
Laws of Object-Orientation with Reference
Semantics

Leila Silva1, Augusto Sampaio2, and Zhiming Liu3

1 Departamento de Ciência da Computação - Universidade Federal de Sergipe
CEP 49000-100 São Cristóvão - SE - Brazil

leila@ufs.br
2 Centro de Informática - Universidade Federal de Pernambuco

CEP 50740-540 Cidade Universitária - Recife - PE - Brazil
acas@cin.ufpe.br

3 International Institute for Software Technology
P.O.Box 3058, Macao SAR - China

Z.Liu@iist.unu.edu

Abstract. Algebraic laws have been proposed to support program trans-
formation in several paradigms. In general, and for object-orientation in
particular, these laws tend to ignore possible aliasing resulting from ref-
erence semantics. This paper proposes a set of algebraic laws for object-
oriented languages in the context of a reference semantics. Soundness of
the laws is addressed, and a case study is also developed to show the
application of the proposed laws for code refactoring.

1 Introduction

Object-oriented programming is largely used for potentially increasing the pro-
ductivity of software development, and there is a great interest on formalisms that
allow reasoning about object-oriented programs.

Several approaches to formalise the semantics of object-oriented languages
have been proposed. For example, Abadi and Leino [1] introduce a logic for rea-
soning about object-oriented programming and prove its soundness. Müller and
Poetzsch-Heffter [2] introduce some general techniques for object-oriented pro-
gram verification. Cavalcanti and Naumann [3] propose an object-oriented lan-
guage, ROOL, similar to Java, whose semantics is based on weakest preconditions
and adopts the copy mechanism. He et al [4] propose rCOS, a reference semantics
for an object-oriented language, based on the Unifying Theories of Programming
(UTP) [5]. The logic of rCOS is a conservative extension of standard predicate
logic [5].

Many paradigms have benefited from algebraic programming laws, among
them imperative programming [6], functional programming [7], logic program-
ming [8] and concurrency [9]. These laws state properties that relate programming
constructs. Nevertheless, programming laws for the object-oriented paradigm are
not yet well established. Laws for small grain object-oriented constructs have been
considered in, for example, [10]. The work of Borba et al [11] is a significant con-
tribution in this direction. They propose laws of commands and of classes for

ROOL, therefore restricted to copy semantics. Cornélio [12] proves all the laws
proposed in [11] and shows how these laws can be used to formalize some of the
refactorings informally proposed by Fowler [13]. He et al [4] also propose a set of
laws for an object-oriented language, in the context of rCOS. These laws are very
similar to the ones presented in [11] but the proofs in the context of a reference
semantics are not presented. Furthermore, laws valid exclusively in the context of
reference semantics do not seem to have been investigated.

In this paper we present laws for object-oriented languages considering a ref-
erence semantics. We consider laws that are valid both for copy and reference
semantics, revise some laws that are valid for copy but not for reference seman-
tics, and propose new laws that hold only for reference semantics. As far as we are
aware, this is an entirely new contribution. In particular, we use the rCOS seman-
tics to prove soundness of each proposed law, as illustrated in this paper and more
detailed in [14]. We also develop a simple case study to show the applicability of
the proposed laws for improving code structure.

This paper is organized as follows. Section 2 summarises the rCOS seman-
tics. Section 3 briefly discusses copy versus reference semantics and introduces
some laws valid exclusively in the context of reference semantics. Applications
of the proposed laws related to code refactoring are the subject of Sect. 4. Sec-
tion 5 presents some final considerations and directions for future work. Finally,
in Appendix A we illustrate the style for proving the proposed laws.

2 The rCOS Approach

To prove soundness of the laws introduced in this paper, we need to use a semantics
for object-oriented languages that considers references. We adopt rCOS [4] and
this section summarizes some relevant aspects of this formalism.

2.1 Syntax of rCOS

In rCOS an object system (or program) S is of the form Cdecls • Main, where
Cdecls consists of a class declaration section and Main a main method. The main
method is a pair (externalvar, c), where externalvar is a finite set of global
variables and c is a command (the program control flow). The declaration section
is a finite set of class declarations cdecl1;cdecl2; ... ;cdeclk, where each class
declaration cdecli has the form given in what follows.

