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Preface

In the late 1950s, hardware became available that allowed the machining of 3D shapes
out of blocks of wood or steel.! These shapes could then be used as stamps and dies
for products such as the hood of a car. The bottleneck in this production method was
soon found to be the lack of adequate software. In order to machine a shape using a
computer, it became necessary to produce a computer-compatible description of that
shape. The most promising description method was soon identified to be in terms
of parametric surfaces. An example of this approach is provided by Plates I and III:
Plate I shows the actual hood of a car; Plate III shows how it is represented internally
as a collection of parametric surfaces.

The theory of parametric surfaces was well understood in differential geometry.
Their potential for the representation of surfaces in a Computer Aided Design (CAD)
environment was not known at all, however. The exploration of the use of parametric
curves and surfaces can be viewed as the origin of Computer Aided Geometric Design
(CAGD).

The major breakthroughs in CAGD were undoubtedly the theory of Bézier
surfaces and Coons patches, later combined with B-spline methods. Bézier curves
and surfaces were independently developed by P. de Casteljau at Citrden and by
P. Bézier at Renault. De Casteljau’s development, slightly earlier than Bézier’s, was
never published, and so the whole theory of polynomial curves and surfaces in
Bernstein form now bears Bézier’s name. CAGD became a discipline in its own right
after the 1974 conference at the University of Utah (see Barnhill and Riesenfeld [31]).

This book presents a unified treatment of the main ideas of CAGD. During the last
years, there has been a trend towards more geometric insight into curve and surface
schemes; I have followed this trend by basing most concepts on simple geometric
algorithms. For instance, a student will be able to construct Bézier curves with hardly
any knowledge of the concept of a parametric curve. Later, when parametric curves are
discussed in the context of differential geometry, one can apply differential geometry
ideas to the concrete curves that were developed before.

The theory of Bézier curves (and rational Bézier curves) plays a central role in this
book. They are numerically the most stable among all polynomial bases currently used
in CAD systems, as was shown by Farouki and Rajan [196]. Thus Bézier curves are
the ideal geometric standard for the representation of piecewise polynomial curves.

' A process that is now called CAM for Computer Aided Manufacturing.

XV



xvi Preface

Also, Bézier curves lend themselves easily to a geometric understanding of many
CAGD phenomena and may, for instance, be used to derive the theory of rational and
nonrational B-spline curves.

While this book offers a comprehensive treatment of the basic methods in curve
and surface design, it is not meant to provide solutions to application-oriented prob-
lems that arise in practice. In particular, no algorithms are included to handle in-
tersection, rendering, or offset problems. At present, no unified approach exists for
these “geometry processing” problems. However, the material presented here should
enable the reader to read the advanced literature on the topics; on offsets: [169],
[182], [183], [282], [286], [289], [306], [420], [481]; on intersections: [28], [148],
[150], [218], [223], [245], [265], [287], [290], [316], [325], [344], [380], [404], [423],
[453], [455] [457]; on rendering: [1], [95], [205], [219], [326], [469].

Also, this is not a text on solid modeling. That branch of geometric modeling
is concerned with the representation of objects that are enclosed by an assembly of
surfaces, mostly very elementary ones such as planes, cylinders, or tori. As solid
modeling systems are becoming fully accepted, they are incorporating the freeform
curves and surfaces described in this book. The literature includes: [98], [186], [194],
[276], [343], [354], [416], [487].

I have taught the material presented here in the form of both conference tutorials
and university courses, typically at the intermediate level. The exercises are in three
categories: simpler questions at the beginning of each Exercises section, harder
questions marked by asterisks, and programming exercises marked by “P”” Many of
these programming exercises use data provided on the enclosed disk. Students should
thus get a better feeling for “real” situations. In teaching this material, it is essential
that students have access to computing and graphics facilities; practical experience
greatly helps the understanding and appreciation of what might otherwise remain dry
theory.

When I use this book as a text for a one-semester CAGD class at the lower
graduate/upper undergraduate level, I typically cover the following chapters: the first
half of Chapter 3, Chapters 4, 5, 6, 8, 9, 15, and 16. Material from other chapters is
sprinkled in as needed.

The C programs on the disk are my implementations of some (but not all) of
the most important methods described here. The programs were tested for many
examples, but they are not meant to be “industrial strength.” In general, no checks
are made for consistency or correctness of input data. Also, modularity was valued
higher than efficiency. The programs are in C, but with non-C users in mind—in
particular, all modules should be easily translatable into FORTRAN.

This book would not have been possible without the stimulating environment
provided by the CAGD group at Arizona State University (and formerly at the
University of Utah), founded by Robert E. Barnhill. The book also greatly benefitted
from numerous discussions I had with experts such as A. Nasri, T. Foley, Q. Fu,
H. Hagen, J. Hoschek, G. Nielson, R. Patterson, and A. Worsey. I would also like to
express my appreciation for the funding provided by the National Science Foundation
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and the Department of Energy.? Special thanks go to D. C. Hansford for the numerous
helpful suggestions concerning the mathematical side of the material, and also to
W. Boehm, who was a critical and constructive consultant during the development of
this book.

I'am also grateful to the following people for suggesting improvements over the
previous editions: S. Abi-Ezzi, N. Beebe, W. Boehm, R. E. Barnhill, E. Clapp, P. J.
Davis, B. Hamann, D. Jung, F. Kimura, T.-W. Kim, S. Mann, G. Nielson, A. Swimmer,
K. Voegele, W. Waggenspack, H. Wolters, M. Wozny, G. Wu, and Y. Yamaguchi.

Gerald Farin
Tempe, Ariz.

2Grants DCR-8502858 and DE-FG02-87ER25041, respectively.






Chapter 1

P. Bézier: How a Simple
System Was Born

In order to solve CAD/CAM mathematical problems, many solutions have been of-
fered, each being adapted to specific matters. Most of the systems were invented
by mathematicians, but UNISUREF, at least initially, was developed by mechanical
engineers from the automotive industry. They were familiar with parts mainly de-
scribed by lines and circles; fillets and other blending auxiliary surfaces were scantily
defined, their final shape being left to the skill and experience of patternmakers and
die-setters.

Circa 1960, designers of stamped parts such as car-body panels used French
curves and sweeps, but in fact the final standard was the “master model,” the shape
of which, for many valid reasons, could not coincide with the curves traced on the
drawing board. This problem resulted in discussions, arguments, haggling, retouches,
expenses, and delay.

Obviously, no significant improvement could be expected as long as no method
was devised that could provide an accurate, complete, and indisputable definition of
freeform shapes.

Computing and numerical control (NC) had made great progress at that time, and
it was certain that only numbers, transmitted from the drawing office to tool drawing
office, manufacture, patternshop and inspection, could provide an answer. Drawings
would of course remain necessary, but they would only be explanatory, their accuracy
having no importance. Numbers would be the single, final definition.

Certainly, no system could be devised without the help of mathematics—yet
designers, who would be in charge of operating such a system, had a good knowledge
of geometry, especially descriptive geometry, but no basic training in algebra or
analysis.

It should be noted that in France very little was known at that time about the
work performed in the American aircraft industry. The papers of James Ferguson

1



2 Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.1: An arc of a hand-drawn curve is approximated by a part of a template.

were little disseminated before 1964; Citroén was secretive about the results obtained
by Paul de Casteljau, and the famous technical report MAC-TR-41 (by S. A. Coons)
did not appear until 1967. The works of W. Gordon and R. Riesenfeld were printed
in 1974,

At the beginning, the concept of UNISURF was oriented toward geometry rather
than analysis, but with the idea that every datum should be exclusively expressed by
numbers.

For instance, an arc of a curve could be represented (Figure 1.1) by the co-
ordinates, cartesian of course, of its limit points, i.e., A and B, together with their
curvilinear abscissas, related by a grid traced on the edge.

The shape of the middle line of a sweep is a cube, if its cross-section is constant,
its matter is homogeneous, and the effect of friction on the tracing cloth is neglected.
However, it is difficult to take into account the length between endpoints. Moreover,
the curves employed for software for NC machine tools, i.e., 2D milling machines,
were lines, circles, and sometimes parabolas. Hence, a spline shape should be divided
and subdivided into small arcs of circles placed end to end.

In order to transform an arc of circle into a portion of an ellipse, one could imagine
(Figure 1.2) a square frame containing two sets of strings, whose intersections would
be located on an arc of a circle. If the frame sides are hinged, flexing the hinges
transforms the square into a diamond (Figure 1.3). The circle becomes an arc of an
ellipse, which would be entirely defined as soon as the coordinates of points A, B,
and C were known. If the hinged sides of the frame were replaced by pantographs
(Figure 1.4), the diamond would become a parallelogram, and the arc of an ellipse is
still defined by the coordinates of the three points A, B, and C (Figure 1.5).
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Figure 1.2: A circular arc is obtained by connecting the points in this rectangular grid.

Figure 1.3: If the frame from the previous figure is sheared, an arc of an ellipse is
obtained.
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Figure 1.4: Pantograph construction of an arc of an ellipse.
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Figure 1.5: A “control polygon” for an arc of an ellipse.
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Of course, this idea was not realistic, but it was easily replaced by the computation
of coordinates of successive points of the curve. Harmonic functions were available
with the help of analog computers, which were widely used at that time and gave
excellent results.

However, employing only arcs of ellipses limited by conjugate diameters was
far too restrictive, and a more flexible definition was required.

Another idea came from the practice of a speaker projecting, with a flashlight, a
small cross or arrow onto a screen displaying a figure printed on a slide. Replacing
the arrow with a curve and recording the exact location and orientation of the torch
(Figure 1.6) would define the image of the curve projected on the wall of the drawing
office. One could even imagine having a variety of slides, each of which would bear
a specific curve: circles, parabola, astroid, etc.

Of course, this was not a realistic idea, because the focal plane of the zoom
would seldom be square to the axis—an optician’s nightmare! But the principle
could be translated, via projective geometry and matrix computation, into cartesian
coordinates.

At that time, designers defined the shape of a car body by cross-sections located
100 mm apart, and sometimes less. The advantage was that, from a drawing, one
could derive templates for adjusting a clay model, a master, or a stamping tool. The
drawback was that a stylist does not define a shape by cross-sections, but rather by so-
called “character lines,” which are seldom plane curves. Hence, a good system should
be capable of manipulating and directly defining “space curves” or “freeform curves.”

S W W —
VNN AN
L N\
LN NN
Y

Figure 1.6: A projector producing a “template curve” on the drawing of an object.



6 Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.7: Two imaginary projections of a car.

Of course, one could imagine working alternately (Figure 1.7) on two projections of
a space curve, but it is very unlikely that a stylist would accept such a solution.

Theoretically, at least, a space curve could be expressed by a sweep having a
circular section, constrained by springs or counterweights (Figure 1.8), but this would
prove quite impractical.

Would it not be best to revert to the basic idea of a frame? But instead of being
inscribed in a square, the curve would be located in a cube (Figure 1.9) that could
become any parallelepiped (Figure 1.10) by a linear transformation that is easy to
compute. The first idea was to choose a basic curve that would be the intersection of
two circular cylinders; the parallelepiped would be defined (Figure 1.10) by points
0, X, Y, and Z, but it is more practical to put the basic vectors end to end so as to
obtain a polygon OMNB (Figure 1.10), which directly defines the endpoint B and its
tangent NB. Of course, points O, M, N, and B need not be coplanar and can define a
space curve.

Polygons with three legs can define quite large a variety of curves (see Figure
3.4 in Section 3.3). To increase that variety, however, we can imagine to make use of
cubes and hypercubes of any order (Figure 1.11) and the relevant polygons (Figure
1.13) (see Figure 3.4 in Section 3.3).
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Figure 1.8: A curve held by springs.

Figure 1.9: A curve defined inside a cube.
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Figure 1.11: Higher order curves can be defined inside higher dimensional cubes.
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At that moment, it became necessary to do away with harmonic functions and
revert to polynomials. This was even more desirable because digital computers were
gradually replacing analog computers. The polynomial functions were chosen ac-
cording to the properties that were considered best: tangency, curvature, etc. Later it
was discovered that they could be considered as sums of Bernstein’s functions.

When it was suggested that these curves could replace sweeps and French curves,
most stylists objected that they had invented their own templates and would not
change. It was solemnly promised that their “secret” curves would be translated into
secret listings and buried in the most secret part of the memory of the computer, and
that only the stylists would have the key to the vaulted cellar. In fact, the standard
curves were flexible enough and secret curves were soon forgotten. Designers and
draftsmen easily understood the polygons and their relation to the shape of the
corresponding curves.

In the traditional process of body engineering, a set of curves was carved in a
3D model, and interpolation between the curves was left to the experience of highly
skilled patternmakers. However, in order to obtain a satisfactory numerical definition,
the surface must be totally expressed with numbers.

At that time, around 1960, very little, if anything, had been published about
biparametric patches. The basic idea of UNISURF came from a comparison with a
process often used in foundries to obtain a core. Sand is compacted in a box (Figure
1.12), and the shape of the upper surface of the core is obtained by scraping off the
surplus with a timber plank cut as a template. Of course, a shape obtained by such
a method is relatively simple, because the shape of the plank is constant and that of
the box edges is generally simple. To make the system more flexible, one might wish
to change the shape of the template as it moves. In fact, this takes us back to a very
old, and sometimes forgotten, definition of a surface: it is the locus of a curve that is

Figure 1.12: A surface is being obtained by scraping off excess material with wooden
templates.
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simultaneously moved and distorted. About 1970, a Dutch laboratory sculpted blocks
of styrofoam with a flexible, electrically heated strip of steel, the shape of which was
controlled by the flexion torque imposed on its extremities.

This process could not produce a large variety of shapes, but the principle could
be translated into a mathematical solution. The guiding edges of the box are similar
to the curves AB and CD of Figure 1.13, which can be considered as directrices of
a surface defined by their characteristic polygon. If a curve such as EF is generatrix,
defined by its own polygon, the ends of which run along lines AB and CD, and the
intermediate vertices of the polygon are on curves GH and JK, then the surface ABDC
is known as soon as the four polygons are defined. Connecting the corresponding
vertices of the polygons defines the “characteristic net” of the patch, which plays
the same role relative to the surface as the polygon of a curve. Hence, the cartesian
coordinates of the points of the patch are computed according to the values of two
parameters.

After this basic idea was expressed, a good many problems remained to be
solved: choosing adequate functions, blending curves and patches, and dealing with
degenerate patches, to name only a few. The solutions were a matter of relatively
simple mathematics, the basic principle remaining untouched.

A system was thus progressively created. If we consider the way the initial idea
evolved, we observe that the first solution—parallelogram, pantograph—is the result

Figure 1.13: The characteristic net of a surface.
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of an education oriented toward kinematics, the conception of mechanisms. Then
geometry and optics appeared, which very likely came from army training, in which
geometry, cosmography, and topography played an important part. Then reflection
was oriented towards analysis, parametric spaces and finally, data processing, because
a theory, as convenient as it may appear, must not impose too heavy a task on the
computer and must be easily understood, at least in principle, by the operators.

Note that the various steps of this conception have a point in common: each idea
must be related to the principle of a material system, simple and primitive though it
may seem, on which a variable solution could be based.

Anengineer defines what is to be done and how it can be done, not only describing
the goal, but leading the way toward it.

Before looking any deeper into this subject, observe that elementary geometry
played a major part. The subject should not gradually disappear from the training of
a mechanical engineer. Each idea, each hypothesis, was expressed by a figure or a
sketch, representing a mechanism. It would have been extremely difficult to build a
purely mental image of a somewhat elaborate system without the help of pencil and
paper. Let us consider, for instance, Figures 1.9 and 1.11; they are equivalent to Egs.
(4.7) and (15.6) in later chapters. These formulas, conveniently arranged, are best
suited to express data to a computer. Most people, however, would better understand
a simple figure than the equivalent algebraic expression.

Napoleon said: “A short sketch is better than a long report.”

What parts are played by experience, by theory, and by imagination in the
creation of a system? There is no definite answer. The importance of experience
and of theoretical knowledge is not always clearly perceived. Imagination seems a
gift, a godsend or the result of beneficial heredity. But is not imagination in fact
the result of the maturation of knowledge gained during education and professional
practice? Is it not born from facts apparently forgotten, stored in the dungeon of a
distant part of memory, and suddenly remembered when circumstances call them
back? Is not imagination partly based on the ability to connect notions which, at
first sight, look quite unrelated, such as mechanics, electronics, optics, foundry, and
data processing—to catch barely seen analogies—like Alice in Wonderland, to go
“through the looking glass”?

Will psychologists someday be able to detect in humans a gift such as this that
would be applicable to science and technology? Is it related to the sense of humor,
which can detect unexpected relations between facts that look quite unconnected?
Will we learn how to develop it? Or will it forever remain a gift, bestowed by pure
chance on some people while others must rely on carefulness and rationality?

It is important that “sensible” people sometimes give free rein to imaginative
people. “I succeeded,” said Henry Ford, “because I let some fools try what wise
people had advised me not to let them try.”



Chapter 2

Introductory Material

2.1 Points and Vectors

When a designer or stylist works on an object, he or she does not think of that object
in very mathematical terms. A point on the object would not be thought of as a triple
of coordinates, but rather in functional terms: as a corner, the midpoint between two
other points, and so on. The objective of this book, however, is to discuss objects that
are defined in mathematical terms, the language that lends itself best to computer
implementations. As a first step toward a mathematical description of an object, one
therefore defines a coordinate system in which it will be described analytically.

The space in which we describe our object does not possess a preferred coordinate
system—we have to define one ourselves. Many such systems could be picked (and
some will certainly be more practical than others). But whichever one we choose, it
should not affect any properties of the object itself. Our interest is in the object and
not in its relationship to some arbitrary coordinate system. Therefore, the methods
we develop must be independent of a particular choice of a coordinate system. We
say that those methods must be coordinate-free or coordinate-independent.'

The concept of coordinate-free methods is stressed throughout this book. It
motivates the strict distinction between points and vectors as discussed next. (For
more details on this topic, see R. Goldman [230].)

We shall denote points, elements of three-dimensional euclidean (or point) space
[E3, by lowercase boldface letters such as a, b, etc. (The term “euclidean space” is
used here because it is a relatively familiar term to most people. More correctly, we
should have used the term “affine space.””) A point identifies a location, often relative
to other objects. Examples are the midpoint of a straight line segment or the center
of gravity of a physical object.

"More mathematically, the geometry of this book is affine geometry. The objects that we
will consider “live” in affine spaces, not in linear spaces.

12
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a

Figure 2.1: Points and vectors: vectors are not affected by translations.

The same notation (lowercase boldface) will be used for vectors, elements of
three-dimensional linear (or vector) space R*. If we represent points or vectors by
coordinates relative to some coordinate system, we shall adopt the convention of
writing them as coordinate columns.

Although both points and vectors are described by triples of real numbers, we
emphasize that there is a clear distinction between them: for any two points a and b,
there is a unique vector v that points from a to b. It is computed by componentwise
subtraction:

v=b—a: abePF, veR.

On the other hand, given a vector v, there are infinitely many pairs of points a, b
such that v = b — a. For if a, b is one such pair and if w is an arbitrary vector, then
a + w,b + w is another such pair since v = (b + w) — (a + w) also. Figure 2.1
illustrates this fact.

Assigning the point a + w to every point a € E is called a translation, and the
above asserts that vectors are invariant under translations while points are not.

Elements of point space [E* can only be subtracted from each other—this opera-
tion yields a vector. They cannot be added—this operation is not defined for points.
(It is defined for vectors.) Figure 2.2 gives an example.

However, addition-like operations are defined for points: they are barycentric
combinations.> These are weighted sums of points where the weights sum to one:

RN . beEP
b—Z;aij, ot ta =1 (2.1)
=

They are also called affine combinations.
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Figure 2.2: Addition of points: this is not a well-defined operation, since different co-
ordinate systems would produce different “solutions.” The two points to be “added”
are marked by solid squares.

At first glance, this looks like an undefined summation of points, but we can rewrite
(2.1) as

b= b0+ZaJ,-(bj — by),

j=1

which is clearly the sum of a point and a vector.
An example of a barycentric combination is the centroid g of a triangle with
vertices a, b, ¢, given by

1 . lb + 1
g=3at3b+3e

The term “barycentric combination” is derived from “barycenter,” meaning “cen-
ter of gravity.” The origin of this formulation is in physics: if the b; are centers
of gravity of objects with masses m;, then their center of gravity b is located at
b = Y"m;b;/ 3" m; and has the combined mass > m;. (If some of the m; are nega-
tive, the notion of electric charges may provide a better analogy; see Coxeter [119],
p. 214.) Since a common factor in the m; is immaterial for the determination of the
center of gravity, we may normalize them by requiring Y m; = 1.

An important special case of barycentric combinations are the convex combina-
tions. These are barycentric combinations where the coefficients «;, in addition to
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Figure 2.3: Convex hulls: a point set (a polygon) and its convex hull, shown shaded.

summing to one, are also nonnegative. A convex combination of points is always
“inside” those points, which is an observation that leads to the definition of the con-
vex hull of a point set: this is the set that is formed by all convex combinations of
a point set. Figure 2.3 gives an example; see also Exercises. More intuitively, the
convex hull of a set is formed as follows: for a 2D set, imagine a string that is loosely
circumscribed around the set, with nails driven through the points in the set. Now
pull the string tight—it will become the boundary of the convex hull.

The convex hull of a point set is a convex set. Such a set is characterized by
the following: for any two points in the set, the straight line connecting them is also
contained in the set. Examples are ellipses or parallelograms. It is an easy exercise to
verify that affine maps (see next section) preserve convexity.

Let us return to barycentric combinations, which generate points from points. If
we want to generate a vector from a set of points, we may write

n
V= E :Uipi’
j=0

where we have a new restriction on the coefficients: Now we must demand that the
0’j sum to zero.
If we are given an equation of the form

a= Z,ij_;,

and a is supposed to be a point, then we must be able to split the sum into three
groups:

a= > Bbit > Bb;+ >, Bb;

Z B,=1 Z B,=0 remaining B's
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Then the b; in the first sum are points, and those in the second sum may be interpreted
as either points or vectors. The b; in the third one are vectors. While the second and
third sums may be empty, the first one must contain at least one term.

The interplay between points and vectors is unusual at first. Later, it will turn
out to be of invaluable theoretical and practical help. For example, we can perform
quick type checking when we derive formulas. If the point coefficients fail to add
up to one or zero—depending on the context—we know that something has gone
wrong. In a more formal way, T. DeRose has developed the concept of “geometric
programming,” a graphics language that automatically performs type checks [145],
[146]. R. Goldman's article [230] treats the validity of point/vector operations in
more detail.

2.2 Affine Maps

Most of the transformations that are used to position or scale an object in a computer
graphics or CAD environment are affine maps. (More complicated, so-called projec-
tive maps are discussed in Chapter 13.) The term “affine map” is due to L. Euler;
affine maps were first studied systematically by F. Moebius [361].

The fundamental operation for points is the barycentric combination. We will
thus base the definition of an affine map on the notion of barycentric combinations.
A map ® that maps B3 into itself is called an affine map if it leaves barycentric
combinations invariant. So if

X = Za,-aj; Za; =1, xa€F

and @ is an affine map, then also
dbx = Zajtbaj; Ox, Pa; € E>. 2.2)

This definition looks fairly abstract, yet has a simple interpretation. The expression
X = Y a;a; specifies how we have to weight the points a; so that their weighted
average is X. This relation is still valid if we apply an affine map to all points a; and
to x. As an example, the midpoint of a straight line segment will be mapped to the
midpoint of the affine image of that straight line segment. Also, the centroid of a
number of points will be mapped to the centroid of the image points.

Let us now be more specific. In a given coordinate system, a point x is represented
by a coordinate triple, which we also denote by x. An affine map now takes on the
familiar form

Ox = Ax + v, (2.3)

where A is a 3 X 3 matrix and v is a vector from [R>.
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A simple computation verifies that (2.3) does in fact describe an affine map, i.e.,
that barycentric combinations are preserved by maps of that form. For the following,
recall that >~ a; = 1:

b (Zajaj) =A (z a;-aj) +v
= Za;Aa_,— + Za;v
= Zaj (Aaj— + V)
= Zajcbaj.

which concludes our proof. It also shows that the inverse of our initial statement is
true as well: every map of the form (2.3) represents an affine map.
Some examples of affine maps:

The identity. Itis given by v = 0, the zero vector, and by A = I, the identity matrix.
A translation. Itis given by A = [, and a translation vector v.

A scaling. It is given by v = 0 and by a diagonal matrix A. The diagonal entries
define by how much each component of the preimage x is to be scaled.

A rotation. If we rotate around the z-axis, then v = 0 and

cosa —sina 0
A= | sinae cosa O
0 0 1
A shear. An example is given by v = 0 and
1 a b
A=10 1 ¢
0 0 1

This family of shears maps the (x, y)-plane onto itself.

A parallel projection. All of [ is projected onto the (x, y)-plane if we set

S
I
o O =

0
1
0

oo o

and v = 0. Note that A may also be viewed as a scaling matrix.
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Figure 2.4: A shear: this affine map is used in font design in order to generate slanted
fonts. Left: original letter; right: slanted letter.

We give one example of an affine map that is important in the area of font design.
A given letter is subjected to a 2D shear and thus transforms into a slanted letter.
Figure 2.4 gives an example; see also Section 8.5.

An important special case of affine maps are the euclidean maps, also called rigid
body motions. They are characterized by orthonormal matrices A that are defined by
the property ATA = 1. Euclidean maps leave lengths and angles unchanged; the most
important examples are rotations and translations.

Affine maps can be combined, and a complicated map may be decomposed into
a sequence of simpler maps. Every affine map can be composed of translations,
rotations, shears, and scalings.

The rank of A has an important geometric interpretation: if rank(A) = 3, then
the affine map ® maps three-dimensional objects to three-dimensional objects. If the
rank is less than three, ® is a parallel projection onto a plane (rank = 2) or even onto
a straight line (rank = 1).

An affine map of E? to E? is uniquely determined by a (nondegenerate) triangle
and its image. Thus any two triangles determine an affine map of the plane onto
itself. In %, an affine map is uniquely defined by a (nondegenerate) tetrahedron and
its image.

More important facts about affine maps are discussed in the following section.

2.3 Linear Interpolation

Let a, b be two distinct points in [, The set of all points x € E? of the form

x=x(t)=(1—-na+th; teR (2.4)
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0t 1

Figure 2.5: Linear interpolation: two points a, b define a straight line through them.
The point x divides the straight line segment between a and b in the ratio £ : 1 — 1.

is called the straight line through a and b. Any three (or more) points on a straight
line are said to be collinear.

For t = 0 the straight line passes through a, and for ¢ = 1 it passes through b.
For 0 = t = 1, the point X is between a and b, while for all other values of ¢ it is
outside; see Figure 2.5.

Equation (2.4) represents X as a barycentric combination of two points in E3.
The same barycentric combination holds for the three points 0, ¢, 1 in E':t=(1-
t)- 0+ t-1.Sot is related to 0 and 1 by the same barycentric combination that
relates x to a and b. However, by the definition of affine maps, the three points a, X, b
in three-space are an affine map of the three points 0, ¢, 1 in one-space! Thus linear
interpolation is an affine map of the real line onto a straight line in E3 >

It is now almost a tautology when we state: Linear interpolation is affinely
invariant. Written as a formula: if ® is an affine map of F* onto itself, and (2.4)
holds, then also

Ox = ®((1 —na+rb) = (1 —rPa+ Db (2.5)

Closely related to linear interpolation is the concept of barycentric coordinates,
due to Moebius [361]. Let a, x, b be three collinear points in E*:

x=aa+Bb; a+B=1 (2.6)

Then « and B are called barycentric coordinates of x with respect to a and b. Note
that by our previous definitions, x is a barycentric combination of a and b.

3Strictly speaking, we should therefore use the term “affine interpolation” instead of “linear
interpolation.” We use “linear interpolation” because its use is so widespread.
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The connection between barycentric coordinates and linear interpolation is ob-
vious: we have « = 1 — ¢ and B = ¢. This shows, by the way, that barycentric
coordinates do not always have to be positive: For ¢ €& [0, 1], either « or B is neg-
ative. For any three collinear points a, b, ¢, the barycentric coordinates of b with
respect to a and ¢ are given by

_voly(b, 0
~ voly(a,¢)’
vol,(a, b)
vol;(a, ¢)’

B =

where vol, denotes the one-dimensional volume, which is the signed distance between
two points. Barycentric coordinates are not only defined on a straight line, but also
on a plane. Section 2.6 has more details.

Another important concept in this context is that of ratios. The ratio of three
collinear points a, b, ¢ is defined by

vol;(a, b)

vol;(b, ¢)’ 27

ratio(a, b, ¢) =
If @ and B are barycentric coordinates of b with respect to a and ¢, it follows that

ratio(a, b, ¢) = g. (2.8)

The barycentric coordinates of a point do not change under affine maps, and neither
does their quotient. Thus the ratio of three collinear points is not affected by affine
transformations. So if (2.8) holds, then also

ratio(®a, ®b, Pc) =

=N o)

, (2.9

where ® is an affine map. This property may be used to compute ratios efficiently.
Instead of using square roots to compute the distances between points a, x, and b, we
would project them onto one of the coordinate axes and then use simple differences
of their x- or y-coordinates.* This method works since parallel projection is an affine
map!

Equation (2.9) states that affine maps are ratio preserving. This property may be
used to define affine maps. Every map that takes straight lines to straight lines and is
ratio preserving is an affine map.

The concept of ratio preservation may be used to derive another useful property
of linear interpolation. We have defined the straight line segment [a, b] to be the affine
image of the unit interval [0, 1], but we can also view that straight line segment as
the affine image of any interval [a, b].

“But be sure to avoid projection onto the x-axis if the three points are parallel to the y-axis!
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The interval [a, #] may itself be obtained by an affine map from the interval [0, 1]
or vice versa. With ¢ € [0, 1]and u € [a, b], that map is givenby r = (u—a)/(b —a).
The interpolated point on the straight line is now given by both

x(t)=(1—-0na+1tb

and

b—u u—a
a+
b—a b—a

x(u) = b. (2.10)
Since a,u, b and 0,1, 1 are in the same ratio as the triple a, x, b, we have shown
that linear interpolation is invariant under affine domain transformations. By affine
domain transformation, we simply mean an affine map of the real line onto itself.
The parameter ¢ is sometimes called a local parameter of the interval [a, b].

A concluding remark: we have demonstrated the interplay between the two
concepts of linear interpolation and ratios. In this book, we will often describe
methods by saying that points have to be collinear and must be in a given ratio. This
is the geometric (descriptive) equivalent of the algebraic (algorithmic) statement that
one of the three points may be obtained by linear interpolation from the other two.

2.4 Piecewise Linear Interpolation

Let by, ..., b, € [3 form a polygon B. A polygon consists of a sequence of straight
line segments, each interpolating to a pair of points b;, b; . Itis therefore also called
the piecewise linear interpolant PL to the points b;. If the points b; lie on a curve ¢,
then B is said to be a piecewise linear interpolant to ¢, and we write

B = Prle. (2.1D)

One of the important properties of piecewise linear interpolation is affine invari-
ance. If the curve ¢ is mapped onto a curve ®c¢ by an affine map ®, then the piecewise
linear interpolant to ® ¢ is the affine map of the original piecewise linear interpolant:

PLPc=D PLe (2.12)

Another property is the variation diminishing property. Consider a continuous
curve ¢, a piecewise linear interpolant PLc, and an arbitrary plane. Let cross ¢ be the
number of crossings that the curve ¢ has with this plane, and let cross PLe be the
number of crossings that the piecewise linear interpolant has with this plane. (Special
cases may arise; see Section 2.9.) Then we always have

cross PL ¢ = crossc. (2.13)
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plans

bo
c

Figure 2.6: The variation diminishing property: a piecewise linear interpolant to a
curve has no more intersections with any plane than the curve itself.

This property follows from a simple observation: consider two points b;, b; ;. The
straight line segment through them can cross a given plane at one point at most, while
the curve segment from ¢ that connects them may cross the same plane in many
arbitrary points. The variation diminishing property is illustrated in Figure 2.6.

2.5 Menelaos’ Theorem

We use the concept of piecewise linear interpolation to prove one of the most important
geometric theorems for the theory of CAGD: Menelaos’ theorem. This theorem can
be used for the proof of many constructive algorithms, and its importance was already
realized by de Casteljau [134].
Referring to Figure 2.7, let

a, = (1 —0p +1tpa

ag = (1 —s)p; + sp2,

b, =(1-0py +1p3

by = (1 — 5)p2 + sps.
Let ¢ be the intersection of the straight lines a,b, and a,b,. Then

t

ratio(ay, ¢, b) = —— and ratio(ay, ¢, by) = .

(2.14)

For a proof, we simply show that ¢ satisfies the two equations

c=(1-s)a, +sb, and ¢ = (1~ ta, + b,
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P1

Figure 2.7: Menelaos’ theorem: the point ¢ may be obtained from linear interpolation
atrorats.

which is straightforward. Notice also that the four collinear points py, a,, a;, p, as well
as the four collinear points p,, by, b,, p; are affine maps of the four points 0, £, 5, 1 on
the real line.

Equation (2.14) is a “CAGD version” of the original Menelaos’ theorem, which
may be stated as (see Coxeter [119]):

ratio(by, by, p2) - ratio(py, a;, a;) - ratio(a;, ¢, by) = —1. (2.15)

The proof of (2.15) is a direct consequence of (2.14). Note the ordering of points in
the second ratio! Menelaos’ theorem is closely related to Ceva’s, which is given in
Section 2.6.

2.6 Barycentric Coordinates in the Plane

Barycentric coordinates were discussed in Section 2.3, where they were used in
connection with straight lines. Now we will use them as coordinate systems when
dealing with the plane. Planar barycentric coordinates are at the origin of affine
geometry—they were first introduced by F. Moebius in 1827; see his collected works
[361].

Consider a triangle with vertices a, b, ¢ and a fourth point p, all in E2. It is always
possible to write p as a barycentric combination of a, b, ¢:

p = ua+vb + we. (2.16)

A reminder: if (2.16) is to be a barycentric combination (and hence geometrically
meaningful), we require that

u+v+w=1 (2.17)
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The coefficients u := (u, v, w) are called barycentric coordinates of p with respect
to a, b, ¢. We will often drop the distinction between the barycentric coordinates of
a point and the point itself; we then speak of “the point u.”

If the four points a, b, ¢, and p are given, we can always determine p’s barycentric
coordinates u, v, w: Egs. (2.16) and (2.17) can be viewed as a linear system of three
equations [recall that (2.16) is shorthand for two scalar equations] in three unknowns
u, v, w. The solution is obtained by an application of Cramer’s rule:

area(p, b, ¢) area(a, p, ¢) area(a, b, p)
— — Yy = —_— W= (2‘18)
area(a, b, ¢) area(a, b, ¢) area(a, b, ¢)
Actually, Cramer’s rule makes use of determinants; they are related to areas by the
identity

1| @ b, ¢,
area(a, b, ¢) = 3 ay, by cy |. (2.19)
1 1 1

We note that in order for (2.18) to be well defined, we must have area(a, b, ¢) # 0,
which means that a, b, ¢ must not lie on a straight line.

Because of their connection with barycentric combinations, barycentric coordi-
nates are affinely invariant: let p have barycentric coordinates u, v, w with respect to
a, b, ¢. Now map all four points to another set of four points by an affine map ®.
Then ®p has the same barycentric coordinates #, v, w with respect to ®a, &b, Pc.

Figure 2.8 illustrates more of the geometric properties of barycentric coordinates.
An immediate consequence of Figure 2.8 is known as Ceva’s theorem:

ratio(a, p., b) - ratio(b, p,, ¢) - ratio(c, p;, a) = 1.

More details on this and related theorems can be found in most geometry books, €.g.,
Gans [224] or Berger [46], or Boehm and Prautzsch [76].

Any three noncollinear points a, b, ¢ define a barycentric coordinate system in
the plane. The points inside the triangle a, b, ¢ have positive barycentric coordinates,
while the remaining ones have (some) negative barycentric coordinates. Figure 2.9
shows more.

We may use barycentric coordinates to define bivariate linear interpolation.
Suppose we are given three points p;, p2, p3 € [E3. Then any point of the form

p = p(u) = p(u, v, w) = up; + vpz + wps (2.20)

with u + v + w = 1 lies in the plane spanned by p,, p,, p3. This map from F? to
3 is called linear interpolation. Since u + v + w = 1, we may interpret u, v, w as
barycentric coordinates of p relative to p, p2, p3. We may also interpret u, v, w as
barycentric coordinates of a point in [? relative to some triangle a, b, ¢ € E2. Then
(2.20) may be interpreted as a map of the triangle a, b, ¢ € E? onto the triangle
P1. P2, P3 € E°. We call the triangle a, b, ¢ the domain triangle. Note that the actual
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b

Figure 2.8: Barycentric coordinates: let p = ua + vb + we. The two figures show some
of the ratios generated by certain straight lines through p.

location or shape of the domain triangle is totally irrelevant to the definition of linear
interpolation. (Of course, we must demand that it be nondegenerate.) Since we can
interpret u, v, w as barycentric coordinates in both two and three dimensions, it follows
that linear interpolation (2.20) is an affine map.

Barycentric coordinates are not restricted to one and two dimensions; they are
defined for spaces of higher dimensions as well. For example, in three-space, any
nondegenerate tetrahedron with vertices p;, p2, p3, P+ may be used to write any point

pasp = up; + up2 + u3p3 + uspa.

2.7 Tessellations and Triangulations

When dealing with sequences of straight line segments, we were in the context of
piecewise linear interpolation. We may also consider more than one triangle, thus
introducing bivariate piecewise linear interpolation. While straight line segments are



26 Chapter 2. Introductory Material

(010)
(-1.1,1) /\ °
v=0
o
(001) (100
/ 0
(1,22,2)

Figure 2.9: Barycentric coordinates: a triangle defines a coordinate system in the
plane.

combined into polygons in a straightforward way, the corresponding concepts for
triangles are not so obvious; they are the subject of this section.

We will first introduce the concept of a Dirichlet tessellation; this will lead to an
efficient way to deal with triangles. So consider a collection of points p; in the plane.
We are going to construct influence regions around each point in the following way:
Suppose each point is a transmitter for a cellular phone network. As a car moves
through the points p;, its phone should always be using the closest transmitter, We
may think of each transmitter as having an area of influence around it: whenever a car
isina given transmitter’s area, its phone switches to that transmitter. More technically
speaking, we associate with each point p; a tile T consisting of all points p that are
closer to py than to any other point p;. The collection of all these tiles is called the
Dirichlet tessellation of the given point set.> Two points are called neighbors if their
tiles share a common edge. See Figure 2.10.

It is intuitively clear that the tile edges should consist of segments taken from
perpendicular bisectors of neighboring points. This observation directly leads to a
recursive construction which is due to R. Sibson [477]: suppose that we already
constructed the Dirichlet tessellation for a set of points, and we now want to add
one more point pz. First, we determine which of the previously constructed tiles is

3This structure is also known as a Voronoi diagram or Thiessen regions.
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Figure 2.10: Dirichlet tessellations: a point set and its tile edges.

occupied by pg; referring to Figure 2.11, let us assume it is T;. We now draw all
perpendicular bisectors between p;, and its neighbors, thus forming T.. Continuing
in this manner, we can construct the tessellation for an arbitrary number of points.
Each point is thus in the “center” of a tile, most of them finite, but some infinite. It is

Figure 2.11: Dirichlet tessellations: a new point is inserted into an existing tessellation;
its tile is shaded.
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not hard to see that all points with infinite tiles determine the convex hull of the data
points; see Section 2.1 for a definition.

