
Specifying Safety Requirements with GORE languages

Jéssyka Vilela12, Jaelson Castro2, Luiz Eduardo G. Martins3, Tony Gorschek4, Carla Silva2
1Universidade Federal do Ceará (UFC), Brazil

2Universidade Federal de Pernambuco (UFPE), Brazil
3Universidade Federal de São Paulo (UNIFESP), Brazil

4Blekinge Institute of Technology (BTH), Sweden
jffv@cin.ufpe.br, jbc@cin.ufpe.br, legmartins@unifesp.br, tony.gorschek@bth.se, ctlls@cin.ufpe.br

ABSTRACT
Context: A suitable representation of Safety-Critical Systems
(SCS) requirements is crucial to avoid misunderstandings in
safety requirements and issues in safety specification. However,
current general requirements specification languages do not fully
support the particularities of specifying SCS. Objective: In this
paper, our goal is to identify and propose a set of important
features that should be provided by requirements languages to
support an early safety requirements specification. Moreover, we
aim to compare the ability of the four most used Goal-Oriented
Requirements Engineering (GORE) languages (i*, KAOS, GRL,
NFR-Framework) in supporting the proposed features. Method:
We first established a conceptual foundation and a conceptual
model based on the literature, challenges elicited in previous
works, and demands of safety standards at the requirements level
that practitioners must satisfy in order to certify their systems.
Results: We proposed a set of 15 features that requirements
languages should provide to an early safety requirements
specification. Regarding the comparison of GORE languages, in
summary, all surveyed languages lacks explicit modeling
constructs to express how hazards can occur in the system, the
accidents, their impact and how they can mitigated. Conclusions:
The conceptual foundation, conceptual model, and the set of
features is a novelty. Finally, the features can be used to propose
new requirements languages for SCS or to define extensions for
the ones already available.1

CCS CONCEPTS
Software and its engineering → Software notations and tools →
System description languages → System modeling languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SBES'17, September 20–22, 2017, Fortaleza, CE, Brazil
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5326-7/17/09…$15.00
https://doi.org/10.1145/3131151.3131175

ACM Reference Format

Jéssyka Vilela, Jaelson Castro, Luiz Eduardo G. Martins, Tony
Gorschek, Carla Silva. 2017. Specifying Safety Requirements
with GORE languages. In: Proceedings of SBES'17, September
20–22, 2017, Fortaleza, CE, Brazil, 10 pages.

https://doi.org/10.1145/3131151.3131175

KEYWORDS
Goal-oriented requirements languages, Safety-critical systems,
Safety analysis, Requirements engineering, Safety engineering,
Goal-oriented requirements engineering.

1. INTRODUCTION
Safety-critical systems (SCS) are those composed of a set of
hardware, software, processes, data and people whose failure can
result in accidents that cause environmental damage, financial
loss, injury to people and even loss of lives [27][29]. Accordingly,
the development of SCS must be carefully planned and specified
aiming to avoid accidents [27][29][30][31].

The increased complexity of SCS has revealed issues in safety
requirements specifications such as: (i) Misunderstandings in
safety requirements and specification problems; (ii) They tend to
become large, ambiguous, inconsistent, and often lack clear
structure affecting the process of exchanging information
[32][33]; (iii) Determining the level of detail of safety
specifications adequate to communication to reduce the definition
of infeasible or expensive requirements to implement [34][35].
Besides, problems in the specification of SCS have been identified
as a major cause of many accidents and safety-related
catastrophes [5][19] [27][29].

An elaborated requirements engineering (RE) approach is
crucial in the development of SCS in order to meet time, cost, and
quality goals in SCS development [27]. Accordingly, safety
concerns should be considered early in the development process,
especially in the RE phase [1][8].

However, in safety requirements specification, there are many
relationships among safety concepts, such as hazards, their causes,
safety requirements and environmental conditions that must be
identified and specified. Therefore, achieving an adequate
representation of safety-critical systems requirements is quite
fundamental for a successful safety analysis.

154

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

In order to improve the safety requirements specification, it is
necessary to define a conceptual foundation as well as the features
that requirements languages should have to support this task. An
early safety requirements specification will contribute to: reduce
the errors in requirements specifications (increasing quality)
[37][38][39]; Better information presentation and increased
information consistency [38][39]; and It allows exhaustive and
detailed user feedback making possible to discover and specify
the complete system behavior [37].

It is of paramount importance that safety concerns be handled
and specified early in the development process. In this context,
GORE, whose goal is to perform a domain analysis during
requirements elicitation and preliminary specification, emerged as
new paradigm to improve the RE process. This paradigm is based
on the identification of system goals and the transformation of
those goals into requirements providing a completeness criterion
for the requirements specification [36], i.e. the specification is
complete if all stated goals are met by the specification.

A variety of GORE languages have become popular to
represent and analyze requirements. In recent systematic mapping,
Horkoff et al. [21] observed that i*, GRL (Goal-oriented
Requirement Language), NFR (Non-Functional Requirements)
framework, GBRAM (Goal-Based Requirements Analysis
Method), and KAOS (Keep All Objects Satisfied) are the most
adopted languages in the selected papers. Considering the
inconsistency among the terminologies adopted by safety
standards, and the need of conducting preliminary safety analysis
in the RE process, in this paper, we provide a set of important
features that requirements languages should support for early
safety requirements specification. This set is a novel contribution
that can be used as criteria to guide the selection of requirements
languages for specifying SCS or to propose extensions to the
languages available.

Considering the proposed features, we evaluated the support of
the four most used [21] GORE languages (i*, KAOS, GRL, NFR-
Framework) for the safety-related concepts. By comparing these
GORE languages, we observed the characteristics that make them
more or less suitable for this task.

This paper is organized as follows. We provide a brief
overview of the analyzed GORE languages in Section 2. We
present the research methodology in Section 3. The Conceptual
foundation and conceptual model for safety requirements
specification in RE process is described in Section 4. In Section 5,
we describe the features that should be addressed by requirements
specification languages for describing safety requirements. Taking
into account these features, we compare the four GORE languages
in Section 6. In Section 7, we discuss some thread to validity.
Related works are discussed in Section 8. Our conclusions as well
as further research are presented in Section 9.

