
A hybrid method for searching near-optimal artificial neural networks

Leandro M. Almeida, Teresa B. Ludermir
Federal University of Pernambuco – Center of Informatics

P.O. Box 7851, Cidade Universitária, Recife - PE, Brazil, 50732-970
{lma3,tbl}@cin.ufpe.br

Abstract

This paper describes a method for searching near-
optimal neural networks using Genetic Algorithms. The
method uses an evolutionary search with the simultaneous
selection of initial weights, transfer functions, architectures
and learning rules. Experimental results have shown that
the method is able to produce compact, efficient networks
with satisfactory generalization power and shorter training
times in comparison to other algorithms.

1. Introduction

Artificial Neural Networks (ANNs) have been success-
fully applied in fields such as pattern recognition, speech
recognition, signal processing and function approximation
[1, 10]. Neural network effectiveness is conditioned by the
specific choice of parameters for a given problem. An ANN
model can obtain good performance when its parameters
have been correctly defined. An optimal ANN can be seen
as a instance of a neural network tailored to a specific pro-
blem, thereby having a smaller architecture with faster con-
vergence and better generalization performance [1, 10].

The specific and correct (near-optimal) configuration of
ANN models for a certain problem through trial-and-error
is considered a tedious, less productive and error-prone
task [1]. The construction of near-optimal ANN models in-
volves difficulties such as the exponential number of para-
meters that need to be adjusted (number of hidden layers,
number of hidden units, training algorithms, transfer func-
tions, learning rate, etc); the need for a priori knowledge of
the problem domain and ANN functioning to define these
parameters; and the presence of an expert when such kno-
wledge is lacking.

The manual search process of near-optimal ANNs re-
mains a challenge even when rules regarding the use of
ANNs are followed (PROBEN1 Report [8]). Therefore,
the automatic search of near-optimal models appears to be a
good solution and avoids the manual trial-and-error appro-

ach. The automatic search process of near-optimal ANN
models is widely explored, using evolutionary techniques.
In this approach, evolutionary techniques and ANNs are
combined to produce models with low error and high gene-
ralization control, yielding Evolutionary ANNs (EANNs),
as described by Yao [10]. EANNs are seen as a special
kind of ANN, as they allow the exploration of many ne-
cessary aspects or components in building well-performing
ANN models. EANNs are able to search initial weights,
transfer functions, topology setups and learning rules (trai-
ning algorithm parameters).

One kind of evolutionary technique, the Genetic Algo-
rithm (GA), is often used to search near-optimal ANN mo-
dels with topology optimization, as presented in [3, 4].
Others include transfer functions, initial weights and le-
arning rules, as presented in [1, 2]. Work using non-
evolutionary techniques prune connections that are conside-
red less significant [6, 7] or freeze weights when the same
inputs are submitted to the network [6].

In this work, we present a method named NNGA-DCOD
for near-optimal ANN searching using ANN and GA with
direct encoding. It is based on the previous work of Yao and
Abraham [1, 10]. In this method, we search for weights,
transfer functions, architectures and learning algorithm ru-
les. The methodology consists of an evolutionary search
system in layers, where a GA searches for learning rules
in the first layer,another GA searches for architectures and
transfer functions in the second layer and, yet another GA
searches for initial weights in the final layer. Experiments
using real data sets were performed and showed interesting
results when compared to other methods found in the litera-
ture.

This paper is organized as follows: Section 2 presents the
NNGA-DCOD in more details. Section 3 describes experi-
mental results using NNGA-DCOD. Section 4 summarizes
our conclusions and presents future work.

Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06)
0-7695-2662-4/06 $20.00 © 2006

2. NNGA-DCOD Method

The motivation for Hybrid Systems (HS) is related to the
fact that the combination of the best features of two or more
techniques is better than the application of these techniques
separately. An example of HS is the merging of GA and
ANN for searching near-optimal ANN models. In work by
Yao [10], we are given diverse definitions and discussions
on the hybridization of GA and ANN. One such definition
refers to the layered process of an evolutionary search of
ANNs, as illustrated in Figure 1.

In this process, the evolution speed is faster with the
initial-weight layer than with the others. This is a conse-
quence of the high dimensionality of exploration space for
initial weights due to the lack of priori knowledge on ex-
cellent sets of initial weights. The higher layers search for
architectures and learning algorithm rules, which have more
a priori knowledge information and allow the restriction of
a more specific search space.