While the preceding method may not be the most efficient one to construct the
Dirichlet tessellation for a set of points, it is very intuitive, and also forms the basis of
the following fundamental theorem. The tile T}, is formed by cutting out parts of p.’s
neighboring tiles. Let A; be the area cut of T}, and let A be the area of T,. Then we
can write py as a barycentric combination of its neighbors (note that §_ A; = A):

PL= ) %pf‘ 2.21)

i

This identity is also due to R. Sibson [477]; in case the summation is over only three
neighbors, it reduces to the barycentric coordinates of Section 2.6.

The Dirichlet tessellation of a set of points determines another fundamental
structure that is connected with the point set: its Delaunay triangulation. If we
connect all neighboring points, we have created a set of triangles that cover the
convex hull of the point set and that have the given points as their vertices; see Figure
2.12. The points with infinite tiles are now connected; they are called boundary points
of the triangulation.

We should mention one problem: while the Dirichlet tessellation is unique, the
Delaunay triangulation may not be. As an example, consider four points forming
a square: either diagonal produces a valid Delaunay triangulation. Four points that
have no unique Delaunay triangulation are called neutral sets; such points are always
cocircular.

Figure 2.12: Delaunay triangulations: a point set with its Dirichlet tessellation (fine
lines) and its Delaunay triangulation (heavy lines).
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Clearly, there are many valid triangulations of a given point set. As it turns out,
the Delaunay triangulation is one of the “nicer” ones. Intuitively, we might say that
a triangulation is “nice™ if it consists of triangles that are close to being equilateral.
If we compare two different triangulations of a point set, we might then compute
the minimal angle of each triangle. The triangulation that has the largest minimal
angle would be labeled the better one. Of all possible triangulations, the Delaunay
triangulation is the one that is guaranteed to produce the largest minimal angle; for
a proof, see Lawson [324]. The Delaunay triangulation is thus said to satisfy the
max—min criterion.

One might also consider the triangulation that satisfies the min-max criterion:
the triangulation whose maximal angle is minimal. These triangulations are not easy
to compute; one reason is that their neutral point sets are fairly complex (see Hansford
[272]).

An important implementation aspect is the type of data structure to be used
for triangulations. Data sets with several million points are not unheard-of, and for
those, an intelligent structure is crucial. Such a structure should have the following
elements:

1. A point collection of (x, y) coordinate pairs,

2. A collection of triangles, each pointing to three elements in the point list and
also to three elements in the triangle collection, namely those that designate a
triangle’s three neighbors.°

These collections are best realized in the form of linked lists, for ease of inserting
and deleting points. This data structure goes back to F. Little, who implemented it in
1978 at the University of Utah.

The major use of triangulations is in piecewise linear interpolation: suppose
that at each data point p; we are given a function value z;. Then we may construct
a linear interpolant—using linear interpolation from Section 2.6—over each of the
triangles. We obtain a faceted, continuous surface that interpolates to all given data.
This surface is not smooth, but it will give a decent idea of the shape of the given
data. One application is in cartography: here, the given data points might be co-
ordinates obtained from satellite readings, and the function values might be their
elevations. Our piecewise linear surface is an approximation to the landscape being
surveyed.

Once function values are involved, it may be advantageous to construct a trian-
gulation that reflects this information. Such triangulations are called data dependent;
see Dyn et al. [163] or Brown [82]. Here, one does not just consider triangles in
the plane, but rather the three-dimensional triangles generated by the data points

(Xks Yo Zk)-

éBoundary triangles may have only one or two neighbors.



30 Chapter 2. Introductory Material

2.8 Function Spaces

This section contains material that will later simplify our work by allowing very
concise notation. Although we shall try to develop our material with an emphasis
on geometric concepts, it will sometimes simplify our work considerably if we can
resort to some elementary topics from functional analysis. Good references are the
books by Davis [122] and de Boor [126].

Let C[a, b] be the set of all real-valued continuous functions defined over the
interval [a, b] of the real axis. We can define addition and multiplication by a constant
forelements f, g € Cla, b] by setting (af + Bg)(t) = af(t) + Bg(t) forallt € [a, b].
With these definitions, we can easily show that C[a, b] forms a linear space over the
reals. The same is true for the sets C¥[g, b], the sets of all real-valued functions defined
over [a, b] that are k-times continuously differentiable. Furthermore, for every k, C**!
is a subspace of C*.

We say that n functions fi, ..., f, € Cla, b] are linearly independent if 3" c; f; =
Oforalltr € [a, b] impliesc; = -+ =¢, = 0.

We mention some subspaces of C[a, b] that will be of interest later. The spaces
P" of all polynomials of degree n are:

Pt =ag+at +ayt* + - +aut"; t€lab)

For fixed n, the dimension of P" is n + 1: each p" € P" is determined uniquely
by the n + 1 coefficients ay, ..., a,. These can be interpreted as a vector in (n + 1)-
dimensional linear space R"*!, which has dimension n + 1. We can also name a basis
for P": the monomials 1,1,1%...,1" are n + 1 linearly independent functions and
thus form a basis.

Another interesting class of subspaces of C[a, b] is given by piecewise linear
functions: leta = tp < t; < -+- <1, = b be a partition of the interval [q, b]. A
continuous function that is linear on each subinterval [#;, f;+] is called a piecewise
linear function. Over a fixed partition of [q, b], the piecewise linear functions form
a linear function space. A basis for this space is given by the hat functions: a hat
function H;(t) is a piecewise linear function with H;(t;) = 1 and H;(t;) = 0if i # j.
A piecewise linear function f with f(r;) = f; can always be written as

f@&y =" fiH;@).

i=0

Figure 2.13 gives an example.

We will also consider linear operators that assign a function Af to a given
function f. An operator A : Cla, b] — Cla, b] is called linear if it leaves linear
combinations invariant:

A(af + Bg) = aAf + BAg: o, BER
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Hy H, H-
a b

Figure 2.13: Hat functions: the piecewise linear function f can be written as f =

Hyg

+ 3H, + 2H,.

An example is given by the derivative operator that assigns the derivative f' to a
given function f: Af = f".

2.9 Exercises

*3,

*4,

. Of all affine maps, shears seem to be the least familiar to most people.” Construct

a matrix that maps the unit square with points (0, 0), (1, 0), (1, 1), (0, 1) to the
parallelogram with image points (0, 0), (1, 0), (2, 1), (1, 1).

In the definition of the variation diminishing property, we counted the crossings
of a polygon with a plane. Discuss the case when the plane contains a whole
polygon leg.

We have seen that affine maps leave the ratio of three collinear points constant,
i.e., they are ratio-preserving. Show that the converse is also true: every ratio-
preserving map is affine.

We defined the convex hull of a point set to be the set of all convex combinations
formed by the elements of that set. Another definition is the following: the
convex hull of a point set is the intersection of all convex sets that contain the
given set. Show that the two definitions are equivalent.

"Recall that Figure 2.4 illustrates a shear.
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Show that the n + 1 functions fi(f) = t';i = 0,..., n are linearly independent.

Our definition of barycentric combinations gives the impression that it needs the
involved points expressed in terms of some coordinate system. Show that this
is not necessary: draw five points on a piece of paper, assign a weight to each
one, and construct the barycenter of your points using a ruler (or compass and
straightedge, if you are more classically inclined).

Remark: For this construction, it is not necessary for the weights to sum
to one. This is so because the geometric construction remains the same if we
multiplied all weights by a common factor. In fact, one may replace the concept
of points (having mass one and requiring barycentric combinations as the basic
point operation) by that of mass points, having arbitrary weights and yielding
their barycenter (with the combined mass of all points) as the basic operation.
In such a setting, vectors would also be mass points, but with mass zero.®

Let a triangulation consist of » boundary points and of i interior points. Show
that the number of triangles is 2i + b — 2.

Fix two distinct points a, b on the x-axis. Let a third point x trace out all of the
x-axis. For each location of x, plot the value of the function ratio(a, x, b), thus
obtaining a graph of the ratio function.

Use the recursive algorithm from Section 2.7 to implement Dirichlet tessella-
tions.

8] was introduced to this concept by A. Swimmer. It was developed by H. Grassmann in

1844,
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The de Casteljau Algorithm

The algorithm described in this chapter is probably the most fundamental one in the
field of curve and surface design, yet it is surprisingly simple. Its main attraction
is the beautiful interplay between geometry and algebra: a very intuitive geometric
construction leads to a powerful theory.

Historically, it is with this algorithm that the work of de Casteljau started in
1959. The only written evidence is in [133] and [134], both of which are technical
reports that are not easily accessible. De Casteljau’s work went unnoticed until W.
Boehm obtained copies of the reports in 1975. From then on, de Casteljau’s name
gained more popularity.

3.1 Parabolas

We give a simple construction for the generation of a parabola; the straightforward
generalization will then lead to Bézier curves. Let by, by, b, be any three points in
E?, and let r € R. Construct

by(1) = (1 = )by + tby,
bi(t) = (1 — £)b; + thy,
b3(1) = (1 — Hbj(r) + tbl(1).
Inserting the first two equations into the third one, we obtain
b(t) = (1 — 1)’by + 2t(1 — t)b, + *b,. (3.1

This is a quadratic expression in  (the superscript denotes the degree), and so bi(r)
traces out a parabola as t varies from — to 4, We denote this parabola by b”. This
construction consists of repeated linear interpolation; its geometry is illustrated in

33
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bo b,

Figure 3.1: Parabolas: construction by repeated linear interpolation.

Figure 3.1. For  between 0 and 1, b*(¢) is inside the triangle formed by by, b;, b,; in
particular, b*(0) = by and b?(1) = b,.
Inspecting the ratios of points in Figure 3.1, we see that

ratio(bg, by, b)) = ratio(b), b, by) = ratio(b}, b§, b}) = 1/(1 — 1).

Thus our construction of a parabola is affinely invariant because piecewise linear
interpolation is affinely invariant; see Section 2.4.

We also note that a parabola is a plane curve, because b?(r) is always a barycentric
combination of three points, as is clear from inspecting (3.1). A parabola is a special
case of conic sections, which will be discussed in Chapter 13.

Finally we state a theorem from analytic geometry, closely related to our parabola
construction. Let a, b, ¢ be three distinct points on a parabola. Let the tangent at b
intersect the tangents at a and c¢ in e and f, respectively. Let the tangents at a and ¢
intersect in d. Then ratio(a, e, d) = ratio(e, b, f) = ratio(d, f, ¢). This three tangent
theorem describes a property of parabolas; the de Casteljau algorithm can be viewed
as the constructive counterpart.

3.2 The de Casteljau Algorithm

Parabolas are plane curves. However, many applications require true space curves.'
For those purposes, the previous construction for a parabola can be generalized to
generate a polynomial curve of arbitrary degree n:

!Compare the comments by P. Bézier in Chapter 1!
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de Casteljau Algorithm
Given: by, b,,...,b, EEandt € R,
Set:
bl (1) = (1 — b} ~'(t) + tb[1 | (1) { ;’:01" g 3.2)

and b?(r) = b;. Then b{j(1) is the point with parameter value ¢ on the Bézier curve b".

The polygon P formed by by, ..., b, is called the Bézier polygon or control
polygon of the curve b".2 Similarly, the polygon vertices b; are called control points
or Bézier points. Figure 3.2 illustrates the cubic case.

Sometimes we also write b"(t) = Blby,..., b,:t] = B[P;t] or, shorter, b" =
Blb, ..., b,] = BP. This notation® defines B to be the (linear) operator that asso-
ciates the Bézier curve with its control polygon. We say that the curve B[by, ..., b,]is
the Bernstein—Bézier approximation to the control polygon, a terminology borrowed
from approximation theory; see also Section 5.10.

.

e
=

0

Figure 3.2: The de Casteljau algorithm: the point b} () is obtained from repeated linear
interpolation. The cubic case n = 3 is shown for: = 1/4.

*In the cubic case, there are four control points; they form a tetrahedron in the 3D case.
This tetrahedron was already mentioned by W. Blaschke [59] in 1923; he called it “osculating
tetrahedron.”

3This notation should not be confused with the blossoming notation used later.
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The intermediate coefficients b}(r) are conveniently written into a triangular
array of points, the de Casteljau scheme. We give the example of the cubic case:

bo

b, b}

by b‘{’ be (3.3)
b; b b’ b

This triangular array of points seems to suggest the use of a two-dimensional array
in writing code for the de Casteljau algorithm. That would be a waste of storage,
however: it is sufficient to use the left column only and to overwrite it appropriately.

For a numerical example, see Example 3.1. Figure 3.3 shows 50 evaluations of
a Bézier curve. The intermediate points b} are also plotted, and connected.

A de Casteljau scheme for a planar cubic and for 1 = J:
01
0-
0] [0]
.2 _]..
(8] [4] [2]
(2] 2] L3
o) 111 [3] [H]
3
0] | 1] : 3 |

Example 3.1: Computing a point on a Bézier curve with the Casteljau algorithm.

3.3 Some Properties of Bézier Curves

The de Casteljau algorithm allows us to infer several important properties of Bézier
curves. We will infer these properties from the geometry underlying the algorithm.,
In the next chapter, we will show how they can also be derived analytically.

Affine invariance. Affine maps were discussed in Section 2.2. They are in the tool
kit of every CAD system: objects must be repositioned, scaled, and so on. An
important property of Bézier curves is that they are invariant under affine maps,
which means that the following two procedures yield the same result: (1) first,
compute the point b"(¢) and then apply an affine map to it; (2) first, apply an affine
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Figure 3.3: The de Casteljau algorithm: 50 points are computed on a quartic curve,
and the intermediate points b} are connected.

map to the control polygon and then evaluate the mapped polygon at parameter
value 1.

Affine invariance is, of course, a direct consequence of the de Casteljau
algorithm: the algorithm is composed of a sequence of linear interpolations
(or, equivalently, of a sequence of affine maps). These are themselves affinely
invariant, and so is a finite sequence of them.

Let us discuss a practical aspect of affine invariance. Suppose we plot a
cubic curve b? by evaluating at 100 points and then plotting the resulting point
array. Suppose now that we would like to plot the curve after a rotation has been
applied to it. We can take the 100 computed points, apply the rotation to each of
them, and plot. Or, we can apply the rotation to the 4 control points, then evaluate
100 times and plot. The first method needs 100 applications of the rotation, while
the second needs only 4!

Affine invariance may not seem to be a very exceptional property for a useful
curve scheme; in fact, it is not straightforward to think of a curve scheme that
does not have it (exercise!). It is perhaps worth noting that Bézier curves do not
enjoy another, also very important, property: they are not projectively invariant.
Projective maps are used in computer graphics when an object is to be rendered
realistically. So if we try to make life easy and simplify a perspective map of
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a Bézier curve by mapping the control polygon and then computing the curve,
we have actually cheated: that curve is not the perspective image of the original
curve! More details on perspective maps can be found in Chapter 13.

Invariance under affine parameter transformations. Very often, one thinks of a
Bézier curve as being defined over the interval [0, 1]. This is done because it
is convenient, not because it is necessary: the de Casteljau algorithm is “blind”
to the actual interval that the curve is defined over because it uses ratios only.
One may therefore think of the curve as being defined over any arbitrary interval
a = u = b of the real line—after the introduction of local coordinates ¢ =
(u — a)/(b — a), the algorithm proceeds as usual. This property is inherited
from the linear interpolation process (2.10). The corresponding generalized de
Casteljau algorithm is of the form:

r _b——u r—1 u—a r—1
bi(u) = h—a ab" (u) + b a ah;+1 (u0). (3.4)

The transition from the interval [0, 1] to the interval [q, b] is an affine map.
Therefore, we can say that Bézier curves are invariant under affine parameter
transformations. Sometimes, one sees the term linear parameter transformation
in this context, but this terminology is not quite correct: the transformation of
the interval [0, 1] to [a, b] typically includes a translation, which is not a linear
map.

Convex hull property. Fort € [0, 1], b"(¢) lies in the convex hull (see Figure 2.3) of
the control polygon. This follows because every intermediate b is obtained as a
convex barycentric combination of previous b~ ! —at no step of the de Casteljau
algorithm do we produce points outside the convex hull of the b;.

A simple consequence of the convex hull property is that a planar control
polygon always generates a planar curve.

The importance of the convex hull property lies in what is known as in-
terference checking. Suppose we want to know if two Bézier curves intersect
each other—for example, each might represent the path of a robot arm, and our
aim is to make sure that the two paths do not intersect, thus avoiding expensive
collisions of the robots. Instead of actually computing a possible intersection,
we can perform a much cheaper test: circumscribe the smallest possible box
around the control polygon of each curve such that it has its edges parallel to
some coordinate system. Such boxes are called minmax boxes, since their faces
are created by the minimal and maximal coordinates of the control polygons.
Clearly each box contains its control polygon, and, by the convex hull property,
also the corresponding Bézier curve. If we can verify that the two boxes do not
overlap (a trivial test), we are assured that the two curves do not intersect. If the
boxes do overlap, we would have to perform more checks on the curves. The
possibility for a quick decision of no interference is extremely important, since
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in practice one often has to check one object against thousands of others, most
of which can be labeled as “no interference” by the minmax box test.*

Endpoint interpolation. The Bézier curve passes through by and b,: we have
b"(0) = by, b*(1) = b,. This is easily verified by writing down the scheme
(3.3) for the cases + = Oand ¢ = 1. In a design situation, the endpoints of a curve
are certainly two very important points. It is therefore essential to have direct
control over them, which is assured by endpoint interpolation.

Designing with Bézier curves. Figure 3.4 shows two Bézier curves. From the in-
spection of these examples, one gets the impression that in some sense the Bézier
curve “mimics” the Bézier polygon—this statement will be made more precise
later. It is why Bézier curves provide such a handy tool for the design of curves:
To reproduce the shape of a hand-drawn curve, it is sufficient to specify a control
polygon that somehow “exaggerates” the shape of the curve. One lets the com-
puter draw the Bézier curve defined by the polygon, and, if necessary, adjusts
the location (possibly also the number) of the polygon vertices. Typically, an
experienced person will reproduce a given curve after two to three iterations of
this interactive procedure.

g‘u\

Figure 3.4: Bézier curves: some examples.

“1t is possible to create volumes (or areas, in the 2D case) that hug the given curve closer
than the minmax box does. See Sederberg et al. [463].
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3.4 The Blossom

Inrecent years, a new way to look at Bézier curves has been developed:; it is called the
principle of blossoming. This principle was independently developed by de Casteljau
[135] and Ramshaw [414], [416]. Other literature includes Seidel [464], [467], [468];
DeRose and Goldman [150]; Boehm [68]; and Lee [328].

We introduce blossoms as a generalization of the de Casteljau algorithm. Written
in a scheme as in (3.3), we have to compute n columns. Our generalization is as
follows: in column r, do not again perform a de Casteljau step for parameter value ¢,
but use a new value ¢,. Restricting ourselves to the cubic case, we obtain:

bo

b, byly]

b, bf[h] bg[h,fz]

b; bi[n] b1, 1] ba[fl,fz;fs]-

(3.5)

The resulting point bg[n, 12, 13] is now a function of three independent variables; thus
it no longer traces out a curve, but a region of 3. This trivariate function b[- -, -]is
called the blossom of the curve b3(2), after L. Ramshaw [414]. The original curve is
recovered if we set all three argumentsequal: t = 1) = f, = 13.

To understand the blossom better, we now evaluate it for several special argu-
ments. We already know, of course, that b[0, 0,0] = by and b[1, 1, 1] = b;. Let us
start with [1;, 15, 13] = [0, 0, 1]. The scheme (3.5) reduces to:

bo
by by
by, by by (3.6)

b3 bg b| b|=b[0,0',1].

Similarly, we can show that b[0, 1, 1] = b,. Thus the original Bézier points can
be found by evaluating the curve’s blossom at arguments consisting only of 0’s and
1’s.

But the remaining entries in (3.3) may also be written as values of the blossom
for special arguments. For instance, setting [#}, 2, #3] = [0, 0, ], we have the scheme

by
b, by

7
b, b, by S

b; by b, by =Db[0,01]
Continuing in the same manner, we may write the complete scheme (3.3) as:

by = b[0,0,0]

b, = b[0,0,1] b[0,0,¢]

b, =b[0,1,1] b[0, 1] b[O,¢ 1]

b; =b[1,1,1] bl 1,1] bt 1] bl 1]

(3.8)
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This is easily generalized to arbitrary degrees, where we can also express the
Bézier points as blossom values:

b; = b[0"~?, 1], (3.9)

where ) means that ¢ appears r times as an argument. For example, b[0", £?,
197 = b[0, 1, 1].

The de Casteljau recursion (3.2) can now be expressed in terms of the blossom
b[]:

b[o(n—r—i), r(r)’ l(f)] — (l _ !)b[o(n—r—Hl)' r(r—l), 1(;‘)]
+ tb[0" 70 (=D 1Dy, (3.10)

The point on the curve is given by b[#™].

We next note that it does not matter in which order we use the ¢; for the blossom’s
evaluation. So we have, again for the cubic case, that b[t, 1;, ;] = bl#, 13, 11], etc.
A proof of this statement is obtained using Figure 2.7: point ¢ in that figure may be
written as the value of a quadratic blossom: ¢ = b[t, s] = b[s, t]. The general result
follows from this special instance.

Functions whose values do not depend on the order of their arguments are
called symmetric; thus a blossom is a symmetric polynomial function of n variables.
Every polynomial curve has a unique blossom associated with it—it is a symmetric
polynomial of  variables, mapping R" into E>.

The blossom has yet another important property. If the first argument of the
blossom is a barycentric combination of two (or more) numbers, we may compute
the blossom values for each argument and then form their barycentric combination:

blar + Bs.t2,....t,] = ablr. f, ..., t.] + Bbls. 15, ..., Ll a+pg=1 (31D

Equation (3.11) states that the blossom b is affine with respect to its first argument,
but it is affine for any of the remaining arguments as well. This is the reason why the
blossom is called multiaffine. Blossoms are multiaffine since they can be obtained by
repeated steps of the de Casteljau algorithm. Each of these steps consists of linear
interpolation, an affine map itself; see (2.5).

Knowing that the blossom is uniquely associated with the curve, we could
have used (3.11) to define the de Casteljau algorithm: we just observe that 1 =
(1 —1=*0+ =1, and now (3.11) yields (3.10).

We may also consider the blossom of a Bézier curve that is not defined over
[0, 1] but over the more general interval [a, b]. Proceeding exactly as above—but now
utilizing (3.4)—we find that the Bézier points b; are found as the blossom values

b; = b[a™ ", b (3.12)

Thus acubic over u € [a, b] has Bézier points b[a, g, a], bla, a, b, bla, b, b], b[b, b, b].
If the original Bézier curve was defined over [0, 1], the Bézier points of the one



42 Chapter 3. The de Casteljau Algorithm

corresponding to [a, b] are simply found by four calls to a blossom routine! See also
Figure 4.5.

3.5 Implementation

The header of the de Casteljau algorithm program is:

float decas(degree,coeff,t)
/* uses de Casteljau to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.

Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

Output: coordinate value.

*/

This procedure invites several comments. First, we see that it requires the use of
an auxiliary array coeffa. Moreover, this auxiliary array has to be filled for each
function call! So on top of the already high computational cost of the de Casteljau
algorithm, we add another burden to the routine, keeping it from being very efficient.

A faster evaluation method is given at the end of the next chapter.
To plot a Bézier curve, we would then call the routine several times:

void bez_to_points(degree,npoints,coeff,points)

/* Converts Bezier curve into point sequence. Works on
one coordinate only.
Input: degree: degree of curve.
npoints: # of coordinates to be generated. (counting
from 0!)
coeff: coordinates of control polygon.
Output: points: coordinates of points on curve.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/

The last subroutine has to be called once for each coordinate, i.e., two or three
times. The main program decasmain.c on the enclosed disk gives an example of
how to use it and how to generate postscript output.

3.6 Exercises

1. Suppose a planar Bézier curve has a control polygon that is symmetric with
respect to the y-axis. Is the curve also symmetric with respect to the y-axis? Be
sure to consider the control polygon (—1,0), (0, 1), (1, 1), (0, 2), (0, 1), (=1, 1),
(0,2), (0, 1), (1, 0). Generalize to other symmetry properties.
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Use the de Casteljau algorithm to design a curve of degree four that has its
middle control point on the curve. More specifically, try to achieve

b, =bg (%)

Five collinear control points are a solution; try to be more ambitious!
The de Casteljau algorithm may be formulated as

Blbg,...,b,;t] = (1 — )Blby,..., b,—1;t] + tB[by,..., by;t].

Show that the computation count is exponential (in terms of the degree) if you
implement such a recursive algorithm in a language such as C.

Show that every nonplanar cubic in E* can be obtained as an affine map of the
standard cubic (see Boehm [64]):

t
x)=|

3

Write an experimental program that replaces (1 — ¢) and ¢ in the recursion (3.2)
by [1 — f(#)] and f(r), where f is some “interesting” function. Change the
routine decas accordingly and comment on your results.

Rewrite the routine decas to handle blossoms. Evaluate and plot for some
“interesting” arguments.

Experiment with the data set outline_2D.dat on the floppy: try to recapture
its shape using one, two, and four Bézier curves. These curves should have
decreasing degrees as you use more of them.

Then repeat the previous problem with outline_3D.dat. This data set is three-
dimensional, and you will have to use (at least) two views as you approximate
the data points. The points, by the way, are taken from the outline of the sole of
a high-heeled shoe.



Chapter 4

The Bernstein Form of a
Bézier Curve

Bézier curves can be defined by a recursive algorithm, which is how de Casteljau first
developed them. It is also necessary, however, to have an explicit representation for
them; this will facilitate further theoretical development considerably.

4.1 Bernstein Polynomials

We will express Bézier curves in terms of Bernstein polynomials, defined explicitly
by

Bl(1t) = (T) A1 — @1

where the binomial coefficients are given by

n\ _ [ aoy if 0=i=n
i 0 else.

There is a fair amount of literature on these polynomials. We cite just a few: Bernstein
[47], Lorentz [340], Davis [122], and Korovkin [314]. An extensive bibliography is
given in Gonska and Meier [234].

Before we explore the importance of Bernstein polynomials to Bézier curves,
let us first examine them more closely. One of their important properties is that they
satisfy the following recursion:

B!(t) = (1 — B! (1) + 1B/ (1) 4.2)
with
Byty=1 4.3)

44
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and
B;?(r} =0 forj€&{0,...,n} (4.4)

The proof is simple:

BI(1) = (’:) f(1— 1y

= (" B l):f(l — i+ ('f_ 1):*’(1 —
i i—1

= (1 =B '(t) + B! \(1).

Another important property is that Bernstein polynomials form a partition of
unity:

Y Bl =1. (4.5)
j=0

This fact is proved with the help of the binomial theorem:

n n
l=0+0-D)"= Z (’T)H’(l )i = ZB;?(I).
im0 M j=0

Figure 4.1 shows the family of the five quartic Bernstein polynomials. Note that the
B! are nonnegative over the interval [0, 1].

We are now ready to see why Bernstein polynomials are important for the devel-
opment of Bézier curves. The intermediate de Casteljau points b can be expressed
in terms of Bernstein polynomials of degree r:

S Y L B
j=0
B} Bj
Bf .4 Bj

Figure 4.1: Bernstein polynomials: the quartic case.
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This equation shows exactly how the intermediate point b! depends on the given
Bézier points b;. Figure 3.3 shows how these intermediate points form Bézier curves
themselves.! The main importance of (4.6) lies, of course, in the case r = n. The
corresponding de Casteljau point is the point on the curve and is given by

b"(r) = bj(1) = Zb B (0). 4.7
j=0

We still have to prove (4.6). To that end, we use the recursive definition (3.2) of
the b} and the recursion for the Bernstein polynomials (4.2) and (4.4) in an inductive
proof:

b (1) = (1 = )b] ="' () + b (1)

i+r=1 i+r
=(1=0 Y BBl O+t > bBIL 0.
j=i =i+l

Reindexing and invoking (4.4), we can rewrite this as
i+r i+r
bj(H)=(1 =1 b;BZ}(1)+1Y b;BZl (1)
j=i j=i
i+r

=Y bl = nB;ZN@) + B (1)),
j=i

Application of (4.2) then completes the proof. Note that (4.2) also defines Bjj and B,
since B"|! = BI™! = 0 by (4.4).
With the intermediate points b] at hand, we can write a Bézier curve in the form

n=r

(1) =Y b (B (). 4.8)

i=0

This is to be interpreted as follows: First, compute r levels of the de Casteljau
algorithm with respect to ¢. Then, interpret the resulting points b (¢) as control points
of a Bézier curve of degree n — r and evaluate it at r.

4.2 Properties of Bézier Curves

Many of the properties in this section have already appeared in the previous chapter.
They were derived using geometric arguments. We shall now rederive several of

I'We can also use Figure (3.2) to provide an example: the point b? lies on the Bézier curve
determined by by, by, bs.
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them, using algebraic arguments. If the same heading is used here as in Chapter 3,
the reader should look there for a complete description of the property in question.

Affine invariance. Barycentric combinations are invariant under affine maps. There-
fore, (4.5) gives the algebraic verification of this property. We note again that
this does not imply invariance under perspective maps!

Invariance under affine parameter transformations. Algebraically, this property
reads

; biB!(1) = Zﬂ: b;B" (: - z) ‘ 4.9)

Convex hull property. This follows, since fort € [0, 1], the Bernstein polynomials
are nonnegative. They sum to one as shown in (4.5).

Endpoint interpolation. This is a consequence of the identities

B}0) = 8,

4,
Bi(1) = &;, (4.10)

and (4.5). Here, §;; is the Kronecker delta function: it equals one when its
arguments agree, and zero otherwise.

Symmetry. Looking at the examples in Figure 3.4, it is clear that it does not matter
if the Bézier points are labeled by, by, ..., b,orb,, b,_1, ..., by. The curves that
correspond to the two different orderings look the same; they differ only in the
direction in which they are traversed. Written as a formula:

> bBity =Y b, Bi(1 - 1) @.11)
j=0

Jj=0
This follows from the identity
Bj(t) = B,_;(1 — 1), (4.12)
which follows from inspection of (4.1). We say that Bernstein polynomials are

symmetric with respectto f and 1 — 1.

Invariance under barycentric combinations. The process of forming the Bézier
curve from the Bézier polygon leaves barycentric combinations invariant. For
a + B = 1, we obtain

> (abj + Be)B(t) = a Y _b;B}(1) + B _ ¢;B)(0). (4.13)
j=0 j=0

Jj=0

In words: we can construct the weighted average of two Bézier curves either by
taking the weighted average of corresponding points on the curves, or by taking
the weighted average of corresponding control vertices and then computing the
curve.
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This linearity property is essential for many theoretical purposes, the most
important one being the definition of tensor product surfaces in Chapter 15.

Linear precision. The following is a useful identity:
i J gy =
ZBi(1) =1, (4.14)
=0 "

which has the following application: Suppose the polygon vertices b; are uni-
formly distributed on a straight line joining two points p and q:

J J ,
b,=1(1—= + =q; =0..., X
J ( R)P nq J n

The curve that is generated by this polygon is the straight line between p and q,
i.e., the initial straight line is reproduced. This property is called linear precision.?

Pseudo-local control. The Bernstein polynomial B! has only one maximum and
attains it at £ = i/n. This has a design application: if we move only one of the
control polygon vertices, say, b;, then the curve is mostly affected by this change
in the region of the curve around the parameter value i /n. This makes the effect
of the change reasonably predictable, although the change does affect the whole
curve. As a rule of thumb (mentioned to me by P. Bézier), the maximum of each
B! is roughly %; thus a change of b; by three units will change the curve by one
unit.

4.3 The Derivative of a Bézier Curve

The derivative of a Bernstein polynomial B} is obtained as

d n _ d/n i o=
~Bl(0) —(5):(1 7

dr
in! i=lpq _ am—i (n—in! ir1 _ pn—i—l1
BT R TP TS
— H(n B l}l i=1 — n—i __ n(n — l)! i — n—i—1
T G-Dn-b =9 f!(n—i—l)!r(l &
=n[B/Z'() - B} '(1)].
Thus
%Bﬁ‘(:) =n (BNt - B '(0)]. (4.15)

2If the points are not uniformly spaced, we will also recapture the straight line segment.
However, it will not be linearly parametrized.
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We can now determine the derivative of a Bézier curve b”:
d n - n— n—
Y@ =) [BiZi() - B 0] by,
j=0
Because of (4.4), this can be simplified to

d n ~ n—1 -
GO =nd_ BIZl0b; —nd B 0b,
i=1 j=0
and now an index transformation of the first sum yields
d n—1 n—1
GV O =n) B (b1 —nYy B (b,
j=0 j=0
and finally
d n—1
§b"(r} =n Z(bj+1 —b)B} (1),
j=0
The last formula can be simplified somewhat by the introduction of the forward
difference operator A:

ﬂbj—_—bj+1 _b_,'. (4[6)
We now have for the derivative of a Bézier curve:
Eb"r = "_IAb-B”" ), Ab;ER® .17
dr ( } - HZ% JPj (f s I s . )
=

The derivative of a Bézier curve is thus another Bézier curve, obtained by differencing
the original control polygon. However, this derivative Bézier curve does not “live”
in E* any more! Its coefficients are differences of points, i.e., vectors, which are
elements of R?. To visualize the derivative curve and polygon in E?, we can construct
apolygon in E? that consists of the pointsa+ Aby, ..., a+ Ab,_,. Here ais arbitrary;
one reasonable choice is a = 0. Figure 4.2 illustrates a Bézier curve and its derivative
curve (with the choice a = 0). This derivative curve is sometimes called a hodograph.
For more information on hodographs, see Forrest [212], Bézier [53], or Sederberg
and Wang [462].

4.4 Higher Order Derivatives

To compute higher derivatives, we first generalize the forward difference operator
(4.16): the iterated forward difference operator A" is defined by

Arh_j=ﬁr_]bj+] _Ar_lbj. {418)
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O/—"EP}/’J

U

] b,

4 6

Figure 4.2: Derivatives: a Bézier curve and its first derivative curve (scaled down by
a factor of three). Note that this derivative curve does not change if a translation is
applied to the original curve.

We list a few examples:
A%; = b;
A'b; = by —b;
A%b; = bisz = 2biay + by
A’b; = b3 — 3bisy + 3biy — by,

The factors on the right-hand sides are binomial coefficients, forming a Pascal-like
triangle. This pattern holds in general:

Ab; =) (;)(—1)’%!—”. (4.19)

j=0

We are now in a position to give the formula for the »™ derivative of a Bézier
curve:

dr n — HI — r n—r
0= G ;a b;BY " (1). (4.20)

The proof of (4.20) is by repeated application of (4.17).



4.4. Higher Order Derivatives 51

Figure 4.3: Endpoint derivatives: the first and second derivative vectors att = 0 are
multiples of the first and second difference vectors at by,

Two important special cases of (4.20) are given by r = 0 and 1 = 1. Because of
(4.10) we obtain

da ., _ n! R
d:’b 0) = (n_r)!A by (4.21)
and
. ,
@b (H = = r)]a by-,. (4.22)

Thus the r™ derivative of a Bézier curve at an endpoint depends only on the r + 1
Bézier points near (and including) that endpoint. For r = 0, we get the already
established property of endpoint interpolation. The case r = 1 states that by and
b, define the tangent at + = 0, provided they are distinct.> Similarly, b,—; and b,
determine the tangent at + = 1. The cases r = 1, r = 2 are illustrated in Figure 4.3.

If one knows all derivatives of a function at one point, corresponding to r = 0,
say, one can generate its Taylor series. The Taylor series of a polynomial is just that
polynomial itself, in the monomial form:

"1 . .
= — D J
x(1) -Ezt, j!x (0!,
j
Utilizing (4.21), we have

n

b =3 (j)afb(, 0, (4.23)

Jj=0

The monomial form should be avoided wherever possible; it is very unstable for
floating-point operations.

3In general, the tangent at by is determined by by and the first b; that is distinct from by.
Thus the tangent may be defined even if the tangent vector is the zero vector.
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4.5 Derivatives and the de Casteljau Algorithm

Derivatives of a Bézier curve can be expressed in terms of the intermediate points
generated by the de Casteljau algorithm:

R
ar> = (n—r)!

This follows since summation and taking differences commute:

A"bg " (7). (4.24)

n—1

n—1 n n—1
D Ab;=>"b; = b;=A> b, (4.25)
i=0 i=1 j=0

=0

Using this, we have

dr " — n! — r . H—=r
Fh (= n—rn)! jE:DA bij (t) (4.26)
n! A’ n—r B"_r
= EFU: b;B7 (1) 4.27)
N ) (4.28
(n—rt= 0 7 %)

The first and the last of these three equations suggest two different ways of computing
the r' derivative of a Bézier curve: for the first method (4.26), compute all r forward
differences of the control points, then interpret them as a new Bézier polygon of degree
n — r and evaluate it at 7.

The second method, using (4.28), computes the r™ derivative as a “by-
product” of the de Casteljau algorithm. If we compute a point on a Bézier curve
using a triangular arrangement as in (3.3), then for any n — r, the corresponding b "
form a column (with r + 1 entries) in that scheme. To obtain the ™ derivative at 1,
we simply take the r™ difference of these points and then multiply by the constant
n!/(n — r)l. In some applications (curve/plane intersection, for example), one needs
not only a point on the curve, but its first and/or second derivative at the same time.
The de Casteljau algorithm offers a quick solution to this problem.

A summary of both methods: to compute the r™ derivative of a Bézier curve,
perform r difference steps and n — r evaluation steps. It does not matter in which
order we perform these two steps.

The case r = 1 is important enough to warrant special attention:

d _
ab"(:) = n[b}"'(1) — b (1)]. (4.29)

The intermediate points b} ™' and b?™! thus determine the tangent vector at b"(z),
which is illustrated in Figures 3.1 and 3.2.

Two ways to compute the tangent vector of a Bézier curve are demonstrated in
Example 4.1.
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To compute the derivative of the Bézier curve from Example 3.1, we could
form the first differences of the control points and evaluate the corresponding
quadratic curve at 7 = 3:
[0
| 2
8

[ 4

0 I

[ —4 2 3

| 2 -1 0
Alternatively, we could compute the difference b7 — b?:

HEHNH

In both cases, the result needs to be multiplied by a factor of 3.

Example 4.1: Two ways to compute derivatives.

4.6 Subdivision

A Bézier curve b” is usually defined over the interval (the domain) [0, 1], but it can
also be defined over any interval [0, c]. The part of the curve that corresponds to [0, ¢]
can also be defined by a Bézier polygon, as illustrated in Figure 4.4. Finding this
Bézier polygon is referred to as subdivision of the Bézier curve.

The unknown Bézier points ¢; are found without much work if we use the
blossoming principle from Section 3.4. There, (3.12) gave us the Bézier points of a
polynomial curve that is defined over an arbitrary interval [a, b]. We are currently
interested in the interval [0, c], and so our Bézier points are:

¢; = b[0" ", ).

Thus each ¢; is obtained by carrying out ¢ de Casteljau steps with respect to c, in
nonblossom notation:

¢; = bj(c). (4.30)

This formula is called the subdivision formula for Bézier curves.