2. BACKGROUND
There is a variety of goal modeling frameworks, techniques, or
methodologies for example i*, KAOS, GRL, NFR, GBRAM,
Tropos, and AGORA. GORE languages are based on the concepts
of goals, requirements, goal decomposition (division of goals into

subgoals), agents (entities or processes that seek to achieve goals),
tasks (represent operationalizations of goals or softgoals) [26].

The most commonly used notation for representing goal
models is that of a goal decomposition tree (or graph) much in the
spirit of AND/OR trees [15]. For comprehensive reviews of the
major efforts undertaken along this line of research, the concepts,
terminology, significance and techniques of GORE please see
[13][21][36].

KAOS [24] supports different levels of expression and
reasoning: semi-formal for modeling and structuring goals,
qualitative for selection among the alternatives, and formal, when
needed, for more accurate reasoning [13]. This formal framework
involves AND and OR decompositions between goals describing
desired states over entities, achieved by actions assigned to agents
(Figure 1).

Figure 1. KAOS syntax.

Thus, the KAOS language combines semantic nets for

conceptual modeling of goals, assumptions, agents, objects, and
operations in the system, and linear-time temporal logic for the
specification of goals and objects, as well as state-base
specifications for operations [13].

The i* (distributed intentionality) framework [46] provides a
description of work organization in terms of dependency
relationships among actors [49]. The syntax of i* is presented in
Figure 2. In this language, the requirements are represented by the
concepts of softgoals, AND/OR decompositions, contribution
links, (hard) goals, resources, and dependencies between actors
(agents) [46].

Figure 2. istar syntax adapted from [49].

155

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

Two models are proposed by i* framework: Strategic
Dependency (SD) and Strategic Rationale (SR). The SD model
captures the intentionality of the processes in the organization
[13] supporting the representation of dependency relationships
(goal, task, softgoal or resource) among actors. The SR model, on
the other hand, allows exploring the rationale behind the
dependencies in the system.

The Goal-Oriented Requirement Language (GRL) relies on a
reduced set of i* [26]. GRL supports modelling and reasoning
about requirements, especially non-functional requirements and
quality attributes [26]. The syntax of GRL, presented in Figure 3,
has three main categories of concepts: actors, intentional
elements, and links [26].

Figure 3. GRL Syntax [26].

According to [26], the main benefits of this language include

the integration with scenarios, the support for qualitative and
quantitative attributes, and a clear separation of model elements
from their graphical representation, enabling a scalable and
consistent representation of multiple views/diagrams of the same
goal model.

The NFR framework [25] uses the concepts of softgoals
(Figure 4) to represent non-functional requirements allowing to
refine them through AND/OR decompositions, as well as
contribution links, to represent the influences (negative and
positive) to and from such goals [15].

Figure 4. NFR Syntax adapted from [25].

The main modeling tool that the framework provides is the
softgoal interdependency graph (SIG) [25]. The graphs can
graphically represent softgoals, softgoal refinements
(AND/OR), softgoal contributions (positive/negative), softgoal
operationalizations and claims.

3. RESEARCH METHODOLOGY
The methodology we used to conduct this work consisted in the
following steps:

1. Definition of research questions;
2. Establishment of a safety conceptual foundation;
3. Development of a conceptual model for safety

requirements specification;
4. Features selection;
5. Comparison of GORE languages.

This research was guided by the following research questions:
RQ1: What is the conceptual foundation for safety requirements
specification in RE process?

RQ2: What are the main features that requirements languages
should support in terms of safety requirements specification?

RQ3: What are the similarities and differences among GORE
languages support for the features of RQ2?

In order to define a conceptual foundation regarding safety-
related concepts, first we conducted ad-hoc safety literature
reviews as well as a systematic literature review (SLR) about RE
and safety analysis integration [8]. As a result of this SLR, we
proposed two taxonomies to represent the safety-related
information and a detailed set of information regarding the
specification of hazards.

We continued our research by conducting the analysis of
safety standards from different domains as another source of
information. We decided to analyze the safety standards since
most of SCS should be certified and, therefore, they should be
developed following their recommendations. Moreover, in
interviews conducted by Martins and Gorsckek [20], the
practitioners highlighted the need and importance of following an
adequate safety standard.

After the comprehensive investigation of the domain, and
from the elicitation of the safety conceptual constructs and the
taxonomies we proposed previously, we developed a conceptual
model for early safety requirements specification presented in
Section 4.

The set of features that RE languages should support for
early safety requirements specification was defined based on the
analysis of the sources of information presented in Table 1. We
adopted different kinds of source (papers, standards, books,
journals).

We chose the languages to be ranked in this paper considering
the mapping of Horkoff et al. [21]. We selected the top five (i*,
KAOS, Tropos, NFR, and GRL). The languages are used in high
number of case studies and, hence, they have more citation
counts.

156

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

However, Tropos adopts the i* organizational modeling
framework during early requirements analysis [22]. Hence,
considering that Tropos and i* would have the same scores, in the
scope of this paper, we opted to not evaluate this language.
Therefore, our comparative analysis relies on four GORE
languages.

Table 1: List of sources of information.

Source Type

1 61508 Generic standard

2 ISO 26262-6 Automotive standard

3 ISO/IEC 25010
Generic standard

4 ISO/IEC 9126

5 ISO 15998-1 Machinery standard

ISO 15998-2

6 ISO 20474-1 Machinery standard

7 ECSS-E-HB-40A
Space standard

ECSS-E-ST-40C

8 ISO-13849-1
Machinery standard

ISO-13849-2

9 MIL-STD-882C Defense standard

MIL-STD-882D

MIL-STD-882E

10 ISO/TR-14639-1
eHealth standard

ISO/TR-14639-2

11 Vilela et al. SLR

12 Martins and Gorschek SLR

13 Zoughbi et al. Journal Paper

14 Markovski et al. Conference Paper

To conclude whether a language supports a feature, we relied

on existing case studies as well as the description of the languages
in the investigated papers and tools (see Table 2) and we did not
considered extensions for these languages. To reduce possible
subjectivity in the evaluation results, we had at least two people
evaluating them with disagreements checked by reading again the
papers adopted for each language. Disagreements were discussed
among authors.