Evolutionary search of learning algorithms and its parameters

Back-propagation Scaled-Conjugate
Gradient

Quasi-Newton Levenberg
Marquardt

Evolutionary search of architectures and node transfer
functions

Evolutionary search of initial weights

F
a
s
t

S
lo

w

Figure 1. Evolutionary search in layers [1].

The idea of an evolutionary search in layers for near-
optimal ANNs is motivated by the fact that its parameters
vary, producing different results for the same problem. This
applies mainly to the number of hidden layers and neurons,
the type of transfer functions, the values of initial weights
and the options of training algorithm parameters [5, 9].

GAs are used in the NNGA-DCOD to locate basins
of attraction, where near-optimal solutions are more li-
kely to be found. Four different ANN training algo-
rithms are then applied to refine the search in these basins:
Back-propagation(BP), Levenberg-Marquardt(LM), quasi-
Newton Algorithm(QNA) and Scaled Conjugate Gradient
(SCG). In NNGA-DCOD, there is a GA for each layer des-
cribed in Figure 1. These GAs exchange information for
the search of near-optimal ANNs that have all the necessary
configurations for their correct functioning. Table 2 descri-
bes the parameters used in the NNGA-DCOD method. GA
and ANN parameters were defined after the observation of
executions of the algorithms developed. The training algo-
rithm parameters are the same used by Abraham in [1].

The three GAs use 3 nested data structures for their in-
dividuals. The first is composed of a set of parameters for

Parameters for: Values

G
A

- Coding mode Direct
- Elitism 10%
- Mutation 40%
- Selection Tournament
- Population / Generation Algorithms: 7 / 30

Architectures: 10 / 7
Initial Weights: 10 / 5

N
eu

ra
lN

et
w

or
ks

- Type MLP, feed-forward
- Learn Algorithms BP, LM, QNA and SCG
- Transfer Functions Purelin (P), Tang-sigmoid

(T) and Log-Sigmoid (L)
- Number of hidden layers / nodes up to 3 / 16
- Number of training epochs up to 5
- Range of initial weights -/+ 0.5
- Function error MSE

L
ea

rn
in

g
A

lg
or

it
hm

s

BP - Learning Rate and Momentum 0.05 – 0.25
LM - Learning Rate 0.001 – 0.02
QNA - Step lengths 1.0E-06 – 100
- Limits on step sizes 0.1 – 0.6
- Scale factor to determine performance 0.001 – 0.003
- Scale factor to determine step size 0.001 – 0.02
SCG - Change in weight for second deriva-
tive approximation

0 – 0.0001

- Regulating the indefiniteness of the Hessian 0 - 1.0E-06

Table 1. NNGA-DCOD parameters.

the training algorithms and a population of the second data
structure. The second is composed of a set of architectures
and a population of the third data structure. Finally, the third
data structure is composed of a set of sets of initial weights.

Figure 2 shows the general idea of the algorithm. The se-
arch execution for near-optimal ANNs is a time-consuming
process, in which the upper layers depend on the lower
layers of evolutionary search. Therefore, the execution of
one generation of parameter search only occurs after the
execution of the generations for the architecture search. Si-
milarly, each generation of search for architectures occurs
only after the execution of the generations for the weight
search. For each generation of evolutionary search, many
ANN models are trained by different algorithms, thereby
considerably increasing execution times.

1 - Randomly generate the populations for: initial weights, architectures and
parameters of the learning algorithms;
2- For each learning algorithm, do:

2.1 - Evaluate fitness of all the individuals.
2.2 - For each generation of the search for parameters:

2.2.1 - For each generation of the search for architectures:
2.2.1.1 - For each generation of the search for initial weights:

i - Select parents for reproduction based on fitness value;
ii - Apply genetic operators and produce offspring for next
generation. Refill the population back to defined size.

2.2.1.2 - Perform steps i and ii for the architectures;
2.2.2 - Perform steps i and ii for the parameters.

Figure 2. NNGA-DCOD algorithm.

The fitness measure for initial-weight individuals is
mainly composed of the ANN Mean Squared Error (MSE)
in the test set. In the case of individuals with the same test
error, the training error is used as the settling criterion. The

Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06)
0-7695-2662-4/06 $20.00 © 2006

fitness for individuals of the population of architectures is
the weighted combination of the test error of the best ini-
tial set of weights and the architecture complexity given
as the percentage of hidden neurons from the total num-
ber. Finally, the fitness function for the parameters of the
learning algorithms is the mean of the architecture fitness of
the its three best architectures. Experiments performed with
NNGA-DCOD are described in more details in the next sec-
tion.