Thus it turns out that the de Casteljau algorithm not only computes the point
b”(c), but also provides the control vertices of the Bézier curve corresponding to the
interval [0, ¢]. Because of the symmetry property (4.11), it follows that the control
vertices of the part corresponding to [c, 1] are given by the b;’. Thus, in Figures 3.1
and 3.2, we see the two subpolygons defining the arcs from b"(0) to b"(c) and from
b"(c) to b"(1).
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by

/"' c3

C1

bO co bs

Figure 4.4: Subdivision: two Bézier polygons describing the same curve: one (the b;)
is associated with the parameter interval [0, 1], the other (the ¢;) with [0, c].

Figure 4.5 shows the blossom notation if we subdivide at two parameter values
¢ and d simultaneously. This is a direct consequence of (3.12).

Instead of subdividing a Bézier curve, we may also extrapolate it: in that case,
we might be interested in the Bézier points d; corresponding to an interval [1, d].
They are given by

i= b[l("_j), d(j)] = bf;_j(d).

It should be mentioned that extrapolation is not a numerically stable process and
should be avoided for large values of 4.

Subdivision for Bézier curves, although mentioned by de Casteljau [134], was
rigorously proved by E. Staerk [478]. Our blossom development is due to Ramshaw
[414] and de Casteljau [135].

Subdivision may be repeated: we may subdivide a curve at 1 = 1/2, then split
the two resulting curves at 1 = 1/2 of their respective parameters, and so on. After k
levels of subdivisions, we end up with 2 Bézier polygons, each describing a small arc
of the original curve. These polygons converge to the curve if we keep increasing k,
as was shown by Lane and Riesenfeld [319]. We will prove a more general statement
in Section 10.7.

Convergence of this repeated subdivision process is very fast (see Cohen and
Schumaker [112] and Dahmen [120]), and thus it has many practical applications.
We shall discuss here the process of intersecting a straight line with a Bézier curve:
Suppose we are given a planar Bézier curve and we wish to find intersection points
with a given straight line L, if they exist.

If the curve and L are far apart, we would like to be able to flag such configurations
as quickly as possible, and then abandon any further attempts to find intersection
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0 c d 1
Figure 4.5: Generalized subdivision: evaluation of a quadratic at two parameter val-

ues ¢ and d subdivides it into three segments. Its Bézier points are shown in blossom
notation.

points. To do this, we create the minmax box of the control polygon: this is the smallest
rectangle, with sides parallel to the coordinate axes, that contains the polygon. It is
found very quickly, and by the convex hull property of Bézier curves, we know that
it also contains the curve. Figure 4.6 gives an example.

Having found the minmax box, it is trivial to determine if it interferes with L:
if not, we know we will not have any intersections. This quick test is called trivial
reject.

Now suppose the minmax box does interfere with L. Then there may be an
intersection. We now subdivide the curve at t = 1/2 and carry out our trivial reject
test for both subpolygons.* If the outcome is still inconclusive, we repeat. Eventually
the size of the involved minmax boxes will be so small that we can simply take their
centers as the desired intersection points.

“The choice t = 1/2 is arbitrary, but works well. One might try to find better places to
subdivide, but it is most likely cheaper to just perform a few more subdivisions instead.
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Figure 4.6: The minmax box of a Bézier curve: the smallest rectangle that contains the
curve’s control polygon.

The routine intersect employs this idea, and a little more: as we keep subdivid-
ing the curve, zooming in toward the intersection points, the generated subpolygons
become simpler and simpler in shape. If the control points of a polygon are almost
collinear, we may replace them by a straight line. We could then intersect this straight
line with L in order to find an intersection point. The extra work here lies in deter-
mining if a control polygon is “linear” or not. In our case, this is done by the routine
checkflat. Figure 4.7 gives two examples. Note how the subdivision process finds
all intersection points in the bottom example. These points will not, however, be
recorded by increasing values of .

4.7 Blossom and Polar

After the first de Casteljau step with respect to a parameter value ¢#,, the resulting
by(t1), ..., bl_ (t;) may be interpreted as a control polygon of a curve p, (¢) of degree
n — 1. In the blossoming terminology from Section 3.4, we can write:

pi(t) = b[t, 171,

Invoking our knowledge about derivatives, we have:

—_

n—

pi(t) = [(1 —t)b; + 1'lbf+l]Bi‘n&l(l‘)
i=0
n—1 -
= 2 [ = b+ by —BiO]BIO + b8 0
0 i=0

n—1 n—1
=(n ~ 0 b — biIB (0 + Y blHB! ().
i=0

i=0
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y=0— %ﬁ/ —
/]

Figure4.7: Curveintersection by subdivision: two examples are shown. Intersection is
with the x-axis in both cases. Note the clustering of minmax boxes near the intersection
points.

Therefore,
_ n—td
pi(t) = b(r) + ¥ drb(r). (4.31)

The polynomial p, is called first polar of b(t) with respect to ;. Figure 4.8 illustrates
the geometric significance of (4.31): the tangent at any point b(z) intersects the polar
pi() at py(z). Keep in mind that this is not restricted to planar curves, but is equally
valid for space curves!

For the special case of a (nonplanar) cubic, we may then conclude the following:
the polar p; lies in the osculating plane (see Section 11.2) of the cubic at b(t;). If
we intersect all tangents to the cubic with this osculating plane, we will trace out the
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Figure 4.8: Polars: the polar p,(r) with respect to 1, = 0.4 is intersected by the tangents
of the given curve b(z).

polar. We can also conclude that for three different parameters t,, 1, 13, the blossom
value b[1y, 1, 13] is the intersection of the corresponding osculating planes.

Another special case is given by b[0, #"~]: this is the polyromial defined by
by, ..., b,—y. Similarly, b[1, #" "] is defined by by, ..., b,,. This observation may be
used for a proof of (3.9).

Returning to the general case, we may repeat the process of forming polars, thus
obtaining a second polar p;2(t) = b1}, 1, £"~?], etc. We finally arrive at the n™®
polar, which we have already encountered as the blossom b[zy, ..., 1,] of b(r). The
relationship between blossoms and polars was observed by Ramshaw in [416]. The
above geometric arguments are due to S. Jolles, who developed a geometric theory
of blossoming as early as 1886 in [299].

Section 3.4 provided a way to generate the blossom of a curve recursively. We
may also find explicit formulas for it; here is the case of a cubic:

SW. Boehm first noted the relevance of Jolles’s work to the theory of blossoming.
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b1y, 12, 13]

= (1 — £;)b[0, 15, 3] + 1;b[1, 1, 13]

= (1= 1)[(1 = 2)b[0,0, 23] + 1b[0, 1, 13]] + 1, [(1 — £2)b[O, 1, 13]
+6b[1, 1,5]] = b[0,0,0](1 — #)(1 — £)(1 — 13)
+b[0,0, 11[(1 — 1)(1 — 12)13 + (1 — )11 — 13) + 13 (1 — 12)(1 — 13)]
+b[0, 1, 1[t12(1 = 13) + 1,(1 — 1)13 + (1 = 11)115]

+b[1, 1, 1]t 1515.

For each step, we have exploited the fact that blossoms are multiaffine.

Note how we recover the cubic Bernstein polynomials for t; = t, = f3. The
preceding development would hold for parameter intervals other than [0, 1] equally
well, because of the invariance under affine parameter transformations.

We should add that not every multivariate polynomial function can be interpreted
as the blossom of a Bézier curve. To qualify as a blossom, the function must be both
symmetric and multiaffine.

4.8 The Matrix Form of a Bézier Curve

Some authors (Faux and Pratt [199], Mortenson [364], Chang [96]) prefer to write
Bézier curves and other polynomial curves in matrix form. A curve of the form

x(t) = Y ¢Cilt)
j=0

can be interpreted as a dot product:

Co(t)
x(1) = [ c ... €y ]
Gu(1)
One can take this a step further and write
Co(1) Moy ... Mon 10
: = : : Fo (4.32)
Cau(1) Mpp ... My "

The matrix M = {m;;} describes the basis transformation between the basis polyno-
mials C;(1) and the monomial basis t'.
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If the C; are Bernstein polynomials, C; = B, the matrix M has elements

mij = (—1)"'*’(;‘) (f) (4.33)

a simple consequence of (4.23).
We list the cubic case explicitly:

I -3 3 -1
1o 3 -6 3
M=10 0o 3 -3
0 0 0 1

The matrix form (4.32) does not describe an actual Bézier curve; it is rather
the monomial form, which is numerically unstable and should be avoided where
accuracy in computation is of any importance. See the discussion in Section 24.3 for
more details.

4.9 Implementation

First, we provide a routine that evaluates a Bézier curve more efficiently than decas
from the last chapter. It will have the flavor of Horner’s scheme for the evaluation of
a polynomial in monomial form. To give an example of Horner’s scheme, also called
nested multiplication, we list the cubic case:

¢y + te, + 1Pcr + ey = ¢ + tleg + 1(ey + 163)].

A similar nested form can be devised for Bézier curves; again, the cubic case:

s ([ (o Qe (v

where s = 1 — . Recalling the identity

({*)zLﬂ(_n ); i>0
i i i—1

we arrive at the following program (for the general case):

float hornbez(degree,coeff,t)

/* uses a Horner-like scheme to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.

Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

Output: coordinate value.

*/
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To use this routine for plotting a Bézier curve, we would replace the call to decas in
bez_to_points by an identical call to hornbez. Replacing decas with hornbez
results in a significant savings of time: we do not have to save the control polygon in
an auxiliary array; also, hornbez is of order n, whereas decas is of order n’.

This is not to say, however, that we have produced super-efficient code for
plotting points on a Bézier curve. For instance, we have to call hornbez once for
each coordinate, and thus have to generate the binomial coefficients n_choose_i
twice. This could be improved by writing a routine that combines the two calls. A
further improvement could be to compute the sequence of binomial coefficients only
once, and not over and over for each new value of 7. All these (and possibly more)
improvements would speed up the program, but would be less modular and thus less
understandable. For the code in this book, modularity is placed above efficiency (in
most cases).

We also include the programs to convert from the Bézier form to the monomial
form:

void bezier_to_power(degree,bez,coeff)
/*Converts Bezier form to power (monomial) form. Works on
one coordinate only.

Input: degree: degree of curve.
bez: coefficients of Bezier form
Output: coeff: coefficients of power form.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/
The conversion program internally calls iterated forward differences:

void differences(degree,coeff,diffs)
/*
Computes all forward differences Delta”i(b_0).
Has to be called for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: length (from 0) of coeff.
coeff: array of coefficients.
Output: diffs: diffs[il= Delta"i(coeff[0]).
*/

Once the power form is found, it may be evaluated using Horner’s scheme:

float horner(degree,coeff,t)
/*
uses Horner’s scheme to compute one coordinate
value of a curve in power form. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.
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Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

Output: coordinate value.

*/
The subdivision routine:
void subdiv(degree,coeff,weight,t,bleft,bright,wleft,wright)

/*

subdivides ratbez curve at parameter value t.

Input: degree: degree of Bezier curve
coeff: Bezier points (one coordinate only)
weight: weights for rational case
t: where to subdivide

Output:

bleft,bright: left and right subpolygons
wleft,wright: their weights

Note: 1. For the polynomial case, set all entries in weight to 1.
2. Ordering of right polygon bright is reversed.
*/

Actually, this routine computes a more general case than is described in this chapter;
namely, it computes subdivison for a rational Bézier curve. This will be discussed
later; if the entries in weight are all unity, then wlett and wright will also be unity
and can be safely ignored in the context of this chapter.

Now the routine to intersect a Bézier curve with a straight line (the straight line
is assumed to be the y-axis):

void intersect(bx,by,w,degree,tol)

/* Intersects Bezier curve with x-axis by adaptive subdivision.
Subdivision is controlled by tolerance tol. There is
no check for stack depth! Intersection points are not found in
‘natural’ order. Results are written into file outfile.

Input: bx,by,w: rational Bezier curve

degree: its degree

tol: accuracy for results
Qutput: intersection points, written into a file
*/

This routine (again covering the rational case as well) uses a routine to check if
a control polygon is flat:

int check_flat(bx,by,degree,tol)
/* Checks if a polygon is flat. If all points
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are closer than tol to the connection of the
two endpoints, then it is flat. Crashes if the endpoints
are identical.

Input: bx,by, degree: the Bezier curve

tol: tolerance

Output: 1 if flat, 0 else.

*/

410 Exercises

*4.

P1.
P2.

P3.

Consider the cubic Bézier curve given by the planar control points

TR

Att = 1/2, this curve has a cusp: its first derivative vanishes and it shows a sharp
corner. You should verify this by a sketch. Now perturb the x-coordinates of b;
and b, by opposite amounts, thus maintaining a symmetric control polygon.
Discuss what happens to the curve.

. Show that a nonplanar cubic Bézier curve cannot have a cusp. Hint: use the fact

that b} !, b7~!, b} are identical when we evaluate at the cusp.

. Show that the Bernstein polynomial B! attains its maximum at t = i/n. Find

the maximum value. What happens for large n?

Show that the Bernstein polynomials B form a basis for the linear space of all
polynomials of degree n.

Compare the run times of decas and hornbez for curves of various degrees.

Use subdivision to create smooth fractals. Start with a degree four Bézier curve.
Subdivide it into two curves and then perturb the middle control point b, for each
of the two subpolygons. Continue for several levels. Try to perturb the middle
control point by a random displacement and then by a controlled displacement.
Literature on fractals: [30], [346].

Use subdivision to approximate a high-order (n > 2) Bézier curve by a collection
of quadratic Bézier curves. You will have to write a routine that determines if a
given Bézier curve may be replaced by a quadratic one within a given tolerance.
Literature on approximating higher order curves by lower order ones: [290],
[294].



Chapter 5

Bézier Curve Topics

5.1 Degree Elevation

Suppose we were designing with Bézier curves as described in Section 3.3, trying
to use a Bézier curve of degree n. After we modify the polygon a few times, it may
turn out that a degree n curve does not possess sufficient flexibility to model the
desired shape. One way to proceed in such a situation is to increase the flexibility
of the polygon by adding another vertex to it. As a first step, one might want to
add another vertex, yet leave the shape of the curve unchanged—this corresponds to
raising the degree of the Bézier curve by one. We are thus looking for a curve with
control vertices by, ..., b} that describes the same curve as the original polygon
by, ..., b,,.

Using the identities (5.32) to (5.34)—each easy to prove—we rewrite our given
curve as X(¢) = (1 — H)x(t) + x(1), or

n

n+1—i i+l
D=y ————bB"(+Y ——bB 1)
X(1) Zuj e A0 §n+l B (1)
The upper limit of the first sum may be extended to n + 1 since the corresponding
term is zero. The summation of the second sum may be shifted to the limits 1 and
n+ 1, and then changed to the lower limit O since only a zero term is added. We thus
have

n+1 n+l1

n+1—i i
=y ———bB" (1) + E — b, B0
x(1) ;n_]_] iBi (1) ;=o”+]!|' )
Combining both sums and comparing coefficients yields the desired result:
mo P S P
b; ”+1bi—1+(l n+1)b” i=0,..., n+ 1. (5.1)

Thus the new vertices b}” are obtained from the old polygon by piecewise linear
interpolation at the parameter values i/(n + 1). It follows that the new polygon EP

64
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1
bs = b{.

Figure 5.1: Degree elevation: both polygons define the same (degree three) curve.

lies in the convex hull of the old one. Figure 5.1 gives an example. Note how ZEP is
“closer” to the curve BP than the original polygon P.

While our proof is based on straightforward algebraic manipulations, a more
elegant proof is provided through the use of blossoms. If we had the blossom
bt ..., t,+1] of the degree-elevated curve, then we could compute its control
polygon using (3.9). After some experimentation (try the case n = 2!), it is easy to
see that the blossom is given by

1
bVt tys] = T D bty by It (52)
=0
Here, the notation b[t,, ..., #,4+1lt;] indicates that the argument ¢; is omitted from
b(t, ..., t,+1]. The control points are now given by application of (3.9):

b;r+l — bfl)[o(n+l—f)' 1(()]

Inspection of all terms that now arise in (5.2) reveals that the point b;—; appears i
times and that the point b; appears n + 1 — i times, thus re-proving our previous
result.!

Degree elevation has important applications in surface design: for several algo-
rithms that produce surfaces from curve input, it is necessary that these curves be of
the same degree. Using degree elevation, we may achieve this by raising the degree
of all input curves to the one of the highest degree. Another application lies in the
area of data transfer between different CAD/CAM or graphics systems: Suppose you
have generated a parabola (i.e., a degree two Bézier curve), and you want to feed it
into a system that only knows about cubics. All you have to do is degree elevate your
parabola.

! Again, work out the example n = 2 to build your confidence in this technique!
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5.2 Repeated Degree Elevation

The process of degree elevation assigns a polygon ZEP to an original polygon P. We
may repeat this process and obtain a sequence of polygons P, EP, E?P, etc. After r
degree elevations, the polygon Z"P has the vertices by”, ..., b\") , and each b{" is
explicitly given by

b = y b-("_) -(-EL) (5.3)
200) 77

This formula is easily proved by induction.

Let us now investigate what happens if we repeat the process of degree elevation
again and again. As we shall see, the polygons E"P converge to the curve that all of
them define:

lim £'P = BP. (54)

To prove this result, fix some parameter value ¢. For each r, find the index i such that
i/(n + r) is closest to t. We can think of i/(n + r) as a parameter on the polygon
E"P, and as r — <o, this ratio tends to . One can now show (using Stirling’s formula)

that
,
(")

r +n)
;

lim =1 -1, (5.5)
i/t (
and therefore
lim b = b;Bt) = [BPI1.
r'/i'nli-T)—’r ! JZO ! j( ) BRI
Equation (5.5) will look familiar to readers with a bachground in probability: it states
that the hypergeometric distribution converges to the binomial distribution.
Figure 5.2 shows an example of the limit behavior of the polygons Z"P.

Figure 5.2: Degree elevation: a sequence of polygons approaching the curve that is
defined by each of them.
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The polygons E"P approach the curve very slowly; thus our convergence re-
sult has no practical consequences. However, it helps in the investigation of some
theoretical properties, as is seen in the next section.

The convergence of the polygons Z” P to the curve was conjectured by R. Forrest
[212] and proved in Farin [168]. The above proof follows an approach taken by J.
Zhou [509]. Degree elevation may be generalized to ‘“corner-cutting”; for a brief
description, see Séction 10.7.

5.3 The Variation Diminishing Property

We can now show that Bézier curves enjoy the variation diminishing property:* the
curve BP has no more intersections with any plane other than the polygon P. Degree
elevation is an instance of piecewise linear interpolation, and we know that operation
is variation diminishing (see Section 2.4). Thus each Z"P has fewer intersections with
a given plane than has its predecessor £ ~DP. Since the curve is the limit of these
polygons, we have proved our statement. For high-degree Bézier curves, variation
diminution may become so strong that the control polygon no longer resembles the
curve.

A special case is obtained for convex polygons: a planar polygon (or curve) is
said to be convex if it has no more than two intersections with any plane. The variation
diminishing property thus asserts that a convex polygon generates a convex curve,
Note that the inverse statement is not true: convex curves exist that have a nonconvex
control polygon!

While the variation diminishing property seems straightforward enough, it is
still not totally intuitive. Consider the following statement: two Bézier curves with
common endpoints do not intersect more often than their control polygons. This
appears to be true just after one jots down a few examples. Yet it is false, as shown
by Prautzsch [411].

5.4 Degree Reduction

Degree elevation can be viewed as a process that introduces redundancy: a curve is
described by more information than is actually necessary. The inverse process might
seem more interesting: can we reduce possible redundancy in a curve representation?
More specifically, can we write a given curve of degree n as one of degree n — 1? We
shall call this process degree reduction.

In general, exact degree reduction is not possible. For example, a cubic with
a point of inflection cannot possibly be written as a quadratic. Degree reduction,
therefore, can be viewed only as a method to approximate a given curve by one of

The variation diminishing property was first investigated by I. Schoenberg [450] in the
context of B-spline approximation.
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lower degree. Our problem can now be stated as follows: given a Bézier curve with
control vertices b;;i = 0,...,n, can we find a Bézier curve with control vertices
bi;i = 0,...,n — 1 that approximates the first curve in a “reasonable” way?

Let us now pretend that the b; were obtained from the b; by the process of degree
elevation (this is not true, in general, but makes a good working assumption). Then
they would be related by

n—1iax

b= ~by + ——b; i=01...n (5.6)
n n
This equation can be used to derive two recursive formulas for the generation of the
b; from the b;:
- b; — ibi.
b= il g a1 (5.7)
n—i
and
by — (n = Db

biot = Ci=ma—1,..., 1L (5.8)

1

The B,- are obtained by “unraveling” (5.1) left to right, while the i;; are obtained in

a right-to-left manner. Note that two undefined terms appear: they are b, and b,.
Both are multiplied by zero, so no harm is done.

Figure 5.3 illustrates these two recursive formulas: a cubic polygon is given, and
two quadratic approximations are obtained.

—
b{]o

—)
b2

Figure 5.3: Degree reduction: a cubic is approximated by a “right-to-left” and by a
“left-to-right” quadratic. Both approximations are very poor.
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If the given curve had actually been of degree n — 1 (i.e., if it had been the result

of a degree elevation), than both the b; and the b; would produce that original curve
of degree n — 1. Since in general this is not true, we only obtain approximations—
quite bad ones in most cases. The reason is that both (5.7) and (5.8) are extrapolation
formulas, which are numerically unstable.

Figure 5.3 suggests that all vectors bi — by are parallel, an observation that was
ﬁrst made by J. Braun [80] For a proof, we simply observe that the coplanar triangles
b, L b, 1, b; andb;, b, b are similar.? Let us determine one of these vectors, namely
b i —b,. To that end, we use an explicit formula for the h,, given in [165] or [168]:

— 1 ! afn
bi= —— (‘U‘ﬂ(.)b
e )

We deduce

n

— d
by-1 —=b, = A"b{) = Fx(r)‘ (59)

Following the same reasoning, all vectors E,- - E,- are parallel to the n'" derivative
vector of the given degree n curve,

One observes that (5.7) tends to produce reasonable approximations near by and
that (5.8) behaves decently near b,,. We may take advantage of this and combine both
approximations, thus arriving at

b, =(1—-A)b; +Aibi: i=0,....n—1. (5.10)

We may set A; = i/n (not so great; see Farin [174]) or A; = 0 fori < n/2 and
= | fori > n/2 (decent; see Forrest [212]).

A better, and in some sense optimal way was first described by Watkins and
Worsey [497] and also by Eck [165]. This optimal solution has its roots in approxi-
mation theory and uses the theory of Chebychev polynomials.* For more information
on these polynomials, consult [101] or [122].

Chebychev polynomials T; of degree i are defined recursively:

Tis1(t) = 2tTi(t) — Ti—1(2);
Ty(r) = 1,
T\(t) =t

In an approximation theory setting, these polynomials are typically defined over the
interval [—1, 1]; over the interval [0, 1], we would use the scaled version T;(2¢t — 1).

*Verify in Figure 5.3 fori = 1!

“Incidentally, while the French automotive companies Citroén and Rénault used Bernstein
polynomials for their CAD/CAM systems, the American company Chrysler used Chebychev
polynomials in their first system.
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Each Chebychev polynomial T; has the unique property of achieving i + 1 extreme
values in the interval [—1, 1], alternating between the values +1 and —1.°

Chebychev polynomials form a basis for all polynomials of degree n, and so
every polynomial p”(¢) has a unique representation

(1) = Y Ti(n).

=0

What is interesting in our context is the following: if we truncate the leading term
t,7,(t) from the above sum, then we have found the—unique—polynomial p"~! of
degree n — 1 that deviates from the given one by the least possible amount. More
precisely: we have that max_<,<; [[p"(r) — p"~'(1)|| is smaller for this p"~! that for
any other n — 1 degree polynomial. This process is known as Chebychev economiza-
tion. We could thus transform our Bézier curve of degree n into its Chebychev form,
truncate the leading term, and transform back to the Bézier form of degree n — 1.
This is what Watkins and Worsey [497] did. Eck showed that one can equivalently
set

1\;=

- (2n)
— . (5.11)
prl _jgﬂ 2j

in (5.10). The maximum deviation between the original and the degree reduced curves
is given by ||A"bo|[27?"~ D (see Figure 5.4).

Figure 5.4: Degree reduction: combining the two degree reduction building blocks
(solving from left to right and from right to left), together with the concept of Cheby-
chev economization, yields a reasonable approximation.

SCompare this to Bernstein polynomials: they only have one extreme value in the interval
[0, 17!
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A drawback of (5.11) is that it does not guarantee that by = by and b,-; = b,,.
The simplest (if not optimal) solution to this dilemma is to simply enforce these two
conditions.

5.5 Nonparametric Curves

We have so far considered three-dimensional parametric curves b(r). Now we shall
restrict ourselves to functional curves of the form y = f(x), where f denotes a
polynomial. These (planar) curves can be written in parametric form:

[ ]_
"(‘)'[m)} [f(r)]'

We are interested in functions f that are expressed in terms of the Bernstein basis:
f(#) = boBy(1) + -+ + byB,y(1).

Note that now the coefficients &; are real numbers, not points. The &; therefore do not
form a polygon, yet functional curves are a subset of parametric curves and therefore
must possess a control polygon. To find it, we recall the linear precision property of
Bézier curves, as defined by (4.14). We can now write our functional curve as
: i/n
b(n) =" [ fb{j ] BI(t). (5.12)

J=0

Thus the control polygon of the function f(f) = 3 b;B} is given by the
points (j/n, b;); j = 0,..., n. If we want to distinguish clearly between the paramet-
ric and the nonparametric cases, we call f(t) a Bézier function. Figure 3.5 illustrates
the cubic case. We also emphasize that the b; are real numbers, not points; we call
the b; Bézier ordinates.

ol =
Wl e
[

Figure 5.5: Functional curves: the control polygon of a cubic polynomial has abscissa
values of 0, 1, 2, 1.
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Because Bézier curves are invariant under affine reparametrizations, we may
consider any interval [a, b] instead of the special interval [0, 1]. Then the abscissa
values area + i(b —a)/n; i =0,...,n.

5.6 Cross Plots

Parametric Bézier curves are composed of coordinate functions: each component is a
Bézier function. For two-dimensional curves, this can be used to construct the cross
plot of a curve. Figure 5.6 shows the decomposition of a Bézier curve into its two
coordinate functions. A cross plot can be a very helpful tool for the investigation
not only of Bézier curves, but of general two-dimensional curves. We will use it for
the analysis of Bézier and B-spline curves. It can be generalized to more than two
dimensions, but is not as useful then.

1.

Figure 5.6: Cross plots: a two-dimensional Bézier curve together with its two coordi-
nate functions.
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5.7 Integrals

As we have seen, the Bézier polygon P of a Bézier function is formed by points
(j/n, b;)). Let us assign an area AP to P by

I _
ﬂanHZObj. (5.13)
=

An example for this area is shown in Figure 5.7; it corresponds to approximating the
area under the polygon by a particular Riemann sum (of the polygon).

Itis now easy to show that this “approximation area” is the same for the polygon
P, obtained from degree elevation (Section 5.1):

n+l

1 J J
TP = —b;y+ |1 ———}b;
A r1.~1-2j:[)n+lbjl ( n+l) I

1l —n+2
C n+24 1
i=0

= AP.

=

=

If we repeat the process of degree elevation, we know that the polygons Z'P
converge to the function BP. Their area AZ"P stays the same, and in the limit is
equal to the Riemann sum of the function, which converges to the integral:

'S n 1 .
./0\ ijB;(x)dx =T Zb}'. (5.14)
Jj=0 j=0

The special case b; = §; ; gives

1
n —_ 1
/0 Bj(x)dx—n+], (5.15)

i.e., all basis functions B}' (for a fixed n) have the same integral.

A

Figure 5.7: Integrals: an approximation to the area under P.
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5.8 The Bézier Form of a Bézier Curve

In his work ([50], [51], [52], [53], [54], [55], [57], see also Vernet [490]), Bézier
did not use the Bernstein polynomials as basis functions. He wrote the curve b” as a
linear combination of functions F!":

b)) =) ¢;F)) (5.16)

j=0
where the F7 are polynomials that obey the following recursion:
Fi() = (1= 0F}"'() + tF5(0) (5.17)
with
F®=1 F,@1=0 F ()=1 (5.18)

Note that the third condition in the last equation is the only instance where the
definition of the F}' differs from that of the B! An explicit expression for the F! is
given by

n

F' =Y "B (5.19)

j=i

A consequence of (5.18) is that Fj = 1 for all n. Since Fi(r) = 0fort € [0, 1], it
follows that (5.16) is not a barycentric combination of the ¢;. In fact, ¢ is a point
while the other ¢; are vectors. The following relations hold:

¢o = by, (5.20)
c;=Abj_;; j>0. (5.21)

This undesirable distinction between points and vectors was abandoned soon after R.
Forrest’s discovery that the Bézier form (5.16) of a Bézier curve could be written in
terms of Bernstein polynomials (see the appendix in [53]). Why is the point-only form
more desirable? Just try to write down the de Casteljau algorithm in the point-vector
form!

5.9 The Barycentric Form of a Bézier Curve

In this section, we present different notation for Bézier curves that will be useful later.
Let p; and p, be two distinct points on the real line. Then, as described in Section
2.3, we can write any point p on the straight line in terms of barycentric coordinates
of p; and p2: p = up; + vp,, thus identifying p withu = (w,v) and u + v = 1. In
particular, p; = (1, 0) and p, = (0, 1). The real line can be mapped into E, where it
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defines a polynomial curve b(u); namely,

b(u) = Z (I'nj)“ivjbj,j= Z B}fj(u}b;,j, (522)

i+j=n i+j=n
i,j=0 ij=0

where

Note that, although (5.22) looks bivariate, it really isn’t: the condition u + v = 1
ensures that we still define a curve, not a surface, The connection with the standard
Bézier form is established by setting 7 = v, b; = b; ;.

The barycentric form demonstrates nicely two important properties of Bézier
curves: invariance under affine parameter transformations and, as a consequence,
symmetry, as discussed in Section 3.3. The location of the two points p; and p;
becomes completely irrelevant—all that matters is the relative location of p with
respect to them, described by u and v.

Here is what the de Casteljau algorithm becomes in barycentric notation:

r=1,...,n

itj=n—r 5-23)

b} ;(u) = ub} () + vb] . (u) {
The point on the curve is then given by b o(u).

We can also define derivatives in terms of the barycentric form. Derivatives
produce tangent vectors, and these have a sense of direction, which we abandoned
for the sake of symmetry. We may reintroduce a direction into our calculations by
relating u to the “standard” parameter 1

u=u(t)=(1-4¢1.

We obtain

d d du d dv
- =_"b:-—+ —bh- —.
PO = b gt abey

Inserting the known values for $ and §¥, we have

d

d d
Eb[“(r)} = 5b - ab. (5.24)

If we define a vectord by d = p, — p; = (—1, 1), this equation may be written
as a directional derivative with respect to d:

%b[u(!)] = Dyb(u). (5.25)

We shall now see how the de Casteljau algorithm ties in with these directional
derivatives.
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Instead of evaluating at a point w with u + v = 1, let us evaluate at the vector
d = (—1, 1). The de Casteljau algorithm (5.23) becomes

b; ;(d) = —b/1 (d) + b} },(@).
Thus a vector argument for the de Casteljau algorithm produces tforward differences!
In other words,
bi;(d) = A"b;,

where the term on the right-hand side is in standard, nonbarycentric notation.
We thus have, for the first derivative,

n—1
Dgblu()] =n Y Ab;BI '(ty=n > b} @B} (w. (5.26)

j=0 i+j=n—1

The last part of this equation asserts that our directional derivative is obtained by
taking one de Casteljau step with respect to d and n — 1 steps with respect to u. This
calls for the blossom notation!

The Bézier points of a curve can be expressed as blossom values of the arguments
p1 and p;; we thus have three possible ways to label Bézier points, using the standard,
the barycentric, and the blossom notation:

bj = b;; = bip{”, pk i+ j=n
The intermediate points in the de Casteljau algorithm can now be written as
b;; = blp{”, p" u) i+ j+r=n,

and the point on the curve is given by b[u™].
Returning to (5.26), we get

Dgb(u) = Dgb[u] = nb[u”"~ ", d).
The preceding arguments easily generalize this to

Djib(u) = Dib[u”] = Lh[u@“”. a. (5.27)
(n—r)!

Thus the »™ derivative of a curve involves r vector steps and n — r point steps
of the de Casteljau algorithm. Of course, it is immaterial in which order these steps
are performed. Figure 5.8 illustrates the quadratic case.

We finish this section with an identity that is due to L. Euler. We may formally
replace d by u in (5.27):

|
Db(u) = (nii'r}!b[u(“)].

This shows how closely related the processes of differentiating and evaluating are
when we combine the barycentric notation and blossoms.
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Figure 5.8: Blossoms and derivatives in barycentric form: a point on a quadratic,
together with its derivatives: The constant second derivative is given by b[d?].

510 The Weierstrass Approximation Theorem

One of the most important results in approximation theory is the Weierstrass ap-
proximation theorem. S. Bernstein invented the polynomials that now bear his name
in order to formulate a constructive proof of this theorem. The interested reader is
referred to Davis [122] or to Korovkin [314].

We will give a “customized” version of the theorem, namely, we state it in the
context of parametric curves. So let ¢ be a continuous curve that is defined over [0, 1].
For some fixed n, we can sample ¢ at parameter values i/n. The points ¢(i/n) can
now be interpreted as the Bézier palygon of a polynomial curve x,,:

Xn(t) = Zc (%) BI(2).
i=0

We say that x,, is the n'" degree Bernstein—Bézier approximation to c.

We are next going to increase the density of our samples, i.e., we increase n. This
generates a sequence of approximations X,,, Xp+1, ... . The Weierstrass approximation
theorem states that this sequence of polynomials converges to the curve c:

li_nl Xq(t) = c(t).

At first sight, this looks like a handy way to approximate a given curve by
polynomials: we just have to pick a degree n that is sufficiently large, and we are as
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close to the curve as we like. This is only theoretically true, however. In practice, one
would have to choose values of n in the thousands or even millions in order to obtain
a reasonable closeness of fit (see Korovkin [314] for more details).

The value of the theorem is therefore more of a theoretical nature. It shows that
every curve may be approximated arbitrarily closely by a polynomial curve.

5.11 Formulas for Bernstein Polynomials

This section is a collection of formulas; some appeared in the text, some did not.
Credit for some of these goes to R. Goldman, R. Farouki, and V. Rajan [197].
A Bernstein polynomial is defined by

wn _ [ (A= ifi € [0, n),
Bi) = { 0 else.

The power basis {t'} and the Bernstein basis {B!'} are related by

no (i
i=3" QB;?(:) (5.28)
j=f (i)
and
] _ n B j_j n j J
B!(t) ;( 1) (}) (I_):. (5.29)
Recursion:
BI(t) = (1 — 0B}~ (t) + B]Z] (1)
Subdivision:
Bl(ct) =Y _ B/(©)B)(1). (5.30)
j=0
Derivative:
d n n— n=
3810 = n[B ()~ BT 0)].
Integral:
1 1 n+l
n . .PF+I
[0 B} (x) dx _"“j;.a’ ), (5:31)

1

1
B (x)dx = ——.
_/0 () n+1
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Three degree-elevation formulas:

(1 - By = "L gy (5.32)

n+1
1B (t) = —B:‘L‘(z} (5.33)

n+1
B!t) = —-—B”*‘( 1+ —B,":’,‘(r). (5.34)
n+1
Product:

B'(w)B}(u) = (m)+(,,)8:1j"( ) (5.35)

(:+_,I)

5.12 Implementation

A C routine for degree elevation follows. Note that we have to treat the cases i = 0
and i = n + 1 separately; the program would not like the corresponding nonexisting
array elements. The program actually handles the rational case, which will be covered
later. For the polynomial case, fill wb with 1’s and ignore wc.

void degree_elevate(bx,by,wb,degree,cx,cy,wc)
/* input: two-d Bezier polygon in bx, by and with weights
in wb. Degree is degree.
Output:degree elevated curve in cx,cy and with weights in wec.
Note: for nonrational (polynomial) case, fill wc with 1’s.

*/

5.13 Exercises

*1. Prove (5.19).

*2. Prove the relationship between the “Bézier” and the Bernstein form for a Bézier
curve (5.16).

*3, Prove that

/ B'(x)dx = —— Z bi(D).

*4. With the result from the previous problem, prove

t
Fit) = n/ B! '(x)dx.
0
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Show that the control points B.— from (5.7) define a curve that is the original
curve’s Taylor expansion of degree n — 1 att = 0.

The recursion formula for Bernstein polynomials is equivalent to the de Casteljau
algorithm. Devise a recursive curve evaluation algorithm for curves in Chebychev
form based on the recursion for Chebychev polynomials. Program it up and
experiment!

Program up degree reduction with some of the methods outlined in Section 5.4.
Work with the Bézier polygon supplied in the file degred.dat.
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Polynomial Interpolation

Polynomial interpolation is the most fundamental of all interpolation concepts; the
earliest method is probably attributable to I. Newton. Nowadays, polynomial inter-
polation is mostly of theoretical value; faster and more accurate methods have been
developed. Those methods are piecewise polynomial; thus they intrinsically rely on
the polynomial methods that are presented in this chapter.

6.1 Aitken’s Algorithm

A common problem in curve design is point data interpolation: from data points p;
with corresponding parameter values #;, find a curve that passes through the p;.! One
of the oldest techniques to solve this problem is to find an interpolating polynomial
through the given points. That polynomial must satisfy the interpolatory constraints

pt)=ps i=0...,n

Several algorithms exist for this problem—any textbook on numerical analysis will
discuss several of them. In this section we shall present a recursive technique that is
due to A. Aitken.

We have already solved the linear case, n = 1, in Section 2.3. The Aitken
recursion computes a point on the interpolating polynomial through a sequence of
repeated linear interpolations, starting with
IH—I —1 t—t

i .
pi + pi+1; i=0,...,n— L
vt =t e — 4

pl(t) =

Let us now suppose (as one does in recursive techniques) that we have already
solved the problem for the case n — 1. To be more precise, assume that we have found
a polynomial pg_l that interpolates to the n first data points py, ..., p,—1, and also

'The shape of the curve depends heavily on the parameter values #;. Methods for their
determination will be discussed later in the context of spline interpolation; see Section 9.4.

81
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a polynomial p{~' that interpolates to the n last data points p,, ..., p,. Under these
assumptions, it is easy to write down the form of the final interpolant, now called pf:

po(r)“— )+ —2pr (o). 6.1)
30

Figure 6.1 illustrates this form for the cubic case.
Let us verify that (6.1) does in fact interpolate to all given data points p;; for

t =1y,
Pi(to) = 1% pi (o) + 0% p 1 (29) =

A 51m1lar result is derived for t = t,. Under our assumption, we have pf~!(;) =
1=1(t;) = p; for all other values of i.
Since the weights in (6.1) sum to one identically, we get the desired pfi(;) = p;.
We can now generalize (6.1) to solve the polynomial interpolation problem:
starting with the given parameter values #; and the data points p; = p?, we set

' - =1,....n
o+ — P;+|1(f)¢{‘:(;"”’n’ . (6.2)

It+r - f i+r n—r

!‘

p; (1) =

/

fo ' ‘ t3

Figure 6.1: Polynomial interpolation: a cubic interpolating polynomial may be ob-
tained as a “blend” of two quadratic interpolants.
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E
L

t{) tl t t2 t3

Figure 6.2: Aitken’s algorithm: a point on an interpolating polynomial may be found
from repeated linear interpolation.

It is clear from the preceding consideration that pg(¢) is indeed a point on the
interpolating polynomial. The recursive evaluation (6.2) is called Aitken’s algorithm.?