Table 2: Papers adopted to evaluate the languages.

Language Paper adopted Tool

i* [23] OpenOme

KAOS [24] RE-Tool

NFR [25] OME

GRL [26] OME

4. CONCEPTUAL FOUNDATION FOR
SPECIFICATION OF SAFETY
REQUIREMENTS IN RE PROCESS

Safety-critical systems can be defined as software or system

operations that, if not fulfilled, fulfilled out of sequence, or
incorrectly could have as consequence inappropriate control
functions, or absence of control functions required for adequate
system operation, that could directly or indirectly induce or enable
a hazardous condition [1][2].

Terms in system safety are not used consistently [2][8].
According to Leveson [2], agreeing on terminology is always a
difficult process, but it is important for communication and
progress in finding solutions to problems.

In order to make clear the adopted definitions of some safety-
related concepts used in this paper, and to ensure consistency, we
describe them using as example the insulin infusion pump system
(IIPS) [3][4]. The system goal is to provide safe and effective
treatment for people suffering from Diabetes Mellitus (DM1) and
to enhance the long-term health of the patients.

Figure 5 presents a conceptual model for safety requirements
specification. The figure presents an abstract meta-model, which
defines and relates the conceptual constructs presented in
conceptual foundation. These concepts were elicited considering
the most common concepts, reported in the information sources
investigated, that should be specified early in the development
process.

In the following, we define some of these concepts adopted
in this work.

Accident: an undesired and unplanned (but not necessarily
unexpected) event that results in (at least) a specified level of loss
[2] (including loss of human life or injury, property damage,
environmental pollution, and so on) [5][6]. In the IIPS, an
accident can be incorrect treatment received by the patient
(overdose, underdose); electrical shock; patient infection; and
damage to the environment.

Accident impact level: the accident can have five levels of
impact [10]: Catastrophic, Hazardous/Severe-Major, Major,
Minor or No Effect. The incorrect treatment received by the
patient has Hazardous/Severe-Major impact level.

Environmental condition: the state of the environment [2].
The set of factors including physical, cultural, demographic,
economic, political, regulatory, or technological elements
surrounding the system that could affect its safety [5]. For
example, in the IIPS, an environmental condition can be
Obstruction in the delivery path; the air pressure inside the pump
is much smaller/larger than the air pressure environment; the
pump is positioned much higher than the infusion place, causing
no intentional flow.

Hazard: system state [6] or set of conditions that, together
with a particular set of worst-case environmental conditions, will
lead to an accident (loss) [2] [5]. One hazard of the IIPS can be an
insulin overdose; power failure due to spent battery; bad contact
of sensors and actuators; parts of the machine break inside the
patient's body.

157

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

Figure 5. Conceptual model for safety requirements specification.

Cause of hazard: reason that produces hazard as effect [7].
They occur due to environmental hazard, procedural hazard,
interface hazard, human factor or system cause [6][7]. A free flow
is one cause of the overdose hazard as well as the presence of air
in the catheter and insulin leakage.

Safety Requirement: is typically of the form of a quality
criterion (a system-specific statement about the existence of a sub-
factor of safety) combined with a minimum or maximum required
threshold along some quality measure. It directly specifies how
safe the system must be [6]. In the IIPS, the difference between
the programmed infusion and the delivered infusion shall not be
greater than 0.5%.

Functional Safety Requirement: The requirement to
prevent or mitigate the effects of failures identified in safety
analysis [1]. To mitigate the overdose hazard caused by free flow,
the system can monitor the insulin reservoir.

Safety-critical element: can be defined as any equipment,
structure or system whose failure could cause a hazard that can
contribute to a major accident, or it is used in the system with the
intention of avoid or reduce the accident impact level [11].

Hazardous event: is an event can lead to the occurrence of a
hazard [11] such as the pump controller cannot monitor the status
of the components.

Risk: is associated with Hazard and it is a combination of
consequence (severity hazard) and likelihood of the hazard (risk =

probability hazard x severity hazard) [9]. In the case of the insulin
pump, an intolerable risk is an overdose of insulin.

Criticality level of safety-critical element: indicates the
degree of criticality of a safety-critical element on some pre-
defined scale [10]. Examples: in RTCA DO-178B [12] safety
standard the categories are “A”, “B”, “C”, “D”, “E”, and in IEC
61508 [11]: “SIL 1”, “SIL 2”, “SIL 3”, “SIL 4.

Constraint: describes how the software must be designed
and implemented providing additional information regarding
requirements that must be met in order to a given goal to be
achieved [13][14].

Obstacle: denotes the reason why a goal failed [14] consisting
in behaviors or other goals that prevent or block the achievement
of a given goal [13].

Pre and post condition: describes actions that must be
executed before or after some scenario [14].

Safety strategy: are tactics or decisions defined to minimize
the consequence or probability of the hazard [8].

Resource: assets, such as money, materials, staff, documents,
etc., provided or used by a person or organization in order to
achieve some goal [12][13].

In the next section, we present and describe the features of
SCS to be supported by requirements languages.

158

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

5. FEATURES OF SAFETY-CRITICAL
SYSTEMS

Important challenges must be addressed by requirements
languages to enable an adequate representation of SCS
[1][8][5][27] such as the uniformization of the information to be
elicited and specified.

In this paper, we outline a set of safety concepts and features
that should be supported by RE languages allowing requirements
engineers to represent the results of a preliminary safety analysis
(PSA). In a complete safety analysis, a richer set of attributes and
relationships are specified. In this paper, we are concerned with
the core concepts that are available in the RE process.
Accordingly, the full list addressed of concepts used in safety
analysis, such as design options and components, is out of the
scope of this paper.