[private] class M [extends N] {
[private T11 a11 = d11, ..., T1r a1r = d1r;]
[protected T21 a21 = d21, ..., T2s a2s = d2s;]
[public T31 a31 = d31, ..., T3t a3t = d3t;]
[method m1(V11 x1; V12 y1; V13 z1){c1};...

m`(V`1 x`; V`2 y`; V`3 z`){c`};]}

The square brackets mean that the enclosed term is optional. A class can be
declared as private or public, but only public classes or a primitive type can

be used as global variable types in Main. Attributes can be private, protected
or public and a method declaration declares its value parameters (Vi1 xi), re-
sult parameters (Vi2 yi), value-result parameters (Vi3 zi) and body (ci). All
methods are public. rCOS supports the following commands:

c ::= SKIP | CHAOS | var T x [=e] | end x | c1;c2| c1 / b . c2 |
c1 u c2 | b ∗ c | le.m(e1;e2;e3) | le := e | C.new(le)

The command SKIP does nothing and terminates successfully, whereas CHAOS is
the most nondeterministic command. Variables can be declared with var and
undeclared with end. Variables may include an optional initialization. Sequential
composition (;), conditional choice (/ .), non determinism (u) and iteration (*) are
provided. The arguments of a method call le.m obey value, result and value-result
parameter passing mechanisms, respectively. The term le stands for an expression
that can appear on the left-hand side of an assignment. Such expressions are
called left-expressions and obey the form le ::= x | self | le.a, where x is a
variable and a an attribute of le. An expression e is of the form e ::= x | a |
null | self | e.a | (C)e | f(e), where null is a null reference, self is used
to denote the active object, e.a is the attribute a of e, (C)e is type casting and
f is a built-in operation for a primitive type. The term e1 is a list of expressions,
whereas e2 and e3 are lists of left-expressions in the form x or le.a.

2.2 Semantics of rCOS

In rCOS, the semantics of a program is the combination of its static and dynamic
semantics. The static semantics comprises a class declaration and a declaration
section and is captured by the structural variables, denoted Ω, which do not
change during the execution of the program. These variables record the set of
names, denoted as cname, of the private and public classes, the set of private,
protected and public attributes of a given class, the direct superclass of a class
and a mapping op(C) that associates with each class C the list of methods of C.

The dynamic semantics addresses commands and the entire program. It uses
dynamic variables, which comprise program variables, a variable visibleattr (that
records the visible attributes) and a variable π that represents the system config-
uration.

Program variables include global variables, declared in the main method, and
local variables (denoted localvar), declared by local variable declaration com-
mands. Local variables include self (the current active object) and parameters
of methods. The union of global and local variables is denoted by Var.

As method calls may be nested, self and parameters may be declared a number
of times with possible different types before they are undeclared. Thus, a local
variable x is represented by a sequence of declared types x : TypeSeq , TypeSeq ::=
〈T1, T2, . . . , Tn〉. The declared type of x is retrieved by the function dtype(x). The
term x is used to denote the value of a local variable x, which is in fact a sequence
of values, the head representing the current value of x, denoted by value(x).

A value is either a member of a primitive type or is an object identity in
REF with its dynamic typing information. REF is a set of object identities (or

references) and includes null . For a value v = 〈r, C〉, ref(v) denotes the reference
r of v and type(v) the current type C of v.

An object o is either the special object null or a structure 〈r, C, σ〉, where r, C
and σ are, respectively, the reference, the current type and the state of o, the
latter denoted state(o), mapping each attribute a visible in C into a value of the
declared type of a.

The visibility of attributes is captured by a dynamic variable visibleattr that
records the set of attributes visible to the command under execution. The value
of visibleattr defines the current execution environment.

The value of the system configuration π is the set of objects created so far.
When a new object is created or the value of an attribute of an existing object
is modified, the system configuration changes. We use π(C) to denote the set of
existing objects of class C.

In the UTP a program is represented by a design D = (α, P) where α denotes
the set of variables (the alphabet) of the program and P is a predicate of the form

p(x) ` R(x, x′)
def
= (ok ∧ p(x)) ⇒ (ok′ ∧R(x, x′))

where x, x′ ⊆ α stand for the initial and final values of a variable; p is the pre-
condition, defining the initial states; R is the postcondition, relating the initial
and final states; ok, ok′ describe initiation and termination of the program and
do not appear in expressions or assignments of the program texts. Designs can be
framed and the domain of designs is closed under sequential composition, choice
and iteration. Refinement relation between design is defined as logic implication.

As rCOS is based on the UTP, the semantics of a command is defined using
the dynamic variables. Each command c has its well-defined conditions D(c), as
part of the precondition of the semantics of c; the semantics of c, denoted [[c]],
has the form of D(c) ⇒ (p ` R). In what follows we give the semantics of local
declaration and undeclaration, assignments and method call. The semantics of
other constructors can be found in [4]. In the following expressions the symbol ¹
stands for a subclass relation and {v} stands for a framed element v, whose value
may be altered by the execution of the command currently defined.

Local variables are represented as sequences of declared types and values.
When a variable is declared the corresponding sequences are modified to add
new elements in their heads. The command var T x = e declares a variable and
initializes it. The command end x terminates the current scope of variable x. Thus,
the heads of the sequences of x are removed. The semantics of both commands
are given in what follows.

D(var T x = e)
def
= (x ∈ localvar) ∧ D(e) ∧

(type(e) ∈ cname ⇒ type(e) ¹ T)

[[var T x = e]]
def
= {x} : D(var T x = e) ` (x′ = 〈value(e)〉.x) ∧

TypeSeq ′(x) = 〈T 〉.TypeSeq(x).