It has the following geometric interpretation: to find p}, map the interval [#;, #;+,]
onto the straight line segment through p/ ~', p//. That affine map takes ¢ to p]. The
geometry of Aitken’s algorithm is illustrated in Figure 6.2 for the cubic case.

It is convenient to write the intermediate p! in a triangular array; the cubic case
would look like

Po
1
Pt Po
, 5 (6.3)
P2 P Py
P: Py Pl Py

We can infer several properties of the interpolating polynomial from Aitken’s
algorithm:

o Affine invariance: This follows since the Aitken algorithm uses only barycentric
combinations.

2The particular organization of the algorithm as presented here is due to Neville.
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* Linear precision: If all p; are uniformly distributed® on a straight line segment,
all intermediate p; (¢) are identical for r > 0. Thus the straight line segment is
reproduced.

® No convex hull property: The parameter ¢ in (6.2) does not have to lie between
t; and t;+,. Therefore, Aitken’s algorithm does not use convex combinations
only: p(#) is not guaranteed to lie within the convex hull of the p;. We should
note, however, that no smooth curve interpolation scheme exists that has the
convex hull property.

¢ No variation diminishing property: By the same reasoning, we do not get the
variation diminishing property. Again, no “decent” interpolation scheme has
this property. However, interpolating polynomials can be variation augmenting
to an extent that renders them useless for practical problems.

6.2 Lagrange Polynomials

Aitken’s algorithm allows us to compute a point p"(t) on the interpolating polynomial
through n + 1 data points. It does not provide an answer to the following questions:
(1) Is the interpolating polynomial unique? (2) What is a closed form for it? Both
questions are resolved by the use of the Lagrange polynomials L.

The explicit form of the interpolating polynomial p is given by

p(t) = > piLl(0), (6.4)

i=0

where the L] are Lagrange polynomials,

Hr:-n (t — tj)
L'ty = =24 6.5
J#1

Before we proceed further, we should note that the L must sum to one in order
for (6.4) to be a barycentric combination and thus be geometrically meaningful; we
will return to this topic later.

We verify (6.4) by observing that the Lagrange polynomials are cardinal: they
satisfy

L?(F}) = Sjlj, (6.6)

with §; ; being the Kronecker delta. In other words, the i Lagrange polynomial
vanishes at all knots except at the i one, where it assumes the value 1. Because
of this property of Lagrange polynomials, (6.4) is called the cardinal form of the
interpolating polynomial p. The polynomial p has many other representations, of

JIf the points are on a straight line, but distributed unevenly, we will still recapture the
graph of the straight line, but it will not be parametrized linearly.
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course (we can rewrite it in monomial form, for example), but (6.4) is the only form
in which the data points appear explicitly.

We have thus justified our use of the term the interpolating polynomial. In fact,
the polynomial interpolation problem always has a solution, and it always has a
unique solution. The reason is that, because of (6.6), the LI form a basis of all
polynomials of degree n. Thus (6.4) is the unique representation of the polynomial
p in this basis. This is why one sometimes refers to all polynomial interpolation
schemes as Lagrange interpolation.*

We can now be sure that Aitken’s algorithm yields the same point as does (6.4).
Based on that knowledge, we can conclude a property of Lagrange polynomials that
was already mentioned right after (6.5), namely, that they sum to one:

iL;’(r) =1
i=0

This is a simple consequence of the affine invariance of polynomial interpolation, as
shown for Aitken’s algorithm.

6.3 The Vandermonde Approach

Suppose we want the interpolating polynomial p” in the monomial basis:
p() =) at. 6.7)
j=0

The standard approach to finding the unknown coefficients from the known data is
simply to write down everything one knows about the problem:
p"(to) = po = ag +aity + - + a,lg,

p'(t)) =p1 =ag tayy + -0 +an,

pn(r") =pn=atag,+ -+ aut:-

In matrix form:

Po 302 e !‘3 ap
2 n
Pi 1 4 0 ...t a)
= o 1 (6.3)
Pr 1t 2 ... a,

“More precisely, we refer to all those schemes that interpolate to a given set of data points.
Other forms of polynomial interpolation exist and are discussed later.
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We can shorten this to
p="Ta (6.9)

We already know that a solution a to this linear system exists, but one can show
independently that the determinant det 7 is nonzero (for distinct parameter values
t;). This determinant is known as the Vandermonde of the interpolation problem. The
solution, i.e., the vector a containing the coefficients a;, can be found from

a=T""p (6.10)

This should be taken only as a shorthand notation for the solution—not as an algo-
rithm! Note that the linear system (6.9) really consists of three linear systems with the
same coefficient matrix, one system for each coordinate. It is known from numerical
analysis that in such cases the LU decomposition of T is a more economical way
to obtain the solution a. This will be even more important when we discuss tensor
product surface interpolation in Section 15.12.

The interpolation problem can also be solved if we use basis functions other than
the monomials. Let {F]'}!_ be such a basis. We then seek an interpolating polynomial
of the form

p(D) = ¢;F j0). (6.11)
j=0

The preceding reasoning again leads to a linear system (three linear systems, to be
more precise) for the coefficients ¢;, this time with the generalized Vandermonde F:

Fity) FlGo) ... F'(p)
Fg(ty) Fi(t) ... Frn)

— : : : (6.12)
Fy(ty) Fytn) ... Fj(tn)

Since the F}' form a basis for all polynomials of degree n, it follows that the generalized
Vandermonde det F is nonzero.

Thus, for instance, we are able to find the Bézier curve that passes through a
given set of data points: the F}' would then be the Bernstein polynomials B

6.4 Limits of Lagrange Interpolation

We have seen that polynomial interpolation is simple, unique, and has a nice geomet-
ric interpretation. One might therefore expect this interpolation scheme to be used
frequently; yet it is virtually unknown in a design environment. The main reason is
illustrated in Figure 6.3: polynomial interpolants oscillate. For quite reasonable data
points and parameter values, the polynomial interpolant exhibits wild wiggles that
are not inherent in the data. One may say that polynomial interpolation is not shape
preserving.
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Figure 6.3: Lagrange interpolation: while the data points suggest a convex inter-
polant, the Lagrange interpolant exhibits extraneous wiggles.

This phenomenon is not due to numerical effects; it is actually inherent in the
polynomial interpolation process. Suppose we are given a finite arc of a smooth
curve ¢. We can then sample the curve at parameter values f; and pass the interpo-
lating polynomial through those points. If we increase the number of points on the
curve, thus producing interpolants of higher and higher degree, one would expect
the corresponding interpolants to converge to the sampled curve ¢. But this is not
generally true: smooth curves exist for which this sequence of interpolants diverges.
This fact is dealt with in numerical analysis, where it is known by the name of its
discoverer: it is called the “Runge phenomenon” [427]. Note, however, that the Runge
phenomenon does not contradict the Weierstrass approximation theorem!

As a second consideration, let us examine the cost of polynomial interpolation,
i.e., the number of operations necessary to construct and then evaluate the interpolant.
Solving the Vandermonde system (6.8) requires roughly n* operations; subsequent
computation of a point on the curve requires n operations. The operation count for
the construction of the interpolant is much smaller for other schemes, as is the cost
of evaluations (herc piecewise schemes are far superior). This latter cost is the more
important one, of course: construction of the interpolant happens once, but it may
have to be evaluated thousands of times!

6.5 Cubic Hermite Interpolation

Polynomial interpolation is not restricted to interpolation to point data; one can also
interpolate to other information, such as derivative data. This leads to an interpo-
lation scheme that is more useful than Lagrange interpolation: it is called Hermite
interpolation. We treat the cubic case first, in which one is given two points pg, p)
and two tangent vectors my, m;. The objective is to find a cubic polynomial curve p
that interpolates to these data:

p(0) = po,
p(0) = my,
p(1) = my,
p(l) = py,

where the dot denotes differentiation.



o0
Qo

Chapter 6. Polynomial Interpolation

We will write p in cubic Bézier form, and therefore must determine four Bézier
points by, ..., bs. Two of them are quickly determined:

by = po. bis=p.

For the remaining two, we recall (from Section 4.3) the endpoint derivative for Bézier
curves:

p(0) = 3Aby, p(1) = 3Ab,.
We can easily solve for by and b;:

1 |
b, =po + 3 Mo, b, =p; — Fm.

This situation is shown in Figure 6.4.

Having solved the interpolation problem, we now attempt to write it in cardinal
Jform; we would like to have the given data appear explicitly in the equation for the
interpolant. So far, our interpolant is in Bézier form:

1
p(t) = poBy(t) + (Do + gmo) B3 (1) + (m - lm.) B3(t) + p1B3().

3

<

Figure 6.4: Cubic Hermite interpolation: the given data—points and tangent
vectors—together with the interpolating cubic in Bézier form.
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Hj H3

H3

Figure 6.5: Cubic Hermite polynomials: the four H'? are shown over the interval [0, 1].

To obtain the cardinal form, we simply rearrange:
p(t) = PoH{(t) + moH; (1) + myH3 (1) + pyH3(0), (6.13)
where we have set’
Hy(1) = By(1) + Bi(0)

1
Hi(1) = 3B (),
1 (6.14)
H3(t) = —5330).

Hi(t) = B3(t) + B3(1).

The H; are called “cubic Hermite polynomials™ and are shown in Figure 6.5.

What are the properties necessary to make the H? cardinal functions for the cubic
Hermite interpolation problem? They must be cardinal with respect to evaluation and
differentiation at + = Qand ¢t = 1, 1.e., each of the Hf’ equals 1 for one of these four
operations and is zero for the remaining three:

H(0) = 1, d%Hg(O) =0, %H&(l) =0, Hy(1)=0,
H}0) =0, %HF(O) =1, %H{‘(l) =0, H(1)=0,
H3(0) = 0, %Hi(O) =0, c%Hg(l) =1, H)1)=0,
H3(0) = 0, %Hﬁ{t}) =0, %H_';f(l) =0, Hi()=1

This is a deviation from standard notation. Standard notation groups by orders of deriva-
tives, i.e., first the two positions, then the two derivatives. The form of (6.13) was chosen
because it groups coefficients according to their geometry.



90 Chapter 6. Polynomial Interpolation

Another important property of the H? follows from the geometry of the inter-
polation problem,; (6.13) contains combinations of points and vectors. We know that
the point coefficients must sum to one if (6.13) is to be geometrically meaningful:

H3(t) + H3(1) = 1.

This is of course also verified by inspection of (6.14).

Cubic Hermite interpolation has one annoying peculiarity: it is not invariant
under affine domain transformations. Let a cubic Hermite interpolant be given as
in (6.13), i.e., having the interval [0, 1] as its domain. Now apply an affine domain
transformation to it by changing 1 to = (1 — t)a + tb, thereby changing [0, 1] to
some [a, b]. The interpolant (6.13) becomes

p() = pofy (D) + moH}(P) + my A5 (7)) + p H3(D), (6.15)

where the H? (#) are defined through their cardinal properties:

Hi@) =1, %ﬁlg(a) =0, %ﬁg(b) =0, Hyb) =0,
R d . d .

Ha) =0, d—tH]}(a) =1, 5Hf(b) =0, H®b) =0,
A3 — das o d 3. _ 3y —
Hi@ =0, —H@=0 <H® =1 H®b =0

4
dr

To satisfy these requirements, the new A? must differ from the original H}. We obtain

Aa) =0, d%ﬁ;;(a) =0, —H}b)=0 H®) =1

A3 (@) = Hy(),
() = (b - H; (),
B3 (@) = (b — a)H3 (1),
A3 @) = H3 ).

(6.16)

where ¢ € [0, 1] is the local parameter of the interval [a, b].

Evaluation of (6.15) at f = a and 7 = b yields p(a) = po, p(b) = pi1. The
derivatives have changed, however. Invoking the chain rule, we find that dp(a)/dt =
(b — a)my and, similarly, dp(b)/dt = (b — a)m,.

Thus an affine domain transformation changes the curve unless the defining
tangent vectors are changed accordingly—a drawback that is not encountered with
the Bernstein—Bézier form.

To maintain the same curve after a domain transformation, we must change the
length of the tangent vectors: if the length of the domain interval is changed by a
factor a, we must replace my and m; by my /e and m; /a, respectively. There is an
intuitive argument for this: interpreting the parameter as time, we assume we had one
time unit to traverse the curve. After changing the interval length by a factor of 10,
for example, we have 10 time units to traverse the same curve, resulting in a much
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A

e

] —

Figure 6.6: Lengths of tangent vectors and domain intervals: the longer the domain
interval (right cubic function), the shorter the tangent vector of the parametric curve.

lower speed of traversal. Since the magnitude of the derivative equals that speed, it
must also shrink by a factor of 10.

An illustration is given in Figure 6.6. It shows—using a parametric cubic and
the x-portion of its cross plot—how a stretching of the domain interval “flattens”
the x-component function. This results in a shorter tangent vector of the parametric
curve. In this figure, we have made use of the fact that the slope of a function may be
expressed as the height of a right triangle with base length one.

We also note that the Hermite form is not symmetric: if we replace t by 1 — ¢
(assuming again the interval [0, 1] as the domain), the curve coefficients cannot simply
be renumbered (as in the case of Bézier curves). Rather, the tangent vectors must be
reversed. This follows from the foregoing application of the affine map to the [0, 1]
that maps that interval to [1, 0], thus reversing its direction.

The dependence of the cubic Hermite form on the domain interval is rather
unpleasant—it is often overlooked and can be blamed for countless programming
errors by both students and professionals. We will use the Bézier form whenever
possible.

6.6 Quintic Hermite Interpolation

Instead of prescribing only position and first derivative information at two points, one
might add information for second-order derivatives. Then our data are pg, my, o and
p1. my, 81, where s and s; denote second derivatives. The lowest order polynomial
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to interpolate to these data is of degree five. Its Bézier points are easily obtained
following the preceding approach. If we rearrange the Bézier form to obtain a cardinal
form of the interpolant p, we find

(1) = PoH{ (1) + MoHY (1) + soH5 (1) + sy H3 (1) + myH (1) + piH3(D),  (6.17)

where

&,
Il

By + B} + B3,

1
H} = <[B] +2B3),

1
s L ps
H; = B3,
1
Hi = —Bj,

1
H; = —[2B3 + B]],
H: = B; + B} + BS.

It is easy to verify the cardinal properties of the H: they are the straightforward
generalization of the cardinal properties for cubic Hermite polynomials. If used
in the context of piecewise curves, the quintic Hermite polynomials guarantee C?
continuity since adjoining curve pieces interpolate to the same second-order data. For
most applications, one will have to estimate the second derivatives that are needed
as input. This estimation is a very sensitive procedure—so unless the quintic form is
mandated by a particular problem, the simpler C? cubic splines from Chapter 9 are
recommended.

6.7 The Newton Form and
Forward Differencing

All methods in this chapter—and in the Bézier curve chapters as well—were con-
cerned with the construction of polynomial curves. We shall now introduce a way to
display or plot such curves. The underlying theory makes use of the Newton form
of a polynomial; the resulting display algorithm is called forward differencing and is
well established in the computer graphics community. For this section, we only deal
with the cubic case; the general case is then not hard to work out.

So suppose that we are given a cubic polynomial curve p(f). Also suppose that
we are given four points p(f), p(#;), p(f2), p(#3) onit such that t;+ — t; = h, i.e., they
are at equally spaced parameter intervals. Then it can be shown that this polynomial



6.7. The Newton Form and Forward Differencing 93

may be written as

1

1
ﬁ(f_fo)(f“fl)ﬁzpo"' ——(t—to)(t —11)(t — 2)A°py.

3!h?
(6.18)
The derivation of this Newton form is in any standard text on numerical analysis.
The differences A'p; are defined as

Alp; = A" pjy — A7 'p; (6.19)

1
p(t) =pot+ E(I —1p)Apy+

and A%; = p;.
The coefficients in (6.18) are conveniently written in a table such as the following
(setting g = 1/h):

Po

P 8Apo

P2 gApr g’A’p

ps gAp2 &°A%p1 &A%
The diagonal contains the coefficients of the Newton form. The computation of this
table is called the startup phase of the forward differencing scheme.

We could now evaluate p at any parameter value ¢ by simply evaluating (6.18)
there. Since our our evaluation points 7; are equally spaced, a much faster way exists.
Suppose we had computed p; = p(7)), etc., from (6.18). Then we could compute all
entries in the following table:

Po

P gApo

p> gAp: SZAZPU

ps gAp, &A% £A°py (6.20)
ps gAps gA%p, g'A’p

ps gAps APy £A°P

Now consider the last column of this table, containing terms of the form 2*A%p ;- All
these terms are equal! This is so because the third derivative of a third-degree poly-
nomial is constant, and because the third derivative of (6.18) is given by g*A%py =
3A3
g'A'p=....
We thus have a new way of constructing the table (6.20) from right to left: instead
of computing the entry p4 from (6.18), first compute g>A*p, from (6.19):

&A%, = g'Ap; +¢°A%p,,
then compute gAp; from
gAps = g°A%p, + gApy,
and finally
Ps = gAps + ps.
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Then compute ps in the same manner, and so on. The general formula is, with
q; = g'A'p;:

q;=q" +q_;; i=210 (6.21)
It yields the points p; = q.

This way of computing the p; does not involve a single multiplication after
the startup phase! It is therefore extremely fast and has been implemented in many
graphics systems. Given four initial points po, p;, p2, P and a stepsize A, it generates
a sequence of points on the cubic polynomial through the initial four points. Typically
the polynomial will be given in Bézier form, so those four points have to be computed
as a startup operation.

In a graphics environment, it is desirable to adjust the stepsize h such that
each pixel along the curve is hit. One way of doing this is to adjust the stepsize
while marching along the curve. This is called adaptive forward differencing and is
described by Lien, Shantz, and Pratt [333] and by Chang, Shantz, and Rochetti [99].

Although fast, forward differencing is not foolproof: As we compute more and
more points on the curve, they begin to be affected by roundoff. So while we intend
to march along our curve, we may instead leave its path, deviating from it more and
more as we continue. For more literature on this method, see Abi-Ezzi [1], Bartels et
al. [42], or Shantz and Chang [472].

6.8 Implementation

The code for Aitken’s algorithm is very similar to that for the de Casteljau algorithm.
Here is its header:

float aitken(degree,coeff,t)

/* uses Aitken to compute one coordinate
value of a Lagrange interpolating polynomial. Has to be called
for each coordinate (x,y, and/or z) of data points.

Input:  degree: degree of curve.
coeff: array with coordinates to be interpolated.
t: parameter value.

Output: coordinate value.

Note: we assume a uniform knot sequence!
*/
6.9 Exercises

1. Show that the cubic and quintic Hermite polynomials are linearly independent.
2. Generalize Hermite interpolation to degrees 7, 9, etc.

81t holds for any degree n if we replacei = 2,1,0byi=n—1,n—2,...,0.
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The de Casteljau algorithm for Bézier curves has as its “counterpart” the recur-
sion formula (4.2) for Bernstein polynomials. Deduce a recursion formula for
Lagrange polynomials from Aitken’s algorithm.

The Hermite form is not invariant under affine domain transformations, while
the Bézier form is. What about the Lagrange and monomial forms? What are
the general conditions for a curve scheme to be invariant under affine domain
transformations?

Aitken’s algorithm looks very similar to the de Casteljau algorithm. Use both to
define a whole class of algorithms, of which each would be a special case (see
[184]). Write a program that uses as input a parameter specifying if the output
curve should be “more Bézier” or “more Lagrange.”

The function that was used by Runge to demonstrate the effect that now bears
his name is given by

flx) = xE[-1,1]

1+ x2°
Use the routine aitken to interpolate at equidistant parameter intervals. Keep
increasing the degree of the interpolating polynomial until you notice “bad”
behavior on the part of the interpolant.

In Lagrange interpolation, each p; is assigned a corresponding parameter value
t;. Experiment (graphically) by interchanging two parameter values #; and t;
without interchanging p; and p;. Explain your results.



Chapter 7

Spline Curves in Bézier Form

Bézier curves provide a powerful tool in curve design, but they have some limita-
tions: if the curve to be modeled has a complex shape, then its Bézier representation
will have a prohibitively high degree (for practical purposes, degrees exceeding 10
are prohibitive). Such complex curves can, however, be modeled using composite
Bézier curves. We shall also use the name B-spline curves for such piecewise polyno-
mial curves. This chapter describes the main properties of cubic and quadratic spline
curves. More general spline curves will be presented in Chapter 10.

7.1 Global and Local Parameters

Before we start to develop a theory for piecewise curves, let us establish the main
definitions that we will use. When we considered single Bézier curves, we assumed
that they were the map of the interval 0 = ¢ = 1. We could make this assumption
because of the invariance of Bézier curves under affine parameter transformations:
see Section 3.3. Life is not quite that easy with piecewise curves: while we can assume
that each individual segment of a spline curve s is the map of the interval [0, 1], the
curve as a whole is the map of a collection of intervals, and their relative lengths play
an important role.

A spline curve s is the continuous map of a collection of intervals uy < ... < ug
into E3, where each interval [u;, u;+,] is mapped onto a polynomial curve segment.
Each real number u; is called a breakpoint or a knot. The collection of all u; is called
the knot sequence. For every parameter value u, we thus have a corresponding point
s(u) on the curve s. Let this value « be from an interval [u;, u;4]. We can introduce a
local coordinate (or local parameter) ¢ for the interval [u;, 4;+1] by setting

U= u; U — U

t= = . (7.1)
Uir] — U A

One checks that ¢ varies from 0 to 1 as « varies from u; to u; 1.

96
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1

up 1y ug us U4

/

Figure 7.1: Local coordinates: the interval [u,, u;] has been endowed with a local
coordinate t. The third segment of the spline curve is shown with its Bézier polygon.

When we investigate properties of the curve s, it will be more convenient to do
so in terms of the global parameter u. (An example of such a property is the concept
of differentiability.) The individual segments of s may be written as Bézier curves,
and it is often easier to describe each one of them in terms of local coordinates. We
adopt the definition s; for the i segment of s, and we write s(u) = si(t) to denote a
point on it. Figure 7.1 illustrates the interplay between local and global coordinates.

The introduction of local coordinates has some ramifications concerning the use
of derivatives. For « € [u;, u;+1], the chain rule gives

ds(u)  ds;(r) dr

= )& 2

du dt du (.2
1 ds;(1)

A dt (73)

Two more definitions: the points s(u;) = s;(0) = s;_;(1) are called junction
points or joints. The collection of the Bézier polygons for all curve segments itself
forms a polygon; it is called the piecewise Bézier polygon of s.

7.2 Smoothness Conditions

Suppose we are given two Bézier curves sy and s;, with polygons by, ..., b, and
by, ..., by, respectively. We may think of each curve as existing by itself, defined
over the interval ¢ € [0, 1] or some other interval. We may also think of the two
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curves as two segments of one composite curve, defined as the map of the interval
[ug, u2] into [E3. The “left” segment sy is defined over an interval [ug, u; ], while the
“right” segment s, is defined over [uy, u3] (see Section 7.1).

Let us pretend for a moment that both curves are arcs of one global polynomial
curve b”(u), defined over the interval [u, u,]. Section 4.6 tells us that the two polygons
by,...,b,and b,, ..., b,, must be the result of a subdivision process. Then their
control vertices must be related by

bysi = b (), i=0,...,n (7.4)

wheret = (u — ug)/(u1 — up) is the local coordinate of u, with respect to the interval
[ug, uy1.

Now suppose we arbitrarily change b,,; the two curves then no longer describe
the same global polynomial. However, they still agree in all derivatives of order
0,...,n— 1atu = u;! This is simply because b,, has no influence on derivatives
of order less than n at u = u,. Similarly, we may change b,,—, and still maintain
continuity of all derivatives of order 0, ..., n—r—1.

We therefore have the C” condition for Bézier curves: the two Bézier curves
defined over uy = u = uy and u; = u = uy, by the polygons b,..., b, and
by, ..., by, respectively, are r times continuously differentiable at u = u; if and only
if

bor; =bl_;(1); i=0,...,n (71.5)

where r = (uy —up)/(u) — up) is the local coordinate of u, with respect to the interval
[4g, u1]. See Example 7.1 for a specific case.

Suppose the curve from Example 3.1 is defined over [0,1]. What are the Bézier
points of a second Bézier curve, defined over [1,3] and with a C? join to the
first curve? We have to evaluate at 1 = 3:

o
-0-

(0] [0

2 6

(8] [ 24 72
2] |2 -6
(4] [ -4 —60
0| | -4 -18 |-

The boldface points are the desired ones. If they are the first three Bézier points
of the “right” curve, both curves will be C? over the interval [0,3].

Example 7.1: Computing the C? extension of a Bézier curve.
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Thus the de Casteljau algorithm also governs the continuity conditions between
adjacent Bézier curves. Note that (7.5) is a theoretical tool; it should not be used to
construct C" curves—this would lead to numerical problems because of the extrap-
olations that are used in (7.5).

Another condition for C" continuity should also be mentioned here. By equating
derivatives using (4.20) and applying the chain rule,! we obtain

1 ' i — 1 ‘ i s
(&_o) A'b,_; = (A_.) A'b, i=0,...,r. (1.6)

Conditions for continuity of higher derivatives of Bézier curves were first derived
by E. Staerk [478] in 1976. The cases r = 1 and r = 2 are probably the ones of most
practical relevance, and we shall discuss them in more detail next.

7.3 C'and C? Continuity

We know that only the three Bézier points b,,—, b,, b, influence the first derivatives
at the junction point b,. According to (7.5), b+ is obtained by linear interpolation
of the two points b,_;, b,,. These three points must therefore be collinear and must
also be in the ratio () — up) : (uz — u;) = Ay : A;. This C' condition is illustrated
in Figure 7.2.

It is important to note that collinearity of three distinct control points b,—;, by,
b,+; is not sufficient to guarantee C' continuity! This is because the notion of
C' continuity is based on the interplay between domain and range configurations.
Collinearity of three points is purely a range phenomenon. Without additional in-
formation on the domain of the curve under consideration, we cannot make any
statements concerning differentiability. However, collinearity of three distinct con-
trol points b, -1, by, b,+1 does guarantee a continuously varying tangent line.

Ap A

Figure 7.2: C' condition: the three shown Bézier points must be collinear with ratio
Ao . A| .

I'Equation (4.20) is with respect to the local parameter of an interval. We are interested in
differentiability with respect to the global parameter.
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A special situation arises if Ab,-, = Ab, = 0, i.e., if all three points
b,—1, by, by coincide. In this case, the composite curve s has a zero tangent vector
at the junction point b, and is differentiable regardless of the interval lengths Ag, A, .
Zero tangent vectors may give rise to corners or cusps in curves, a fact that intuitively
contradicts the concept of differentiability.

Smoothness and differentiability only agree for functional curves—the connec-
tion between them is lost in the parametric case. Differentiable curves may not be
smooth (see cusps above) and smooth curves may not be differentiable (see Figures
7.6 and 7.7).

Moving on to C? continuity, let us now assume that s is C', so that (7.5) and (7.6)
are satisfied for r = 1. The additional C? condition, with = 2 in (7.5), states that the
two quadratic polynomials with control polygons b,—3, b,—1, b, and b,, b,+|, b, 12,
defined over [ug, u;] and [u;, u,], describe the same global quadratic polynomial.
Therefore, a polygon b, -, d, b,,;2 must exist that describes that polynomial over the
interval [ug, uz]. The two subpolygons are then obtained from it by subdivision at the
parameter value u,.

A C? condition for a C' curve s at u; is thus the existence of a point d such that

b,-1 = (I = t;)b,—, + t;d, (7.1
by =0 —1)d + t;byyo, (7.8)
where t; = Ag/(uz — up) is the local parameter of u; with respect to the interval

[ug, up]). Figure 7.3 gives an example.

This condition provides us with an easy test to see if a curve is C? at a given
breakpoint u;: we simply construct auxiliary points d—, d+ from both the right and
the left and check for equality. Figure 7.4 shows two curve segments that fail the C?
test.

b(] : ﬁl

Figure 7.3: C* condition: two Bézier curves are twice differentiable at the junction
point b, if the auxiliary point d exists uniquely.
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Figure 7.4: C* condition: the two segments shown generate different auxiliary points
d..; hence they are only C'.

Another derivation of the C? condition would be to compute the left and right
second derivatives at the junction point b, and to equate them. The second derivatives
at a junction point are essentially second differences of nearby Bézier points. For the
simpler case of uniform parameter spacing, A = A,, Figure 7.5 shows how this
approach leads to the same C? condition as before.

Figure 7.5: C? condition for uniform parameter spacing: if A’b,., = A?%b,
= A?, a unique auxiliary point d exists. (Proof by the use of similar triangles.)
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While both ways of checking C? continuity are mathematically equivalent, the
first one is more practical: it compares points (d - and d+ ), while the second one com-
pares vectors (left and right second derivatives). One usually has a point tolerance?
present in an application, but it would be hard to define a tolerance according to which
two second derivative vectors can be labeled equal. The problem of checking for C?
continuity arises when a piecewise cubic curve is given and one tries to convert it to
B-spline format, see Section 7.6.

7.4 Finding a C! Parametrization

Suppose we are given a piecewise Bézier curve. A probable question would now be:
“Is this curve C'?” This question is meaningless! The concept of C! continuity is
based upon an interplay between the knot sequence and the control polygons of the
curve. Hence a meaningful question would be: “Can we find a knot sequence such
that the curve is C! with respect to it?”

We can determine such a knot sequence from inspection of the piecewise Bézier
polygon: if it has “corners” at the junction points, it cannot define a C! spline curve,
and the notion of a knot sequence is meaningless. (A C° spline curve is C° over
any knot sequence.) Suppose then that we have a piecewise Bézier polygon with
bin-1, bin, bin+1 collinear for all i. We can now construct a knot sequence as follows:
setug =0, uy = landfori = 2,..., L determine u; by solving

Ai—l — ”Abi'ﬂ—lll (?9)
A [[Abj|
for A;. If desired, we may now normalize the u; by dividing through by u;. This
forces all &; to be in the unit interval [0, 1]. Of course, any scaling or translation of
the knot sequence is allowed: our C! conditions are invariant under affine parameter
transformations!

Any other choice of parameter intervals will not change the shape of the piecewise
curve—that shape is uniquely determined by the Bézier polygons. However, different
knot spacing will change the continuity class of the curve defined by its Bézier
polygons; the cross plots that are shown in Figures 7.6 and 7.7 demonstrate this. We
see that the continuity class of a curve is not a geometric property that is intrinsically
linked to the shape of the curve—it is a result of the parametrization.

7.5 C' Quadratic B-spline Curves
P

Let us consider a C' piecewise quadratic spline curve s that is defined over L intervals
ug < ... < uy,asin Figure 7.8. We call the Bézier points b, ;| inner Bézier points,
and the by; junction points.

2If two points are closer together than this tolerance, they are regarded as equal.
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Ly

A7

“Q._—.
Q

=V

Figure 7.6: A C' parametrization: the piecewise quadratic Bézier curve is C' when
the parameter intervals are chosen to be in the same ratio « : B as the Bézier points
by, by, bs.

We can completely determine a quadratic spline curve by prescribing the knot
sequence and the Bézier points

bg, b1, b3, ..., bty ..., b1, bay.

The remaining junction points are computed from the C' conditions

A:’ Ai—l

by = mbzf—l + A_bzm; i=1...,L—-1 (7.10)

Ai -1+ 4

We can thus define a C' quadratic Bézier curve with fewer data than are necessary
to define the complete piecewise Bézier polygon. The minimum amount of informa-
tion that is needed is (1) the polygon by, by, bs, ..., boii1..., bar—y, by, called the
B-spline polygon or de Boor polygon of s, and (2) the knot sequence uy, . . ., u;.> If the
curve is described in termsof this B-spline polygon, it is sometimes called a B-spline

3For readers familiar with the IGES definition of B-splines: there, the knots up and u;,
would have to be listed three times each.
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)y

=V

Figure 7.7: A C° parametrization: the piecewise Bézier curve is the same as in the
previous figure. It is not a C' curve with the choice of uniform parameter intervals as
indicated in the cross plot.

curve. We also denote the quadratic B-spline polygon by d—, dy, ..., d;_;, d;; see
Figure 7.8. Each B-spline polygon, together with a knot sequence, determines a C'!
quadratic spline curve, and, conversely, each quadratic C' spline curve possesses a
unique B-spline polygon.*

From the definition of a quadratic B-spline polygon, we can deduce several
properties, which we shall simply list since their derivation is a direct consequence
of the previous definitions:

e Convex hull property
e Linear precision

¢ Affine invariance

“The numbering of knots and control points here is strictly aimed at the quadratic case. A
different numbering scheme is employed in Chapter 10 for more general configurations.
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d_; =bg . Al Ag

ug uy uz uz U4

Figure 7.8: C' quadratic splines: the junction points b,; are determined by the inner
Bézier points and the knot sequence.

* Symmetry
* Endpoint interpolation

e Variation diminishing property.

The last property follows because the piecewise Bézier polygon of s is obtained by
piecewise linear interpolation of the B-spline polygon, a process that is variation
diminishing, as seen in Section 2.4.

All of the preceding properties are shared with Bézier curves, although the convex
hull property may be sharpened considerably for quadratic B-spline curves: the curve s
lies in the union of the convex hulls of the triangles by; 1, baj 1, byiysi i = 1...,L—2
and the triangles b, by, b3 and by, _3, by; 1, by, as shown in Figure 7.9. One Bézier
curve, on the other hand, could only be guaranteed to lie within the convex hull of its
whole control polygon.

By definition, quadratic B-spline curves consist of parabolic segments, i.e., planar
curves. However, the B-spline control polygon may be truly three-dimensional—we
thus have a method to generate C' space curves that are piecewise planar.

One important property that single Bézier curves do not share with B-spline
curves is local control. If we are dealing with a single Bézier curve,’ we know that a
change of one of the control vertices affects the whole curve—it is a global change.
Changing a control vertex of a quadratic B-spline curve, on the other hand, affects
at most three curve segments. It is this local control property that made B-spline

3Tn this context, we do not consider Bézier curves as parts of composite curves!



106 Chapter 7. Spline Curves in Bézier Form

Figure 7.9: The convex hull property: a C' quadratic B-spline curve lies in the union
of a set of triangles. The triangles are formed by triples of consecutive control vertices.

curves as popular as they are. If a part of a curve is completely designed, it is highly
undesirable to jeopardize this result by changing the curve in other regions. With
single Bézier curves, this is unavoidable.

As a consequence of the local control property, we may include straight line
segments in a quadratic B-spline curve: if three subsequent control vertices are
collinear, the quadratic segment that is determined by them must be linear. A single
(higher degree) Bézier curve cannot contain linear segments unless it is itself linear;
this is yet another reason why B-spline curves are much more flexible than single
Bézier curves. Figure 7.10 shows a quadratic B-spline curve that includes straight
line segments. Such curves occur frequently in technical design applications, as well
as in font design.

N

< < Vo >

Figure 7.10: Quadratic B-spline curves: curves can be designed that include straight
line segments.
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Figure 7.11: Closed curves: two closed quadratic B-spline curves are shown that have
the same control polygon but different knot sequences,

From inspection of Figure 7.8, we see that the endpoints of a B-spline curve are
treated in a special way. This is not the case with closed curves. Closed curves are
defined by s(up) = s(ur). Figure 7.11 shows two closed quadratic B-spline curves.
For such curves, C' continuity is defined by the additional constraint (d/du)s(ug) =
(d/duys(uy).

The figure also shows that a B-spline curve depends not only on the B-spline
polygon, but also on the knot sequence.

7.6 C? Cubic B-spline Curves

We are now interested in C? piecewise cubic spline curves, again defined over L
intervals ug < ... < ur. Consider any two adjacent curve segments s;—; and s;. To
be C! at u;, the relevant Bézier points must be in the ratio A;_; : A;, or
by = ﬁbﬁ—l + ﬁbm#b (7.11)

To be C? as well, an auxiliary point d; must exist such that the points bz;_5, bs;—;, d;
and d;, b3; 41, b3+ are in the same ratio A;_, : A;, as follows from the C? conditions
(7.8). Figure 7.12 illustrates this point.

A C? cubic spline curve defines the auxiliary points d;, which form a polygon
P. Conversely, a polygon P and a knot sequence {u;} also define a C? cubic spline
curve. Set

d; (7.12)
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Figure 7.12: C’ cubic B-spline curves: the auxiliary points d, define the B-spline poly-
gon of the curve.

A; Aia + A
iy = —d,; + ——————d; )
b3i- A i A (7.13)
fori =2, L — 1, where
A = A,'_js_ + &,-..| + .ﬁ,‘. (?14)

With the junction points by; defined in (7.11), the piecewise Bézier curve defined
by the d; meets the C? conditions at every knot u;.

Near the ends, things are a little more complicated. We define the cubic B-spline
polygon to have vertices d—_, dy, ..., d;, d.+ and then set

b() = d—l,
b| = dn, (7.15)
_ A A
by = Figdet gigdo
_ ‘ll 3{75
b3n‘,—2 - Ap 2+Ap ldi'_l + .'1]_-3+'-\1_—1df"
by = d. (7.16)
by, = diir.

Now the spline curve is C? at every interior knot. This construction is due to W.
Boehm [61]. An illustration is given in Figure 7.13.

If a cubic spline curve is expressed in terms of the B-spline polygon (the polygon
consisting of the d;), it is usually called a C* cubic B-spline curve.

Cubic B-spline curves enjoy the same properties as do quadratic ones:

e Convex hull property

e Linear precision
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Figure 7.13: B-splines: a cubic B-spline curve with its control polygon.

Affine invariance

e Symmetry

Endpoint interpolation
e Variation diminishing property

Local control.

Local control for cubic B-spline curves is not quite as local as it is for quadratic
ones. If a control vertex d; of a cubic B-spline curve is moved, four segments of the
curve will be changed, as shown in Figure 7.14.

Figure 7.14: Local control: as one control vertex is moved, only the four “nearby”
curve segments change.
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7.7 Finding a Knot Sequence

“Given the de Boor polygon and the knot sequence, construct the corresponding
piecewise Bézier polygon” was the topic of the last two sections. In freeform design,
one creates the de Boor polygon interactively, but how does one create the knot
sequence? An easy answer isto setu; = i, or some other (equivalent) uniform spacing,
but this method is too rigid in many cases. The jury is still out on what constitutes
an “optimal” parametrization. As a rule of thumb, better curves are obtained from a
given polygon if the geometry of the polygon is incorporated into the knot sequence.
For example, one may set (in the cubic case)

ug = 0,
uy = ndl - d—]”-

. 7.17
wi = -y tlldi —diglly i=2..,L—1, 717

Uy, Up—) + ”dL+l - d;.—l”-

This is a chord length parametrization for cubic B-spline curves when the polygon
is given.® This parametrization often produces *“smoother” curves than the uniform
one described above (see Sapidis [440]).

7.8 Design and Inverse Design

Quadratic B-spline curves seemed to do a pretty good job of producing complex
shapes, so why increase the degree to cubic? Cubic polynomials are true space curves,
i.e., they are not planar. For 2D shapes, piecewise quadratics might suffice, but when
it comes to 3D, they can only produce piecewise 2D segments. Two examples why
this is not desirable: 3D curves that are used to describe robot paths will exhibit
jumps in their torsion—this is bad for the joints of the robot arm. Secondly, 3D
curves that have to satisfy aesthetic requirements would simply look bad if described
by piecewise planar shapes.’

Another advantage of piecewise cubics is the fact that they may have inflection
points inside a segment. With piecewise quadratics, one would have to make sure
that there is a junction point at every inflection point.