3. Experimental Studies

We have selected three well-known benchmark problems
to evaluate the NNGA-DCOD method. These benchmarks
are the cancer data set that consists of 699 examples (EX),
9 attributes (AT) and 2 classes(CL); the diabetes data set
with 768 EX, 8 AT and 2 CL; and the heart data set with
297 EX, 13 AT and 5 CL. Data were obtained from real
world problems in the medical field available from the UCI
machine learning benchmark repository.

For each experiment, the data sets were randomly par-
titioned with stratification, i.e., maintaining the same pro-
portions of the number of classes for the training (50%),
validation (25%) and test sets (25%). The performance of
the search for parameters of the learning algorithms was the
mean MSE of the best ANNs found after every 30 generati-
ons.

For the ANN search by trial-and-error, we performed 30
runs for the following network setup: 8, 10, 12, 14, 16, 18,
20, 22 and 24 hidden neurons for one hidden layer with the
(T) transfer function. The purpose of these experiments was
to compare the performance between NNGA-DCOD and
the manual process using the same database split scheme
and number of training epochs.

Figure 3 shows the experimental results of the NNGA-
DCOD for the cancer, diabetes and heart problems with the
mean of the best ANNs of each generation of the search
for parameters of the learning algorithms. These best me-
ans are used for building the charts with a confidence inter-
val for every training algorithm. The intention of the charts
is to identify significantly different performances. In some
cases, the difference between training algorithms not is vi-
sually clear. Thus, statistical tests, such as the t-test, are
performed in these cases. The results are described in the
next subsection.

3.1. Experimental results

LM achieved the best mean performance among the tes-
ted algorithms for the cancer and diabetes problems, with
a 95% confidence interval obtained by t-test. LM perfor-
mance had a small standard deviation of results when com-
pared with BP, which undergoes greater interference from

the weight initialization process than all the other algo-
rithms. The QNA algorithm had the best mean performance
for the heart problem, but with a 93% confidence interval
due to the fact that SCG and LM presented similar results.

Cancer Problem

1,0000%

1,5000%

2,0000%

2,5000%

3,0000%

3,5000%

4,0000%

4,5000%

5,0000%

5,5000%

BP LM QNA SCG
Algorithms

T
e

s
t

E
rr

o
r

(%
)

High

Middle

Low

Diabetes problem

13,0000%

13,6000%

14,2000%

14,8000%

15,4000%

16,0000%

16,6000%

17,2000%

17,8000%

18,4000%

19,0000%

BP LM QNA SCG

Algorithms
T
e

s
t

E
rr

o
r

(%
)

High

Middle

Low

Heart problem

9,5000%

9,9000%

10,3000%

10,7000%

11,1000%

11,5000%

11,9000%

BP LM QNA SCG
Algorithms

T
e

s
t

E
rr

o
r

(%
)

High

Middle

Low

Figure 3. Performances with interval confi-
dence for all training algorithms and data
sets.

The better results obtained with LM are a consequence
of it being a method that works with second derivative infor-
mation and converges faster than first-order methods. LM is
different from other algorithms that need more training time
to achieve better adjustment of the weights of the network,
as the example of BP.

The best networks showed that a small number of
training epochs did not prevent the method from achie-
ving satisfactory performances, since the parameters of
the network were well-chosen. A good set of parameters
for ANNs that are tailored to a given problem contributes
toward a better performance of the network with regard to
problem.

Table 2 shows the best networks found with the NNGA-
DCOD method and the manual process. The cancer and

Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06)
0-7695-2662-4/06 $20.00 © 2006

diabetes problems achieved the best results with the LM al-
gorithm, which obtained simple architecture and excellent
performance for the cancer problem in comparison to the
other algorithms. For the diabetes problem, LM achieved
the best test error, but its architecture is more complex than
that obtained with QNA. Thus, QNA can be considered the
best solution for having a simpler architecture as well as sa-
tisfactory performance. For the heart problem, QNA again
achieved the best network performance with the smallest
possible configuration for an MLP.