D(end x)
def
= (x ∈ localvar)

[[end x]]
def
= {x} : D(end x) ` (x′ = tail(x)) ∧

TypeSeq ′(x) = tail(TypeSeq(x)).

An assignment has two forms, depending on whether le is a variable x or has
the form le.a. In the first case, the current value of the variable is changed. In the
second case, the value of an attribute a of object le is modified.

D(le := e)
def
= D(le) ∧ D(e) ∧ (type(e) ∈ cname ⇒ type(e) ¹ dtype(le))

[[x := e]]
def
= {x} : D(x := e) ` (x′ = 〈value(e)〉.tail(x))

[[le.a := e]]
def
= {π(dtype(le))} : D(le.a := e) `

(π(dtype(le))′ = π(dtype(le))]
{o⊕ {a 7→ value(e)|o ∈ π ∧ ref(o) = ref(le)}}).

The overriding (⊕) of an object o = 〈r,M, σ〉 to record the new value d of attribute
a is defined as o ⊕ {a 7→ d} = 〈r,M, σ ⊕ {a 7→ d}〉. For a set S ⊆ O of objects,

S] {〈r,m, σ〉} def
= (S\{o|ref(o) = r}) ∪ {〈r,M, σ〉}.

Notice that this definition requires dynamic type matching and the type of
the object needs to be consistent with the declared type. When le is x, the new
value of x is now the head of the sequence of values, replacing the old value of x
in the current scope. In the other case, the attached object is found in the system
configuration π and its state is modified accordingly.

For a method signature m(V1 x; V2 y; V3 z) let ve, res and vre be lists of
expressions representing the arguments passed by value, result and value-result
mechanisms. The semantics of le.m(ve; re; vre) is as follows.

D(le.m(ve;re;vre))
def
= D(le) ∧ type(le) ∈ cname ∧ (le 6= null) ∧

∃N ∈ cname.(type(le) ¹ N) ∧
∃(m 7→ (V1 x; V2 y; V3 z, c1) ∈ op(N))

[[le.m(ve;re;vre)]]
def
= (D(le.m(ve;re;vre)) ⇒ ∃C ∈ cname.(type(le) = C) ∧ (

[[var V1 x = ve; V2 y; V3 z = vre]];

[[var C self = le]]; [[Execute(C.m)]]; [[re, vre := y, z]];

[[end self, x, y, z]]).

If method m is not declared in C but in a superclass N of C then

[[Execute(C.m)]]
def
= [[Execute(M.m)]],

where M is the immediate superclass of C and M ¹ N . Given a class A and a
method m the semantics of Execute(A.m) comprises setting the execution envi-
ronment, then executing the body of the method and finally resetting the environ-
ment. Thus, [[Execute(A.m)]]

def
= Set(A); body(A.m); Reset, where Set(A) sets the

variable visibleattr with the set of attributes visible in class A, that is, attributes
of A, public and protected attributes inherited from superclasses of A, and public
attributes of public classes. Reset sets the variable visibleattr to the set of at-
tributes that are accessible by the main program, that is, the public attributes of
public classes. The term body(A, m) is the body c of method m. The prefix self is
added to each attribute and method in c, to guarantee that the environment is set

correctly when a nested method call that may change the execution environment
is completed.

Based on the semantics of a class declaration, [[Cdecls]], and on the semantics
of commands, [[c]], the semantics of a program is defined as

[[Cdecls •Main]]
def
= ∃Ω, Ω′, internalvar , internalvar ′ • ([[Cdecls]]; Init ; [[Main]]),

Init
def
= D(Cdecls) ` visibleatr ′ = ∅ ∧ π′ = ∅ ∧

∧

x∈Var

(x′ = 〈〉 ∧ Typeseq = 〈〉),

[[Main]]
def
= D(Main) ⇒ [[c]],

where internalvar is the set of variables in localvar , π and visibleattr , Init corre-
sponds to the initialization of variables, and Main is the main program.

3 Laws

The main difference between copy and reference semantics is the possibility of
aliasing in the latter. Aliasing can occur through assignments and parameter
passing. Aliasing can cause a range of difficult problems within object-oriented
programs, because a referring object can change the state of the aliased object,
implicitly affecting all the other referring objects [15].

A comprehensive set of laws of an object-oriented language based on copy
semantics has been proposed in [11]. This work distinguishes command laws and
laws for classes. As aliasing is related to assignment and parameter passing, the
laws for classes proposed in [11] are also valid for reference semantics. These laws
deal, among other constructs, with changing visibility of attributes (from private
to protected and from protected to public), introducing new class declarations,
removing unused classes, introducing fresh attributes, removing unused attributes,
introducing new methods, removing redundant or unused methods, introducing
inheritance, and moving attributes and methods to a superclass or a subclass.