How do we design curves using cubic B-splines? The typical freeform design
takes place in a 2D environment, with the use of a mouse or some other interactive
input device. A control polygon is sketched on the terminal, the resulting curve is
drawn, the control polygon is adjusted, and so on. The parametrization that is being
used should be kept away from the designer, and would most likely be one of the
two methods described in the previous section. To obtain a 3D curve, one would then
change to another view (by rotating the curve) and continue adjusting control points.

6 Another chord length parametrization exists if data points are given for an interpolatory
spline, as described in Chapter 9.

70f course, this could be overcome by using a large number of quadratic pieces. But then,
why not go a step further and do everything piecewise linear, with even more pieces?
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The final result might look reasonable on the terminal, but should probably undergo
a final smoothing process as discussed in Chapter 23.

Sometimes designers do not like to deal with control polygons and prefer to
manipulate the curve directly. In that case, the curve should be obtained from an
interpolation process as described in Chapters 8 or 9. It may be represented internally
in B-spline or piecewise Bézier form. If the designer wants to change a certain
junction point X; to a new location, this may easily be done locally using B-spline
technology as follows.

Displacing x(u;) by a vector v; would require a displacement of d; to a new
location d; + e;. Clearly e; must be parallel to v;, and so we can state

1

e = —vV; (7.18)
Ci
The value of ¢; may be computed to
o = ! (13; Wi Ui A;_,M) ) (7.19)
Uiy = Ui Wity = Ui—2 Wiy = Uiy

Thus we have solved our problem, called inverse design. In this mode, we would
directly move the junction point x; and simply hide the equivalent change in the
control polygon from the designer. We need to keep in mind that this procedure
(since it changes d;) will also change x;—; and X, 1, although by smaller amounts.
Note that we can interpret Fig. 7.14 as an illustration of inverse design!

7.9 Implementation

The following is a program for the conversion of a cubic B-spline curve to piecewise
Bézier form:

void bspline_to_bezier(bspl,knot,l,bez)

/*  converts cubic B-spline polygon into piecewise Bezier polygon.

Input: bspl: B-spline control polygon
knot: knot sequence
1: no. of intervals

Output: Dbez: piecewise Bezier polygon. Each junction point b_3i is

only stored once.

Remark: bspl starts from O and not -1 as in the text. All
subscripts are therefore shifted by one. For those familiar
with Chapter 10: don’t try to use multiple knots here --
in terms of that chapter, the end knots u_0 and u_l
have multiplicity 3, but all other
knots are simple, and the curve is C2.

*/

This routine has to be called for each coordinate (i.e., two or three times).
Speedups are therefore possible.
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7.10 Exercises

1. If we write the de Casteljau algorithm in the form of a triangular array as in
(3.3), subdivision tells us how the three “sides” of that array are related to each
other. Write explicitly how to generate the elements of one side from those of
any other one.

2. Describe the chord length parametrization for closed B-spline curves.

*3, Consider two Bézier curves with polygonsby, ..., byandb,, ..., by,. Letb,—, =
... = b, =...bys, so that both curves form one (degenerate) C" curve. Under
what conditions on b,_,_| and b, is that curve also C"*'?

*4. We are given a closed polygon. Suppose we want to make the polygon vertices
the inner Bézier points by; 4| of a piecewise quadratic and that we pick arbitrary
points on the polygon legs to become the junction Bézier points b;. Can we al-
ways find a C! parametrization for this (tangent continuous) piecewise quadratic
curve?

P1. Design a helix-like C? cubic B-spline curve. Then plot the blossom b[t, ¢, 5] for
each cubic piece, for the range 0 = ¢ = 1 and —0.5 = 5 = 0.5 (assuming that
¢ is the local parameter for each piece). You should obtain a surface. Discuss its
properties.



Chapter 8

Piecewise Cubic
Interpolation

Polynomial interpolation is a fundamental theoretical tool, but for practical purposes,
better methods exist. The most popular class of methods is that of piecewise polyno-
mial schemes. All these methods construct curves that consist of polynomial pieces
of the same degree and that are of a prescribed overall smoothness. The given data
are usually points and parameter values; sometimes, tangent information is added as
well.

In practice, one usually encounters the use of piecewise cubic curves. They may
be C2—the next chapter on cubic spline interpolation is dedicated to that case. If they
are only C', the trade-off for the lower differentiability class is locality: if a data point
is changed, the interpolating curve only changes in the vicinity of that data point. We
call this class of interpolants piecewise cubic interpolants.

This chapter can only cover the basic ideas behind piecewise cubic interpolation.
A large variety of interpolation methods exist that are designed to cope with special
problems. Most such methods try to preserve shape features inherent in the given
data, for example, convexity or monotonicity. We mention the work by Fritsch and
Carlson [222], McLaughlin [355], Foley [209], [210], McAllister and Roulier [352],
and Schumaker [453].

8.1 C'Piecewise Cubic Hermite Interpolation
This is conceptually the simplest of all C! interpolants, although not the most practical
one. It solves the following problem:

Given: Data points X, ..., X;, corresponding parameter values u, .. ., ur, and
corresponding tangent vectors my, ..., mg.

113
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Find: A C'piecewise cubic polynomial s that interpolates to the given data, i.e.,
d

s(u) =x;, —su)=m;; i=0,..., L (8.1)
du

We construct the solution as a piecewise Bézier curve, as illustrated in Figure 8.1.
We find the junction Bézier points immediately: bs; = X;. To obtain the inner Bézier
points, we recall the derivative formula for Bézier curves from Section 7.3:

d 3
as(ﬂi) = E(b?’i = b3i—1)

= & Byt = b
where A; = Aw;. Thus the inner Bézier points bs;4 ;i = 0,..., L — 1 are given by
by = by + %im,-, (8.2)
and the inner Bézier points by;—y,i = 1,..., L are
b3i—1 = b3y — A%me- (8.3)

What we have done so far is construct the piecewise Bézier form of the C’
piecewise cubic Hermite interpolant. Of course, we can utilize the material on cubic
Hermite interpolation from Section 6.5 as well. Over the interval [u;, u;+,], the

Figure 8.1: Piecewise cubic Hermite interpolation: the Bézier points are obtained
directly from the data.
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interpolant s can be expressed in terms of the cubic Hermite polynomials Flf'{u} that
were defined by (6.16). In the situation at hand, the definitions become:

A3(u) = B(t) + B (1),
N A;
A ) = 38?(0.

A (8.4)
A3 ) = —;‘B%m.
A3 () = B3(t) + Bi(t),

where 1 = (u— u;)/4; is the local parameter of the interval [u;, u;+ |. The interpolant
can now be written as

s(u) = X H3 () + mH; () + my B3 (u) + x00H3 ). (8.5)

This interpolant is important for some theoretical developments; of more practical
value are those developed in the following sections.

8.2 C! Piecewise Cubic Interpolation I

The title of this section is not very different from the one of the preceding section,
and indeed the problems addressed in both sections differ only by a subtle nuance.
Here, we try to solve the following problem:

Given: Data points x,,..., x;, and tangent directions lg,...,1; at those data
points.

Find: A C' piecewise cubic polynomial that passes through the given data points
and is tangent to the given tangent directions there.

Comparing this problem to the one in the previous section, we find that this
one is more vaguely formulated: the “Find” part does not contain a single formula.
This reflects a typical practical situation: one is not always given parameter values u;
or tangent vectors m;; very often, the only available information is data points and
tangent directions, as illustrated in Figure 8.2. It is important to note that we only

Figure 8.2: C' piecewise cubics: example data set.
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have tangent directions, i.e., we have no vectors with a prescribed length. We can
assume without loss of generality that the tangent directions 1; have been normalized
to be of unit length:

L1l = 1.

The easiest step in finding the desired piecewise cubic is the same as before: the
junction Bézier points bs; are again given by by; = x;, i = 0,..., L.

For each inner Bézier point, we have a one-parameter family of solutions: we
only have to ensure that each triple bs;—y, b;, b3j4; is collinear on the tangent at
bs; and ordered by increasing subscript in the direction of 1;. We can then find a
parametrization with respect to which the generated curve is C! [see (7.9)).

In general, we must determine the inner Bézier points from

bsis1 = by + ail;, (8.6)
bs3i—1 = by — B, (8.7)

so that the problem boils down to finding reasonable values for «; and 8;. While any
nonnegative value for these numbers is a formally valid solution, values for «; and
B; that are too small cause the curve to have a corner at x;, while values that are too
large can create loops. There is probably no optimal choice for ¢; and B; that holds
up in every conceivable application—an optimal choice must depend on the desired
application.

A “quick and easy” solution that has performed decently many times (but also
failed sometimes) is simply to set

o = B,‘ = 0.4”&&.” (8.8)

(The factor 0.4 is, of course, heuristic.)
The parametrization with respect to which this interpolant is C' is the chord
length parametrization. It is characterized by

&i _ .8:' _ ”Ax!”

A Qi+ ||AX;'+1||'

(8.9)

A more sophisticated solution is the following: if we consider the planar curve
in Figure 8.3, we see that it can be interpreted as a function, where the parameter ¢
varies along the straight line through by and b;. Then

IIbsiss — bl
Aball = e

“ b3[|| 30089;
_ lIbzisz — bsjl|
“Ab3,+2|| = W

We are dealing with parametric curves, however, which are in general not planar and
for which the angles ©® and ¥ could be close to 90 degrees, causing the preceding
expressions to be undefined. But for curves with ©;, ¥;,; smaller than, say, 60
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b3i+1 b3i+2

b33

Figure 8.3: Inner Bézier points: this planar curve can be interpreted as a function in an
oblique coordinate system with by;, ba; 43 as the x-axis.

degrees, the foregoing could be utilized to find reasonable values for ; and B;:

1
= Axil,
“i 3cos®,—” xil
- == ee—— & = .
Bi 3cos‘1’,v+|” xill

Since cos 60° = 1/2, we can now make a case distinction:
lAx, |2 o 0

if |@9;] = 60
, = { 3L Ax, | !| (810)

HlAx||  otherwise

and

31,4 Ax, [8.] i)
H|Ax||  otherwise.

5 _{ LaxlP g 1w, | < 60°

This method has the advantage of having linear precision. It is C' when the knot
sequence satisfies A; /A; 4| = Bi/a;+1.

Note that neither of these two methods is affinely invariant: the first method,
(8.8), does not preserve the ratios of the three points bs;_i, by;, b3y because the
ratios ||[Ax;— || : ||Ax;]| are not generally invariant under affine maps.! The second
method uses angles, which are not preserved under affine transformations. However,
both methods are invariant under euclidean transformations.

IRecall that only the ratio of three collinear points is preserved under affine maps!
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8.3 C' Piecewise Cubic Interpolation II

Continuing with the relaxation of given constraints for the interpolatory C' cubic
spline curve, we now address the following problem:

Given: Data points X,, ..., X, together with corresponding parameter values

Find: A C' piecewise cubic polynomial that passes through the given data points.

One solution to this problem is provided by C? (and hence also C") cubic splines,
which are discussed in Chapter 9. Here, we will determine tangent directions sl; or
tangent vectors m; and then apply the methods from the previous two sections.

The simplest method for tangent estimation is known under the name FMILL.
It constructs the tangent direction I; at x; to be parallel to the chord through x;_; and
Xi+1:

Vi = Xjpp —Xi—1s i=1,..., L—1. (8.12)

Once the tangent direction v; has been found,” the inner Bézier points are placed on
it according to Figure 8.4:

_ Aiy
34 + A;‘)Vh

A;
(A + ﬁ\:‘)v;'

bsi—1 = by; (8.13)

bsi+1 = by + (8.14)
This interpolant is also known as a Catmull-Rom spline.

This construction of the inner Bézier points does not work at X, and x; . The next
method, Bessel tangents, does not have that problem.

bsi+1

Xi—1

Figure 8.4: FMILL tangents: the tangent at x; is parallel to the chord through x,-, and
Xii1.

INote that here we do not have ||v;|| = 1!
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The idea behind Bessel tangents is as follows: to find the tangent vector m;
at X;, pass the interpolating parabola g;(«) through x;_{, X;, X;+; with corresponding
parameter values u;—y, u;, u;+) and let m; be the derivative of q;. We differentiate q;
at u;:

m; = c%qr'(”i)-
Written in terms of the given data, this gives
m; = (lﬁi_?"JAx,-_, + z—:Ax;; i=1..,L—1, (8.15)
where
a; = L
A + A

The endpoints are treated in the same way: mg = d/duq (up), my = d/duq, ;(u),
which gives

Another interpolant that makes use of the parabolas q; is known as an Overhauser
spline, after work by A. Overhauser [379] (see also [81] and [141]). The i™ segment
s; of such a spline (defined over [u;, u;+1]) is defined by

U — U .
qi(u) + T‘Ir‘-ﬂ(h‘); i=1..L-2

Ujpp — U

si(u) = A
In other words, each s; is a linear blend between q; and g;+. At the ends, one sets
So(u) = qo(u) and s (u) = qr—1(u).

On closer inspection it turns out that the last two interpolants are not different
at all: they both yield the same C' piecewise cubic interpolant (see Exercises). A
similar way of determining tangent vectors was developed by McConalogue [353],
[354].

Finally, we mention a method created by H. Akima [4]. It sets

m; = (1 —¢)a;—; + ca;,

where
_ Ax;
a; Tr
and
B VY|
C lAaioll + TlAall

This interpolant appears fairly involved. It generates very good results, however, in
situations where one needs curves that oscillate only minimally.

*They are also attributed to Ackland [2].
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Figure 8.5: Finding cubic boundaries: while the endpoints of a boundary curve are
fixed, its end tangents only have to lie in specified planes.

8.4 Point-Normal Interpolation

In a surface generation environment, one is often given a set of points p; € E* and
a surface normal vector n; at each data point, as illustrated in Figure 8.5. Thus we
only know the tangent plane of the desired surface at each data point, not the actual
endpoint derivatives of the patch boundary curves.

If we know that two points p; and p; have to be connected, then we must construct
a curve leading from p; to p; that is normal to n; at p; and to n; at p;. A cubic will
suffice to solve this generalized Hermite interpolation problem. In Bézier form, we
already have by = p; and b; = p;. We still need to find b; and b,.

There are infinitely many solutions, so we may try to pick one that is both
convenient to compute and of reasonable shape in most cases. Two approaches to
this problem appear in Piper [402] and Nielson [376]. Both approaches, although
formulated differently, yield the same result.

As a first approximation to by, project b; into the plane defined by by = p;
and n;. This defines a tangent at by. Place the final b, anywhere on this tangent,
using some of the methods described in Section 8.2. The remaining point b, is then
obtained analogously.

8.5 Font Design

We conclude this chapter with an application of growing importance, namely font
design. A graphics language such as PostScript has to generate characters for many
different font sets—Arabic, Helvetica, boldface, just to name a few. These fonts must
be scaleable, i.e., if a different font size is desired, the original fonts must be rescaled.
Had the original fonts been stored as pixel maps, scaling would cause serious aliasing
problems. It is common practice, therefore, not to store a given character as a pixel
map, but rather to store its outline as a sequence of Bézier curves. These allow smooth
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Figure 8.6: Font design: the characters in this book are stored as a sequence of cubic
Bézier curves.

arcs where desired, and also allow for sharp corners, as shown in Figure 8.6.* This
book was printed using PostScript, so all characters have been generated as piecewise
cubic Bézier curves.

8.6 Exercises

*2.

*3.

P1.

P2.

. Show that Akima’s interpolant always passes a straight line segment through

three subsequent points if they happen to lie on a straight line.

Show that Overhauser splines are piecewise cubics with Bessel tangents at the
junction points.

One can generalize the quintic Hermite interpolants from Section 6.6 to piece-
wise quintic Hermite interpolants. These curves need first and second derivatives
as input positions. Devise ways to generate second derivative information from
data points and parameter values.

Using piecewise cubic C! interpolation, approximate the semicircle with radius
1 to within a tolerance of € = 0.001. Use as few cubic segments as possible.
Literature: [156], [228].

Program the methods from Section 8.3. Apply to the semicircle from the previous
problem and compare to the special-purpose interpolant developed there.

“This is my own rendition of the letter r.
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Cubic Spline Interpolation

In this chapter, we discuss what is probably the most popular curve scheme: C?
cubic interpolatory splines. We have seen how polynomial Lagrange interpolation
fails to produce acceptable results. On the other hand, we saw that cubic B-spline
curves are a powerful modeling tool; they are able to model complex shapes easily.
This “modeling” is carried out as an approximation process, manipulating the control
polygon until a desired shape is achieved. We will see how cubic splines can also
be used to fulfill the task of interpolation, the task of finding a spline curve passing
through a given set of points. Cubic spline interpolation was introduced into the
CAGD literature by J. Ferguson [202] in 1964, while the mathematical theory was
studied in approximation theory (see de Boor [124] or Holladay [285]). For an outline
of the history of splines, see Schumaker [452].

Because of the subject’s importance, we present two entirely independent deriva-
tions of cubic interpolatory splines: the B-spline form and the Hermite form.

9.1 The B-spline Form

We are given a set of data points xy, ..., x;. and corresponding parameter values (or
knots or breakpoints) uo, ..., u;.! We want a cubic B-spline curve s, determined by
the same knots and unknown control vertices d_, ..., d;;; such that s(x;) = x;: in
other words, such that s interpolates to the data points.

The solution to this problem becomes obvious once one realizes the relationship
between the data points x; and the control vertices d;. Recall that we can write every
B-spline curve as a piecewise Bézier curve (see Section 7.6). In that form, we have

Xi=hy; i=0,..., L
The inner Bézier points bs;+ are related to the x; by
_ Aibsi—i + Aj—ibsity

X; Ty i=1,...,L—1, 9.1)

""The knots are in general not given—see Section 9.4 on how to generate them.

122
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where we have set A; = Au;. Finally, the bs;.; are related to the control vertices d;
by
A+ (A + A d;

bii— = o i=2,...L—1 9.2
e Ay + Ai-1 + 4 : ©2
and
(A; + Ajpd; + Ay digy .

b3+ = s i=1,...L—2 93
. Aoy + A + Ay ! ©-3)

Near the endpoints of the curve, the situation is somewhat special:

Aydy + Agd,
b= ——MmM8M 94
2 Ao + A ©-4)
Ay qdp— + A od

by s = L-10L—1 r—2dL 9.5)

AL+ 4

We can now write down the relationships between the unknown d; and the known
X;, i.e., we can eliminate the b;:

(Aj_] + A,‘)X,‘ = Ct‘;df'_] + B;d;‘ + ‘Y,'d;_H, (96}
where we have set (with A_; = A, = 0):
(A)?

T AL+ A+ A
Ai(Ai—2 + Ajy) N A (A + Ajsy)
A+ A+ A A+ A+ A

o (Ai-y)
VAL A AL

Bi =

If we choose the two Bézier points by and b, arbitrarily, we obtain a linear
system of the form

1 dg 1y
a B i d, r
: : =1: . (97
a1 Bi-1 Y- d;—; r—
1 d; ry

Here we set
g = b].
ri = (Ai— + Apx;,

r;, = by 1.
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The first and last polygon vertices do not cause much of a problem:
d_; =x, dpi =%

This linear system can be made symmetric: we can multiply each equation by a
common factor. In particular, we can divide the i™ equation through by A2  AZ.
Also, we would have to delete the first and last rows and columns from the system
and update the right-hand side accordingly. The resulting new matrix will now be
symmetric; its entries will satisfy a;j+; = ;.

The coefficient matrix will be diagonally dominant it A;—» + A;—; > A;, which
is easily seen from the symmetric version of the linear system. If this condition holds
for all 7, the system has a unique solution. The fact that it always has a solution,
as long as the u; are increasing, is not that easily seen. It is a consequence of the
Schoenberg-Whitney theorem, for which the reader is referred to Chapter XIII of de
Boor’s Guide to Splines [126].

Note that an affine parameter transformation does not affect the linear system.
Therefore it would not matter if we rescaled our parameter values u;.

In the special case of all A; being equal, that is, for an equidistant parametrization,
the system becomes even simpler:

[ 1 1T do -| [ b, i
2 11 d, 6x;
1 4 1 d; 6x;
=1 s
1 4 1 dL—2 6XL_2
1 % % d,i__] 6)(;‘_1
| 1 1L d; i b3L-l J

Frequently one must deal with closed curves; see Figure 9.1. The number of
equations is reduced since the C? condition at X, = x; should not be listed twice in
the linear system. It now takes the form:

Bo Yo Qg do ro
ar B d, r
: =: |. 09
ar -2 Pr-2 Y2 d;
YL-1 ar—1 Pr-i d;—; I

Here, the right-hand sides are of the form
ri = (A1 + A)x;.

For these equations to make sense, we define a periodic continuation of the knot
sequence:

Ay =A4p-1,A; = A
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Figure 9.1: Closed curves: the interpolation problem becomes periodic.

The matrix of this system is no longer tridiagonal; yet one does not have to resort to
solving a full linear system. For details, see Ahlberg et al. [3], p. 15.

We conclude with a method for B-spline interpolation that occasionally appears
in the literature (e.g., in Yamaguchi [503]). It is possible to solve the interpolation
problem without setting up a linear system! Just do the following: construct an initial
control polygon—by setting d; = X;, for example. This initial polygon will not define
an interpolating curve. So, for i from 0 to L, correct d; such that the corresponding
curve passes through x;.” Repeat until the solution is found.

This method will always converge, and will not need many steps in order to do so.
So why bother with linear systems? The reason is that tridiagonal systems are most
effectively solved by a direct method, whereas the above iterative method amounts
to solving the system via Gauss-Seidel iteration. So while geometrically appealing,
the iterative method needs more computation time than the direct method.

9.2 The Hermite Form

An interpolatory C? piecewise cubic spline may also be written in piecewise cubic
Hermite form. For u € [u;, #;+], the interpolant is of the form

X(u) = x;Hy(r) + mAH; (r) + Ay, H3(r) + X0 H3 (1), (9.10)

2See Section 7.8 for details.
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where the Hj‘ are cubic Hermite polynomials from (6.14) and r = (u — u;)/A; is the
local parameter of the interval [u;, u;+1]. In (9.10), the x; are the known data points,
while the m; = x(u;) are the unknown tangent vectors. The interpolant is supposed
to be C?; therefore,

§+{Hf) - ii_{u,-) = 0. (91 1)
We insert (9.10) into (9.11) and obtain

Aimi—y + 2(4- + Am; + Ai- Mgy =3 (—Mff'l' + a—‘—*'f") ;

(9.12)

r=1..., -

Together with two end conditions, (9.12) can be used to compute the unknown
tangent vectors m;. Note that this formulation of the spline interpolation problem de-
pends on the scale of the u;; it is not invariant under affine parameter transformations.
This is a result of the use of the Hermite form.

The simplest end condition would be to prescribe my and m;, a method known
as clamped end condition. In that case, the matrix of our linear system takes the form

1 my Iy
a Bion m; r
: = (9.13)
ap-1 PBr-1 Y- my - Ip—|
1 my, r.
where
o; = A;‘.
Bi = 2(Ai- + Ay,
Yi = Ai-y
and
rp = my,
AAX; A Ax; .
r,-=3(‘Af_’]I+ ‘Si ');1=l ..... L—1,
rp = mg.

Having found the m;, we can easily retrieve the piecewise Bézier form of the
curve according to (8.2) and (8.3).

When dealing with linear systems, it is a good idea to make sure that a solution
exists and that it is unique. In our case, the coefficient matrix is diagonally dominant,
which means that the absolute value of any diagonal element is larger than the sum
of the absolute values of the remaining elements on the same row:

[Bil = lail + |yil.

Such matrices are always invertible; moreover, they allow Gauss elimination without
pivoting (see any advanced text on numerical analysis or the fundamental spline text
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by Ahlberg et al. [3]). Thus the spline interpolation problem always possesses a
unique solution (after the prescription of two consistent end conditions).

Since the coefficient matrix is fridiagonal (only the diagonal element and its two
neighbors are nonzero), we do not have to solve a full (L + 1) X (L + 1) linear system.
One forward substitution sweep and one for backward substitution is sufficient, as
implemented in the programs 1_u_system and solve_system that follow. All our
remarks about the linear system hold for the B-spline form as well.

9.3 End Conditions

We may have the interpolation routine select the end tangents my and m,, automati-
cally instead of prescribing it ourselves. One such selection is called the Bessel end
condition. Here, the end tangent vector my is set equal to the tangent vector at Xy
of the interpolating parabola through the first three data points. Similarly, m, is set
equal to the tangent vector at X, of the interpolating parabola through the last three
data points. Now the right-hand side changes to

_ _220+Ay) . B 24

g = X| — X (9.14
0 AopBy %o 2004, AR 2 )
and
28, Br-1 207, +Ap-2)
r; = - Xj2— X + —————MMMX;. (9.15
L Ap 2B L2 2812804 Ll Br-14A.- L )

Of course, this condition may also be formulated in terms of the B-spline repre-
sentation. This amounts to finding the control points dy and d;, which are actually
Bézier points. They were already determined in the context of C! piecewise cubic
interpolation; see (8.15). C code for this version of Bessel end conditions is given in
the routine bessel_ends described later.

Another possibility is the quadratic end condition, which sets X(u) = ¥(u;) and
%(uy—1) = X(ur). Now the linear system changes to

1 1 my LY}
a Br n m r|
: =|: 9.16)
ap-1 Br-1 Y- m; I
1 1 m; I
and
2
rg = EAX{], r. = A Ax; .

A slightly more complicated end condition is provided by the not-a-knot condi-
tion. Using it, we force the first two and the last two polynomial segments to merge
into one cubic piece. This means that the third derivative of X(u) is continuous at u;.
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Writing down the conditions leads to a nontridiagonal system, which can, however,
be transformed into a tridiagonal one. Its first equation is

A Bimy + Bim,

_ (Ap)?
A,

A
Ax, + 31(3;1\0 + 2A1)AXo; (9.17)
0

the last one is

.BJ%—]mL—I + AL oB-1my

(AL-1)? A,
= Axp_; +
AL—Z X2 AL—I

(BAL—1 +2A,2)Ax; 1. (9.18)

Finally, we mention an end condition that bears the name “natural.” The term
stems from the fact that this condition arises “naturally” in the context of the minimum
property for spline curves, as described later in this chapter. The natural end condition
is defined by X(up) = X(uz) = 0. The linear system becomes

2 1 my Iy
a; B m m r|
: =|: (9.19)
a1 Br-1 Y- my r -
1 2 my;, rg,
and
rg = 3 A r, = Ax
[1] AO x(]r L AL_' -1+

This end condition forces the curve to behave like a straight line near the endpoints;
usually, this results in a poor shape of the spline curve.

The spline system becomes especially simple if the knots u; are uniformly spaced;
for example, the clamped end condition system becomes

1 my Iy
1 4 1 m; r
: = (9.20)
1 4 1 my rp—-1
1 m; r.
where
Ip = my,
ri = 3(Xj+ —Xi-1); i=1,..., L—1,

rp = mg.



9.3. End Conditions 129

Figure 9.2: Exact clamped end condition spline.

We finish this section with a few examples, using uniform parameter values in
all examples.® Figure 9.2 shows equally spaced data points read off from a circle
of radius 1 and the cubic spline interpolant obtained with clamped end conditions,
using the exact end derivatives of the circle. Figure 9.3 shows the curvature plot* of
the spline curve. Ideally, the curvature should be constant, and the spline curvature is
quite close to this ideal.

k=20

Figure 9.3: Curvature plot of exact clamped end condition spline.

*Because of the symmetry inherent in the data points, all parametrizations discussed later
yield the same knot spacing. All circle plots are scaled down in the y-direction.
“The graph of curvature versus arc length; see also Chapter 23.
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Figure 9.4: Bessel end condition spline.

Figure 9.4 shows the same data, but now using Bessel end conditions. Near the
endpoints, the curvature deviates from the ideal value, as shown in Figure 9.5.

Finally, Figure 9.6 shows the curve that is obtained using natural end conditions.
The end curvatures are forced to be zero, causing considerable deviation from the
ideal value, as shown in Figure 9.7.

VA .U U A ._Av,'\

k=0

Figure 9.5: Curvature plot of Bessel end condition spline.
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Figure 9.6: Natural end condition spline.

k=10

Figure 9.7: Curvature plot of natural end condition spline.

9.4 Finding a Knot Sequence

The spline interpolation problem is usually stated as “given data points x; and pa-
rameter values u;, ....” Of course, this is the mathematician’s way of describing a
problem. In practice, parameter values are rarely given and therefore must be made
up somehow. The easiest way to determine the u; is simply to set u; = i. This is
called uniform or equidistant parametrization. This method is too simplistic to cope
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with most practical situations. The reason for the overall poor® performance of the
uniform parametrization can be blamed on the fact that it “ignores™ the geometry of
the data points.

The following is a heuristic explanation of this fact. We can interpret the parame-
ter u of the curve as time. As time passes from time i to time u; , the point X(u) traces
the curve from point x(up) to point x(z; ). With uniform parametrization, x(u) spends
the same amount of time between any two adjacent data points, irrespective of their
relative distances. A good analogy is a car driving along the interpolating curve. We
have to spend the same amount of time between any two data points. If the distance
between two data points is large, we must move with a high speed. If the next two
data points are close to each other, we will overshoot because we cannot abruptly
change our speed—we are moving with continuous speed and acceleration, which
are the physical counterparts of a C*> parametrization of a curve. It would clearly be
more reasonable to adjust speed to the distribution of the data points.

One way of achieving this is to have the knot spacing proportional to the distances
of the data points:

A _ laxidll 02
Aii HAX; 41|
A knot sequence satisfying (9.21) is called chord length parametrization. Equation
(9.21) does not uniquely define a knot sequence; rather, it defines a whole family of
parametrizations that are related to each other by affine parameter transformations.
In practice, the choices uy = 0 and u;, = 1 or up = 0 and u, = L are reasonable
options.

Chord length usually produces better results than uniform knot spacing, although
not in all cases. It has been proven (Epstein [167]) that chord length parametrization
(in connection with natural end conditions) cannot produce curves with corners® at
the data points, which gives it some theoretical advantage over the uniform choice.

Another parametrization has been named “centripetal” by E. Lee [327]. It is
derived from the physical heuristics presented above. If we set

A _ [ llaxill ]”2
A AX; 1]l '

the resulting motion of a point on the curve will “smooth out” variations in the
centripetal force acting on it.

Yet another parametrization was developed by G. Nielson and T. Foley [377]. It
sets

(9.22)

3 Oidin; 30dis
A: — di[ = [ At § + = 1 1 ,
V3 +a T 2a 4.,

(9.23)

SThere are cases in which uniform parametrization fares better than other methods. An
interesting example is in Foley [210], p. 86.

SA corner is a point on a curve where the tangent (not necessarily the tangent vector!)
changes in a discontinuous way. The special case of a change in 180 degrees is called a cusp;
it may occur even with chord length parametrization.
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where d; = ||Ax;|| and
@f = min (‘J’T - E‘),‘. g) ¥

and 0 is the angle formed by X; |, X;, X;+;. Thus ©; is the “adjusted” exterior angle
formed by the vectors Ax; and Ax;—,. As the exterior angle 0 ; increases, the interval
A; increases from the minimum of its chord length value up to a maximum of four
times its chord length value. This method was created to cope with “wild” data sets.

We note one property that distinguishes the uniform parametrization from its
competitors: it is the only one that is invariant under affine transformations of the
data points. Chord length, centripetal, and the Foley methods all involve length
measurements, and lengths are not preserved under affine maps. One solution to this
dilemma is the introduction of a modified length measure, as described in Nielson
(37517

For more literature on parametrizations, see Cohen and O’Dell [111], Hartley
and Judd [273], [274], McConalogue [353], and Foley [210].

Figures 9.8 to 9.15® show the performance of the discussed parametrization
methods for one sample data set. For each method, the interpolant is shown together
with its curvature plot. For all methods, Bessel end conditions were chosen.

While the figures are self-explanatory, some comments are in place. Note the very
uneven spacing of the data points at the marked area of the curves. Of all methods,
Foley’s copes best with that situation (although we add that many examples exist
where the simpler centripetal method wins out). The uniform spline curve seems to
have no problems there, if one just inspects the plot of the curve itself. However, the
curvature plot reveals a cusp in that region! The huge curvature at the cusp causes
a scaling in the curvature plot that annihilates all other information. Also note how
the chord length parametrization yields the “roundest” curve, having the smallest
curvature values, but exhibiting the most marked inflection points.

Figure 9.8: Chord length spline.

"The Foley parametrization was in fact first formulated in terms of that modified length
measure.
8Kindly provided by T. Foley.



Figure 9.9: Curvature plot of chord length spline.

Figure 9.10: Foley spline.

Figure 9.11: Curvature plot of Foley spline.
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Figure 9.12: Centripetal spline.

Figure 9.13: Curvature plot of centripetal spline.

Figure 9.14: Uniform spline.
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& = 70,000
—o—o—o—o0—o *~—e ™ o900
k= —80,000

Figure 9.15: Curvature plot of uniform spline.

There is probably no “best” parametrization, since any method can be defeated
by a suitably chosen data set. The following is a (personal) recommendation. You
may improve the shape of the curve, at the cost of an increase of computation time,
by the following hierarchy of methods: uniform, chord length, centripetal, Foley.
The best compromise between cost and result is probably achieved by the centripetal
method.

9.5 The Minimum Property

In the early days of design, say ship design in the 1800s, the problem had to be handled
of how to draw (manually) a smooth curve through a given set of points. One way
to obtain a solution was the following: place metal weights (called “ducks™) at the
data points, and then pass a thin, elastic wooden beam (called a “spline”) between the
ducks. The resulting curve is always very smooth and usually aesthetically pleasing.
The same principle is used today when an appropriate design program is not available
or for manual verification of a computer result; see Figure 9.16.

Figure 9.16: Spline interpolation: A plastic beam, the “spline,” is forced to pass
through data points, marked by metal weights, the “ducks.”
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The plastic or wooden beam assumes a position that minimizes its strain energy.
The mathematical model of the beam is a curve s, and its strain energy E is given by

E= / (K(s))*ds,

where k denotes the curvature of the curve. The curvature of most curves involves
integrals and square roots and is cumbersome to handle; therefore, one often approx-
imates the preceding integral by a simpler one:

. 2 2
E=/[—,S(H)] du. (9.24)
du-

Note that E is a vector; it is obtained by performing the integration on each component
of s.

Equation (9.24) is more directly motivated by the following example: when an
airplane is scheduled to fly from A to B, it will have to fly over a number of of
intermediate “way points.” The amount of fuel used by an airplane is mostly affected
by its acceleration, which is essentially equivalent to the second derivative of its
trajectory. Thus if the plane follows a cubic spline curve passing through all the way
points, it will be guaranteed to use the least amount of fuel!?

In a more general setting, we may word this as: among all C? curves interpolating
the given data points at the given parameter values and satisfying the same end
conditions, the cubic spline yields the smallest value for each component of E. Fora
proof, let s(u) be the C? cubic spline and let y(u) be another C? interpolating curve.
We can write y as

y(u) = s(u) + [y(u) — s(u)].

The preceding integrals are defined componentwise; we will show the minimum
property for one component only. Let s(x) and y(u) be the first component of s and
y. respectively. The “energy integral” E of y’s first component becomes

E= / ($)%du + 2/ 59— $)du + f & — $du.
[ Uy L]

We may integrate the middle term by parts:

/ 56— §)du =56 - 5| - / (- §) du.
iy o ity

The first expression vanishes because of the common end conditions. In the second
expression;” is piecewise constant:

L-1

/"”(y —$du = Z”;(y B S)’HJ-I

o =0 uy

°1 am grateful to P. Crouch for bringing the airplane analogy to my attention.
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All terms in the sum vanish because both s and y interpolate. Since
Uy,
/ (3 — *du>0
Uy

for continuous ¥ # ¥,

/ (5)du = / (()du, (9.25)

we have proved the claimed minimum property.

The minimum property of splines has spurred substantial research activity. The
replacement of the actual strain energy measure E by E is motivated by the desire for
mathematical simplicity. The curvature of a curve is given by

= 1Al
[1X[[®
But we need ||x|| = 1 in order for |[%]| to be a good approximation to . This means,

however, that the curve must be parametrized according to arc length; see (11.7).
This assumption is not very realistic for cubic splines in a design environment; see
Exercises.

While the classical spline curve merely minimizes an approximation to (9.24),
methods have been developed that produce interpolants which minimize the true
energy (9.24), see [357), [86]. Moreton and Séquin have suggested to minimize the
functional [[«’(t))*dt instead, see [363].

9.6 Implementation

The following routines produce the cubic B-spline polygon of an interpolating C>
cubic spline curve. First, we set up the tridiagonal linear system:

void set_up_system(knot,l,alpha,beta,gamma)

/* given the knot sequence, the linear system for clamped end
condition B-spline interpolation is set up.
Input: knot: knot sequence (all knots are simple; but,

in the terminology of Chapter 10, knot[0]
and knot[1l] are of multiplicity three.)
points: points to be interpolated
1l: number of intervals
Output:alpha, beta,gamma: 1-D arrays that constitute
the elements of the interpelation matrix.
Note: no data points needed so far!

*/

The next routine performs the LU decomposition of the matrix from the previous
routine. (Note that we do not generate a full matrix, but rather three linear arrays!)
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void 1_u_system(alpha,beta,gamma,l,up,low)
/* perform LU decomposition of tridiagonal system with
lower diagonal alpha, diagonal beta, upper diagonal gamma.

Input: alpha,beta,gamma: the coefficient matrix entries

1: matrix size [0,1]1x[0,1]
Output:low: L-matrix entries
up: U-matrix entries

*/
Finally, the routine that solves the system for the B-spline coefficients d;:

solve_system(up,low,gamma,l,rhs,d)

/* solve tridiagonal linear system
of size (1+1)(1+1) whose LU decomposition has entries up and low,
and whose right hand side is rhs, and whose original matrix

had gamma as its upper diagonal. Solution is d[0],...,d[1+2].
Input: up,low,gamma: as above.
1: size of system: 1+1 eqs in 1+1 unknowns.
rhs: right hand side, i.e, data points with end
‘tangent Bezier points’ in rhs[1] and rhs[1+1].
Qutput:d: solution vector.

Note shift in indexing from text! Both rhs and d are from 0 to 1+2.
*/

If Bessel ends are desired instead of clamped ends, this is the code:

void bessel_ends(data,knot,l)
/* Computes B-spline points data[1] and data[1+1]
according to bessel end condition.

Input: data: sequence of data coordinates datal[0] to data[l+2].
Note that data[l] and data[l+1] are expected to
be empty, as they will be filled by this routine.
They correspond to the Bezier points bez[1] and bez[31-1].
knot: knot sequence
1: number of intervals
Output: data: now including ‘‘tangent Bezier points’’ data[1], data[l+1].
*/

The centripetal parametrization is achieved by the following routine:

void parameters(data_x,data_y,l,knot)
/* Finds a centripetal parametrization for a given set
of 2D data points.

Input: data_x, data_y: input points, numbered from O to 1+2.
1: number of intervals.

Output: knot : knot sequence. Note: not (knot[1]=1.0)!

Note: data_x[1], data_x[1+1] are not used! Same for data_y.

*/
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A calling sequence that utilizes the preceding programs might look like this:
parameters(data_x,data_y,1,knot);
set_up_system(knot,1,alpha,beta,gamma);
1_u_system(alpha,beta,gamma,l,up,low);

bessel_ends(data_x,knot,l);
bessel_ends(data_y,knot,1);

solve_system(up,low,gamma,l,data_x,bspl_x);
solve_system(up,low,gamma,l,data_y,bspl_y);

Here, we solved the 2D interpolation problem with given data points in data_x,

data_y, a knot sequence knot, and the resulting B-spline polygon in bspl x,
bspl_y. This calling sequence is realized in the routine c2_spline.c.

