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ABSTRACT 
Context: A suitable representation of Safety-Critical Systems 
(SCS) requirements is crucial to avoid misunderstandings in 
safety requirements and issues in safety specification. However, 
current general requirements specification languages do not fully 
support the particularities of specifying SCS. Objective: In this 
paper, our goal is to identify and propose a set of important 
features that should be provided by requirements languages to 
support an early safety requirements specification. Moreover, we 
aim to compare the ability of the four most used Goal-Oriented 
Requirements Engineering (GORE) languages (i*, KAOS, GRL, 
NFR-Framework) in supporting the proposed features. Method: 
We first established a conceptual foundation and a conceptual 
model based on the literature, challenges elicited in previous 
works, and demands of safety standards at the requirements level 
that practitioners must satisfy in order to certify their systems. 
Results: We proposed a set of 15 features that requirements 
languages should provide to an early safety requirements 
specification. Regarding the comparison of GORE languages, in 
summary, all surveyed languages lacks explicit modeling 
constructs to express how hazards can occur in the system, the 
accidents, their impact and how they can mitigated. Conclusions: 
The conceptual foundation, conceptual model, and the set of 
features is a novelty. Finally, the features can be used to propose 
new requirements languages for SCS or to define extensions for 
the ones already available.1 

CCS CONCEPTS 
Software and its engineering →  Software notations and tools →  
System description languages →  System modeling languages. 
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1. INTRODUCTION 
Safety-critical systems (SCS) are those composed of a set of 
hardware, software, processes, data and people whose failure can 
result in accidents that cause environmental damage, financial 
loss, injury to people and even loss of lives [27][29]. Accordingly, 
the development of SCS must be carefully planned and specified 
aiming to avoid accidents [27][29][30][31]. 

The increased complexity of SCS has revealed issues in safety 
requirements specifications such as: (i) Misunderstandings in 
safety requirements and specification problems; (ii) They tend to 
become large, ambiguous, inconsistent, and often lack clear 
structure affecting the process of exchanging information 
[32][33]; (iii) Determining the level of detail of safety 
specifications adequate to communication to reduce the definition 
of infeasible or expensive requirements to implement [34][35]. 
Besides, problems in the specification of SCS have been identified 
as a major cause of many accidents and safety-related 
catastrophes [5][19] [27][29]. 

An elaborated requirements engineering (RE) approach is 
crucial in the development of SCS in order to meet time, cost, and 
quality goals in SCS development [27]. Accordingly, safety 
concerns should be considered early in the development process, 
especially in the RE phase [1][8]. 

However, in safety requirements specification, there are many 
relationships among safety concepts, such as hazards, their causes, 
safety requirements and environmental conditions that must be 
identified and specified. Therefore, achieving an adequate 
representation of safety-critical systems requirements is quite 
fundamental for a successful safety analysis. 
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In order to improve the safety requirements specification, it is 
necessary to define a conceptual foundation as well as the features 
that requirements languages should have to support this task. An 
early safety requirements specification will contribute to: reduce 
the errors in requirements specifications (increasing quality) 
[37][38][39]; Better information presentation and increased 
information consistency [38][39]; and It allows exhaustive and 
detailed user feedback making possible to discover and specify 
the complete system behavior [37]. 

It is of paramount importance that safety concerns be handled 
and specified early in the development process. In this context, 
GORE, whose goal is to perform a domain analysis during 
requirements elicitation and preliminary specification, emerged as 
new paradigm to improve the RE process. This paradigm is based 
on the identification of system goals and the transformation of 
those goals into requirements providing a completeness criterion 
for the requirements specification [36], i.e. the specification is 
complete if all stated goals are met by the specification.  

A variety of GORE languages have become popular to 
represent and analyze requirements. In recent systematic mapping, 
Horkoff et al. [21] observed that i*, GRL (Goal-oriented 
Requirement Language), NFR (Non-Functional Requirements) 
framework, GBRAM (Goal-Based Requirements Analysis 
Method), and KAOS (Keep All Objects Satisfied) are the most 
adopted languages in the selected papers. Considering the 
inconsistency among the terminologies adopted by safety 
standards, and the need of conducting preliminary safety analysis 
in the RE process, in this paper, we provide a set of important 
features that requirements languages should support for early 
safety requirements specification. This set is a novel contribution 
that can be used as criteria to guide the selection of requirements 
languages for specifying SCS or to propose extensions to the 
languages available. 