Nevertheless, some command laws are not valid in the context of reference
semantics, and here we propose adaptations of such laws for this new context
(Sect. 3.1). Moreover, we propose new laws valid only in the context of a reference
semantics (Sect. 3.2). We briefly address soundness by presenting the proof of one
of these laws in Appendix A, using the rCOS semantics, given in Sect. 2.

An important point to notice is that we consider reference semantics assuming
that expressions are side-effect free. Furthermore, we follow the design of Java that
does not allow pointer manipulation, and attaches a copy semantics to assignments
involving variables of primitive types.

Before presenting new laws, we reproduce here laws 1 (var elim), 2 (var final
value) and 3 (;-/. distrib), valid for both copy and reference semantics, as they
are used in the development of the case study of Sect. 4.

We say that a variable in a command c1 is free, denoted free(c1), if it is not
declared in the local block under consideration, and bound otherwise. Similarly,
we use free(e) for the free variables of an expression e. If a declared variable is
never used, its declaration has no effect.

Law 1 (var elim) (var T x; c; end x) = c, if x /∈ free(c).

There is no point in assigning to a variable at the very end of its scope.
Moreover, evaluation of a condition is not affected by what happens afterwards,
and therefore sequential composition distributes leftwards through a conditional.
These facts are captured by the next two laws, respectively.

Law 2 (var final value) (var T x; c; x := e; end x) = (var T x; c; end x)

Law 3 (;-/. distrib) ((c1 / b . c2); c3) = ((c1; c3) / b . (c2; c3))

3.1 Revising Laws Valid only for Copy Semantics

There are laws valid for copy semantics that, in general, are not valid for reference
semantics. In what follows we discuss the problems that arise in some of these laws
and we introduce a revised law valid for reference semantics. A more complete set
of such laws can be found in [14]. In all of them the extension is performed by
adding a side condition, in a similar way to the laws presented here.

The sequential composition of two assignments to the same list of variables is
easily combined to a single assignment, when copy semantics is considered.

Law 4 (combine assignments) (le := e; le := f) = (le := f[e/le])

The notation f[e/le] denotes the substitution of le by the free occurrences
of e in f. In the context of reference semantics, this law does not hold in general
when le is a reference to an object. Assuming that le is a reference, we consider
two kinds of assignments, depending on the form of le. If le is a variable x, the
law is still valid, as it corresponds to two consecutive associations of objects to
le, which is equivalent to the last association. However, if le is of form le.a, the
following situation might happen. Assume x and y reference the same object, say
an account with balance 2; the sequence of assignments

x.balance := y.balance + 1; x.balance := y.balance + x.balance

increases the balance attribute to 6, whereas the combined assignment updates it
to 5 (x.balance := y.balance + (y.balance + 1)).

To be valid for reference semantics we must introduce conditions on the ap-
plication of the law. In this case, if there is no aliasing between variables of le
and variables of f, the law is sound. We introduce the function nosh(le,f) to
capture this fact, where nosh stands for ‘no sharing’; it yields true in the absence
of aliasing. Thus, for reference semantics the law is as follows.

Law 5 (revised combine assignments)
If nosh(le,f) then (le := e; le := f) = (le := f[e/le]).

The computation of nosh depends on the context of the transformation and can
be performed through a static analysis of the relevant program context, based, for
example, on some ideas of [16, 17]. Broadly a graph G is constructed, where the
nodes represent left-expressions (in the form x or le.a) and two nodes, say u and
v, are connected by an edge if and only if an alias between u and v is introduced

by an assignment or a parameter passing mechanism. A depth-first search rooted
in a given variable, say w, collects all variables potentially aliased with w. Thus,
nosh(le,f) holds if f cannot be reached by applying a depth-first search rooted
in le in G (see details in [14]). This analysis identifies all possibilities of aliasing
and may be stronger than necessary to guarantee soundness. For example, aliasing
of variables introduced by a branch of a conditional command that never executes
are recorded in G, but does not really occur.

If two consecutive assignments do not share data, the order does not matter.
For copy semantics the following law is valid.

Law 6 (order independent assignments)
(le1 := e; le2 := f) = (le2 := f; le1 := e),

provided le1 /∈ free(f) and le2 /∈ free(e).

This law presents a similar problem as the one related to Law 4 (combine
assignments). If le1 and le2 have the form x, this corresponds to the attachment of
a new value to these variables and the effect is the same as for variables of primitive
types. However, if either le1 or le2 is of the form le.a the conditions nosh(le1,f)
and nosh(le2,e) are required. The modified law for reference semantics is as
follows.

Law 7 (revised order independent assignments)
If (nosh(le1,f) ∧ nosh(le2,e) ∧ le1 /∈ free(f) ∧ le2 /∈ free(e)) then

(le1 := e; le2 := f) = (le2 := f; le1 := e).

