-variance submatrices of the complete
data matrix are found. These submatrices contain informa-
tion about genes that may sometimes be correlated, but at
other times are not. Califano et al. [43••] introduce a method
to identify submatrices that differ with statistical signifi-
cance from a set of control conditions.

Moving beyond clustering
After clustering is applied to an expression data set, we can
examine those genes that cluster together and assign a
function or value to the cluster. This approach may discov-
er new associations, but in general rediscovers known
associations and typically does not take full advantage of
knowledge about known transcription factors, regulatory
elements, sequence or structure information, or assigned
gene functions. For example, there is interest in using
information from genes with a common function to search
for additional genes that share this function. Other efforts
include the definition of regulatory elements using expres-
sion data and the combination of external data sources with
expression data to validate new associations.
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Using expression data to define regulatory elements
The co-expression of genes may imply that they share
common regulatory mechanisms. This is a controversial
hypothesis because regulatory mechanisms can be mixed
and combined in ways that could lead to both convergent
regulation (similar temporal expression patterns, different
control strategies) and divergent regulation (similar control
regions, put together in ways such that effect on expression
is different). As in sequence analysis, expression can be
similar (share significant features by some scoring
method), but not homologous (common evolutionary ori-
gin). Nevertheless, this hypothesis underlies the study of
upstream regions of genes and the search for regulatory
elements guided by expression similarity. These methods
are now routinely using expression clusters to guide the
search for common motifs [44]. Notable approaches
include that of Mandel-Gutfreund et al. [45••], who use 3D
structural information about the protein–DNA binding site
to analyze the effects of different mutations, and then eval-
uate the regions with a knowledge-based potential.

There are two general methods used for mining upstream
regions to search for regulatory regions: first, oligomer-based
methods; and second, statistical pattern-matching methods.
Oligomer-based methods look for short patterns of
nucleotides that occur in a statistically significant abundance,
thus suggesting potential functional importance [46–51]. An
automated pipeline for regulatory element discovery has
been used to find potentially novel consensus patterns in
yeast [52–54]. Juhl Jensen and Knudsen [55•] combine three
sources of data (functional literature on a gene, short repeat-
ed subsequences found in upstream regions, and the
expression behavior) to search for new regulatory sequences
and find a new potential proteasomal upstream element.

Many statistical methods for finding regulatory elements
are descendants of the pioneering work on Gibbs sam-
pling, which constructs multiple sequence alignments
using probabilistic models and local optimization [56], and
the statistics of weight matrices for binding sites [57–59]. A
new system can handle gapped motifs, motifs containing
palindromes and imperfect input data sets, along with esti-
mate of significance [60••]. Others have used similar
technology, but focused on the location of the regulatory
motifs relative to the coding regions, and have analyzed
the entire yeast genome, finding 3311 motifs [61]. An
interesting argument has been made that studying expres-
sion patterns first and then looking for regulatory elements
may lose information, whereas the combined search for
both clusters and promoters may be more efficient [62].

Combining expression data with other data sources
The most exciting work in the analysis of whole-genome
expression has come with the combination of expression
data with numerous other data sources, including the pub-
lished literature, the DNA and protein sequence databases,
the Protein Data Bank, and the functional taxonomies that
are beginning to emerge.

Microarray expression data complements other data
sources (including phylogenetic profiles, protein fusion in
other organisms, metabolic function and annotated experi-
mental functional studies) to allow functional predictions
[63••]. Using expression alone to assign function has a rel-
atively high false positive rate (36% of function
assignments may not be accurate), but the volume of data
still leads to many useful predictions. Yeast expression data
also allows the classification (using Support Vector
Machines, a general classification method) of the Munich
Information Center for Protein Sequences (MIPS) yeast
functional categories and their association with genes of
unknown function [64••]. The justifiability of predicting
function based on similar sequence, expression, location
and other proxies should be carefully assessed. In the con-
text of sequence identity, it seems that 40% identity
implies close functional relationships, whereas 25% identi-
ty suggests more distant functional relationships [65].
Expression-based cell-cycle clusters provide a gold stan-
dard for evaluating a text-based assignment of genes into
phases of the cell cycle [66•]. Expression patterns also pro-
vide information for creating rules that associate genes
with functional categories [67], as provided by the Gene
Ontology (GO; developed to give a standard set of terms
for molecular and cellular functions, processes and com-
partments; http://www.geneontology.org/). Califano et al.
[43••] use a database of conditions and associated pheno-
types to build statistically significant expression patterns
for each phenotype that are useful for understanding the
phenotype and classifying new conditions.