Considering the proposed features, we evaluated the support of 
the four most used [21] GORE languages (i*, KAOS, GRL, NFR-
Framework) for the safety-related concepts. By comparing these 
GORE languages, we observed the characteristics that make them 
more or less suitable for this task. 

This paper is organized as follows. We provide a brief 
overview of the analyzed GORE languages in Section 2. We 
present the research methodology in Section 3. The Conceptual 
foundation and conceptual model for safety requirements 
specification in RE process is described in Section 4. In Section 5, 
we describe the features that should be addressed by requirements 
specification languages for describing safety requirements. Taking 
into account these features, we compare the four GORE languages 
in Section 6. In Section 7, we discuss some thread to validity. 
Related works are discussed in Section 8. Our conclusions as well 
as further research are presented in Section 9. 
 

2. BACKGROUND 
There is a variety of goal modeling frameworks, techniques, or 
methodologies for example i*, KAOS, GRL, NFR, GBRAM, 
Tropos, and AGORA. GORE languages are based on the concepts 
of goals, requirements, goal decomposition (division of goals into 

subgoals), agents (entities or processes that seek to achieve goals), 
tasks (represent operationalizations of goals or softgoals) [26]. 

The most commonly used notation for representing goal 
models is that of a goal decomposition tree (or graph) much in the 
spirit of AND/OR trees [15]. For comprehensive reviews of the 
major efforts undertaken along this line of research, the concepts, 
terminology, significance and techniques of GORE please see 
[13][21][36].  

KAOS [24] supports different levels of expression and 
reasoning: semi-formal for modeling and structuring goals, 
qualitative for selection among the alternatives, and formal, when 
needed, for more accurate reasoning [13]. This formal framework 
involves AND and OR decompositions between goals describing 
desired states over entities, achieved by actions assigned to agents 
(Figure 1). 

 
Figure 1. KAOS syntax. 

 
Thus, the KAOS language combines semantic nets for 

conceptual modeling of goals, assumptions, agents, objects, and 
operations in the system, and linear-time temporal logic for the 
specification of goals and objects, as well as state-base 
specifications for operations [13]. 

The i* (distributed intentionality) framework [46] provides a 
description of work organization in terms of dependency 
relationships among actors [49]. The syntax of i* is presented in 
Figure 2. In this language, the requirements are represented by the 
concepts of softgoals, AND/OR decompositions, contribution 
links, (hard) goals, resources, and dependencies between actors 
(agents) [46]. 

 
Figure 2. istar syntax adapted from [49]. 
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Two models are proposed by i* framework: Strategic 
Dependency (SD) and Strategic Rationale (SR). The SD model 
captures the intentionality of the processes in the organization 
[13] supporting the representation of dependency relationships 
(goal, task, softgoal or resource) among actors. The SR model, on 
the other hand, allows exploring the rationale behind the 
dependencies in the system.  

The Goal-Oriented Requirement Language (GRL) relies on a 
reduced set of i* [26]. GRL supports modelling and reasoning 
about requirements, especially non-functional requirements and 
quality attributes [26]. The syntax of GRL, presented in Figure 3, 
has three main categories of concepts: actors, intentional 
elements, and links [26]. 
 

 
Figure 3. GRL Syntax [26]. 

 
According to [26], the main benefits of this language include 

the integration with scenarios, the support for qualitative and 
quantitative attributes, and a clear separation of model elements 
from their graphical representation, enabling a scalable and 
consistent representation of multiple views/diagrams of the same 
goal model. 

The NFR framework [25] uses the concepts of softgoals 
(Figure 4) to represent non-functional requirements allowing to 
refine them through AND/OR decompositions, as well as 
contribution links, to represent the influences (negative and 
positive) to and from such goals [15]. 
 

 
Figure 4. NFR Syntax adapted from [25]. 

 

The main modeling tool that the framework provides is the 
softgoal interdependency graph (SIG) [25].  The  graphs  can  
graphically  represent  softgoals,  softgoal  refinements  
(AND/OR), softgoal  contributions  (positive/negative),  softgoal  
operationalizations  and  claims.  
 