The high level specification of such safety concepts will be
used by safety engineers as an input of a rigorous and detailed
safety analysis in the preparation of reports for system
certification.

We based our identification of features, that should be
supported by requirements languages, in the results of the SLR we
conducted [8] and in the requirements extracted from safety
standards common to general industry sectors (such as ISO/IEC
61508, ISO/IEC 25010, ISO 9126, ISO 15998) whereas others are
domain specific such as ISO 26262 for the automotive domain.

We depict the set of features to be supported by requirements
languages for safety requirements specification in Table 3.

Requirements languages should have the ability of modeling
the safety-related concepts (accidents – f1, hazards – f2, their
causes – f3, environmental conditions – f4, functional safety
requirements –f5). These concepts, described in Section 4, are the
core information addressed in a PSA that should be specified early
in the development process by requirements engineers [1][8][5].

Another important set of concepts for the specification of
safety requirements are constraints (f6), obstacles (f7) and
pre/post conditions (f8). The specification requirements languages
must address these concepts since they may affect the functioning
of some system element making it safety-critical. Accordingly,
constraints, obstacles and pre/post conditions may lead to the
occurrence of a hazardous event if they are not properly satisfied
by the system.

The representation of safety-related concepts in a graphical
way (f9) contributes to press the stakeholders to clarify system's
aspects early in the design process [8][16]. Therefore, the models
provide a shared meaning that engineers can use to collaborate, as
when stakeholders consult a requirements specification to
determine how to design a portion of the system or to perform the
safety analysis [8]. Accordingly, the complex relationships of
safety information are somehow mitigated with graphical
representations being more consistent and less ambiguous than
informal specification documents [19].

Accidents are a combination of a hazardous situation and a
set of environmental conditions (context). In the analysis of the
DO-178B safety standard [12], Zoughbi et al. [10] produced 54
information requirements that UML-based solution should

support. Among them, it is the need of specify how a particular
event affects system safety (f10). Based on the requirements of
DO-178B standard and the conclusions of Zoughbi et al., we
argue that a RE language should support this feature.

Table 3: List of features for safety requirements specification

to be supported by RE languages.

Feature Source/Inspiration

1 Modeling of accident [8][13][47][48]

2 Modeling of hazard [8][13] [47][48]

3 Modeling of cause of hazard [8][13] [47][48]

4
Modeling of environmental
condition

[8][13] [47][48]

5
Modeling of functional safety
requirement

[8][13] [47][48]

6
Representation of constraint [13][14][15]

[47][48]

7
Representation of obstacle [13][14][15]

[47][48]

8
Representation of pre and post
condition

[13][14][15]
[47][48]

9

Allow to represent the relationships
among hazards, their causes, the
environmental conditions and the
functional safety requirements in a
graphical form

[8][16]

10
Ability to specify how a particular
event affects system safety

[10][12] [47][48]

11

Ability to specify the criticality level
of safety-critical elements or the
element’s contributions to failure
conditions

[17][18] [47][48]

12
Model and reasoning of safety
strategies

[8][10][12]

13 Ability to model resources [10][12]

14
Modeling of accident impact level [8][10][12]

[47][48]

15
Support of textual description of
safety requirements

[8] [47][48]

Safety-critical elements do not have equal magnitude or

criticality to personnel safety and mission success. The
consequences of hazardous events may be minimal or catastrophic
depending on the system [17]. The criticality is established by
analyzing the element in relation to the system and defining the
level of control it exercises over functionality and contribution to
accidents and hazards [18]. The determination of an element
critically is part of the software system safety analysis process to
define the amount of analysis and testing required to assess the
software contributions to the system-level risk [18]. Therefore, a
RE language should have the ability to specify the criticality level
of safety-critical elements (f11).

159

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

Hazardous situations can be reduced with distinct kinds of
safety mitigation strategies [8], for example, prevention, detection
reaction, and adaptation, with different costs and benefits.
Accordingly, modeling and reasoning of safety strategies (f12) is
essential for the specification of a SCS and RE language should
support it [10].

The development of safety-critical systems requires the use
of many assets to operate properly. Therefore, since it involves the
specification of many information, the ability to model resources
(f13) is a feature to be provided by RE languages [10].

A hazard is a state of the system that could ultimately lead to
an accident that may result in a loss in human life [10]. Hence, the
visualization of the impact level of an accident (f14), and the
hazards associated as well as safety requirements should be
supported by RE languages.

The support of textual description (f15) is essential for
stakeholders that do not understand the graphical representation
such as end user. Accordingly, a RE language may support it
natively or be complemented with external artifacts. Scenarios or
the Use Case Description are a popular choice to represent

requirements and are adopted mainly in domain-independent
approaches [8].

6. COMPARISON OF GORE LANGUAGES
An elaborated requirements engineering approach is crucial in the
development of SCS in order to meet time, cost, and quality goals
in SCS development [27].

Accordingly, safety concerns should be considered early in the
development process, especially in the RE phase [1][8].
Considering this need, we evaluated the ability of four GORE
languages to support a set of fundamental features described in
Section 5.

In this paper, we characterized some GORE languages with
respect to their capabilities against the proposed set of features for
early specification requirements specification. We evaluated the
languages using a three-grade scale score (Yes/Partially/No) as
presented in Table 1. In this table, Y (yes) indicates that a given
feature is supported, P means that a feature is Partially supported;
N indicates that a feature is currently Not supported. The results
are presented in Table 4.