9.7 Exercises

1.

*3.

*4,

PI.

P2.

P3.

Formulate the quadratic and natural end conditions for the case of cubic B-spline
interpolation.

Although this section is on cubic spline interpolants, we might also have con-
sidered quadratic ones. Yet there is a difference: for the case of closed curves,
C' quadratic spline interpolation with uniform knots does not always have a
solution. Why?'®

Show that interpolating splines reproduce cubic polynomial curves—that they
have cubic precision. This means that if all data points x; are read off from a
cubic: x; = ¢(u;), and the end tangent vectors are read off from the cubic, then
the interpolating spline equals the original cubic.

Any curve may be reparametrized in terms of its arc length s. Show that a
polynomial curve of degree n > 1 cannot be polynomial in terms of its arc
length s. See Chapter 11 for the arc length parametrization—the key condition
is that ||%(s)|| = 1 if s is the arc length parameter.

Program the following: instead of prescribing end conditions at both ends, pre-
scribe first and second derivatives at ug. The interpolant can then be built segment
by segment. Discuss the numerical aspects of this method (they will not be won-
derful).

Interpolate data points from a semicircle and compare your results with those
from the corresponding exercises in Section 8.6.

Compare C? cubic spline interpolation to the C' case from Chapter 8, using the
data sets outline_2D and outline_3D.

1T. DeRose pointed this out to me.



Chapter 10
B-splines

B-splines were investigated as early as the nineteenth century by N. Lobachevsky (see
Renyi [421], p. 165); they were constructed as convolutions of certain probability
distributions.! In 1946, 1. J. Schoenberg [449] used B-splines for statistical data
smoothing, and his paper started the modern theory of spline approximation. For
the purposes of this book, the discovery of the recurrence relations for B-splines by
C. de Boor [125], M. Cox [118), and L. Mansfield was one of the most important
developments in this theory. The recurrence relations were first used by Gordon and
Riesenfeld [249] in the context of parametric B-spline curves.

This chapter presents a theory for arbitrary degree B-spline curves. The original
development of these curves makes use of divided differences and is mathematically
involved (sce de Boor [126]). A different approach to B-splines was taken by de Boor
and Hollig [131]; they used the recurrence relations for B-splines as the starting
point for the theory. In this chapter, the theory of B-splines is based on an even more
fundamental concept: the Boehm knot insertion algorithm [62]. Another interesting
new approach to B-splines is the blossoming method proposed by L. Ramshaw [414]
and, in a different form, by P. de Casteljau [135], which we will also discuss in this
chapter.

Warning: subscripts in this chapter differ from those in Chapter 7! For the cubic
and quadratic cases special subscripts are useful, but the general theory is easier to
explain with the notation used here.’

10.1 Motivation

Figure 10.1 shows a C? cubic spline (nonparametric) with its B-spline polygon. The
relationship between the polygon and the curve was discussed in Section 7.6. In

"However, those were only defined over a very special knot sequence.

%In terms of this chapter, we used end knots of multiplicity two (quadratic case) or three
(cubic case) in Chapter 7. The coefficients there started with the subscript i = —1; here, they
will start with i = 0.

141
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that section, we were interested in the parametric case, whereas now we will restrict
ourselves to nonparametric (functional) curves of the form y = f(u). The reason is
that much of the B-spline theory is explained more naturally in this setting.

In Section 5.5, we considered nonparametric Bézier curves. Recall that over the
interval [u;, u;+ ], the abscissas of the Bézier points are u; + JAw;/n;j =0,...,n
Two cubic Bézier functions that are defined over [u;—1, u;] and [u;, u;+,] are C? at u;
if an auxiliary point d; = (&, d;) can be constructed from both curve segments as
discussed in Section 7.3. Some of the points d; are shown in Figure 10.1. Section 7.3
tells us how to compute the y-values d; of these points. Using the same reasoning for
the u-coordinates & (see Exercises), we find

1
&= §(Hf—| +up+ i)y i=1,233 (10.1)
We can now give an algorithm for the “design” of a cubic B-spline function:

1. Given knots u;.

2.Find abscissas & = J(ui—1 + w; + t41).

3. Define real numbers d; to obtain a polygon with vertices (&, d;).

4. Evaluate this polygon (= piecewise linear function) at the abscissas of the inner
Bézier points. This produces a refined polygon, consisting of the inner Bézier
points.

5. Evaluate the refined polygon at the knots u;, the abscissas for the junction Bézier
points. We now have the junction Bézier points.

After step 5, we have generated a C? piecewise cubic Bézier function. In a similar
manner, we could generate a C! piecewise quadratic Bézier function. In this chapter,
we will aim for a generalization of the preceding definition of piecewise polynomials
to include arbitrary degrees and arbitrary differentiability classes.

Figure 10.1: B-splines: a nonparametric C* cubic spline curve with its B-spline poly-
gon. (In the context of this chapter, the end knots are of multiplicity three.)

3This notation is still in harmony with the cubic case of Section 7.3; we will change notation
for the general case soon!
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10.2 Knot Insertion

We will now define an algorithm to “refine” a piecewise linear function. Later,
this piecewise linear function will be interpreted as a B-spline polygon, but at this
point, we discuss only an algorithm that produces one piecewise linear function from
another.

Suppose that we are given a number n (later the degree of the B-spline curve)
and a number L (later related to the number of polynomial segments of the B-spline
curve). Suppose also that we are given a nondecreasing knot sequence

Up, -« UL+ 20-2-

Not all of the u; have to be distinct. If u; = -+ = u;4,_y, i.e., if r successive knots
coincide, we say that i; has multiplicity r. If a knot does not coincide with any other
knot, we say that it is simple, or that it has multiplicity one.

If knots have multiplicity higher than one, we have two alternatives: we may list
them in our knot sequence repeatedly, or we may list them only once, keeping track
of their multiplicity in a separate sequence.

When we define B-spline curves later, we will use only the interval [u,—,

.., Up4n—1] as their domain. These knots are the “domain knots.” We call L the
potential number of curve segments—if all domain knots are simple, L denotes the
number of domain intervals. For each domain knot multiplicity, the number of domain
intervals drops by one. If we list each knot only once and keep track of its multiplicity,
the sum of all domain knot multiplicities is related to L by

L+n—1

Z r,-=L+l,

i=n—1
where r; is the multiplicity of the domain knot ;.
We shall illustrate the interplay between knot multiplicities and the number of
domain intervals by means of the following examples:
Letn = 3,L = 3, and

{Hg ..... L{';} = {0, l, 2, 3, 4, 5, 6. 7}

All knots are simple, so the number of domain intervals is three.
Leaving n and L unchanged, consider

{uo, ..., u} =10,1,2,3,5,6,7}
but now with a multiplicity sequence

{mo.....mg} =1{1,1,1,2,1, 1, 1}

In this knot sequence, the knot 13 = 3 has multiplicity two, thus r; = 2, and we only
have two domain intervals.

The multiplicities of the nondomain knots do not affect the number of domain
intervals. If we set

{HU, ey “?} = {O- On 0- 3y 4: 7; 7: ?}!
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then ugy and us both have multiplicity three; however, they are listed only once each
in the domain knot sequence, which is

{HZ» U3, Ug, NS} = {0; 3’ 4y 7}-

Thus we have three domain intervals.
We now define n + L Greville abscissas & by
1
&=+ tuu); i=0...,.L+n—1 (10.2)

n

The Greville abscissas are averages of the knots. The number of Greville abscissas
equals the number of successive n-tuples of knots in the knot sequence.

We next assume that we are given ordinates d;, also called de Boor ordinates, over
the Greville abscissas and hence a polygon P consisting of the points (&, d;); i =
0,...,L + n— 1. This polygon is a piecewise linear function with breakpoints at the
Greville abscissas. Figure 10.2 shows some examples.

We now define our basic polygon manipulation technique, the knot insertion
algorithm. As before, at this point we are only concerned with polygons, not with
B-spline curves! Suppose a real number u € [u,—,..., Ur+,~1] is given and we
want to insert it into the knot sequence. We call the new knot sequence a refined knot
sequence. It defines a new set of Greville abscissas, called &". Each & will be the
abscissa for a vertex (£, d}) of the new polygon P*. The knot insertion algorithm is:

o &1 & &
v v 7 v kv v
A A A A F A A
Ug up Ug Uy
dy
do
€4
v v k) v v
'y 'y rY A Y A A
Ug Ug

Figure 10.2: Greville abscissas: for various knot sequences and degrees, the cor-
responding Greville abscissas together with the polygon P are shown. Top left:
n=1L=I;topright,n =2,L = 2;bottom: n = 3,L = 2.
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5 = ds
u u
€o & & =6 &
v 7 Vo V v v
a I y y T % y A
Up u us

Figure 10.3: Knot insertion: the new knot is u; the new Greville abscissas are
marked by larger icons. Old knot sequence: wuo, u, 4z, us, us, us. New sequence:
Uo, Uy, Ua, U, U3, U, us. In this example, n = 2, L = 3.

Knot insertion, informal: compute the Greville abscissas &' for the refined knot
sequence. Evaluate P there to obtain new ordinates d/ = P(£/). The refined
polygon P* is then formed by the points (&, d/*). The d}" are given by (10.4).

Figure 10.3 shows an example of the knot insertion procedure for the quadratic
case. It is possible to insert the knot u again—it will then become a double knot, or a
knot of multiplicity two, which simply means it is listed twice in the knot sequence.
As another example of knot insertion, Figure 10.4 shows how the knot u is inserted
again.

We shall formalize the knot insertion algorithm soon, but we can already deduce
some properties:

uu
d3

§83"&
v i \VARYAY 4 v
A A A A A A
g ’ Us
u
u

Figure 10.4: Knot insertion: the knot u is inserted again. Old knot sequence:
Up, Uy, Uy, U, U3, Uy, Us. New sequence: i, uy, ua, i, U, i, s, Us.
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e The polygon P* is obtained from P by piecewise linear interpolation at the
Greville abcissas & (see Section 2.4).

e As a consequence, knot insertion is order independent: if we insert two knots
u and v into the knot sequence, the order in which we insert them does not
matter. This follows from Menelaos’ theorem of Section 2.5,

* As a further consequence, knot insertion is variation diminishing: no straight
line intersects P* more often than P.

* As yet another consequence, knot insertion is convexity preserving: if P is
convex, so is PY.

e Knot insertion is a local process: P differs from P only in the vicinity of u
(the exact definition of vicinity being a function of the degree »).

We are now ready for an algorithmic definition of knot insertion. It is mostly
intended for use in coding. The preceding informal description conveys the same
information.

Knot insertion algorithm:
Given: u € [ug—1,..., Ups+p—1]-
Find: refined polygon P¥, defined over the refined knot sequence that includes u.

1. Find the largest I with iy = u < u;+;. If u = u; and u; is of multiplicity » : stop.
Else:

2. Fori=0,...,. I —n+1set& =§.
3. Fori=I-n+2,...,1+1,set

&' = l(uf Tt liva) 11&

n n

Fori=1+2,...,L+n,set& = §&-.
Fori =0,..., L+ n,setd} = P(&").
Renumber the knot sequence to include u as u; 4.
Replace L by L + 1.

Nt

Step 5 only involves actual computation fori =/ —n +2,...,1 + 1. We now
derive a formula for P(£/").

As before, let u be in the interval [uy, u;+;]. Itisnothard to see that §_, = &' <
&. Thus d}' is obtained by linear interpolation:

& — & &' — &

d,-“=§_§ ,-_]+§_§ d; i=1-n+2...,1+1 (10.3)
i i1 i i1
We invoke (10.2):
i+n—1 _ i+n=2 i+n—=2 _ i+n-2
Jv = Z;:: uj Zj=:’ Uj ”di_] + Zj=i ujtu Zj=:'-] “Jdi

1
Uisp—1 — Ui— Uiyp—1 = Ui
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dy
do ¢
& A
d "
G owo owm U u T

Figure 10.5: Knot insertion: this process may be interpreted as piecewise linear inter-
polation.

and simplify:

Uigp-1 — U di + U= Uj—
Uitn—1 — Ui-] Uirp—-1 = Uj-]
This is our desired knot insertion formula.

It has the form of linear interpolation, and we recall from Section 2.3 that this may
be interpreted as an affine map. In our case, we would map the interval [u; 1, 4j1,—1]
onto the polygon leg defined by (&1, d;-) and (§;, d;), as shown in Figure 10.5 for
the cubic case.

dv =

1

diy i=1—-n+2...,I+1 (104

10.3 The de Boor Algorithm

In the previous section, we described an operation to manipulate polygons. We shall
now use this operation for the definition of B-spline curves. Recall Figure 10.4, in
which a knot u was reinserted so that its multiplicity was raised to two. What happens
if we reinsert « again? The answer: nothing. No new Greville abscissas are generated.

In general, for degree n, repeated insertion of a knot « no longer changes the
polygon after the multiplicity of u has reached n. We use this fact in the algorithmic
definition of a special function, called a B-spline curve.* The algorithm used in this
definition is called the de Boor algorithm:

de Boor algorithm, informal: To evaluate an n™-degree B-spline curve (given by
its de Boor ordinates and knot sequence) at a parameter value u, insert u into the
knot sequence until it has multiplicity n. The corresponding polygon vertex is
the desired function value.

“We use the term “curve” loosely to emphasize that the theory developed here carries over
easily to parametric curves.
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Figure 10.6: The de Boor algorithm: example withn = 3,L = 2.

Before we proceed further, one comment should be made. What is meant by
“corresponding polygon vertex?” If a knot %; is of multiplicity n, then one of the
Greville abscissas coincides with u;, namely, & = Tl.(“f + ot Upy-1) = U
Consequently, the polygon has a vertex (u;, d;), and d; is the function value of the
B-spline curve at ;. Figure 10.6 gives an illustration. We now realize that we have
encountered an example of the de Boor algorithm earlier; see Figure 10.4 for the case
n=2.

Note that the de Boor algorithm needs fewer insertions if the parameter value u
is already an element of the knot sequence. If it has multiplicity r, then only n — r
reinsertions are necessary to make u a knot of multiplicity ».

We are now ready for a formal definition. Let us denote a B-spline curve of degree
n with control polygon P by B, P, and its value at parameter value u by [B,P](u). We
will only define the curve for values of u between u,— and uz+,—.

de Boor algorithm: Let u € [us, uy+1) C [tn-1, tr+n—1]. Define

Uivp—k — U — Ui-)

- i
Mitnth T8 gkl +
Uirp—k — Uj—1] Uipn—k — Ui=]

fork=1,...,n—r,and i=I—n+k+1,...,1 —r + 1. Then

du) = d* () (10.5)

s(u) = [BuPIw) = d)~)+\(w) (10.6)

is the value of the B-spline curve at parameter value u. Here, r denotes the
multiplicity of u if it was already one of the knots. If it was not, set r = 0. As
usual, we set d’(u) = d;.

C. de Boor [125] published this algorithm in 1972. It is the B-spline analogue of the
de Casteljau algorithm. Figure 10.7 shows schematically which d; are involved in
(10.5).
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Figure 10.7: The de Boor algorithm: for 4 € [i, 1+,], the scheme of generated inter-
mediate points is shown, assuming that « was not one of the existing knots.

In our description of the de Boor algorithm, we did not renumber the knot
sequence and the control points at each level, since our interest is only in the final
result d;'"", ;(u). Of course, at each level k, we generate a new control polygon that
describes the same B-spline curve as did the previous control polygon. In particular,
for k = 1, we obtain the knot insertion algorithm.

Figure 10.6 shows an example. We can also view that example as a case of
multiple knot insertion. In that context, we have constructed several polygons that
describe the same B-spline curve:

k=1: the de Boor ordinates dy, d|, d;, d3, d3, d; corresponding to the knot sequence
Up, Uy, Uy, U, Uz, Ug, Us, Ug,

k=2: the de Boor ordinates dy, d}, d7, d?,d}, ds, ds corresponding to the knot se-
qQUENCE U, Uy, U, U, Uy U3, Us, Us, U,

k=3: the de Boor ordinates dg, d, d-f, d3, d32, di, ds, d; corresponding to the knot
sequence uo, Uy, i, U, U, i, Uz, Us, s, Ug.

Let us next examine an important special case. Consider the knot sequence

O=up=up =+ =ty < Uy = Upsy) = = Uy = L.

Here, both ug and u,, have multiplicity n. We note that the Greville abscissas are given
by
i+n—1

1 i,
§f=; Z uj = ;; i=0...,n
Jj=i

For 0 = u = 1, the de Boor algorithm sets / = n — 1 and

WUjsp—p — U _ u— uj— _
df(u) = Ld;‘_ll + MLdik I
Uigpn—k — Ui— Uisn—k — Ui—
Sincen—k=i— k=0, wehave ujs,—x = 1, u;—1 = 0 for all i, k; thus

dfw) = (1 —wd +udf™ k=1,...,n (10.7)



150 Chapter 10. B-splines

This is the de Casteljau algorithm!® Schoenberg [451] first observed this in 1967,
although in a different context. Riesenfeld [423] and Gordon and Riesenfeld [249]
are more accessible references. We will be able to draw several important conclusions
from this special case. First, we note that the restriction to the interval [0, 1] is not
essential: all our constructions are invariant under affine parameter transformations.

Thus, if two adjacent knots in any knot sequence both have multiplicity n,
the corresponding B-spline curve is a Bézier curve between those two knots. The
B-spline control polygon is the Bézier polygon; the Greville abscissas are equally
spaced between the two knots.

After we inserted u until it was of multiplicity n, the initial de Boor polygon (or
Bézier polygon, in this case) was transformed into two Bézier polygons, defining the
same curve as did the initial polygon. Thus we have another proof for the fact that
the de Casteljau algorithm subdivides Bézier curves.

For a B-spline curve over an arbitrary knot sequence, we can always reinsert the
given knots until each knot is of multiplicity n. The B-spline polygon correspond-
ing to that knot sequence is the piecewise Bézier polygon of the curve. We have
thus shown that B-spline curves are piecewise polynomial over [u,_y, Uy +n—1]. The
method of constructing the piecewise Bézier polygon from the B-spline polygon via
knot insertion was developed by W. Boehm [63]. A different method was created
by P. Sablonniére [432]. We will give a concise algorithm later, in the context of
blossoms; see (10.18).

10.4 Smoothness of B-spline Curves

Now that we know that B-spline curves are piecewise polynomials of degree n each,
we shall investigate their smoothness: how often is a B-spline curve differentiable at
a point u? Obviously, we need to consider only the knots #,—the curve is infinitely
often differentiable at all other points.

To answer this question, simply reconsider the preceding example of (10.7).
Now, let # be an existing knot of multiplicity ». Our knot sequence is:

0 =up=u =" =u
<uy = Ups) = 777 = Upsr—
< Mptr = Upips] = 00 = Uppip-1 = 1

the knot to be reinserted is # = u,. The de Boor algorithm only consists of n — r
levels. Taking into account the multiplicities of the end knots, we have

dfw) =1 —wd +udf " k=1,..., n—r (10.8)

These are the n — r last levels in a de Casteljau algorithm. Therefore the two polyno-
mial curve segments meeting at « are at least n — r times differentiable at that point
(see Sections 4.5 and 4.6).

>The subscripts are different—but this is simply a matter of notation.
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u

u 6 Uiy
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Figure 10.8: Multiple knots: the effects of multiple knots on the curve. Here, n =
3,L=8.

As above, we note that the restriction to the interval [0, 1] is not essential. If we
want to investigate the smoothness of an arbitrary B-spline curve at a knot, we can
always force its two neighbors to be of multiplicity n (without changing the curve!)
and apply our arguments.

Thus a B-spline curve is (at least) C"~" at knots with multiplicity r. In particular,
the curve is n — | times continuously differentiable if all knots are simple, i.e., of
multiplicity one. Figure 10.8 shows a cubic (n = 3) B-spline curve over a knot
sequence that has several multiple entries. The triple knots at the ends force dj and
d|p to be on the curve.

10.5 The B-spline Basis

Consider a knot sequence uy, ..., ux and the set of piecewise polynomials of de-
gree n defined over it, where each function in that set is n — r; times continuously
differentiable at knot u;. All these piecewise polynomials form a linear space, with
dimension

K-=1
dim = (n+ 1) + Z r. (10.9)

i=1

For a proof, suppose we want to construct an element of our piecewise polynomial
linear space. The number of independent constraints that we can impose on an
arbitrary element, or its number of degrees of freedom, is equal to the dimension
of the considered linear space. We may start by completely specifying the first
polynomial segment, defined over [ug, u;]; we can do this in n + 1 ways, which is
the number of coefficients that we can specify for a polynomial of degree n. The
next polynomial segment, defined over [u, 4], must agree with the first segment in
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position and n — r; derivatives at u;, thus leaving only r coefficients to be chosen
for the second segment. Continuing further, we obtain (10.9).

We are interested in B-spline curves that are piecewise polynomials over the
special knot sequence [uy-, Uz +n—-1]. The dimension of the linear space that they
form is L + n, which also happens to be the number of B-spline vertices for a curve in
this space. If we can define L + n linearly independent piecewise polynomials in our
linear function space, we have found a basis for this space. We proceed as follows.

Define functions N'(u), called B-splines, by defining their de Boor ordinates to
satisfy di = 1 and d; = O for all j # i. The N(u) are clearly elements of the
linear space formed by all piecewise polynomials over [u,—i, 47 +,—1]. They have
local support:

Ni'(u) # 0 only if u € [u;—y, Uj+n)-

This follows because knot insertion, and hence the de Boor algorithm, is a local
operation; if a new knot is inserted, only those Greville abscissas that are “close” will
be affected.

B-splines also have minimal support: if a piecewise polynomial with the same
smoothness properties over the same knot vector has less support than N, it must be
the zero function. All piecewise polynomials defined over [u;—,, u;+,], the support
region of N}, are elements of a function space of dimension 2n + 1, according to
(10.9). A support region that is one interval “shorter” defines a function space of
dimension 2n. The requirement of vanishing n — r;_; derivatives at &;—; and of
vanishing n — r;4, derivatives at u;+, imposes 2n conditions on any element in the
linear space of functions over [u;—1, #;+,—]. The additional requirement of assuming
a nonzero value at some point in the support region raises the number of independent
constraints to 2n + 1, too many to be satisfied by an element of the function space
with dimension 2n.

Another important property of the N} is their linear independence. To demon-
strate this independence, we must verify that

L+n-1
> eiNjw =0 (10.10)
j=0

implies ¢; = O for all j. It is sufficient to concentrate on one interval [y, u;+] with
u; < uyy ). Because of the local support property of B-splines, (10.10) reduces to

I+1

Z c;NJ’,—'(u} =0 foru € [uy, uy+q).
j=1—n+l

We have completed our proof if we can show that the linear space of piecewise
polynomials defined over [u;—p, #;+,+1] does not contain a nonzero element that
vanishes over [u;, u;+1]. Such a piecewise polynomial cannot exist: it would have
to be a nonzero local support function over [u;+1, Uj+,+1]- The existence of such a
function would contradict the fact that B-splines are of minimal local support.
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Figure 10.9: B-splines: top, some quadratic B-splines over the indicated knot se-
quence; bottom: some cubic ones. Note multiple knots at left end and simple knots at
right end.

Because the B-splines N are linearly independent, every piecewise polynomial
s over [u,—, Uy +,—] may be written uniquely in the form

L+n—1

s(u) = Z d;N'}(u). (10.11)
j=0

The B-splines thus form a basis for this space. This reveals the origin of their name,
which is short for Basis splines.

If we setalld; = 1in (10.11), the function s(u) will be identically equal to one,
thus asserting that B-splines form a partition of unity.

Figure 10.9 gives examples of quadratic and cubic basis functions.

10.6 Two Recursion Formulas

We have defined B-spline basis functions in a constructive way: the B-spline N is
defined by the knot sequence and the Greville abscissa &. The function N} is given by
its B-spline control polygon with de Boor ordinatesd; = 8,;; j = 0,..., L+n-—1.
From it, we can construct the piecewise Bézier polygon by inserting every knot until it
is of multiplicity n. We can then compute values of N/'(«) by applying the de Casteljau
algorithm to the Bézier polygon corresponding to the interval that contains «. There
is a more direct way, which we now discuss.

To further explore B-splines, let us investigate how they “react” to knot insertion.
Let & be a new knot inserted into a given knot sequence. Denote the B-splines over
the “old” knot sequence by N7, and those over the “new knot sequence by N. Note
that there is one more element in the set of N than in that of the N7. In fact, the
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linear space of all piecewise polynomials over the old knot sequence is a subspace
of the linear space of all piecewise polynomials over the new sequence. Let NI' be
an “old” basis function that has & in its support. Its B-spline polygon is defined by
d; = 8;;, where j ranges from 0 to L + n — 1 and & denotes the Kronecker delta.
Its B-spline polygon with respect to the new knot sequence is obtained by the knot
insertion process.

Only two of the new de Boor ordinates will be different from zero. Equation
(10.4) yields

~ Ujgp—1 — i i — uj—
d = nl -0+ 1 -1,
Uitn—1 = W—) Uptn—1 — Up-)
- Uln — i i — ]
d“.] = < -1+ - 0.
Upyn — U Upen — U
(Recall that d; = 1, whereas all other d; = (.) Hence
5 = U
d: = ____-_,
Up+p—1 = U1
4 Uptn — i
dio = /=
Uen — Uy
Thus we can write N7 in terms of N7 and A7, :
i—wu-y , Uppp — B 4
Ni(w) = —————N['(u) + ———N}\,,(w). (10.12)
Uptp—1 Up—1 Upyp — Uy

This result is due to W. Boehm [62]. It allows us to write B-splines as linear combi-
nations of B-splines over a refined knot sequence.

For the second important recursion formula, we must define an additional B-
spline function, N?:

N?(u)={ (]J glsé‘*"‘ =us<ui (10.13)

The announced recursion formula relates B-splines of degree n to B-splines of degree
n—1:

U= U Uppp — U

N7 w) + —2— N ). (10.14)

Ny = ————
Uppp—1 — U—) Uppn — U
To prove (10.14), we shall prove the following more general statement:
i+l
swy= Y dIN;(w) (10.15)
j=itr=n+l
for all r € [0, n]. For its proof, we first check that it is true for r = n; this follows
from (10.13). By the de Boor algorithm, (10.15) is equivalent to
i+1 i+l
swy = Y (-apDdiIINTw+ Y ofd] N (),

j=i—n+l+r j=i=n+l+r
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where
U= Uui—
Witn—r — “f—l.
An index transformation yields
i i+1
swy= > A—al )d] NI @+ > ajd] NI (W),
Jj=i—n+r j=i—n+l+r
Because of the local support of the N7, this may be changed to
i+1 i+1
swy = > (I—aj, d] !N+ Y ajd] TN w).
J=i—n+r j=i—n+tr
Hence, by the inductive hypothesis,
i+1
sty = Y [aNIT@) + (1 = af, NI wld]
j=i—n+r

This step completes the proof of (10.15), since we have now shown that (10.15)
holds for r — 1 provided that it holds for r. The recurrence (10.14) now follows
from comparing (10.15) and (10.6). The development of equation (10.14) is due to
L. Mansfield, C. de Boor, and M. Cox; see de Boor [125] and Cox [118]. For an
illustration of (10.14), see Figure 10.10.

The recursion formula (10.14) shows that a B-spline of degree n is a strictly

convex combination of two lower degree ones; it is therefore a very stable formula
from a numerical viewpoint. If B-spline curves must be evaluated repeatedly at the

LTS

Figure 10.10: The B-spline recursion: top, two linear B-splines yield a quadratic one;
bottom, two quadratic B-splines yield a cubic one.
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same parameter values uy, it is a good idea to compute the values for N/ (uy) using
(10.14) and then to store them.

A comment on end knot multiplicities: the widespread data format IGES uses two
additional knots at the ends of the knot sequence; in our terms, it adds knots u_; and
Uy +2,—1. The reason is that formulas such as (10.14) seemingly require the presence
of these knots. As they only are multiplied by zero factors, their values have no
influence on any computation. There is no reason to store completely inconsequential
data; hence the “leaner” notation of this chapter.

10.7 Repeated Knot Insertion

We may insert more and more knots into the knot sequence; let us now investigate the
effect of such a process. A B-spline curve of degree n is defined over u,—y, ..., up s p—1-
Letusseta = u,—y, b = u;,,— 1. Now insert more knots «; into [a, b]; here r counts
the overall number of insertions and i denotes the number of #/ in the new knot
sequence. After r knot insertions, we have a new polygon P that describes the same
curve as did the original polygon P. As we insert more and more knots, so as to
become dense in [a, b], the sequence of polygons P" converges to the curve that they
all define:

limP" = [B,P]. (10.16)
To begin, we recall that a B-spline curve depends only on d, ..., dy+, over the

interval [uy, ug+1]. Then for u € [uy, g ],
min(dy, . .., di+n) = [ByP)(u) = max(dy, ..., dy+n)

by the strong convex hull property.
We need to show that for any €, we can find an r such that

|P" (1) — [B,PYu)| = € forall w.

We know that for any €, we can find an r such that

1§~ &1=8
and

IP"(&) — P&l = &
since each P’ is continuous. Thus,
max[P (&), ..., P"(&,,)] — min[P"(&),..., P"(& )] = ne

for those i that are relevani to the interval [uy, uy .+, ]. But we also know that

min(d;) = [B,P)(u) = max(d/).
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Thus,
|(B.PYu) — P}l = ne; jEIi....i+n,
which finally yields
|[B,P)(u) — P" ()] < ne,

proving our convergence claim.

The use of repeated knot insertion lies in the rendering of B-spline curves.
If sufficiently many knots have been inserted into the knot sequence, the resulting
control polygon will be arbitrarily close to the curve. Then, instead of plotting the
curve directly, one simply plots the refined polygon. To obtain an adaptive rendering
method, one would control the knot insertion process by inserting more knots where
the curve is of high curvature and fewer knots where it is flat.

Of course, B-spline curves may also be parametric. All we have to do is use
functional B-spline curves (all over the same knot vector) for each component of the
parametric curve:

L+n—1 L+n=1 | dF
Xw= Y dN@= Y | d |Nw.
i=0 i=0 | df

The curves for n = 2 and n = 3 were already described in Chapter 7, although with
a different notation that especially suited those cases. General degree B-spline curves
enjoy all the properties of the lower degree ones, such as affine invariance and the
convex hull property.

An interesting application of repeated knot insertion is due to G. Chaikin [95].
Although this scheme may be described in the context of functional curves, we prefer
the more intuitive parametric version. Consider a quadratic B-spline curve over a
uniform knot sequence. Insert a new knot at the midpoint of every interval of the knot
sequence. If the “old” curve had control vertices d; and those of the new one are d\”,
it is easy to show that

3 1 3 1
a5, = Zdi + st—l and dj),, = Zdi + de”'

If this procedure is repeated infinitely often, the resulting sequence of polygons will
converge to the original curve, as follows from our previous considerations. Figure
10.11 shows the example of a closed quadratic B-spline curve; two levels of the
iteration are shown.

Chaikin’s algorithm may be described as corner-cutting: At each step, we chisel
away the corners of the initial polygon. This process is, on a high level, similar to that
of degree elevation for Bézier curves, which is also a convergent process (see Section
5.2). One may ask if corner-cutting processes will always converge to a smooth curve.
The answer is “yes,” with some mild stipulations on the corner-cutting process; this
was first proved by de Boor [128]. One may thus use a corner-cutting procedure
to define a curve—and only very few of the curves thus generated are piecewise
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Figure 10.11: Chaikin’s algorithm: starting with the (closed) control polygon of a
quadratic B-spline curve, two levels of the Chaikin iteration are shown.

polynomial! Recent work has been carried out by Prautzsch and Micchelli [412] and
[358], based on earlier results by de Rham [137], [138].

Corner-cutting may also be used for interpolation; see Dyn, Levin, and Gregory
[160], [159].

R. Riesenfeld [424] realized that Chaikin’s algorithm actually generates uniform
quadratic B-spline curves. A general algorithm for the simultaneous insertion of sev-
eral knots into a B-spline curve has been developed by Cohen, Lyche, and Riesenfeld
[110]. This so-called “Oslo algorithm™ needs a theory of discrete B-splines for its
development (see Bartels er al. [42]). The knot insertion algorithm as developed in
this chapter is more intuitive and equally powerful.

10.8 B-spline Properties

After the more theoretical developments of the previous two sections, let us examine
some of the properties that we can now derive for B-spline curves.

Linear precision: If /(x) is a straight line of the form [ = au + b, and if we read
off values at the Greville abscissas, the resulting B-spline curve reproduces the
straight line:

D UEN! W) = Iw).

This property is a direct consequence of the de Boor algorithm. It was originally
obtained by T. Greville [261], [260] in a different context. The original Greville
result is the motivation for the term “Greville abscissas.”

Strong convex hull property: Each point on the curve lies in the convex hull of no
more than n + 1 nearby control points.
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Variation diminishing property: The curve is not intersected by any straight line
more often than is the polygon. This result has a very simple proof, presented
by Lane and Riesenfeld [320]: we may insert every knot until it is of full
multiplicity. This is a variation diminishing process, since it is piecewise linear
interpolation. Once all knots ate of full multiplicity, the B-spline control polygon
is the piecewise Bézier polygon, for which we showed the variation diminishing
property in Section 5.3.

The parametric case: In the parametric case, it is desirable to have up and 47+,
both of full multiplicity n. This condition forces the first and last control points dg
and d; ;- to lie on the endpoints of the curve. In this way, one has better control
of the behavior of the curve at the ends. The spline curves that we discussed in
Chapter 7 are all described in this form, although we did not formally make use
of knot multiplicities there. If the end knots are allowed to be of lower (even
simple) multiplicity, the first and last control vertices do not lie on the curve, and
are called “phantom vertices” by Barsky and Thomas [40]. Figure 10.12 gives
several examples of B-spline curves over various knot sequences, all with L = 7.

The de Boor algorithm allows a nice geometric description in parametric form.
Formally, we perform the algorithm for all components of the control polygon.
Geometrically, we may “engrave” parts of the knot sequence on each polygon leg:
map the first n + 1 subsequent knots (starting at ug) onto dod,, the next subsequent
n + 1 knots onto d;d,, and so on, until the last subsequent n + 1 knots are mapped
to the last polygon leg. For example, in Figure 10.13, with n = 3 and L = 5, the
knots [uy, us, ug, us] are mapped to d,d3, whereas [ug, u), 4, u3] are mapped to dod;.
The interval [u;, u7,], which contains the evaluation parameter u, is thus mapped
to n polygon legs by n affine maps, which are equivalent to linear interpolation as
outlined in Section 2.3. These affine maps take u to the d}(u). The same procedure
is then repeated: Consider all sets of subsequent n knots that contain 1y, u; 1. Map
them by affine maps to the polygon formed by the d} and denote the images of u by
d?, etc. The final step is to map the interval uy, uz+, onto df ™!, df7] to obtain the
pointd}, , on the curve.

Finally, a note on how to store B-spline curves. It is not wise to store the knot
sequence {u;} and simply list multiple knots as often as indicated by their multiplicity.
Roundoff may produce knots that are a small distance apart, yet meant to be identical.
Following the approach taken by Schumaker [452], it is wiser to store only distinct
knots and to note their multiplicities in a second array. From these two arrays, one
may compute the original knot sequence when required—for example, for the de
Boor algorithm.

10.9 B-spline Blossoms

In Section 3.4, we generalized the de Casteljau algorithm by allowing evaluations
at n different arguments fy,...,,, thus arriving at the blossom b[#,...,1,] of a
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Figure 10.12: Parametric B-spline curves: several examples, all with the same control
polygon but with different degrees and knot sequences.

polynomial curve b(f). The same principle may be applied to B-spline curves. For
the sake of concreteness, let us begin with the case of a cubic B-spline curve, and
also restrict ourselves to the parameter interval [ug, us].

We will now modify the standard de Boor algorithm: at each level k; k = 1, 2, 3,
we will evaluate at a different argument v, € [uy, us]. The relevant control points for
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Figure 10.13: The de Boor algorithm in parametric form: all groups of n + 1 — r
intervals that contain [u4, us] are mapped onto polygon legs.

our interval are d, ..., ds, and we obtain the following scheme:

d;

d; di[v]

d, di[vi] di[v,v2]

ds dilv,] di[v;,v)] di[v), vy, vs].

Again, it is easy to see that it does not matter in which order we “feed” the the v;
into this scheme. Also, if all v; agree, we recover the standard de Boor algorithm. We
shall use the notation d4[v,, v, v3] for the point dg[w, vy, v3], indicating that we are
dealing with the interval [ug4, us].

In general, for a parameter interval [u;, u;4,], we shall define as the B-spline
blossom—or just blossom—the function d;[vy, ..., v,], obtained by applying the de
Boor algorithm for the interval [u;, u;+1] to the control points d;—,+y, ..., dr41, and
using a (possibly) different argument v; at level k of the algorithm. Thus the blossom
corresponding to the interval [uy, 4;4,] is a function of n variables vy, ..., v,; in fact,
it is a multivariate polynomial function. The whole B-spline curve possesses as many
blossoms as it has domain intervals.

Note that we have not restricted the v; to be in the interval [uy, u;+,]! In fact,
a very interesting result arises if we evaluate for v; outside that interval. Returning
to our earlier cubic example, let us set [vy, va, va] = [ua, u3, us]. The scheme be-
comes:
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d;
d; d;
d o d

ds o o dy = dylug, us, 4]

The e-entries in the scheme were not computed, because their values do not con-
tribute to the final result. We have, similarly to the Bézier case, recovered one of
the control points! The algorithm no longer uses only convex combinations; instead,
extrapolation is used several times.

To illustrate the principle of control point recovery, we try one more set of
arguments, namely [v|, vy, v3] = [u3, ug, us]. The scheme becomes:

d;
d3 .
dy d; e

ds o d; d; = dyfus uy us)

Again, we have recovered a control point. Continuing in this manner, we find that
dy = dyfuy, us, ug] and ds = dy[us, ug, u7]. Figure 10.14 illustrates these examples.

More generally, we have the following: the curve segment defined over [u;, u;+1]
needs n + 1 control points for its definition, namely d;—,+1, ..., d;+,. They can be
obtained as blossom values:

Ak = Qlup—pirin -y k=0, n (10.17)

The arguments of d; on the right-hand side are all n-tuples of subsequent knots that
contain either u; or uy4 ;.

As a spinoff, we can give a very compact formula for the conversion of a B-
spline curve into its piecewise Bézier form: let the Bézier points corresponding to the
interval [uy, u;+1] be b, ..., bl. They are given by

b =dilw" 7 u T =00 (10.18)

da[ususus]

d4[usugus)

d4[uzuzuy) d4[usuguz]

Figure 10.14: B-spline blossoms (cubic): The knot sequence is 1y = u; = u; < 13
<uy < us < ug < u; <ug = ug = . The control points corresponding to [us, us] are
shown as blossom values.
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The simplicity of this formula is striking; in former days, involved papers were
written on this conversion problem! That is not to say, however, that (10.18) is the
most efficient way to solve the problem. But it does produce very readable code,
which is equally important.

We will now use the blossoming principle to discuss degree elevation. Formally,
we can write any n'"-degree piecewise polynomial curve over a given knot sequence
as one of degree n + 1. It will not be over the same knot sequence: instead, we will
have to increase the multiplicity of each knot by one. We denote these new knots by
i1;. The task is then to find the B-spline control points of the degree elevated curve,
similar to the process of degree elevation for Bézier curves as described in Section
5.1.