Expression measurements form part of a data set that
allows protein cellular localization to be predicted for
yeast. In a data set including variables such as sequence
signals, biophysical and structural features of molecules, as
well as expression data, two of the top ten informative fea-
tures are drawn from the expression data (absolute
expression and standard deviation of expression). These
features allow the assignment of about two-thirds of unlo-
cated yeast proteins with about 75% accuracy [68••].

New directions: the reconstruction of genetic
networks
A reductionist approach to studying model systems and
isolating individual components is clearly the pillar upon
which most biological knowledge rests. However, the
understanding of interacting systems, for which approxi-
mations about isolation and crosstalk (normally made to
simplify the systems) can no longer be made, constitutes a
major challenge. Initial efforts in the representation and
‘reverse engineering’ of cellular networks containing
genes, their regulators and their downstream targets have
been demonstrated by McAdams and Shapiro [69] on
lambda phage. The availability of detailed data about con-
centrations, binding constants, and regulatory relationships
has, however, limited the applicability of these techniques.
The arrival of expression data, particularly in the context of
targeted mutation experiments [30••,31••], has raised
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expectations that at least some of these data will make
more modeling studies feasible. As discussed above, the
abundance of data (compared to the number of parameters
needed) is somewhat illusory, but the interest in regulato-
ry and effector networks is clearly increasing.

The simplest methods for modeling the interactions of
genes are Boolean networks, in which a 1 or 0 is used to
express simply whether a gene is induced or not; the induc-
tion of each gene is a deterministic function of the state of a
set of other genes. These representations are easy to com-
pute with and require a minimum number of parameters to
be estimated, but may be too simplified [70,71]. Similarly, it
is possible to use linear modeling of gene interactions by
representing the expression of a gene as a weighted linear
combination of the expressions of all other genes. These
methods are limited by the availability of data [4•,72]. An
interesting new approach uses genetic programming tech-
niques that have been successful in the design of computer
logic chips to reverse engineer genetic networks, but results
so far are on simulated data and relatively small networks
[3•]. The most useful approach so far has been the use of
expression data not to build a network (which requires more
data than is available), but instead to evaluate two alterna-
tive network topologies. Friedman et al. [73] have explored
the discovery of partial network information on the cell-
cycle data using Bayesian belief networks — computer data
structures that use probabilistic representations of discrete
variables and their interdependencies to infer the most like-
ly set of values for the variables. Hartemink et al. [5•] show
that they can use Bayesian belief networks to distinguish
between two competing models for galactose regulation in
yeast, using data from 52 array experiments that were not
designed to answer this question.

Conclusions
For some time, there were more review articles about the
promises and problems with whole-genome expression
analysis than there were primary research reports using the
methods or introducing new analytic techniques. This
imbalance is now being corrected and the community is
thinking seriously about ways in which whole-genome
expression data can be integrated with other biological
knowledge to maximize its impact. The next few years may
show major progress in our ability to understand the ways in
which genomes implement their biological programs.

Update
Clustering methods are now more routinely being evaluat-
ed with respect to criteria such as robustness,
computational cost, clarity of cluster definitions and repro-
ducibility. A useful report by Yeung et al. [74•] introduces a
leave-one-out type approach for testing cluster methods by
evaluating their ability to predict the gene associations in a
‘left out’ data set. Herrero et al. [75] report and evaluate a
self-organizing tree algorithm (SOTA) that shares features
with SOMs, but imposes a binary tree structure on the
data. Bussemaker et al. [76] showed that the expression of

genes can be modeled without a preliminary clustering.
Instead, they create a model of how any fragment (of
length seven) in the upstream regions of genes can con-
tribute (positively or negatively) to the overall expression
of a gene. They create an additive model based on the sum
of the logarithms of the expression and are able to explain
30% of the expression ‘signal’ with this simple model.
Finally, Masys et al. [77] show the utility of interpreting
expression data in the context of textual indexing terms in
order to understand the biomedical significance of 
discovered clusters.
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