Table 4: Comparison of GORE modeling languages.
 Feature i* KAOS GRL NFR Framework

1 Modeling of accidents N P (Obstacle) N N

2 Modeling of hazards N P (Obstacle) N N

3 Modeling of causes of hazards N P (Sub-obstacles) N N

4 Modeling of environmental conditions N Y (Trigger conditions) N N

5 Modeling of functional safety requirements Y (Tasks) Y (Operationalizations)

6 Representation of constraints Y (Contribution Links)

7 Representation of obstacles N Y (Obstacle) N N

8 Representation of pre and post conditions N Y (pair Precondition,
PostCondition)

N N

9 Allow to represent the relationships among hazards, their
causes, the environmental conditions and the functional
safety requirements in a graphical form

N N N N

10 Ability to specify how a particular event affects system
safety

Y (Sofgoals and Contribution Links)

11 Ability to specify the criticality level of safety-critical
elements or the element’s contributions to failure conditions

N N N Y (Priority “!” symbol
in softgoals)

12 Model and reasoning of safety strategies Y (Sofgoals and Contribution Links) Y (Operationalizations
and Contribution Links)

13 Ability to model resources Y (Resource Element) Y (operationalizations)

14 Accident impact level N N N N

15 Support of textual description of safety requirements N N N N

In summary, all surveyed approaches lack explicit modeling

constructs to express how hazards can occur in the system, the
accidents, their impact and how they can mitigated.

KAOS is a multiparadigm framework that allows to combine
different levels of expression and reasoning: semi-formal for
modeling and structuring goals, qualitative for selection among

the alternatives, and formal, when needed, for more accurate
reasoning [13].

Thus, the KAOS language combines semantic nets for
conceptual modeling of goals, assumptions, agents, objects, and
operations in the system, and linear-time temporal logic for the
specification of goals and objects, as well as state-base

160

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

specifications for operations [13]. Since this language is
composed by different models and have more concepts than other
languages, KAOS better supports some features in relation to the
other languages such as Modeling of accidents (f1), Modeling of
hazards (f2), Modeling of causes of hazards (f3), Modeling of
environmental conditions (f4), and Representation of pre and post
conditions (f8).

KAOS was the only GORE language present in the SLR we
conducted about the integration between RE and safety analysis
[8]. The work found used the KAOS language to propose new
tactics for elaborating system safety goals across a composite
system.

i* (istar) is the second language in the ranking. The i*
modeling language is basis for Tropos [22], a requirements-driven
agent-oriented development methodology. i* is capable of
representing the dependencies and relationships among actors in
socio technical systems [23]. The features not supported by
KAOS are either not supported by i*.

GRL has its roots in i* and the NFR Framework [25]. This
language takes into account that not all high-level goals and
non-functional requirements are equally important to the
stakeholder. Therefore, an importance attribute (quantitative or
qualitative) may be specified for intentional elements inside
actors, which is used when evaluating strategies for the goal
model [26]. i* and GRL have similar coverage.

Although NFR concentrates on systematically model and
refine non-functional requirements and to expose positive and
negative influences of different alternatives on these requirements,
this language is the least appropriate language to specify the
requirements of safety-critical systems. It does not have constructs
to model accidents, hazards, their causes, environmental
conditions, obstacles, and pre and post conditions.

NFR has the purpose of analyzing non-functional requirements
and the elements that contribute or not to their satisfaction.
Therefore, it does not have the ability to model resources (f13)
among other features demonstrated in Table 4 and previously
discussed.

7. THREATS TO VALIDITY
The threats to validity of Wohlin classification [28] considers

four levels: construct, conclusion (reliability in qualitative
research), internal, and external validity. We will discuss only the
threats to validity we consider relevant in this work.

Construct validity threats were minimized with the properly
definition of the safety-related concepts, presented in Section 4,
used in this work. Hence, the safety constructs can be interpreted
in the same way by the authors and readers.

We have evaluated four GORE languages and we were not
able to find extensions for the languages related with safety.
Considering that the GORE languages do not support safety, we
are working on such extension.

Moreover, in this paper, we did not consider extensions to
security or other domains that are too specific and do not cover the
concepts and needs of SCS.

The extensions to security are not proposed to solve the safety
problem, although they have some similar constructs, they are
very different areas. However, security extensions may have the
ability to (partially) support an early safety requirements
specification, hence, we plan to increase the completeness of
presented comparison in future studies.

One may argue that the assessment of the languages against
the proposed set of criteria may be subjective or error prone. We
have tried to mitigate this threat by trying to define and using
clear features (see Section 5), and by having at least two people
evaluating them. When we got disagreements, we checked by
reading again the papers adopted for each language (Table 2). As
in the work of Horkoff et al. [21], we have opted not to collect a
formal method of agreement such as Kappa measure.

It is important to note that the authors have experience in goal
modeling. The first author has experience more than five years in
RE, the second have more than 20 years of experience in GORE
with many publications with i*, the third author have more than
10 years of experience in RE, embedded systems and safety
engineering, the fourth more than 15 years in RE, software
engineering and safety engineering years, and the fifth more than
10 years in RE and GORE. This helps to increase our confidence
in the results obtained.

8. RELATED WORK
Research regarding the improvement of the specification of

Safety-Critical Systems (SCS), Self-Adaptive Systems (SAS) [40]
and Systems-of-Systems (SoS) [41] with safety concerns has been
an important concern in the literature.

In the systematic literature review [8] previously conducted,
we extracted various pieces of safety-related information (data,
concepts, knowledge, facts) used by the approaches that integrate
requirements and safety engineering to document the safety
concerns during the specification of SCS.

Another research line is the proposal of shared models with
safety characteristics [5][42] or system engineering best practices
[43]. In this context, UML [31][10] and SysML [7][38] profiles
were proposed as well as safety analysis tools have been
developed [44]. However, many of these studies do not aim to
follow safety standards (or do it partially) and it is unclear
whether these approaches can contest with the complexity of the
large-scale development of software-intensive systems, taking
inter-departmental and multi-disciplinary aspects into account
[45].

Catalogs in the NFR framework specify the solutions to
achieve a NFR like operationalizations. Although they are a good
idea to represent solutions for common problems in safety, and
may be proposed in future works, they do not provide explicit
representation of the information that should be specified during
the RE process. Moreover, there are no catalogues to safety, and
the strategies to mitigate hazards and accidents are very much
domain-dependent. Hence, it is out of scope to propose it.