The degree elevated curve d has &K[vl, ..., Vy+1] as the blossom of the interval
[Gig, g +1] = [ug, ur+1]. How can we write it as a combination of blossoms of n
variables? We can try the following:

n+l

- 1
dg[Vi, ... Vot = H—Hzljd;[vl,..‘.vwlvj], (10.19)
p

where [vy, ..., Vp41 Ivj-] is the argument sequence [vy, ..., Vn+1] with v; removed from
it. This simple attempt already yields the solution: dx is a blossom, being a barycentric
combination of blossoms. Also, it is symmetric and multiaffine, and it yields a point
on the given curve for the case of all v; being equal.

To be more specific: we know that the control points d; are the blossom values

dK—n+r = dK[aK'—n-l-r»-- -yﬁK+r]; r= 0:-- Lnt+l

by application of (10.17). Using (10.19), we now have the desired result:

n+l

5 1 N N .
dg—psr = m _z;d![-‘ix—nw ----- uK+r|uK—n+r+j-l]; r=0...,n+1L
j=

(10.20)

Thus the new B-spline vertices can be found by evaluating blossoms at n arguments of
the new knot sequence and then taking their average. The corresponding formula for
the basis functions is given in Section 10.11. A specific case is discussed in Example
10.1.

Literature on B-spline blossoms: [469], [465], [464], [467], [415].

10.10 Approximation

The full generality of the theory of B-splines allows a broader class of curve con-
struction algorithms. Curves are not always required to pass through a set of points;
sometimes it may suffice to be close to the given points. In this case, we speak of
approximating curves. Figure 10.15 illustrates.
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Let a cubic B-spline curve be defined over {up = uy = uy, u3,...}. Then the
interval [u4, us] corresponds to [, iig]. The new control point d4 is computed
as follows:

dy = dy[d, s, fe, 7]
1

(dalty, its, ) + dali, its, 7] + dalita, i, 7] + dy[its, its, it7])

=

= %(d«:[ﬂa, U3, ug] + dylus, uy, u4])_

For the last step, we have utilized ity = fts = u3 and fig = 7 = uy.

Example 10.1: B-spline degree elevation and blossoms.

As an example, consider the generation of an airplane wing: its cross-sections
(profiles) are defined by analytical means, optimizing some airflow characteristics, for
example.® One can now compute many (100, say) points on the profile and then ask
for a curve through them. A cubic spline interpolant would do the job, but it would
have too many segments—for a typical profile, a curve with 15 segments might
provide a perfect fit. One possibility is to simply discard data points until we are left
with the desired number. We would then compute the interpolant to the reduced data
set and check if the discarded points are within tolerance. This is expensive, and a
more frequently encountered approach is one that makes sure that all data points are
as close as possible to the curve, avoiding any iterations.

Wi

. ' +

Up u; U

Figure 10.15: Least squares approximation: the curve should be close to the data
points.

6Many explicit wing section equations are given by the so-called NACA profiles.
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To make matters more precise, assume that we are given data points p; with
i =0,..., P. We wish to find an approximating B-spline curve p(u) of degree n with
L domain knots, i.e., with a knot sequence uy, . . ., uz4+2,-2. We want the curve to be
close to the data points in the following sense. Suppose the data point p; is associated
with a data parameter value w;.” Then we would like the distance ||p; — p(w;)|| to be
small. Attempting to minimize all such distances then amounts to

P
minimize Y _ |Ip; — powp)l%. (10.21)
i=0
The squared distances are introduced to simplify our subsequent computations. They
gave the name to this method: least squares approximation. We shall minimize (10.21)
by finding suitable B-spline control vertices d;:

P L+n—1
minimize f(do,...,dzsn-1) = Y _llpi— D dNjowlls. (10.22)
i=0 j=0
Slightly rewritten, this becomes
P L+n—1 L+n—1
minimize f(do, ... dren1) = D P = Y dNjOed | [pi— D diNjow) |
i=0 j=0 j=0

(10.23)

Thus f is a quadratic form with L + n independent variables d ;. Such functions

only have one minimum, and at its location, the partials with respect to the d; must
vanish: df/dd; = 0.8 Thus:

L+n—1

0= pi— Z d;Ni(w)) | Nfw), k=0,...,L+n—1 (10.24)
=0

P
i=0
or

L+n—1 I

P
7 a3 NTwINEw) = > piNpow); k=0,...,L+n—1 (10.25)
j=0 i=0 i=0

This is a linear system of L + n equations for the unknowns d;, with a coefficient
matrix M whose elements m ; are given by

P
mig =Y Njw)INj(w); 0= jk=<L+n
i=0
These equations are usually called normal equations. The symmetric matrix
M, although containing many zero entries, is often ill-conditioned; special equation
solvers, such as a Cholesky decomposition, should be employed. For more details on
the numerical treatment of least squares problems, see [276] or [325].

"Note that w; does not have to be one of the knots!
8This is shorthand for taking the partials for each of d;’s components.
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The martrix M is nonsingular in all “standard™ cases. It is obviously singular if
the number of data points P + 1 is less than the number of domain knots L + n + 1.
It is also singular if there is a span [u;—1, u;+,] that contains no w;. In that case, the
basis function N would evaluate to zero for all w;, resulting in a row of zeroes for M.

We have so far assumed much more than would be available in a practical
situation. First, what should the degree n be? In most cases, n = 3 is a reasonable
choice. The knot sequence poses a more serious problem.

Recall that the data points are typically given without assigned data parameter
values w;. The centripetal parametrization from Section 9.4 will give reasonable
estimates, provided that there is not too much noise in the data. But how many knots
u; shall we use, and what values should they receive? A universal answer to this
question does not exist—it will invariably depend on the application at hand. For
example, if the data points come from a laser digitizer, there will be vastly more data
points p; than knots u;.

After the curve p(u) has been computed, we will find that many distance vectors
p; — p(w;) are not perpendicular to p(w;). This means that the point p(w;) on the curve
is not the closest point to p;, and thus ||p; — p(w;)|| does not measure the distance
of p; to the curve. This indicates that we could have chosen a better data parameter
value w; corresponding to p;. We may improve our estimate for w; by finding the
closest point to p; on the computed curve and assigning its parameter value W; to
pi; see Figure 10.16. We do this for all / and then recompute the least squares curve
with the new W;. This process typically converges after three or four iterations. It was
named parameter correction by J. Hoschek [291].

The new parameter value w; is found using a Newton iteration. We project p;
onto the tangent at p(w;), yielding a point q;. Then the ratio of the lengths ||q; —
pill/llp(w:)l] is a measure for the adjustment of w;. The actual Newton iteration step
looks like this:

p(w;) Auy

—— e 10.26
DOl 5¢ (10.26)

w; = w; + [pi — pw)]

p(w:) Qi p(w;)

Figure 10.16: Parameter correction: the connection of p; and p(w;) is typically not
perpendicular to the tangent at p(w;). A better value for w; is found by projecting p;
onto the tangent.
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In this equation, s; denotes the arc length of the segment that w; is in, i.e., uy < w; =
up+1. This length may safely (and cheaply) be overestimated by the length of the
Bézier polygon of the k™ segment.’

We finally note that (10.26) should not be used to compute the point on a curve
closest to an arbitrary point p;. It only works if p; is close to the curve, and if a good
estimate w; is known for the closest point on the curve.

10.11 B-spline Basics

Here, we present a collection of the most important formulas and definitions of this
chapter. As before, n is the (maximal) degree of each polynomial segment, L is the
number of curve segments if all knots in the domain are simple, and, more generally,
L + 1 is the sum of all domain knot multiplicities.

Knot sequence: {ug, ..., ur+2,-2}.

Domain: Curve is only defined over [up—1,..., Up+n—1].
Greville abscissas: & = L(u; + -+ + w0 ).
Support: N! is nonnegative over [u;_1, tj+n].

Control polygon P: (£,4d;); i =0,...,L+n—1.

Knot insertion: To insert u; = u < u;4: (1) Find new Greville abscissas a, (2) Set
new d; = P(&).

de Boor algorithm: Given u; = u <y, set

WUipn—k — U _ U — U;- -
diu) = —% = gkl + ——1 gk )
Witn—k — Uj—1 Uitn—k — Uj—1
fork=1,..., n—r and i =1 —n+k+1,...,1 + 1. Here, r denotes the

multiplicity of u. (Normally, u is not already in the knot sequence; then, r = 0.)
Boehm recursion: Let it be a new knot; then,

it — u- . u I
NMu) = ———1 Ry + 22— R ().
Uppp—1 — U Upgn — U

Mansfield, de Boor, Cox recursion:

u— Uj— _ Ujppn — U _
N}(u) = ——————— N} ') + —"——N} | (w).
Uppp—1 — U1 Up+n — W
Derivative:

d n n

—N'u) = ————N'" Yu) — ——NI'T N w).
du ! Upsj—1 — -1 Upn — 1 !

“Hoschek’s original development uses u; +,—; — i, instead of A, and the length of the

total curve instead of s;. Our formula is cheaper and worked well in our applications.
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Derivative of B-spline curve:

L+n-1
d Ad;_
—s(u) =n ——L N ),
du Upti—1 = Ui

Degree elevation:

) 1 n+i )
Niw) = —— > N u)),
j=i-1
where N'*!'(u;u;) is defined over the original knot sequence except that the

knot u; has its multiplicity increased by one. This identity was discovered by
H. Prautzsch in 1984 [410]. Another reference is Barry and Goldman [33].

10.12 Implementation
Here is the header for the de Boor algorithm code:
float deboor(degree,coeff, knot,u,i)

/* uses de Boor algorithm to compute one
coordinate on B-spline curve for param. value u in interval i.

Input: degree: polynomial degree of each piece of curve
coeff: B-spline control points
knot: knot sequence
u: evaluation abscissa
i: u’s interval: ulil<= u < uli+i]
Output: coordinate value.
*/

This program does not need to know about L. The next program generates a set
of points on a whole B-spline curve—for one coordinate, to be honest—so it has to
be called twice for a 2D curve and three times for a 3D curve.

bspl_to_points(degree,l,coeff,knot,dense,points,point_num)

/* generates points on B-spline curve. (one coordinate)
Input: degree: polynomial degree of each piece of curve
1: number of active intervals
coeff: B-spline control points
knot: knot sequence: knot[0]...knot[l+2+degree-2]
dense: how many points per segment
Output:points: output array with function values.
point_num: how many points are generated. That number is

easier computed here than in the calling program:
no points are generated between multiple knots.

*/
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The main program deboormain.c generates a postscript plot of a B-spline
curve. A sample input file is in bspl.dat; it creates the outline of the letter r from
Figure 8.6.

As a second example, the input data for the y-values of the curve in Figure 10.1
are:

degree = 3; 1 = 4; coeff = 0.8, 2.8, 5.7, 2.6, 5.7, 4.0, 0.6;
knot = 0.0, 0.0, 0.0, 2.6, 7.7, 9.9, 17.8, 17.8, 17.8; dense =
10.

Next, we include a B-spline blossom routine:

deboor_blossom(control ,degree,deboor,deboor_wts,
knot,uvec,interval,point,point_wt)

/*

FUNCTION: deBoor algorithm to evaluate a B-spline curve blossom.
For polynomial or ratiomal curves.

INPUT: control[] ........... [0]: indicates type of input curve
0 = polynomial
1 = rational
[1]: indicates if input/output is
in R3 or R4;
3 = R3
4 = R4
degree .............. polynomial degree of each piece
of the input curve, must be <=20
deboor([J1[3] ......... deboor control points
deboor_wts[] ........ rational weights associated with
the control points if control[0]=1;
otherwise weights not used

knot[l .............. knot sequence with multiplicities
entered explicitly

uvecl[] ............. blossom (parameter) values
to evaluate

interval ............ interval within knot sequence

with which to evaluate wrt u
(typically: i=interval then
knot[i]<= u < knot[i+1])

OUTPUT: point[3] ............ evaluation point;
depending on control[] values,
this point will be in R3 or R4
point_wt ............ if control[0]=1 then this is the
rational weight associated with
the point
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10.13 Exercises

1. For the case of a planar parametric B-spline curve, does symmetry of the polygon
with respect to the y-axis imply that same symmetry for the curve?
2. Prove (10.1). Hint: use similar triangles.

*3, Find the Bézier points of the closed B-spline curves of degree four whose control
polygons consist of the edges of a square and have (a) uniform knot spacing and
simple knots, (b) uniform knot spacing, and knots all with multiplicity two.

*4. Work out the conditions under which the least squares approximation of Section
10.10 yields an interpolating curve.

P1. Use de_boor_blossom to program degree elevation for B-spline curves.

P2. Take the data from the file outline_3D and approximate by a least squares
cubic spline with fewer segments than you did for the corresponding problem in
Chapter 9. Compare.



Chapter 11

W. Boehm: Differential
Geometry I

Differential geometry is based largely on the pioneering work of L. Euler (1707-
1783), C. Monge (1746-1818), and C. F. Gauss (1777-18553). One of their concerns
was the description of local curve and surface properties such as curvature. These
concepts are also of interest in modern computer-aided geometric design. The main
tool for the development of general results is the use of local coordinate systems, in
terms of which geometric properties are easily described and studied. This introduc-
tion discusses local properties of curves independent of a possible imbedding into a
surface.

11.1 Parametric Curves and Arc Length

A curve in E? is given by the parametric representation

x(1)
x=x(t)=| y(t) |, tE€[ab]CR, (11.1)

z(t)

where its cartesian coordinates x, y, z are differentiable functions of ¢ (see Figure
11.1). (We have encountered a variety of such curves already, among them Bézier
and B-spline curves.) To avoid potential problems concerning the parametrization of
the curve, we shall assume that

x(1)
X()=| y@&) | #0, t € [a,b], (11.2)
(1)

171
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x(t)

x(t)

z
y x(a') X = x(ti)
—_—o—o—o——————— O t
X a t; b

Figure 11.1: Parametric curve in space.

where dots denote derivatives with respect to 7. Such a parametrization is called
regular.

A change 7 = 7(f) of the parameter ¢, where 7 is a differentiable function of
t, will not change the shape of the curve. This reparametrization will be regular if
T # 0forall t € [a, b], i.e., we can find the inverse r = (7). Let

t
5= 5) = / Illdr (11.3)
a
be such a parametrization. Because
dxdr dx
kdt = — —dr = —d
R P TR P

s is independent of any regular reparametrization. It is an invariant parameter and is
called arc length parametrization of the curve. One also calls ds = |[|x||dz the arc
element of the curve.

Remark 1 Arc length may be introduced more intuitively as follows: let
t; = a+iAr and let Az > 0 be an equidistant partition of the r-axis. Let x; = x(#;) be
the corresponding sequence of points on the curve. Chord length is then defined by

S = leAx,-lI = ZH%’;"HA;, (11.4)

where AX; = X;4| — X;. It is easy to check that for At — 0, chord length S converges
to arc length s, while Ax; /A7 converges to the tangent vector X; at X;.

Remark 2 Although arc length is an important concept, it is primarily used for
theoretical considerations and for the development of curve algorithms, If, for some
application, computation of the arc length is unavoidable, it may be approximated by
the chord length (11.4).
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11.2 The Frenet Frame

We will now introduce a special local coordinate system, linked to a point X(t) on the
curve, that will significantly facilitate the description of local curve properties at that
point. Let us assume that all derivatives needed later do exist. The first terms of the
Taylor expansion of x(r + Ar) at ¢ are given by

1 1
X(t+ AN =x+ xmwimz + 3&‘6&:3 +...0

Let us assume that the first three derivatives are linearly independent. Then %, ¥, X’
form a local affine coordinate system with origin x. In this system, x(¢) is represented
by its canonical coordinates

At + ...
1A+
1A 3
Eﬁf + ...

where “...” denotes terms of degree four and higher in Az.

From this local affine coordinate system, one easily obtains a local cartesian
(orthonormal) system with origin x and axes t, m, b by the Gram-Schmidt process of
orthonormalization, as shown in Figure 11.2:

X x/\ ¥
t=— m=bAt b= ——-, (11.5)
x| DYAS

where “/\” denotes the cross product.

The vector t is called rangent vector (see Remark 1), m is called main normal
vector,® and b is called binormal vector. The frame (or trihedron) t, m, b is called
the Frenet frame; it varies its orientation as ¢ traces out the curve.

Figure 11.2: Local affine system (left) and Frenet frame (right).

"We use the abbreviation A¢2 = (Ar)2.
2Warning: one often sees the notation n for this vector. We use m to avoid confusion with
surface normals, which are discussed later.
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The plane spanned by the point X and the two vectors t, m is called the osculating
plane O. Its equation is

1 1.0 0

where y denotes any point on O. Its parametric form is

det[y X X "}=det[y—x,x,sz]=0,

O(u, v) = x + ux + vi.

Remark 3 The process of orthonormalization yields
m= g

||%x - % — %X - x|

This equation may also be used for planar curves, where the binormal vector b =

t /\ m agrees with the normal vector of the plane.

11.3 Moving the Frame

Letting the Frenet frame vary with 7 provides a good idea of the curve’s behavior in
space. It is a fundamental idea in differential geometry to express the local change of
the frame in terms of the frame itself. The resulting formulas are particularly simple
if one uses arc length parametrization. We denote differentiation with respect to arc
length by a prime. Since X’ = tis a unit vector, one finds the following two identities:

x*x'=1 and x'-x"=0.

The first identity states that the curve is traversed with unit speed; the second one
states that the tangent vector is perpendicular to the second derivative vector, provided
the curve is parametrized with respect to arc length,

Some simple calculations yield the so-called Frenet—Serret formulas:

t = +km
m = —«kt +7h, (11.6)
b’ = —Tm

where the terms k and 7, called curvature and torsion, may be defined both in terms
of arc length s and in terms of the actual parameter t. We give both definitions:

k = k(s) = [Ix"]],
_ _ kA
K—K(I)—W. (11.7)

1
T=17(s) = Fdet[x’, x" x"M,

_ _ det[x, X, X')
T = T(f) = W (11.8)

Figure 11.3 illustrates the formulas of Egs. (11.6).
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—T7TIm

/ \
t

Figure 11.3: The geometric meaning of the Frenet-Serret formulas.

b -
bi”

Curvature and torsion have an intuitive geometric meaning: consider a point X(s)
on the curve and a “consecutive” point x(s + As). Let A denote the angle between
the two tangent vectors t and t(s + As) and let AB denote the angle between the
two binormal vectors b and b(s + As), both angles measured in radians. It is easy to

verify that Aa = kAs +...and AB = —7As +..., where “...” denotes terms of
higher degree in As. Thus, when As — ds, one finds that
_ da ;- _%
ds’ ds’

In other words, k and —7 are the angular velocities of t and b, respectively, because
the frame is moved according to the parameter s.

Remark 4 Note that « and 7 are independent of the current parametrization of
the curve. They are euclidean invariants of the curve, i.e., they are not changed by a
rigid body motion of the curve. Moreover, any two continuous functions k = k(s) > 0
and 7 = 7(s) define uniquely (except for rigid body motions) a curve that has curvature
k and torsion T.

Remark 5 The curve may be written in canonical form in terms of the Frenet
frame. Then it has the form

As —ik*As® + ...
X(s + As) = %KASE +éK’A$3+.., ,
LkTAS® + ...
where “...” again denotes terms of higher degree in As.

11.4 The Osculating Circle

The circle that has second-order contact with the curve at x is called the osculating
circle (Figure 11.4). Its center is ¢ = x + pm, and its radius p = 1 is called the
radius of curvature. We shall provide a brief development of these facts. Using the
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b center ¢
p __*
m

t

Figure 11.4: The osculating circle.

Frenet—Serret formulas of Egs. (11.6), the Taylor expansion of x(s + As) can be
written as

x(s + As) = x(s) + tAs + %KmA.vz +....

Let p* be the radius of the circle that is tangent to t at X and passes through the point
y = X + Ax, where Ax = tAs + jxkmAs? (see Figure 11.5). Note that y lies in the

osculating plane Q. Inspection of the figure reveals that (%Ax - p'm)Ax = 0, ie.,
one obtains

. _ l(Axy
© 2mAx’
From the definition of Ax one obtains (Ax)* = As? + ... and mAX = 1k(As)%.

Thus p* = % +....Inparticular, p = % as As — 0. Obviously, this circle lies in the
osculating plane.

Remark 6 Let x be a rational Bézier curve of degree n as defined in Chapter
14. Its curvature and torsion at by are given by

n—1wowy b _n—2wws ¢

i e S <
n w a’ n wywyab

K=

(11.9)

Figure 11.5: Construction of the osculating circle.
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Figure 11.6: Frenet frame and geometric meaning of 4, b, c.

where a is the distance between by and by, b is the distance of b, to the tangent
spanned by by and by, and c is the distance of b; from the osculating plane spanned
by bg, by, and b, (Figure 11.6). Note that these formulas can be used to calculate
curvature and torsion at arbitrary points x(r) of a Bézier curve after subdividing it
there (see Section 14.2).

Remark 7 An immediate application of (11.9) is the following: Let x be a point
on an integral quadratic Bézier curve, i.e., a parabola. Let 28 denote the length of a
chord parallel to the tangent at x, and let € be the distance between the chord and the
tangent. The radius of curvature at x is then p = % (see Figure 11.7).

Remark 8 An equivalent way to formulate (11.9) is given by

n—1 Wwow? area[bg, b[, bz]

k=2 11.10
n wi  dist’[bo, byl (10
and
3 n — 2 wows volume[bg, by, by, bs] 1111
= .
2 n ww, area?[bg, by, bs]

The advantage of this formulation is that it can be generalized to “higher order
curvatures” of curves that span RY, 3 < d = n (see Remark 12). An application of
this possible generalization is addressed in Remark 13.

parabola

Figure 11.7: Curvature of a parabola.
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11.5 Nonparametric Curves

Let y = y(¢); t € [q, b] be a function. The planar curve [ J is called the graph

t
y(1)
of y(t) or a nonparametric curve. From the preceding, one derives the following:
The arc element:

ds = +/1 + y2de.

The tangent vector:

The curvature:

The center of curvature:

Remark 9 Note that k has a sign here. Any planar parametric curve can be
given a signed curvature, for instance, by using the sign of det(x, X) [see also Eq.
(23.1)].

Remark 10 For a nonparametric Bézier curve (see Section 5.5),

y(u) = boB(t) + - -+ + byBy(t).

Figure 11.8: Curvature of nonparametric Bézier curve.
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Where u = ug + tAu is a global parameter, we obtain

2
VAR T @by, b= 248

1
n n a

a=

as illustrated in Figure 11.8.

11.6 Composite Curves

A curve can be composed of several segments; we have seen spline curves as an
example. Let x_ denote the right endpoint of a segment and x+ the left endpoint of
the adjacent segment. (We will consider only continuous curves, so that X- = x4
always.) Let ¢ be a global parameter of the composite curve and let dots denote
derivatives with respect to t. Obviously, the curve is tangent continuous if

Xy = ax-. (11.12)
Moreover, it is curvature and osculating plane continuous if in addition
Xy = a’%- + ag X, (11.13)
and it is torsion continuous if in addition
Xy = a’X_ + apk_ + ayx- (11.14)
and vice versa. Since we require the parametrization to be regular, it follows that
a > 0, while the o;; are arbitrary parameters.

It is interesting to note that curvature and torsion continuous curves exist that are
not k' continuous® (see Remark 4). Conversely,

xh’f — tJ’.f — K-'m + K(_Kt + Tb)

implies that x" is continuous if ' is and vice versa. To ensure x” = xY, the
coefficients a and a;; must be the result of the application of the chain rule; i.e., with
az; = Band a3; = v, one finds that a3y = 3. Now, as before, the curve is tangent
continuous if

Xy =ax-, a>0,
it is curvature and osculating plane continuous if in addition

X, =a’% +Bx.,

3Recall that k' = dk(s)/ds, where the prime denotes differentiation with respect to arc
length s of the (composite) curve. A formula for ' is provided by Eq. (23.2).
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but it is k' continuous if in addition
X+ =a’%_ +3aBfR- + yk-
and vice versa.

Remark 11 For planar curves, torsion continuity is a vacuous condition, but
' continuity is meaningful.

Remark 12 The preceding results may be used for the definition of higher order
geometric continuity. A curve is said to be G, or r'"-order geometrically continuous,
if a regular reparametrization exists after which it is C”. This definition is obviously
equivalent to the requirement of C" 2 continuity of k and C” 3 continuity of 7. As a
consequence, geometric continuity may be defined by using the chain rule, as in the
earlier example for r = 3.

Remark 13 The geometric invariants curvature and torsion may be generalized
for higher dimensional curves. Continuing the process mentioned in Remark 8, one
finds that a d-dimensional curve has d — 1 geometric invariants. Continuity of these
invariants only makes sense in E%, as was demonstrated for d = 2 in Remark 11.

Remark 14 Note that although curvature and torsion are euclidean invariants,
curvature and torsion continuity (as well as the generalizations discussed in Remarks
12 and 13) are affinely invariant properties of a curve. Both are also projectively
invariant properties; see Boehm [69] and Goldman and Micchelli [233].

Remark 15 If two curve segments meet with a continuous tangent and have
(possibly different) curvatures x— and k at the common point, then the ratio k- /k+
is also a projectively invariant quantity. This is known as Memke's theorem; see Bol
[78].
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Geometric Continuity

12.1 Motivation

Before we explain in detail the concept of geometric continuity, we will give an
example of a curve that is curvature continuous yet not twice differentiable. Such
curves (and, later, surfaces) are the objects that we will label geometrically continuous.

Figure 12.1 shows three parabolas with junction points at the midpoints of an
equilateral triangle. According to (11.10), where we have to set all w; equal to 1, all
three parabolas have the same curvature at the junction points, We thus have a closed,
curvature continuous curve. It is C! over a uniform knot sequence. But it is not C?
according to the C? test of Figure 7.4.

Differential geometry teaches us that our closed curve can be reparametrized such
that the new parameter is arc length. With that new parametrization, the curve will
actually be C?. Details are explained in Chapter 11. We shall adopt the term G curves
(second-order geometrically continuous) for curves that are fwice differentiable with
respect to arc length but not necessarily twice differentiable with respect to their
current parametrization. Note that curves with a zero tangent vector cannot be G?
under this definition. Planar G* curves have continuously varying signed curvature;
G? space curves have continously varying binormal vectors and continuously varying
curvature.

The concept of geometric continuity is more appropriate when dealing with
shape; parametric continuity is appropriate when speed of traversal is an issue.'

Historically, several methods have been developed to deal with G* continuity. In
the following, we present a unified treatment for most of these.

'Speed of traversal is important, for example, when the given curve is a vertical straight
line and we consider the motion of an elevator: higher orders of continuity of its path ensure
smoother rides.

181
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Figure 12.1: G? continuity: a closed quadratic G spline curve.

12.2 The Direct Formulation

Let by,...,bs and ¢, ..., c3 be the control polygons of two cubic Bézier curves.’
Since we are interested in G? continuity here, we need only consider the control
points by, by, by = ¢, ¢y, ¢, all of which we assume to be coplanar. Referring to
Figure 12.2, let d be the intersection of the lines b,b; and ¢;¢;.

We set

r— = ratio(by, by, d), (12.1)

Figure 12.2: G? continuity: using the direct formulation.

2The G? conditions for general degrees will be identical, and so nothing is lost by concen-
trating on the cubic case.
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ry+ = ratio(d, ¢, ¢2), (12.2)

r = ratio(by, bs, ¢1). (123)

Letting A-, Ay, B-, B; denote the triangle areas in Figure 12.2, we can invoke
(11.10) in order to to express the curvatures k— and k. of the left and right segments
at bs:

4 A _ 4 Ay
Ke = cr70—————— Ky = o 7——————.
3 = bl 7T 3le; — olP
If these two curvatures agree, we have that
A _
] . 4
a r (12.4)
Referring to the figure again, we see that
A By B-
— = ey — =4y —— =
B- Ay By
Inserting this into (12.4) yields our desired G? condition;
e =r_r.. (12.5)

12.3 The y Formulation

Using the setting of the previous section, we observe that our composite curve could
be made C' if we introduced a knot sequence with interval lengths A, A, satisfying
A_/A; = r. See Section 7.4 for a justification. Using (12.5), we define
r F+
‘}) :: — T —

r- r

We then have
ratio(b, by, d) =

_ . YA_

and ratio(d, ¢}, ¢;) = —.

A, (d, ¢y, ) AL

In the case that y = 1, we have the special case of a C* piecewise cubic curve. See
also Figure 12.3.

Figure 12.3: G? continuity: using the y formulation.
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W. Boehm used this framework for his development of G2 cubic splines; see
[65].

124 The v and B Formulation

Using the knot sequence from the y formulation, let us introduce two points d—- and
d: such that

A
ratio(by, b;, d-) = ratio(d+, ¢}, ¢;) = —.
+
We note that d+ — d- is parallel to the tangent at b;. We start with two fairly
trivial identities:

A A A
E—j—ﬁbz - A—jab. = A—fa?b,,

A A A
A — —SAey = —A.
A+Ml A+Ac0 A, o

We may rewrite these as

1 1
's—lA.pi_ - {d_ - bZ] = EA—A.{.im,

1 1
¢ —di]— A% = SA_ALK,
[e +] 3 + 6 +X+
Since our curve is C', we have that - = %, = Xandc¢; — by = [A- + A ]%x/3. If
we now subtract the last two equations, we have

d-—d, = éa_mm - %] (12.6)

Since d_ — d, is parallel to the tangent at b; = ¢, sois X, — X_. Hence a number
v exists such that

%, —%- = Ik (12.7)

We gave a geometric derivation of (12.7), but it also follows from (11.13) by setting
a=1a = v

The v—formulation of G? continuity is due to G. Nielson; it was originally
developed in the context of interpolatory v-splines (see Section 12.7). A similar
approach was taken by B. Barsky [34]; he uses B; = A_ /A, and B, = v as the
descriptors of G? continuity and calls them “bias” and “tension,” respectively.

While v depends on the parametrization and thus is not entirely geometric, we
could use

C[“‘bz

d-—dy =31
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dy

Figure 12.4: G’ continuity: using the v formulation.

to define a shape measure N = 3v/(A_ + A.) as the (signed) ratio betweend_, d+
and ¢; — b,. The more negative N becomes, the “rounder” the curve is at b;, and the
more positive it is, the more “pointed” the curve is. As an example, in Figure 12.4
we have a negative value for v.

12.5 Comparison

Why three or four different formulations for G? continuity of piecewise cubic curves?
The reason is partly historical, and partly depends on applications. In fact, the pre-
ceding formulations are by no means the only ones—the discussion of G* continuity
goes back as far as Bar [10], Bézier [53], Geise [226], and Manning [348].

Applications that aim at constructing surfaces will be better served by 3, v, or
v splines. These involve a knot sequence and thus lend themselves to the framework
of tensor product surfaces; see Chapter 16.

Free-form curve design, on the other hand, will benefit more from the direct
formulation because it is linked the most closely to the curve geometry. The direct
approach is the most geometric, followed by the y formulation, which needs a knot
sequence. The least geometric are the v and 3 formulations; their defining quantities
are not invariant under scaling of the knot sequence.

Using the fact that the triangles d, b,, ¢; and d, d—, d . in Figure 12.4 are similar,
we may derive the relationship

A_+A+ I_'y

=2— — 12.8
V=2 (12.8)

first found by Boehm [65].
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12.6 G” Cubic Splines

The spline curves in this section will be a generalization of the C* cubic B-splines
from Chapter 7. We will follow the notation of that chapter.

We start with a control polygon d_1,...,dz+;. In the context of C? cubic B-
splines, we now needed a knot sequence in order to place the inner Bézier points on
the control polygon legs; the junction points then were fixed by the C? conditions. In
our case, we have more freedom: we may place the inner Bézier points anywhere on
the control polygon legs; the junction points are then fixed by the G? conditions.

To be more precise, consider Figure 12.5. Placing bs;-; on the polygon leg
d;-, d; amounts to picking a number «;_ (between 0 and 1) and then setting

bsi—» = (1 — - )d;—; + a;—1d;. (12.9)
Similarly, we place bs;-; by picking a number w;— and setting
by = (1 —w-)di; + wi—1ds (12.10)

In the same manner, by choosing numbers «; and w;, we determine bs; 4 and bs;42.

We still have to determine the junction point bs;. Upon comparing Figures
12.5 and 12.2, we see that we need the quantities A; = ratio(bs;—», b3;—1, d;) and
pi = ratio(d;, baj+1, b3;i12). Since

1" i — -1 — i—
by = ]_—z__—ibj,'-—z - "’]'_—‘:]'d,- (12.11)
and
b3y = i d; + Ebguz, (12.12)
i w;
we have
Wi—] — 01 oG
i = i = 12.13
\ 1=y P w; — o ( )

Figure 12.5: G? conditions: inner Bézier points may be placed on the control polygon
legs. The junction points then may be found using the G* condition.
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Setting r; = \/Ai/(V/A; + \/Pi), we find the desired junction point to be
by = (1 — r)bsi—y + ribsis. (12.14)

Continuing in this manner for all i, we have completed the definition of a G* spline
curve. We note that it is advisable to restrict all o; and w; to be between 0 and 1. It
is possible, however, to violate that condition: we only have to ensure that A; and p;
have the same sign. As long as they do, bs; is computable from (12.14).

For an open polygon, we set ) = 0 and w;—; = 1. This ensures the usual
b| = du and b3L—| = d,r_.

Our development of G? splines is solely based upon ratios; hence G? spline
curves will be mapped to G2 spline curves by affine maps. We may also say that G*
continuity is affinely invariant.

There is one interesting difference between the preceding construction for a G*
spline and the corresponding construction fora C 2 spline: every C? piecewise cubic
possesses a B-spline control polygon—but not every G* piecewise cubic curve pos-
sesses a G* control polygon. The two cubics in Figure 12.6 are curvature continuous,
yet they cannot be obtained with the foregoing construction: the control point d;
would have to be at infinity.

In interactive design, one would utilize G* cubic splines in a two-step procedure.
The design of the G control polygon may be viewed as a rough sketch. The program
would estimate the inner Bézier points automatically, and the designer could fine-
tune the curve shape by readjusting them where necessary. For this fine-tuning, it is

d

Figure 12.6: G splines: these two cubics are a G* spline but do not possess a G*
control polygon.
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Figure 12.7: G? splines: a shape may be varied by prescribing tangents in addition to
the control polygon.

important to observe that bs;_, bs;+ is tangent to the curve. Instead of prescribing
numbers a; and w;—not very intuitive!—a designer may thus specify tangents to the
curve, and the a;, w; can be computed. Figure 12.7 gives examples.

We have just described G* splines using the direct G* formulation. Using the
v formulation, we arrive at y-splines, which use a set of v; and a knot sequence,
employing the principles of Section 12.3. We then have

o = Aoy + v
" yimAi A + A

(12.15)

and

o = Yi-14i-2 (12.16)

- Yio1Aia + By + yil

Figure 12.8: y-splines: the Bézier points are connected to the G? control polygon by
the ratios shown.
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The geometry of a y—spline curve is shown in Figure 12.8. Note that for all
v; — 0, the curve will tend toward its control polygon.

12.7 Interpolating G> Cubic Splines

We may also use G* cubics to interpolate to given data points X;;i = 0,...,L. In
the C? case, we had to supply a knot sequence in addition to the data points. Now,
we have to specify a sequence of pairs «;, w;. How to do this effectively is still an
unsolved problem, so let us assume for now that a reasonable sequence of a;, w; is
given. Setting b3; = x;, we insert (12.10) and (8.2) into (12.14) and obtain:

WA+ /xi = /el — w-pdioy + [/piwio + /A = a)]d;
+vVAhadiey,i=1,...,L— L (12.17)

Together with two end conditions, we then have L + 1 equations for the L + 1
unknowns d;. A suitable end condition is to make d; a linear combination of the first
three data points: dy = uxg + vX| + wX,. In our experience, (4, v, w) = (%, %. - %) has
worked well. A similar equation then holds for d;. For the limiting case of a; — 0
and w; — 1, the interpolating curve will approach the polygon formed by the data
points. In terms of the y formulation, this spline type was investigated in [186].

Nielson [371] derived the G* interpolating spline from the v formulation. We
now assume that the data points x; have parameter values u; assigned to them. Using
the piecewise cubic Hermite form, the interpolant becomes

Xw) = XH(r) + mAHN (r) + Ay H3 (r) + X1 Hy (r), (12.18)

where the Hf are cubic Hermite polynomials from (6.14) and r = (u — u;)/4; is the
local parameter of the interval (u;, u;+1). In (12.18), the x; are the known data points,
while the m; are as yet unknown tangent vectors. The interpolant is supposed to be
G?; it is therefore characterized by (12.7), more specifically,

Xy () — X-(u;) = vim, (12.19)

for some constants v;, where m; = X(;). The »; are constants that can be used to
manipulate the shape of the interpolant; they will be discussed soon. We insert (12.18)
into (12.19) and obtain the linear system

3(-@%5"—’_(‘1—1' + é‘%) = A;m;_l + (23;-[ + 2A; + éA,-_IA.‘V,-)m,'

12.20
+:5,-_|m,-+1;i = ],...,L - L ( }

Together with two end conditions, (12.20) can be used to compute the unknown
tangent vectors m;. The simplest end condition is prescribing my and m;, but any
other end condition from Chapter 9 may be used as well. Note that this formulation
of the v-spline interpolation problem depends on the scale of the u;; it is not invariant
under affine parameter transformations as pointed out in Section 12.5.
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If the »; are chosen to be nonnegative, the linear system (12.20) is solvable; in
the special case of all »; = 0, it results in the standard C? cubic spline. For the case
of all »; — o0, the interpolant approaches the polygon formed by the data points.

12.8 Local Basis Functions for G* Splines

C? cubic splines form a linear space over a fixed knot sequence. G* have the same
property, best illustrated in terms of the y formulation. Consider two y-spline curves
g and g over the same knot sequence and with the same ;. Denote the G* control
vertices of g by d;, those of g by d;. We observe that the barycentric combination

h(u) = (1 — a)g(u) + ag(u)

is again a y-spline curve. Moreover, the G control polygon for h consists of the
points (1 — a)d; + ad;. A glance at Figure 12.9 reveals the truth of this statement:
the points d;_, d;, d;_,, d; form a bilinear surface. Thus the Bézier points and the G2
control vertices of h are related to each other in the same ratios as those of g and g,
ensuring that h is again a y-spline curve.

A consequence of this linearity property is that all y-splines over the same knot
sequence and with the same v; form a linear space whose dimension, L + 3, equals
the number of control vertices of each y-spline in that space. Each element of that
space then has a basis representation

L+1

x(u) = Z d;M; (u). (12.21)

i=—1

Figure 12.9: y-splines: a barycentric combination of two y-splines is obtained by
forming the barycentric combination of their G* control polygons.
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We are slightly negligent here: actually, the M; depend not only on «, but also on the
u; and the ;.