Assignment distributes rightwards through a conditional; the next law is also
valid only for copy semantics.

Law 8 (assignment-/. distrib) If le /∈ free(b) then

((le := e); c1/ b .c2) = ((le := e; c1)/ b .(le := e; c2))

If le is of the form x, this corresponds to an association of a new value to le and
as le does not occur in b, the assignment can safely take place after b evaluation.
However, if le is of the form le.a the condition nosh(le,b) is required. The
modified law for reference semantics is presented below.

Law 9 (revised assignment-/. distrib 1) If (nosh(le,b) ∧ le /∈ free(b))

then ((le := e); c1/ b .c2) = ((le := e; c1)/ b .(le := e; c2)).

However, a particular case of this law is valid for both copy and reference seman-
tics. Consider an assignment le := e. Assuming that le is an object identifier,
this creates an aliasing between le and e. Such an assignment distributes left-
wards through a conditional, if the condition contains occurrences of e, but no
further aliasing with le.

Law 10 (revised assignment-/. distrib 2) If nosh(le,b[null]) then

((le := e); c1/ b[e] .c2) = ((le := e; c1)/ b[e] .(le :=e; c2)).

The notation b[e] means that b might contain occurrences of e. The condition
nosh(le,b[null]) captures that there is no sharing between le and b; null is
used in place of e (b[null]) to check that le has no further aliasing with b.

3.2 Laws Valid only for Reference Semantics

The introduction of aliasing motivates the investigation of new laws. In this section
we introduce laws valid only in a context of reference semantics. We are also
considering as an implicit condition that le refers to an object, so it is not a
variable of a primitive type. We use the notation leo to remark this fact.

Permutation of assignments are possible in some situations.

Law 11 (assignment permutation)
(c; leo := e) = (leo := e; c), provided leo /∈ free(c).

This law is not valid in general for copy semantics as the value of e might be
altered in c and, in this case, leo will hold the old value on the right-hand side
of the law. This problem does not arise in reference semantics because leo and
e are aliased and any change in e on the right-hand side will also reflect in leo.
Even in the case that leo is previously aliased with an object that occurs in c,
say z, the law is still valid. On both sides of the law the value of leo is e and the
aliasing with z is broken. Moreover, as leo is not free in c, z cannot be indirectly
updated by leo on the left-hand side of the law. Thus, the final value of z is not
affected by the assignment permutation.

If two variables are aliased, it does not matter which one is chosen to use.

Law 12 (assignment seq substitution) If preserves(leo, e, c) then

(leo:= e; c) = (leo := e; c[e/leo]).

The function preserves(leo, e, c) holds if the alias between leo and e is
preserved in c. To guarantee the preservation of the aliasing of leo and e the code
is analyzed and it is checked if leo does not appear neither in the left-hand side
of assignments nor as a result of value-result parameter of a method call in c.

To see why this law is not valid for copy semantics, consider the case in which
e is z and c is a method call z.m(), where m is a method that updates an attribute
of the object referenced by z. By applying the law we have

(y := z; z.m()) = (y := z; y.m()).

If we consider reference semantics, this equality is valid as z and y refer to the
same object. However, in the context of copy semantics this is not the case; on the
left-hand side the object referenced by z is updated, whereas on the right-hand
side the object referenced by y is modified and they are distinct objects.

As mentioned before, alias can occur through assignments and parameter pass-
ing. Thus, there are analogous laws to the previous one that substitute the assign-
ment by a method call to m through which the aliasing between leo and e occurs.
There are several situations to consider. For example, the method call could be
leo.m(∅, ∅,e) and the body of m includes an assignment self := e. In another
context, both leo and e could be passed as result or value-result arguments of m
and the body of m includes an assignment x := y, where x and y are the formal
parameters bound to leo and e, respectively. The aliasing between leo and e may
occur in a sequence of nested method calls, and so on.

To abstract all situations in which aliasing could happen, we introduce the
notation c[alias(leo,e)], meaning that c is a command that establishes an
alias between leo and e. The previous law can be generalized as follows.

Law 13 (aliasing seq substitution) If preserves(leo, e , c2) then

(c1[alias(leo,e)]; c2) = (c1[alias(leo,e)]; c2[e/leo]).

If two variables leo1 and leo2 are aliased, sequential assignments of leo1 to
leo2 and vice-versa have no effect.

Law 14 (redundant assignment)
(c[alias(leo1,leo2)]) = (c[alias(leo1,leo2)]; leo1 := leo2)

= (c[alias(leo1,leo2)]; leo2 := leo1)

As leo1 and leo2 reference the same object, the last assignment after executing
c can be regarded as the skip command in the previous law and, therefore, can be
removed. However, for copy semantics, the final assignment cannot be eliminated,
otherwise the updating of leo1 (or leo2) is not perceived by leo2 (or leo1).