161

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

9. CONCLUSIONS
The development of SCS comprehends the elicitation and
specification of many information about hazards, their causes,
environmental conditions, safety (functional) requirements and
the relationships among them. Therefore, there is a tendency of
considering these safety concerns early in the development
process, especially in RE stage. However, currently, there is no
consensus on the features an RE language must provide to support
the description of such systems. This paper is a first step towards
this direction.

Our study was motivated by three research questions, the first
one regarding the conceptual foundation for safety requirements
specification in RE process, the second one about the main
features that requirements languages should support in terms of
specification of safety-critical systems; and the third one about the
similarities and differences among GORE languages support for
the specification of safety-critical systems.

We proposed a set of 15 features that requirements languages
should provide to an early safety requirements specification. This
set is a novel contribution that can be used as criteria to guide the
selection of requirements languages for specifying SCS.
Moreover, we characterized the support of some goal-oriented
languages in this specification. We evaluated four GORE
languages (i*, KAOS, GRL, NFR-Framework) against this set of
features.

As a result from our evaluation, we observe that none of these
languages fully support the specification of SCS considering the
set of proposed features. Nevertheless, KAOS and i* appears to be
promising languages in which extensions could be proposed to
support the features.

An extension of a GORE language can be used to represent the
results of model-based safety analysis techniques. We believe that
an extension is necessary and it is under development.

In the next section, we suggest further research on
specification of safety-critical systems.

9.1. Further research
The results of our comparative analysis pointed out that the
evaluated languages do not have constructs to modeling safety-
related aspects. Therefore, this study has generated some research
directions:

 How is the support of non-GORE languages such as UML to
describe SCS requirements?

 In what extent do extensions to security cover the concepts
and needs of SCS?

 How can we evaluate the completeness of the proposed set of
features?

 How can we adapt the evaluated languages to support the
features?

ACKNOWLEDGMENTS
This work was partially supported by FACEPE (Fundação de
Amparo à Ciência e Tecnologia do Estado de Pernambuco), CNPq
(Conselho Nacional de Desenvolvimento Científico e

Tecnológico) and by a research grant for the ORION project
(reference number 20140218) from The Knowledge Foundation in
Sweden.

REFERENCES
[1] Luiz Eduardo G. Martins; Tony Gorschek. Requirements

engineering for safety-critical systems: A systematic literature
review. Information and Software Technology, v. 75, pp. 71-89,
2016. DOI: http://dx.doi.org/10.1016/j.infsof.2016.04.002

[2] Nancy Leveson. System safety and computers. Addison Wesley,
1995.

[3] Luiz Eduardo G. Martins; Tiago de Oliveira. A case study using a
protocol to derive safety functional requirements from fault tree
analysis. In: Requirements Engineering Conference (RE), 2014 IEEE
22nd International. IEEE, 2014. pp. 412-419. DOI:
http://dx.doi.org/10.1109/RE.2014.6912292

[4] Luiz Eduardo G. Martins, Hanniere de Faria, Lucas Vecchete,
Tatiana Cunha, Tiago de Oliveira, Dulce E. Casarini, and Juliana
Almada Colucci. Development of a Low-Cost Insulin Infusion
Pump: Lessons Learned from an Industry Case. In: Computer-Based
Medical Systems (CBMS), 2015 IEEE 28th International
Symposium on. IEEE, 2015. pp. 338-343. DOI: http://dx.doi.org/
10.1109/CBMS.2015.14

[5] Nancy Leveson. An approach to designing safe embedded software.
In: International Workshop on Embedded Software. Springer Berlin
Heidelberg, 2002. pp. 15-29. DOI: 10.1007/3-540-45828-X_2

[6] Ben Swarup Medikonda;,Seetha Ramaiah Panchumarthy. A
framework for software safety in safety-critical systems. ACM
SIGSOFT Software Engineering Notes, v. 34, n. 2, pp. 1-9, 2009.
DOI: 10.1145/1507195.1507207

[7] Sven Scholz; Kleanthis Thramboulidis. Integration of model-based
engineering with system safety analysis. International Journal of
Industrial and Systems Engineering, v. 15, n. 2, pp. 193-215, 2013.
DOI: 10.1504/IJISE.2013.056096

[8] Jéssyka Vilela, Jaelson Castro, Luiz Eduardo G. Martins, and Tony
Gorschek. Integration between requirements engineering and safety
analysis: A systematic literature review. Journal of Systems and
Software, v. 125, pp. 68-92, 2017. DOI:
https://doi.org/10.1016/j.jss.2016.11.031

[9] Kleanthis Thramboulidis; Sven Scholz. Integrating the 3+ 1 SysML
view model with safety engineering. In: Emerging Technologies and
Factory Automation (ETFA), 2010 IEEE Conference on. IEEE,
2010. pp. 1-8. DOI: 10.1109/ETFA.2010.5641353

[10] Gregory Zoughbi; Lionel Briand; Yvan Labiche. Modeling safety
and airworthiness (RTCA DO-178B) information: conceptual model
and UML profile. Software & Systems Modeling, v. 10, n. 3, pp.
337-367, 2011. DOI: 10.1007/s10270-010-0164-x

[11] ISO, International Organization for Standardization. 61508
Functional safety of electrical/electronic/programmable electronic
safety-related systems, International Electrotechnical Commission.

[12] RTCA: Software Considerations in Airbone Systems and Equipment
Certification. Radio Technical Commission for Aeronautics (RTCA),
European Organization for Civil Aviation Electronics (EUROCAE),
Standard Document no. DO-178B/ED-12B, December 1992

[13] Alexei Lapouchnian. Goal-oriented requirements engineering: An
overview of the current research. University of Toronto, pp. 32,
2005.