Data sets / NNGA-DCOD Trial-and-error
Algorithms MSE Architecture MSE Architecture

Training Test Test

C
an

ce
r

BP 0.0444 0.0428 3 P 0.1464 24 T
LM 0.0293 0.0119 1 T , 1 T, 1 T 0.0195 8 T
QNA 0.0328 0.0135 4 T, 1 T 0.0439 20 T
SCG 0.0321 0.0129 3 T, 1 T 0.0459 8 T

D
ia

be
te

s BP 0.1823 0.1750 3 P 0.2518 22 T
LM 0.1571 0.1315 2 T, 5 T 0.1468 14 T
QNA 0.1606 0.1441 1 P, 1 T, 1 T 0.1637 18 T
SCG 0.1628 0.1521 1 P 0.1861 14 T

H
ea

rt

BP 0.1212 0.1021 1 P 0.4210 14 T
LM 0.1165 0.0978 2 P, 5 T, 2 P 0.1012 10 T
QNA 0.1212 0.0959 1 P 0.1667 8 T
SCG 0.1214 0.0971 1 P 0.1678 20 T

Table 2. The best ANNs found through NNGA-
DCOD and trial-and-error for all data sets.

The algorithm developed achieved the best results for
all the data sets when compared with the results achie-
ved through trial-and-error. Table 3 displays the perfor-
mance comparison form the results obtained with NNGA-
DCOD and other work found in the literature. Compa-
risons between these methods must be made with cau-
tion, as the results are obtained with different experimen-
tal model setups and the errors are estimated with different
methods. Nonetheless, the table shows that NNGA-DCOD
is able to achieve very interesting results with very compact
networks and few training epochs. For the diabetes pro-
blem, the NNGA-DCOD produced the best results among
the methods tested, whereas for the other problems, the al-
gorithm developed is among those that achieved the best
results and produced interesting performances.

Method Error
Cancer Diabetes Heart

NNGA-DCODe 0.0119 0.1315 0.0959
GEPNETe [4] – 0.1927 0.1368
COVNETe [4] – 0.1990 0.1426
MOBNETe [4] – 0.1984 0.1363
CNNDAne [6] 0.0116 0.1875 –
COOPNN-ENSEMBLEe [3] 0.0057 0.1615 0.0735

Table 3. Comparison between Evolutionary(e)
and non-Evolutionary(ne) methods.

4. Conclusions

We have proposed an efficient method for searching
near-optimal ANNs using GA and ANN with direct enco-
ding and few training epochs. The results show that this
method is able to achieve compact networks with satisfac-
tory performances. Moreover, the NNGA-DCOD compari-
son with other methods shows very interesting and encou-
raging results that call for the continuation of this research
and the improvement of the work.

There are a number possible improvements for future
work. For example, the conduction of more experiments
with other types of problems, such as time-series for the
verification of the behavior of our method with prediction
problems; and the revision of the selection criterion for less
complex networks performed by the genetic operators that
currently discard complex nets that have satisfactory perfor-
mance.

Acknowledgments

The authors would like to thank CNPq (Brazilian Rese-
arch Council) for their financial support.

References

[1] A. Abraham. Meta learning evolutionary artificial neural
networks. Neurocomputing, (56):1–38, March 2004.

[2] K. P. Ferentinos. Biological engineering applications of fe-
edforward neural networks designed and parameterized by
genetic algorithms. Neural Networks, 18(7):934–950, 2005.

[3] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, and D. Ortiz-
Boyer. Cooperative coevolution of artificial neural network
ensembles for pattern classification. IEEE Trans. Evolutio-
nary Computation, 9(3):271–302, 2005.

[4] N. Garcı́a-Pedrajas, D. Ortiz-Boyer, and C. Hervás-
Martı́nez. Cooperative coevolution of generalized multi-
layer perceptrons. Neurocomputing, 56:257–283, 2004.

[5] S. Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall, 1999.

[6] M. M. Islam and K. Murase. A new algorithm to design
compact two-hidden-layer artificial neural networks. Neural
Networks, 14(9):1265–1278, 2001.

[7] L. Ma and K. Khorasani. New training strategies for cons-
tructive neural networks with application to regression pro-
blems. Neural Networks, 17(4):589–609, 2004.

[8] L. Prechelt. PROBEN1 — A set of benchmarks and ben-
chmarking rules for neural network training algorithms. Te-
chnical Report 21/94, Fakultät für Informatik, Universität
Karlsruhe, september 1994.

[9] J. J. Torres, M. A. Muñoz, J. Marro, and P. L. Garrido. In-
fluence of topology on the performance of a neural network.
Neurocomputing, 58-60:229–234, 2004.

[10] X. Yao. Evolving artificial neural networks. Proceedings of
the IEEE, 87(9):1423–1447, September 1999.

Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06)
0-7695-2662-4/06 $20.00 © 2006