4 Application: Code Refactoring

The proposed laws can be used to formalize refactorings and, more generally, to
improve code structure. For example, Rule 1 (extract/inline method) expresses
the Extract/Inline refactoring [13], which can be proved using some of the laws
presented in Sect. 3 (see [14]). The extract method is used to group code fragments
as a new method. The inline method does the opposite task.

Let cds be the set of declared classes of program P. Let c be the main command
of P. Let A and C be classes of cds; ads, pds and mts the attribute, parameter
and method declarations, respectively.

Rule 1 (extract/inline method)
class A extends C{ads;m1(pds1){c1[c2[a]]};mts}
=

class A extends C{ads;m1(pds1){c1’};m2(pds2){c2[α(pds2)];mts’}

where

m2 does not appear in c nor in mts, for any B ¹ A,

c1[c2[a]] denotes that c2[a] is a fragment of code of c1,

c1’
def
= c1[self.m2(a)/c2(a)], mts’

def
= mts[c2[a]/self.m2(a)],

a is the set of variables of c2, not including attributes of class A;

provided

(1) parameters in pds2 must have the same types as variables in a;

(2) method m2 is not declared in mts nor in any superclass or subclass

of A in cds.

In this rule, from left to right, the fragment of code represented by c2 is
extracted from all methods in A (m1 and mts) and a new method with body c2 is
created. The modified methods then call the created method. The reverse action
is done when applying the rule from right to left.

To apply this transformation we consider some issues, captured by the side
conditions associated to the rule. The first condition is obviously necessary to
guarantee a type safe matching, and is required in both directions of the rule
application. The second condition is necessary for the application from left to
right, requiring that the name m2 be fresh. The third condition is necessary for
the application from right to left, to guarantee that only methods of class A calls
m2 and thus it is possible to inline its body.

Cornélio [12] gives a formalization of this rule for copy semantics. In his for-
malization, types of variables in a must be of a basic type, otherwise changes of
objects in m2 may not be reflected in variables of m1. This is a severe restriction in
the application of the general refactoring proposed by Fowler. In the context of
reference semantics, we are able to deal with the general case. Similar refactorings
can be formalized in an analogous way.

To illustrate an application of code restructure that uses the above refactoring
and some of the proposed laws, consider program fragment that searches and
updates an element of an array; this is intentionally unstructured, combining the
actions related to search and update into a single method as shown in Fig. 1. The
goal is to transform this program into the one in Fig. 2, in which a method search
has been introduced to separate the tasks of updating and searching in different
methods.

class BasicEntity {
private T1 at1; T2 at2;

method update(T2 m ; ∅; ∅){at2 := m}; getat1(∅; T1 n; ∅){n:=at1}}
class Application {

private BasicEntity data[]; -- assume the last element is null

method updateApplication(T1 num, T2 value; T2 reply ; ∅)
{ Int i = 1;

Int len, number; Bool stop;

len := data.length(); stop := false;

SKIP / data[i] == null . {
((¬ stop) and (i<=len)) ∗

{data[i].getat1(∅, number, ∅);
stop := true / number = num . i := i + 1}}

{reply := "Failed Updating"} / data[i] == null .
{data[i].update(value, ∅, ∅); reply:= "Successful Updating"}}}

Fig. 1. Searching and updating an element of an array in a single method

To improve the code structure we begin with the example of Fig. 1 and by
applying some of the laws introduced in Sect. 3, we reach the code depicted in
Fig. 2. As each law is proved considering the rCOS semantics (see [14] for details),
the code transformation is sound. Thus, initially we apply Law 1 (var elim) to
introduce a declaration of obj in method updateApplication. After that, we
apply Law 2 (var final value) to introduce the alias between obj and data[i]
(see Fig. 3).

class BasicEntity {... }
class Application {

private BasicEntity data[]; -- assume the last element is null

method search(T1 num; BasicEntity obj; ∅) {
Int i = 1;

Int len, number; Bool Stop

len := data.length(); stop := false;

SKIP / data[i] == null . {
((¬ stop) and (i<=len)) ∗

{data[i].getat1(∅, number, ∅);
stop := true / number = num . i := i + 1}}

obj:=data[i]}
method updateApplication(T1 num, T2 value; T2 reply ; ∅) {

BasicEntity elem;

self.search(num, elem, ∅);
{reply := "Failed Updating"} / elem == null .
{elem.update(value, ∅, ∅); reply:= "Successful Updating" }}}

Fig. 2. An example of searching and updating an element of an array

class BasicEntity {...} class Application {...
method updateApplication(T1 num, T2 value; T2 reply ; ∅)
{ ... BasicEntity obj; ...

{reply := "Failed Updating"} / data[i] == null .
{data[i].update(value); reply:= "Successful Updating"}}}

obj:= data[i];

Fig. 3. Applying laws 1 (var elim) and 2 (var final value) in the case study of Fig. 1

class BasicEntity {...} class Application {...
method updateApplication(T1 num, T2 value; T2 reply ; ∅)
{ ... BasicEntity obj; ...