We shall now develop several properties of the M; until we are finally able to
give an explicit form for them. As the geometry of the y-spline construction reveals,
they have the following properties:

Partition of unity: This follows since the affine invariance of the -y-spline construc-
tion implies that (12.21) is a barycentric combination:

L+1

Z Mi(u) = 1. (12.22)

i=—1

Positivity: For y; = 0, the y-spline curve lies in the convex hull of the control
polygon. Thus (12.21) is a convex combination:

M;(u) = 0. (12.23)

Local support: If we change one d;, the curve is only changed over the four intervals
(U2, ..., u; +2). This is illustrated in Figure 7.14 in the context of C* B-spline
curves. Thus the corresponding basis function M;(u) must vanish outside this
region:

Mi(u) = 0 for u & [u;—2, uis2]. (12.24)

Equation (12.24) is a consequence of the fact that a change in d; does not affect
b; with j = 3i — 6 or with j = 3i + 6. That change does not affect b3;+5 and
bs;+4, either—therefore, the first and second derivatives of the curve at u;—, and
u;+2 remain unchanged. As a consequence,

“‘:“I‘Mi(ﬂstz) =

dn azMi i+2) = 0. (12.25)

With these properties at hand, we can now construct M;. Consider the control
polygon that is obtained by setting d; = [ }
The graph of this polygon is quite degenerate—only one control point is nonzero. Its
usefulness stems from the fact that the cross plot of the corresponding y-spline curve
Mi(u)
M;(u)
can therefore construct the Bézier points of M; by the use of a cross plot (see Figure
12.10); if necessary, consult Sections 5.5 and 5.6. The Bézier ordinates of M; are now
a simple consequence of (12.14), (12.15), and (12.16):

} while setting all other verticesd; = 0.

consists of [ ] ; in other words, it singles out exactly one basis function. We

= Ai—
byi—a Yiz12i-2

(12.26)

. —--g (12.27)
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x|

=\

Figure 12.10: Local basis for G* splines: a basis function M; is obtained through the
cross plot technique. Only the plot for x(u) is shown, the one for y(u) being identical.

i Ty Ai
b3ip1 = Ai t+ vin + (12.28)
I,
1A,
bysy = JiHLZit1 (12.29)
I
where
Iy =vAi0+ A + vl
and
r?- = 'Yl"Ai—] + Ai + 'Yj+1A,‘+|.
For the junction ordinate bs; we find
Ai A‘:_]
| = i-1 + o .
. Aoy + A,—b‘%’ PTALF &f,b3:+| (12.30)

All remaining Bézier ordinates of M; are zero.

Historically, he first local basis for G* splines was developed by G. Nielson and
J. Lewis [331] in 1975. In 1981, B. Barsky [34] developed a local basis for so-called
B-splines, which are, in the context of this chapter, y-splines with constant y; = y
and a distorted uniform knot sequence with A; = BA;_;. Later, local bases were
developed for B-spline curves that are equivalent to y-splines (Bartels and Beatty

[41]).

12.9 Higher Order Geometric Continuity

Just as we can define higher order parametric continuity C”, we may also define higher
order geometric continuity. We say that a curve is r"-order geometrically continuous,
or G’, at a given point, if it can be reparametrized such that it will become C”(see
Remark 12 in Section 11.6). In particular, the new parameter might be arc length.
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Figure 12.11: G" continuity: a segment of a C" may be reparametrized. The resulting
curve is not C” any more, but still G".

To derive conditions for G” continuity, we start with a composite C” curve X(u)
with a global parameter u. At a given parameter value u, derivatives from the left and
from the right agree:

dx' di )
@x_ = @x.}.; 120,...,1". (12.31)

Now let us reparametrize the right segment by introducing a new parameter
t = t(u); see Figure 12.11. By our earlier definition, the resulting composite curve
will be G”, while it is clearly not C" any more. We will now study the conditions for
G" continuity using this composite G” curve.

Modifying (12.31) so as to incorporate the new parametrization yields:

di d:' )

dw.x_ = ax(!)h i=0...,r (12.32)
The terms on the right-hand side of this equation may be expanded using the chain
rule. For i = 1, we obtain

xL =%, ﬁ‘i (12.33)
du
where a prime denotes differentiation with respect to u, and a dot denotes differenti-
ation with respect to ¢. For i = 2, we have to apply both the chain and the product
rule to the right-hand side of (12.33):

Lordene o di
x_”=x+(a) X (12.34)

For the case i = 3:
o (At L odrdd o dh
() g (1239

Let us define o; = dt/du’. Then the preceding equations may be written in
matrix form:
KL [¢4] O 0 }'E+
x-" | =l am o 0 %+ |. (12.36)
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The lower triangular matrix in (12.36) is called a connection matrix ; it connects
the derivatives of one segment to that of the other. For r™-order geometric continuity,
the connection matrix is a lower triangular r X r matrix; for more details see Gre-
gory [255] or Goodman [235]. See also the related discussion in Section 11.6. The
connection matrix is a powerful theoretical tool, and has been used to derive varia-
tion diminishing properties of geometrically continuous curves (Dyn and Micchelli
[164]), to show the projective invariance of torsion continuity (Boehm [69]), and for
other theoretical pursuits (Goldman and Micchelli [233]).

The above definition of geometric continuity has been used by Manning [348],
Barsky [34], Barsky and DeRose [37], Degen [139], Pottmann [406], {4071, and Farin
[173]. In terms of classical differential geometry, the concept of “G*" is called “order
two of contact”; see do Carmo [155]. It was used in a constructive context by G.
Geise [226] as early as 1962.

An interesting phenomenon arises if we consider geometric continuity of order
higher than two. Consider a G* space curve. It is easy to verify that it possesses
continuous curvature and torsion. But the converse is not true: there are space curves
with continuous curvature and torsion that are not G* (Farin [173]). This more general
class of curves, called Frenet frame continuous, has been studied by Boehm [67]; see
also Section 11.6 and Hagen [263], [264]. They are characterized by a more general
connection matrix than that for G* continuity; it is given by

[24] 0 0
a al 0
(18] ﬁ 0113

where (3 is an arbitrary constant. For higher order Frenet frame continuity, one has to
resort to higher dimensional spaces; this has been carried out by Dyn and Micchelli
[164], Goodman [235], Goldman and Micchelli [233], and Pottmann [405]; see also
the survey by Gregory [255]. An even more general concept than that of Frenet frame
continuity has been discussed by H. Pottmann [406].

A condition for torsion continuity of two adjacent Bézier curves with polygons
bg,..., b, and ¢y,..., ¢, is given by

volume[b,—3,...,b,]  volumel[cy,..., c3]

[|Ab,]1° - [[Acoll®

(12.37)

See Boehm [66], Farin [173], or Hagen [263].

A nice geometric interpretation of the fact that torsion continuity is more general
than G continuity is due to W. Boehm [66]. If b,, 3,.... b, and ¢y, ..., ¢; are given
such that the two curves are G°, can we vary ¢; and still maintain G° continuity? The
answer is yes, and ¢; may be displaced by any vector parallel to the tangent spanned
by b,—; and ¢,. But we may displace ¢; by any vector parallel to the osculating plane
spanned by b,,_,, b, ¢; and still maintain torsion continuity!
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12.10 Implementation

We include a direct G* spline program. It assumes that the piecewise Bézier polygon
has been determined except for the junction points bs;, which will be computed:

void direct_gspline(l,bez_x,bez_y)

/*

From given interior Bezier points,
the junction Bezier points b3i are found from the G2 conditioms.

Input: 1: no of cubic pieces.

bez_x,bez_y: interior Bezier points b_{3i+1}, b_{3i-1}.

Output:bez_x,bez_y: completed piecewise Bezier polygon.
Note: b_0 and b_{31+3} should be provided, too!

*/

12.11 Exercises

*5.
*6.

P1.

. Figure 12.1 shows a triangle and an inscribed piecewise quadratic curve. Find

the ratio of the areas enclosed by the curve and the triangle.
Show that the average of two G? piecewise cubics is in general not G>.

. Find an example of a G* torsion continuous curve that is not G°.
*4,

Let a G* curve consist of two cubic Bézier curves. The derivatives of the two
curves at the junction point are related by a connection matrix. Work out the
corresponding connection matrix for the Bézier points.

Show that a nonplanar cubic cannot have zero curvature or torsion anywhere.
The G? piecewise cubic from Figure 12.6 cannot be represented as a direct G
spline. Can it be obtained from a v-spline interpolation problem?

Change the programs for interpolating C* cubics so that they compute interpo-
lating G? splines.



Chapter 13

Conic Sections

Conic sections (short: conics) have received the most attention throughout the cen-
turies of any known curve type. Today, they are an important design tool in the aircraft
industry; they are also used in areas such as font design. A great many algorithms for
the use of conics in design were developed in the 1940s; two books by Liming, [334]
and [335], contain detailed descriptions of those methods. A thorough development
of conics can also be found in [76] and [183].

The first person to consider conics in a CAD environment was S. Coons [113].
Later, A. Forrest [211] further investigated conics and also rational cubics. We shall
treat conics in the rational Bézier form; a good reference for this approach is Lee
[326]. We present conics partly as a subject in its own right, but also as a first instance
of rational Bézier and B-spline curves (NURBS), to be discussed later.

13.1 Projective Maps of the Real Line

Polynomial curves, as studied before, bear a close relationship to affine geometry.
Consequently, the de Casteljau algorithm makes use of ratios, which are the fun-
damental invariant of affine maps. Thus the class of polynomial curves is invariant
under affine transformations: an affine map maps a polynomial curve onto another
polynomial curve.

Conic sections, and later rational polynomials, are invariant under a more general
type of map: the so-called projective maps. These maps are studied in projective
geometry. This is not the place to outline the ideas of that kind of geometry; the
interested reader is referred to the text by Penna and Patterson [385] or to [76] and
[183]. All we need here is the concept of a projective map.

We start with a map that is familiar to everybody with a background in computer
graphics: the projection. Consider a plane (called image plane) P and a point o (called
center or origin of projection) in E>. A point p is projected onto P through o by finding

196
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v

Figure 13.1: Projections: a straight line L is mapped onto another straight line L’ by
a projection. Note how ratios of corresponding triples of points are distorted.

o

the intersection p between the straight line through o and p with P. For a projection
to be well-defined it is necessary that o is not in P. Any object in E? can be projected
into P in this manner.

In particular, we can project a straight line, L, say, onto P, as shown in Figure 13.1.
We clearly see that our projection is not an affine map: the ratios of corresponding
points on L and L' are not the same. But a projection leaves another geometric
property unchanged: the cross ratio of four collinear points.

The cross ratio, cr, of four collinear points is defined as a ratio of ratios [ratios
are defined by (2.7)]:

ratio(a, b, d)

cr(a, b, ¢, d) = ratio(a, ¢, d)

(13.1)

This particular definition is only one of several equivalent ones; any permutation of
the four points gives rise to a valid definition. Our convention (13.1) has the advantage
of being symmetric: cr(a, b, ¢, d) = cr(d, ¢, b, a). Cross ratios were first studied by
C. Brianchon and F. Moebius, who proved their invariance under projective maps in
1827, see [361].

Let us now prove this invariance claim. We have to show, with the notation from
Figure 13.2, that

cr(a, b, ¢, d) = cr(a, b, & d). (13.2)

This fact is called the cross ratio theorem.
For a proof, consider Figure 13.2. Denote the area of a triangle with vertices p,
q, r by A(p, g, r). We note that for instance

ratio(a, b, ¢) = A(a, b, 0)/A(b, ¢, 0).
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Figure 13.2: Cross ratios: the cross ratios of a, b, ¢, d and 4, b, ¢ d only depend on the
angles shown and are thus equal.

This gives

A(a, b,0)/A(b, d, 0)
A(a, ¢, 0)/A(c, d, 0)

1,15 sin G:/."gz".; Sil‘l(B + )
t'|I3 Sill(f.l’ + ﬁ)/i}h sin Y

_ sina/sin(B + vy)
 sin(a + B)/siny’

Thus the cross ratio of the four points a, b, ¢, d only depends on the angles at o.
The four rays emanating from o may therefore be intersected by any straight line;
the four points of intersection will have the same cross ratio, regardless of the choice
of the straight line. All such straight lines are related by projections, and we can
therefore say that projections leave the cross ratio of four collinear points invariant.
Since the cross ratio is the same for any straight line intersecting the given four
straight lines, one also calls it the cross ratio of the four given lines.

A concept that is slightly more abstract than that of projections is that of projective
maps. Going back to Figure 13.1, we can interpret both L and L' as copies of the real
line. Then the projection of L onto L’ can be viewed as a map of the real line onto
itself. With this interpretation, a projection defines a projective map of the real line
onto itself. On the real line, a point is given by a real number, so we can assume a
correspondence between the point a and a real number a.

cr(a, b, ¢, d)
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An important observation about projective maps of the real line to itself is that
they are defined by three preimage and three image points. To observe this, we inspect
Figure 13.2. The claim is that a, b, d and their images 4, b, d determine a projective
map. It is true since if we pick an arbitrary fourth point ¢ on L, its image € on L' is
determined by the cross ratio theorem.

A projective map of the real line onto itself is thus determined by three preimage
numbers a, b, ¢ and three image numbers @, b, &. The projective image 7 of a point
can then be computed from

cr(a, b, t,¢) = cr(@, b, 1, 8.
Setting p = (b — a)/(c — b) and p = (b — &) /(& — b), this is equivalent to

p _ p
t—a)/c—1n (G-a/@E-1

Solving for f:

s t —a)pe + (c— a
= U @pcH (€= nap (13.3)
plc — 1)+ p(t — a)
A convenient choice for the image and preimage pointsisa = a = 0,c =¢ = L
Equation (13.3) then takes on the simpler form

. tp
p(1 — 1)+ pt’
Thus a projective map of the real line onto itself corresponds to a rational linear

transformation. It is left for the reader to verify that the projective map becomes an
affine map in the special case that p = p.

(13.4)

13.2 Conics as Rational Quadratics

We will use the following definition for conic sections: A conic section in E2 is the
projection of a parabola in E? into a plane. We take this plane to be the plane z = 1.
Figure 13.3 gives an example of how to obtain a conic as the projection of a 3D
parabola. Since we will study planar curves in this section, we may think of this plane
as a copy of [E2, thus identifying points [ x y ]Twith [ x y 1 ]". Our special
projection is characterized by

X x/z
y | — | vz
z 1

Note thatapoint[ x y ]Tis the projection of a whole family of points: every point
on the straight line [ wx wy w ]T projects to [ x y ]". In the following, we
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Figure 13.3: Conic sections: a parabolic arc in three-space is projected into the plane
z = 1; the result, in this example, is part of a hyperbola.

will use the shorthand notation [ wx w 1T withx € E> for[ wx wy w ]T.! An
illustration of this special projection is given in Figure 13.4.

Let ¢(f) € E? be a point on a conic. Then there exist real numbers wo, W, w, and
points by, by, b, € E2 such that

woboBj(1) + wb;B3(t) + wyby B3 (1)
W()Bg(f) + wle(t] + sz%{t)

c(r) = (13.5)

Let us prove (13.5). We may identify ¢(r) € E> with [ ¢(r) 1 ]T € E>. This
point is the projection of a point [ w(t)e(t) w(t) ]¥, which lies on a 3D parabola.
The third component w(t) of this 3D point must be a quadratic function in ¢ and may
be expressed in Bernstein form:

w(t) = woB3(t) + wiB(t) + waB2(0).

IThe set of all points [ wx wy w |T

coordinatesof [ x 'y ]T.

is called the homogeneous form or homogeneous
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X

Figure 13.4: Projections: the special projection that is used to write objects in the plane
z = 1 as projections of objects in E°.

Having determined w(t), we may now write
ct) | _ [ e) X wiBf(1)
WW 1]_[ SSwiB () |
Since the left-hand side of this equation denotes a parabola, we may write

20 ] e [ ) S wiBX0)
g[wf]ﬁ*‘(‘"[ Sri

with some points p; € E*. Thus

2 2
D opiB) = e) Y wiB}(®), (13.6)

i=0 i=0
and hence

PoBL(t) + p1B}(t) + p.B3(t)
woB3(1) + w1 B3 (1) + waB3 (1)

() =

Setting p; = w;b; now proves (13.5).
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We call the points b; the control polygon of the conic ¢; the numbers w; are
called weights of the corresponding control polygon vertices. Thus the conic control
polygon is the projection of the control polygon with vertices [ wib; w; 1, which
is the control polygon of the 3D parabola that we projected onto c.

The form (13.5) is called the rational quadratic form of a conic section. If all
weights are equal, we recover nonrational quadratics, i.e., parabolas. The influence
of the weights on the shape of the conic is illustrated in Figure 13.5. In that figure,

we have chosen
10 _ 10 1
o= 1] - [0 ][0 ]

Note that a common nonzero factor in the w; does not affect the conic at all. If
wo # 0, one may therefore always achieve wy = 1 by a simple scaling of all w;.
There are other changes of the weights that leave the curve shape unchanged: these
correspond to rational linear parameter transformations. Let us set
; p(1 —1
t= —7——, (1—-n-= %
p(l —1) +1t p(l—1)+1
[corresponding to the choice p = 1 in (13.4)]. We may insert this into (13.5) and
obtain

p*woboB3(P) + pw b Bi (D) + wab,B3(1)

O = 50w D + pwi B2 + waB D)

(13.7)

Thus, the curve shape is not changed if each weight w; is replaced by w; = p*~'w;
(for an early reference, see Forrest [211]). If, for a given set of weights w;, we select
. L)
p=1/=

Wo

we obtain Wy = wy, and, after dividing all three weights through by w,, we have
g = Wy = 1. A conic that satisfies this condition is said to be in standard form. All
conics with wg, w2 # 0 may be rewritten in standard form with the above choice of
p, provided, of course, that wy/wg = 0.

If in standard form, i.e., wy = wy = 1, the points = c(%) is called the shoulder
point. The shoulder point tangent is parallel to bob,. If we setm = (by +b,)/2, then
the ratio of the three collinear points m, s, b; is given by

ratio(m, 8, by) = wy. (13.8)

We finish this section with a theorem that will be useful in the later development
of rational curves: Any four tangents to a conic intersect zach other in the same cross
ratio. The theorem is illustrated in Figure 13.6. The proof of this four tangent theorem
is simple: one shows that it is true for parabolas (see Exercises). It then follows for all
conics by their definition as a projection of a parabola and by the fact that cross ratios
are invariant under projections. This theorem is due to J. Steiner. It is a projective
version of the three-tangent theorem from Section 3.1.
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Figure 13.5: Conic sections: in the two examples shown, wy = w, = 1. As w| becomes
larger, i.e., as [wb;, w;] moves “up” on the z-axis, the conic is “pulled” toward b;.
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Figure 13.6: The four-tangent theorem: four points are marked on each of the four
tangents to the shown conic. The four cross ratios generated by them are all equal.

13.3 A de Casteljau Algorithm

We may evaluate (13.5) by evaluating the numerator and the denominator separately
and then dividing through. A more geometric algorithm is obtained by projecting
each intermediate de Casteljau point [ wib; w} |" into E2:

r—1

=1
b0 = (1= 0" by 4 M, (13.9)
i i

where
wi(t) = (1 — Owl1(0) + wis ] (@), (13.10)

This algorithm has a strong connection to the four tangent theorem above: if we
introduce weight points

[

r r
wi T Wiy,

r r r r
wibl + wi, bl

q;(1) = (13.11)

then

1—1
cr(b], qf, b/ bl ) = — (13.12)
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assumes the same value for all r, i. While computationally more involved than the
straightforward algebraic approach, this generalized de Casteljau algorithm has the
advantage of being numerically stable: it uses only convex combinations, provided
the weights are positive and t € [0, 1].

13.4 Derivatives
To find the derivative of a conic section, i.e., the vector &(r) = de/dr, we may employ
the quotient rule. For a simpler derivation, let us rewrite (13.6) as
P(1) = w(r)e(r).
We apply the product rule:
P(1) = w(n)e(r) + w(n)é(r)

and solve for ¢(1):

1
&) = —[p(1) — w(r)e(n)]. (13.13)
w(r)
We may evaluate (13.13) at the endpoint 7 = 0:
2
€(0) = —[wib; — wobg — (w; — wo)bg].
Wo

After some simplifications we obtain

2
&0) = M Ab,. (13.14)
Wo
Similarly, we obtain
&1) = 2—w'—Ab,. (13.15)
W)

Let us now consider two conics, one defined over the interval [, 1, ] with control
polygon by, by, b, and weights wy, w;, w, and the other defined over the interval
[u1, up] with control polygon by, bs, by and weights w;, w3, wy. Both segments form
a C! curve if
W3
Ay
where the appearance of the interval lengths A; is due to the application of the chain
rule, which is necessary since we now consider a composite curve with a global
parameter u; see also Section 7.1.

YiAb, = 22Ab,, (13.16)
A

13.5 The Implicit Form

Every conic ¢(r) has an implicit representation of the form
flx,y) =0,
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where f is a quadratic polynomial in x and y. To find this representation, recall
that ¢(r) may be written in terms of barycentric coordinates of the polygon vertices
bo, bl, bz:

c(r) = 1obg + 7 b; + 72by; (13.17)

see Section 2.6. Since ¢(r) may also be written as a rational Bézier curve (13.5), and
since both representations are unique, we may compare the coefficients of the b;:

70 = [wo(1 = 1)*1/D, (13.18)
m = [2wit(1 = 1)]/D, (13.19)
7 = [wat’]/D, (13.20)

where D = % w,—Bf. We may solve (13.18) and (13.20) for (1 — t) and ¢, respectively.
Inserting both expressions into (13.19) yields

2
ToTIW

1']2 =421

Wowz

This may be written more symmetrically as

'rlz 4w%

ToT2  wows

(13.21)

This is the desired implicit form, since the barycentric coordinates 7, 7, 7> of ¢(¢)
are given by

c* bi b% b‘{ (.*’I b% b(‘; bi c*
¢ by b bg b bg by ¢
I 1 1 1 1 1 1 1 1
T0 = . T = , 72 =
bé b‘E b;z‘ bé b)l‘: b% bé b’}‘l b%
by by b by by b by by by
I 1 1 1 1 1 1 1 1

The implicit form has an important application: suppose we are given a conic
section ¢ and an arbitrary point x € [°. Does x lie on ¢? This question is hard
to answer if ¢ is given in the parametric form (13.5). Using the implicit form, this
question is answered easily. First, compute the barycentric coordinates 7, 7;, 72 of x
with respect to by, by, b,. Then insert 7y, 7, ™ into (13.21). If (13.21) is satisfied, x
lies on the conic (but see Exercises).

The implicit form is also important when dealing with the IGES data specifica-
tion. In that data format, a conic is given by its implicit form f(x, y) = 0 and two
points on it, implying a start and endpoint by and b, of a conic arc. Many applica-
tions, however, need the rational quadratic form. To convert to this form, we have to
determine b; and its weight w, assuming standard form. First, we find tangents at by
and b,: we know that the gradient of f is a vector that is perpendicular to the conic.
The gradient at by is given by f's partials: V f(bg) = [fi(bo), f,(bo)]". The tangent is
perpendicular to the gradient and thus has direction V* f(bg) = [— fy(bo), f(bo)]".



Plate 1.

An automobile.
(Courtesy of Mercedes-
Benz, FRG.)

Plate II.

Color rendering of the
hood. (Courtesy of
Mercedes-Benz, FRG.)

Plate I11.

Wire frame rendering of the
hood (Courtesy of
Mercedes-Benz, FRG.)




Plate IV. In a database, the hood is stored as an assembly of
bicubic spline surfaces. The B-spline net of one of the
surfaces is shown. (Courtesy of Mercedes-Benz, FRG.)

Plate V. A wire frame rendering of a surface (top left) and its
Gaussian (top right), mean (bottom left), and absolute
(bottom right) curvatures.
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Thus our tangents are given by
to(t) = by + tV* f(bg) and
ty(s) = by + sV* f(b,).

Their intersection determines b;. Next, we compute the midpoint m of hy and b,.
Then the line mb, will intersect our conic in the shoulder point s. This requires the
solution of a quadratic equation,? but then, using (13.8), we have found our desired
weight w !

If the input is not well-defined—imagine by and b, being on two different
branches of a hyperbola!—then the preceding quadratic equation may have complex
solutions. An error flag would be appropriate here. If the arc between by and b,
subtends an angle larger than, say, 120 degrees, it should be subdivided. For more
details, see [S02].

Any conic section is uniquely determined by five distinct points in the plane. If
the points have coordinates (xj, y;), ..., (Xs, ys), the implicit form of the interpolating
conic is given by

¥ xy ¥y ox oy
2 o 2
MoYro aon

X3 oy ¥ ox o»m

X, V) = = 0.
f& x§ X3Y3 )’53‘ X3 )3
X; XaY4 Vi Xi Vs

2 2
X5 Xs5Y5 Y5 X5 Vs

e S -y

The fact that five points are sufficient to determine a conic is a consequence of
the most fundamental theorem in the theory of conics, Pascal’s theorem. Consider
six points on a conic, arranged as in Figure 13.7. If we connect the points as shown,

Figure 13.7: Pascal’s theorem: the intersection points py, p;, ps of the indicated pairs
of straight lines are collinear.

2The quadratic equation will in general have two solutions. We take the one inside the
triangle by, by, b,.
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we form six straight lines. Pascal’s theorem states that the three intersection points
P1, P2, p3 are always collinear.

It can be used to construct a conic through five points: referring to Figure
13.7 again, let a;, by, €1, a5, by be given (no three of them collinear). Let p; be the
intersection of the two straight lines through a,, b, and a;, b;. We may now fix a
line 1 through p,, thus obtaining p, and p;. The sixth point on the conic is then
determined as the intersection of the two straight lines through a,, p; and b, p;. We
may construct arbitrarily many points on the conic by letting the straight line I rotate
around p,.

13.6 Two Classic Problems

A large number of methods exist to construct conic sections from given pieces of
information, most based on Pascal’s theorem. A nice collection is given in a book
by R. Liming [335]. An in-depth discussion of those methods is beyond the scope of
this book; we restrict ourselves to the solution of two problems.

1. Conic from two points and tangents plus another point. The given data
amount to prescribing by, by, b;. The missing weight w; must be determined from the
point p, which is assumed to be on the conic. We assume, without loss of generality,
that the conic is in standard form (wy = wy = 1).

For the solution, we make use of the implicit form (13.21). We can easily
determine the barycentric coordinates 7y, 7y, 7, of p with respect to the triangle
formed by the three b;. We can then solve (13.21) for the unknown weight w; :

(13.22)

7|
Wi 2 \/ﬁ‘
If p is inside the triangle formed by by, b, b,, then (13.22) always has a solution.
Otherwise, problems might occur (see Exercises). If we do not insist on the conic in
standard form, the given point may be given the parameter value 1 = % in which
case it is referred to as a shoulder point.

2. Conic from two points and tangents plus a third tangent. Again, we are
given the Bézier polygon of the conic plus a tangent, which passes through two points
that we call b} and b}. We have to find the interior weight w,, assuming the conic
will be in standard form. The unknown weight w; determines the two weight points
qo and q,, with qoq, parallel to byb,; see Figure 13.8.

We compute the ratios ry = ratio(by, b(l,, b)) and r; = ratio(by, b, b). From
the definition of the g; in (13.11), it follows that ratio(hg, go, b;) = w, and
ratio(by, q;, b>) = 1/wy. The cross ratio property (13.12) now yields

D =, (13.23)

W

from which we easily determine w; = +/ry/ry. The number under the square root
must be nonnegative for this to be meaningful (see Exercises). Again, if we do not
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Figure 13.8: Conic constructions: by, by, by, and the tangent through b} and b} are
given.

insist on standard form, we may associate the parameter value = 3 with the given
tangent—it is then called a shoulder tangent.
Figure 13.8 also gives a strictly geometric construction: intersect lines bgb}

and byb/. Connect the intersection with by and intersect with the given tangent: the
intersection is the desired point p.

13.7 Classification

In a projective environment, all conics are equivalent: projective maps map conics
to conics. In affine geometry, conics fall into three classes: hyperbolas, parabolas,
and ellipses. Thus ellipses are mapped to ellipses under affine maps, parabolas to
parabolas, and hyperbolas to hyperbolas. How can we determine what type a given
conic is?

Before we answer that question (following Lee [326]), let us consider the com-
plementary segment of a conic. If the conic is in standard form, it is obtained by
reversing the sign of w|. Note that the implicit form (13.21) is not affected by this;
hence we still have the same conic, but with a different representation. If ¢(¢) is a point
on the original conic and &(¢) is a point on the complementary segment, one easily
verifies that by, ¢(t), and €(¢) are collinear, as shown in Figure 13.9. If we assume that
wy > 0, then the behavior of &(¢) determines what type the conic is: if &) has no
singularities in [0, 1], it is an ellipse; if it has one singularity, it is a parabola; and if
it has two singularities, it is a hyperbola.

The singularities, corresponding to points at infinity of &(r), are determined by
the real roots of the denominator Ww(t) of &(¢). There are at most two real roots, and
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o bi

&(t)

Figure 13.9: The complementary segment: the original conic segment and the com-
plementary segment, both evaluated for all parameter values ¢ € [0, 1], comprise the
whole conic section.

they are given by

2+ 2w

Thus, a conic is an ellipse if w; < 1, a parabola if w, = 1, and a hyperbola if w, > 1.
The three types of conics are shown in Figure 13.10 (see also Figure 13.5).

ha=

hyperbola

parabola,

ellipse

Figure 13.10: Conic classification: the three types of conics are obtained by varying
the center weight w;, assuming wy = w, = 1.
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The circle is one of the more important conic sections; let us now pay
some special attention to it. Let our rational quadratic (with w; < 1) describe
an arc of a circle. Because of the symmetry properties of the circle, the control
polygon must form an isosceles triangle. If we know the angle a = Z(by, by, by),
we should be able to determine the weight w;.> We may utilize the solution to the
second problem in Section 13.6 together with some elementary trigonometry and
obtain

W = COS .

A whole circle can be represented by piecing several such arcs together. For
example, we might choose to represent a circle by three equal arcs, resulting in a
configuration like that shown in Figure 13.11. The angles a equal 60 degrees, and so
the weights of the inner Bézier points are % whereas the junction Bézier points have
weights of unity, since each arc 1s in standard form.

Our representation of the circle is C!, assuming uniform parameter intervals; see
(13.16). It is not C2, however! Still we have an exact representation of the circle, not
an approximation. Thus this particular representation of the circle is an example of a
G? curve.

We should mention that the parametrization of our circle is not the arc length
parametrization as explained in Chapter 11. If uniform traversal of the circle is
necessary for some application, one has no choice but to resort to the classical sine
and cosine representation. It can be shown (Farouki and Sakkalis [198]) that no

Figure13.11: Circles: a whole circle may be written as three rational Bézier quadratics.

3The actual size of the control polygon does not matter, of course: it can be changed by a
scaling to any size we want, and scalings do not affect the weights!
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rational curve other than the straight line is parametrized with respect to arc length
when evaluated at equal increments of its parameter 7, and the curve will not be traced
out at uniform speed.

13.8 Control Vectors

In principle, any arc of a conic may be written as a rational quadratic curve segment
(possibly with negative weights). But what happens for the case where the tangents
at by and b, become parallel? Intuitively, this would send b, to infinity. A little bit of
analysis will overcome this problem, as we shall see from the following example.

Let a conic be given by by = [—1,0]T, b, = [1,0]", and b, = [0, tan «|T and
a weight w; = ccos a (we assume standard form). The angle « is formed by bgb,
and bob; at by. Note that for ¢ = 1, we obtain a circular arc, as illustrated in Figure
13.12.

The equation of our conic is given by

B {1—3}2[ ‘;)I ] +cosa-2cr(l—r){tal?a ] +12[(1)}
e = (1 =8)?%+ 2ct(l — t)cos a + 12 '

by

bo b2

Figure 13.12: Conic arcs: a 168 degree arc of a circle is shown. Note that « is close to
90 degrees.
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What happens as « tends to 5? For the limiting conic, we obtain the equation

-1 0 1
(1—1)2[ 0 }+2:(1—-1){C]+12{0}

1=02+1
The problem of a weight tending to zero and a control point tending to infinity has
thus been resolved. For ¢ = 1, we obtain a semicircle; other values of ¢ give rise to
different conics. For ¢ = —1, we obtain the “lower” half of the unit circle.

We have been able to overcome possible problems with parallel end tangents.
But there is a price to be paid: if we look at (13.24) closely, we see that it does
not constitute a barycentric combination any more! The factors of by and b, sum to
one identically, hence [0, ¢]" must be interpreted as a vector. Thus (13.24) contains
both control points and control vectors.* An important property of Bézier curves is
thus lost; namely, the convex hull property: it is only defined for point sets, not for a
potpourri of points and vectors.

The use of control vectors allows a very compact form of writing a semi-circle.
But two disadvantages argue against its use: first, the loss of the convex hull property.
Second: to write the control vector form in the context of “normal” rational quadratics,
one will have to resort to a special case treatment. We shall see later (Section 14.6)
how to avoid the use of the control vector form.

() = (13.24)

13.9 Implementation

The following routine solves the first problem in Section 13.6:

float conic_weight(b0,bl,b2,p)

/*
Input:b0,bl,b2: conic control polygon vertices
P: point on conic
Output: weight of bl (assuming standard form).
Note: will crash in "forbidden" situations.
*/

13.10 Exercises

1. Equation (13.22) does not always have a solution. Identify the “forbidden”
regions for the third point p on the conic.

2. In the same manner, investigate (13.23).
3. Prove that the four-tangent theorem holds for parabolas.

“In projective geometry, vectors are sometimes called “points at infinity.” This has given
rise to the name “infinite control points” by Vesprille [492]; see also L. Piegl [397]. We prefer
the term “control vector” since this allows us to distinguish between [0, ¢]" and [0, —c]".
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*4, Establish the connection between (13.12) and the four-tangent theorem.

*5. Qur discussion of the implicit form (13.21) was somewhat academic: in a “real-
life” situation, (13.21) will never be satisfied exactly. Discuss the tolerance
problem that arises here, i.e., how closely does (13.21) have to be satisfied for a
point to be within a given tolerance to the conic?

P1. Write a routine to iteratively subdivide a conic, putting each piece into standard
form. The middle weights will converge to unity. How do the convergence rates
depend on the type of the intial conic? (See also [342].)

P2. Write a routine to approximate a given Bézier curve by a sequence of elliptic
arcs within a given tolerance.



Chapter 14

Rational Bézier and
B-spline Curves

Rational B-spline curves! have become the standard curve and surface description in
the field of CAD and graphics. The use of rational curves in CAGD may be traced
back to Coons [113], [115], and Forrest [211]. By now, there are books on NURBS:
Fiorot and Jeannin {204], Farin [183], Piegl and Tiller [401].

14.1 Rational Bézier Curves

In the previous chapter, we obtained a conic section in E2 as the projection of a
parabola (a quadratic) in E3. Conic sections may be expressed as rational quadratic
(Bézier) curves, and their generalization to higher degree rational curves is quite
straightforward: a rational Bézier curve of degree n in [E3? is the projection of an
n'"-degree Bézier curve in E* into the hyperplane w = 1. We may view this 4D
hyperplane as a copy of E*; we assume that a point in E* is given by its coordinates
[ Xy z w ]T. Proceeding in exactly the same way as we did for conics, we can
show that an n"-degree rational Bézier curve is given by

woboBi (1) + - -+ + w,b, B} (1) 3
i . b; € E. 14.1
WoBI(D) + -+ + wBID) X(@, b (14.1)

X(1) =

The w; are again called weights; the b; form the control polygon. It is the projection
of the 4D control polygon [ wib;  w; ]T of the nonrational 4D preimage of x(1).

10Often called NURBS for nonuniform rational B-splines.
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If all weights equal one, we obtain the standard nonrational Bézier curve, since
the denominator is identically equal to one.? If some w; are negative, singularities
may occur; we will therefore deal only with nonnegative w;. Rational Bézier curves
enjoy all the properties that their nonrational counterparts possess; for example, they
are affinely invariant. We can see this by rewriting (14.1) as

_ w,B (1)
x(r) Zb B0

We see that the basis functions
w; B} (1)
> i—o WiB (1)

sum to one identically, thus asserting affine invariance. If all w; are nonnegative, we
have the convex hull property. We also have symmetry, invariance under affine param-
eter transformations, endpoint interpolation, and the variation diminishing property.
Obviously, the conic sections from the preceding chapter are included in the set of
all rational Bézier curves, further justifying their increasing popularity.

The w; are typically used as shape parameters. If we increase one w;, the curve is
pulled toward the corresponding b, as illustrated in Figure 14.1. Note that the effect
of changing a weight is different from that of moving a control vertex, illustrated
in Figure 14.1. If we let all weights tend to infinity at the same rate, we do not
approach the control polygon since a common (if large) factor in the weights does
not matter—the rational Bézier curve shape parameters behave differently from 7-
or v-spline shape parameters.

Two properties differ from the nonrational case. First, we have projective invari-
ance. That is, if a rational Bézier curve is transformed by a projective transformation,
we could just as well apply that transformation to the control polygon (using its
weights to write it in homogeneous form) and would end up with the same curve.
Note that nonrational curves only have this property for a subset of all projective
maps, i.e., the affine maps.

The second difference is the linear precision property. Rational curves may have
all Bézier points b; distributed on a straight line in a totally arbitrary fashion:

bi=(1—-a)by+ab,; i=1...,n—1

with arbitrary real numbers «;. We can still find weights w; such that the resulting
curve traces out the straight line byb,, in a linear fashion. They are given by wy = 1
and

w.: -
Yondl—i o;

For proofs, see [187] and [205].

2This is also true if the weights are not unity, but are equal to each other—a common factor
does not matter.
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Figure 14.1: Influence of the weights: top, changing one control point; bottom, chang-
ing one weight.
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14.2 The de Casteljau Algorithm

A rational Bézier curve may be evaluated by applying the de Casteljau algorithm
to both numerator and denominator and finally dividing through. A warning is ap-
propriate: while simple and usually effective, this method is not numerically stable
for weights that vary significantly in magnitude. If some of the w; are large, the 3D
intermediate points [w;b;]" (interpreted as points in a given coordinate system) are
no longer in the convex hull of the original control polygon {b;}; this may result in a
loss of accuracy.’

An expensive yet more geometric technique is to project every intermediate
de Casteljau point [ w;b; w; ]T; b; € E? into the hyperplane w = 1. This yields
the rational de Casteljau algorithm (see Farin [174]):

r Wfr7I r— w;’ﬁl r—
bl (1) = (1 - r)—w;—hi T4t w;‘ bl (14.2)
with
wi(t) = (1 = Hw~1(@0) + Wi (o). (14.3)

An explicit form for the intermediate points b] is given by

>_j=0 Wi+ jbi+;Bj (D)

bi(1) =
i@ Z;=o wi+ ;B (1)

Note that for positive weights, the b] are all in the convex hull of the original b, thus
assuring numerical stability.

The rational de Casteljau algorithm allows a nice geometric interpretation. While
the standard de Casteljau algorithm makes use of ratios of three points, this one makes
use of the cross ratio of four points. Let us define points g} (), which are located on
the straight lines joining b} and bl |, subdividing them in the ratios

. wh
ratio(b], q/, bl ) = ‘—J;l
i
We shall call these points weight points, because they indicate the relative magnitude
of the weights in a geometric way. Then all of the following cross ratios are equal:

cr(bl, g/, b, bl ) = ? forall ri.

For r = 0, the weight points

_ o _ wibi + wir1biy
@ =q = ———"—"

Wi + Wit

3These points are obtained by applying the de Casteljau algorithm to the control points w;by;
of the numerator of (14.1). They have no true geometric interpretation, because their location
is not invariant under translations of the original control polygon.
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Figure 14.2: Convex hulls: if the weight points are used, tighter bounds on the curve
are possible.

4To be precise, we can only find them modulo an—immaterial——common factor.
5This situation is similar to the way curves are generated using the direct G* spline algorithm
from Chapter 12 compared to the generation of y-splines.