[14] Annie Anton. Goal-based requirements analysis. In: Requirements
Engineering, 1996., Proceedings of the Second International
Conference on. IEEE, 1996. p. 136-144. DOI:
10.1109/ICRE.1996.491438

[15] Evangelia Kavakli; Pericles Loucopoulos. Goal driven requirements
engineering: evaluation of current methods. In: Proceedings of the
8th CAiSE/IFIP8. 2003. pp. 16-17.

[16] Jasen Markovski; J. M. Van de Mortel-Fronczak. Modeling for
safety in a synthesis-centric systems engineering framework. In:
International Conference on Computer Safety, Reliability, and

162

SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al.

Security. Springer Berlin Heidelberg, 2012. pp. 36-49. DOI:
10.1007/978-3-642-33675-1_4

[17] Military Standard. System safety program requirements. MIL-STD-
882C, US Department of Defense, USA, 1993.

[18] U. S. Dod MIL-STD-882E, Department of Defense Standard
Practice System Safety. US Department of Defense, 2012.

[19] Jim Whitehead. Collaboration in Software Engineering: A Roadmap.
In Future of Software Engineering (FOSE '07). IEEE Computer
Society, Washington, DC, USA, 2207, pp. 214-225.
DOI=http://dx.doi.org/10.1109/FOSE.2007.4

[20] Luiz Eduardo G. Martins; Tony Gorschek. Requirements
Engineering for Safety-Critical Systems: Overview and Challenges.
Accepted for publication. In: IEEE Software, 2017. For a copy:
legmartins@unifesp.br.

[21] Jennifer Horkoff, Tong Li, Feng-Lin Li, Mattia Salnitri, Evellin
Cardoso, Paolo Giorgini, John Mylopoulos, and Joao Pimentel.
Taking goal models downstream: a systematic roadmap. In: Eighth
International Conference on Research Challenges in Information
Science (RCIS), 2014. pp. 1-12. DOI: 10.1109/RCIS.2014.6861036

[22] Jaelson Castro; Manuel Kolp; John Mylopoulos. A requirements-
driven development methodology. In: International Conference on
Advanced Information Systems Engineering. Springer Berlin
Heidelberg, 2001. pp. 108-123. DOI: 10.1007/3-540-45341-5_8

[23] S. K Eric. Social modeling for requirements engineering. Mit Press,
2011.

[24] Anne Dardenne; Axel Van Lamsweerde; Stephen Fickas. Goal-
directed requirements acquisition. Science of computer
programming, v. 20, n. 1-2, pp. 3-50, 1993.

[25] John Mylopoulos; Lawrence Chung; Brian Nixon. Representing and
using nonfunctional requirements: A process-oriented approach.
IEEE Transactions on software engineering, v. 18, n. 6, pp. 483-497,
1992.

[26] Daniel Amyot; Gunter Mussbacher. Development of
Telecommunications Standards and Services with the User
Requirements Notation. In: Workshop on ITU System Design
Languages, 2008.

[27] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul
Jones. Certifiably safe software-dependent systems: challenges and
directions. In: Proceedings of the on Future of Software Engineering.
ACM, 2014. pp. 182-200. DOI: 10.1145/2593882.2593895

[28] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software
engineering. Springer Science & Business Media, 2012.

[29] Nancy Leveson. System safety and computers. Addison Wesley,
1995.

[30] Alan Simpson; Joanne Stoker. Will it be Safe?—An Approach to
Engineering Safety Requirements. In: Components of System Safety.
Springer London, 2002. pp. 140-164. DOI: 10.1007/978-1-4471-
0173-4_9

[31] Javier Fernández Briones, Miguel Ángel De Miguel, Juan Pedro
Silva, and Alejandro Alonso. Application of safety analyses in model
driven development. Software Technologies for Embedded and
Ubiquitous Systems, p. 93-104, 2007. DOI: 10.1007/978-3-540-
75664-4_10

[32] Samuel Fricker; Tony Gorschek; Martin Glinz. Goal-oriented
requirements communication in new product development. In:
Second International Workshop on Software Product Management,
IWSPM'08, 2008. pp. 27-34. DOI: 10.1109/IWSPM.2008.2

[33] Ernst SIKORA; Bastian TENBERGEN; Klaus POHL. Industry
needs and research directions in requirements engineering for
embedded systems. In: Requirements Engineering, v. 17, n. 1, pp.
57-78, 2012. DOI: 10.1007/s00766-011-0144-x

[34] Martin GLINZ; Samuel A. Fricker. On shared understanding in
software engineering: an essay. Computer Science-Research and
Development, v. 30, n. 3-4, pp. 363-376, 2015. DOI:
10.1007/s00450-014-0256-x

[35] Barbara Paech,; Jorg Dorr; Mathias Koehler. Improving
requirements engineering communication in multiproject

environments. IEEE software, v. 22, n. 1, pp. 40-47, 2005. DOI:
10.1109/MS.2005.10

[36] Sultan Aljahdali; Jameela Bano; Nisar Hundewale. Goal Oriented
Requirements Engineering-A Review. In: 24th International
Conference on Computer Applications in Industry and Engineering,
Honolulu, Hawaii, USA, CAINE. 2011. pp. 16-18.

[37] Sadaf Mustafiz; Jörg Kienzle. DREP: A requirements engineering
process for dependable reactive systems. In: Methods, Models and
Tools for Fault Tolerance. Springer Berlin Heidelberg, 2009. p. 220-
250. DOI: 10.1007/978-3-642-00867-2_11

[38] Geoffrey Biggs; Takeshi Sakamoto; Tetsuo Kotoku. A profile and
tool for modelling safety information with design information in
SysML. Software & Systems Modeling, v. 15, n. 1, p. 147-178,
2016. DOI: 10.1007/s10270-014-0400-x

[39] Samuel Fricker, Tony Gorschek, Carl Byman, Armin Schmidle.
Handshaking with implementation proposals: Negotiating
requirements understanding. IEEE software, v. 27, n. 2, p. 72, 2010.