{ obj := data[i];
reply := "Failed Updating"} / data[i] == null .

{data[i].update(value); reply:= "Successful Updating"}}}

Fig. 4. Applying laws 3 (;-/. distrib), 7 (revised order independent assignment), 11
(assignment permutation) and 10 (revised assignment-/. 2) in the example of Fig. 3

Then we apply Law 3 (;-/. distrib) to move the assignment to obj to inside
the conditional. Now, we apply Law 7 (revised order independent assignment)
twice to permute the assignment to obj. In this case, as data[i] and reply are
of different types, nosh(reply,data[i]) is trivially true, as well as nosh(obj,k),
where k is the string data. Moreover, obj and reply are not on the right-hand
side expressions of any of these assignments. Next, we use Law 11 (assignment
permutation) to permute the assignment to obj. Then, we use Law 10 (revised
assignment-/. 2) to permute again the assignment to obj. Fig. 4 shows the result-

ing code. Next, we apply Law 12 (assignment seq substitution) to replace data[i]
with obj. Finally, we apply Rule 1 (extract/inline method) to extract the search
method achieving the program depicted in Fig. 2.

5 Conclusions

Programming laws for imperative and concurrent languages are well established
and have been proven useful in the design of applications of program transfor-
mation like compilers [18] and hardware/software partitioning [19]. The major
contribution of this work is to provide a set of laws for object-oriented languages
based on a reference semantics. We have considered laws already proposed for
copy semantics, that are not valid for reference semantics, and for each of these
laws, we have proposed a revised version for reference semantics. Furthermore, this
work introduces new laws valid only for reference semantics. We are not aware of
any other result in this direction.

A common criticism of the algebraic style is that merely postulating algebraic
laws can give rise to complex and unexpected interactions between programming
construction. This can be avoided by the verification of the laws in a mathematical
model. Our laws have been proved sound with respect to rCOS semantics, as
illustrated in the appendix.

The full set of laws valid both for copy and reference semantics, along with
the revised laws of copy semantics, presented in [14], is complete in the sense that
it is sufficient to reduce an arbitrary program to a normal form expressed in a
restricted subset of the language. The reduction strategy proposed in [11] can be
adapted straightforwardly. A future work is to extend this strategy by considering
also the laws valid only for reference semantics here introduced.

Although the case study presented here is simple, it illustrates the benefits of
using algebraic laws to improve code structure, in a sound way, in the presence
of aliasing. To develop more elaborate case studies is an important future work.
These case studies will be particularly useful to validate and possibly extend the
proposed set of laws.

In a context of reference semantics, data refinement is challenging. Although
data refinement can be proved directly in the semantics, this tends to be a la-
borious task. We intend to investigate laws for data refinement in the style of
Morgan’s work [20], based on approaches to confinement [21]. Moreover, if we
consider confinement, the possibilities of aliasing among variables are restricted.
We also plan to investigate an alternative presentation of the laws considering
confined programs, rather than using the explicit side conditions based on nosh.

References

1. Abadi, M., Leino, K.R.M.: A logic of object-oriented programs. In Bidoit, M.,
Dauchet, M., eds.: TAPSOFT’97: Theory and Practice of Software Development.
Volume 1214 of LNCS, Springer-Verlag (1997)

2. Müller, P., Poetzsch-Heffter, A.: Formal specification techniques for object-oriented
programs. In Jarke, M., Pasedach, K., Pohl, K., eds.: Informatik 97: Informatik als
Innovationsmotor, Springer-Verlag (1997)

3. Cavalcanti, A.L.C., Naumann, D.A.: A weakest precondition semantics for refine-
ment of object-oriented programs. IEEE Trans. on Soft. Eng. 26 (2000) 713–728

4. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus of object systems. Theoretical
Computer Science 365 (2006) 109–142

5. He, J., Hoare, C.A.R.: Unifying Theories of Programming. Prentice-Hall (1998)
6. Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C., Roscoe, A.W., Sanders, J.W.,

Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun. ACM
30 (1987) 672–686

7. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall (1997)
8. Seres, S., Spivey, J.M., Hoare, C.A.R.: Algebra of logic programming. ICPL (1999)
9. Roscoe, A.W., Hoare, C.A.: The laws of occam programming. Theoretical Com-

puter Science 60 (1988) 177–229
10. Leino, K.R.M.: Recursive object types in a logic of object-oriented programming.