[40] Monique Soares; Jéssyka Vilela; Gabriela Guedes; Carla Silva;
Jaelson Castro. Core Ontology to Aid the Goal Oriented
Specification for Self-Adaptive Systems. In: New Advances in
Information Systems and Technologies. Springer International
Publishing, 2016. pp. 609-618. DOI: 10.1007/978-3-319-31232-
3_57

[41] Milena Guessi; Everton Cavalcante; Lucas Oliveira. Characterizing
architecture description languages for software-intensive systems-of-
systems. In: Proceedings of the third international workshop on
software engineering for systems-of-systems. IEEE Press, 2015. pp.
12-18.

[42] Rajiv Murali; Andrew Ireland; Gudmund Grov. A rigorous approach
to combining use case modelling and accident scenarios. In: NASA
Formal Methods Symposium. Springer International Publishing,
2015. pp. 263-278. DOI: 10.1007/978-3-319-17524-9_19

[43] Romaric Guillerm; Hamid Demmou; Nabil Sadou. Information
model for model driven safety requirements management of complex
systems. In: Complex Systems Design & Management. Springer
Berlin Heidelberg, 2010. pp. 99-111. DOI: 10.1007/978-3-642-
15654-0_7

[44] Vivek Ratan, Kurt Partridge, Jon Reese, and Nancy Leveson. Safety
analysis tools for requirements specifications. In: Computer
Assurance, 1996. COMPASS'96, Systems Integrity. Software Safety.
Process Security. Proceedings of the Eleventh Annual Conference
on. IEEE, 1996. pp. 149-160. DOI: 10.1109/CMPASS.1996.507883

[45] Joakim PERNSTÅL, Tony Gorschek, Robert Feldt, and Dan Florén.
Requirements communication and balancing in large-scale software-
intensive product development. Information and Software
Technology, v. 67, pp. 44-64, 2015.
https://doi.org/10.1016/j.infsof.2015.06.007

[46] Jennifer Horkoff; Eric Yu. Analyzing goal models: different
approaches and how to choose among them. In: Proceedings of the
2011 ACM Symposium on Applied Computing. ACM, 2011. pp.
675-682. DOI: 10.1145/1982185.1982334

[47] Nancy Leveson. Engineering a Safer World: Systems Thinking
Applied to Safety. Mit Press, 2011

[48] Nancy Leveson. Safeware: System Safety and Computers. ACM,
1995.

[49] Paulo Lima, Jéssyka Vilela, Enyo Gonçalves, João Pimentel, Ana
Holanda, Jaelson Castro, Fernanda Alencar, Maria Lencastre.
Scalability of iStar: a Systematic Mapping Study. In: Proceeding of
Workshop of Engenharia de Requisitos (WER), 2016.

163

	Table of Contents
	New Software Engineering challenges in the era of Digital Transformation
	Combinatorial Testing and Its Applications
	Visualizing Software
	Hearing the Voice of Developers in Mobile Software Ecosystems
	How Has the Health of Software Ecosystems Been Evaluated? A Systematic Review
	Incremental Strategy for Applying Mutation Operators Emphasizing Faults Difficult to be Detected by Automated Static Analyser
	Test Case Prioritization: A Systematic Review and Mapping of the Literature
	An Analysis of the Empirical Software Engineering over the last 10 Editions of Brazilian Software Engineering Symposium
	How Do Software Developers Identify Design Problems? A Qualitative Analysis
	Understanding Technical Debt at the Code Level from the Perspective of Software Developers
	How Does Refactoring Affects Internal Quality Attributes? A Multi-Project Study
	Investigating the Effectiveness of Peer Code Review in Distributed Software Development
	Tweaking Association Rules to Optimize Software Change Recommendations
	What Are Software Engineers Asking About Android Testing on Stack Overflow?
	Automatic Generation of Search-Based Algorithms Applied to the Feature Testing of Software Product Lines
	Comprehensibility of Heterogeneous Configuration Knowledge: An User Study
	Comparing Configuration Approaches for Dynamic Software Product Lines
	The Clash Between Requirements Volatility and Software Contracts
	Specifying Safety Requirements with GORE Languages
	Late Decomposition of Applications into Services through Model-Driven Engineering
	Improving the Structure of KDM Instances via Refactorings: An Experimental Study Using KDM-RE
	Reuse of Model-Based Tests in Mobile Apps
	Adding Human Interaction Aspects in the Writing of User Stories: A Perspective of Software Developers
	Is There a Demand for Software Transparency?
	Analysing Requirements Communication Using Use Case Specification and User Stories
	Students' Engagement in Open Source Projects : An Analysis of Google Summer of Code
	Software Knowledge Registration Practices at Software Innovation Startups - Results of an Exploratory Study
	Challenges to the Development of Smart City Systems: A System-of-Systems View
	Testing context-aware software systems: Unchain the context, set it free!
	Programming Language Adoption as an Epidemiological Phenomenon
	Modeling of Video Games Using Workflow Nets and State Graphs
	Paper Prototyping in a Model-Driven Process for Android Application Simulation Support
	Task Scheduling Optimization on Enterprise Application Integration Platforms Based on the Meta-heuristic Particle Swarm Optimization
	`2TScrum': A Board Game to Teach Scrum
	Testing Game: An Educational Game to Support Software Testing Education
	Gamification applied for Software Engineering teaching-learning process
	PBL Integration into a Software Engineering Undergraduate Degree Program Curriculum: An Analysis of the Students Perceptions
	As a teacher, I want to know what to teach in requirements engineering so that professionals can be better prepared.
	Problem-Based Learning to Align Theory and Practice in Softftware Testing Teaching
	Teaching Software Development for the Cloud: An Experience Report
	Coding Dojo as a transforming practice in collaborative learning of programming: an experience report
	Retrospective for the Last 10 years of Teaching Software Engineering in UFC’s Computer Department
	AGES - an interdisciplinary space based on projects for Software Engineering learning
	A Reference Model for Teaching Collaborative Mobile Systems
	A Systematic Review to Assist in Identifying Teaching Approaches to Guide the Application of an Interdisciplinary Software Factory in IT Undergraduation

	Author Index