Nordic Journal of Computing 5 (1998) 330–360
11. Borba, P., Sampaio, A., Cavalcanti, A.L.C., Cornélio, M.: Algebraic reasoning for

object-oriented programming. Sci. Comput. Programming 52 (2004) 53–100
12. Cornélio, M.: Refactoring as Formal Refinements. PhD thesis, Federal University

of Pernambuco, Centro de Informática, UFPE, Recife, Brazil (2004)
13. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

(2000)
14. Silva, L., Sampaio, A., Liu, Z.: Laws of object-oriented languages: copy versus

reference semantics. TR www.cin.ufpe.br/~lmas/report-laws.pdf, UFPE (2007)
15. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: European Conference

on Object-Oriented Programming (ECOOP). LNCS, Springer-Verlag (1998)
16. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-

standing. In: OOPSLA (2002)
17. Jackson, D., Rollins, E.: Abstractions of program dependencies for reverse engineer-

ing. In: Proc. ACM SIGSOFT Conf. on Foundations of Soft. Eng. (1994)
18. Sampaio, A.: An Algebraic Approach to Compiler Design. Volume 4 of AMAST

Series in Computing. World Scientific (1997)
19. Silva, L., Sampaio, A., Barros, E.: A constructive approach to hardware/software

partitioning. Formal Methods In System Design 24 (2004) 45–90
20. Morgan, C.: Programming from Specifications. 2nd edn. Prentice-Hall (1994)
21. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation inde-

pendence for object-oriented programs. Journal of the ACM 52 (2005) 894–960

A Proof of Law 11 (assignment permutation)

The proofs of this law use the following auxiliary results of designs and predicates,
extracted from [5].

Law 15 (predicate 1) true;false = false = false;true

Law 16 (;-predicate)

P(v’);Q(v)
def
= ∃ v0 •P(v0)∧ Q(v0), provided outαP = inα’Q ={v’}

outαP is the output variables v’ of P and inαQ is the input variables of Q.
The normal combinators of the programming language have exactly the same

meaning as operators on the single predicates as they have on the double predi-
cates of the refinement calculus.

Theorem 1. Let P1, P2, Q1 and Q2 be predicates

(P1 ` Q1) / b . (P2 ` Q2) = (P1 / b . P2) ` (Q1 / b . Q2)

(P1 ` Q1); (P2 ` Q2) = (¬(¬P1; true) ∧ ¬(Q1;¬P2)) ` (Q1; Q2)

An immediate consequence of this theorem is given below.

Corollary 1. (true ` Q1); (true ` Q2) = true ` (Q1; Q2)

Proof.
LHS

= 〈Theorem 1〉
(¬(¬true; true) ∧ ¬(Q1;¬true)) ` (Q1; Q2)

= 〈predicate calculus and Law 15(predicate 1)〉
(true ∧ true) ` (Q1; Q2)

= 〈boolean algebra〉
RHS

To perform the proof of Law 11 (assignment permutation) we have to consider
all possible forms of command c1. Here we prove the case when c1 is a method
call, as this situation happens in the case study.

Proof.

[[e.m(v, ∅, ∅); le := e]]
= 〈from UTP semantics〉

[[e.m(v, ∅, ∅)]]; [[le := e]]
= 〈semantics of method call and assignment 〉

(true ` ∃C ∈ cname • type(e) = C ∧ [[var T x = v]]; [[var C self = e]];

[[Execute(C.m)]]; [[end self,x]]); (true ` ∀le • ∃le • le
′
= 〈value(e)〉.tail(le))

= 〈semantics of variable declaration and undeclaration; semantics of method call;
Corollary 1; Law 16 (;−predicate)and predicate calculus〉
(true ` ∃C ∈ cname • type(e) = C∧
∃v : T • (∀x, self • ∃x, self • ∃x0, self0 • x0 = 〈value(v)〉.tail(x)∧
self0 = 〈value(e)〉.tail(self) ∧ π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))}∧
self

′
= tail(self0) ∧ x′ = tail(x0))); (true ` ∀le • ∃le • le

′
= 〈value(e)〉.tail(le))

= 〈predicate calculus, Corollary 1; Law 16 (;−predicate)〉
true ` (∃C ∈ cname • type(e) = C∧
∃v : T • (∀x, self • ∃x, self • ∃x0, self0 • x0 = 〈value(v)〉.tail(x)∧
self0 = 〈value(e)〉.tail(self) ∧ π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))}∧
self

′
= tail(self0) ∧ x′ = tail(x0)) ∧ ∀le • ∃le • le

′
= 〈value(e)〉.tail(le))

= 〈le is free in the previous predicate; predicate calculus〉
true ` (∀le • ∃le • le

′
= 〈value(e)〉.tail(le))∧

(∃C ∈ cname • type(e) = C ∧ ∃v : T • (∀x, self • ∃x, self•
π′ = {〈r, C, σ0

⊕{a 7→ v}〉|r = ref(value(e))} ∧ self
′
= self ∧ x′ = x))

= 〈Law 16(;-predicate); Corollary 1; Theorem 1 and predicate calculus〉
[[le := e]]; [[e.m(v, ∅, ∅)]]

= 〈from UTP semantics〉
[[le := e; e.m(v, ∅, ∅)]] ut