3. RESEARCH METHODOLOGY 
The methodology we used to conduct this work consisted in the 
following steps: 

1. Definition of research questions; 
2. Establishment of a safety conceptual foundation; 
3. Development of a conceptual model for safety 

requirements specification; 
4. Features selection; 
5. Comparison of GORE languages. 

 
This research was guided by the following research questions: 
RQ1: What is the conceptual foundation for safety requirements 
specification in RE process? 
 
RQ2: What are the main features that requirements languages 
should support in terms of safety requirements specification? 
 
RQ3: What are the similarities and differences among GORE 
languages support for the features of RQ2? 

In order to define a conceptual foundation regarding safety-
related concepts, first we conducted ad-hoc safety literature 
reviews as well as a systematic literature review (SLR) about RE 
and safety analysis integration [8]. As a result of this SLR, we 
proposed two taxonomies to represent the safety-related 
information and a detailed set of information regarding the 
specification of hazards.  

We continued our research by conducting the analysis of 
safety standards from different domains as another source of 
information. We decided to analyze the safety standards since 
most of SCS should be certified and, therefore, they should be 
developed following their recommendations. Moreover, in 
interviews conducted by Martins and Gorsckek [20], the 
practitioners highlighted the need and importance of following an 
adequate safety standard. 

After the comprehensive investigation of the domain, and 
from the elicitation of the safety conceptual constructs and the 
taxonomies we proposed previously, we developed a conceptual 
model for early safety requirements specification presented in 
Section 4. 

The set of features that RE languages should support for 
early safety requirements specification was defined based on the 
analysis of the sources of information presented in Table 1. We 
adopted different kinds of source (papers, standards, books, 
journals). 

We chose the languages to be ranked in this paper considering 
the mapping of Horkoff et al. [21]. We selected the top five (i*, 
KAOS, Tropos, NFR, and GRL). The languages are used in high 
number of case studies and, hence, they have more citation 
counts. 
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However, Tropos adopts the i* organizational modeling 
framework during early requirements analysis [22]. Hence, 
considering that Tropos and i* would have the same scores, in the 
scope of this paper, we opted to not evaluate this language. 
Therefore, our comparative analysis relies on four GORE 
languages. 

 
Table 1: List of sources of information. 

# Source Type 

1 61508 Generic standard 

2 ISO 26262-6 Automotive  standard 

3 ISO/IEC 25010 
Generic standard 

4 ISO/IEC 9126 

5 ISO 15998-1 Machinery standard 
 

 
ISO 15998-2 

6 ISO 20474-1 Machinery standard 

7 ECSS-E-HB-40A 
Space standard 

 
ECSS-E-ST-40C 

8 ISO-13849-1 
Machinery standard 

 
ISO-13849-2 

9 MIL-STD-882C Defense standard 
 
 

 
MIL-STD-882D 

 
MIL-STD-882E 

10 ISO/TR-14639-1 
eHealth standard 

 
ISO/TR-14639-2 

11 Vilela et al. SLR 

12 Martins and Gorschek SLR 

13 Zoughbi et al. Journal Paper 

14 Markovski et al. Conference Paper 

 
To conclude whether a language supports a feature, we relied 

on existing case studies as well as the description of the languages 
in the investigated papers and tools (see Table 2) and we did not 
considered extensions for these languages. To reduce possible 
subjectivity in the evaluation results, we had at least two people 
evaluating them with disagreements checked by reading again the 
papers adopted for each language. Disagreements were discussed 
among authors.  

 
Table 2: Papers adopted to evaluate the languages. 

Language Paper adopted        Tool 

i*                              [23] OpenOme 

KAOS                    [24] RE-Tool 

NFR                     [25] OME 

GRL                     [26]                       OME 

4. CONCEPTUAL FOUNDATION FOR 
SPECIFICATION OF SAFETY 
REQUIREMENTS IN RE PROCESS 

 
Safety-critical systems can be defined as software or system 

operations that, if not fulfilled, fulfilled out of sequence, or 
incorrectly could have as consequence inappropriate control 
functions, or absence of control functions required for adequate 
system operation, that could directly or indirectly induce or enable 
a hazardous condition [1][2]. 

Terms in system safety are not used consistently [2][8]. 
According to Leveson [2], agreeing on terminology is always a 
difficult process, but it is important for communication and 
progress in finding solutions to problems.  

In order to make clear the adopted definitions of some safety-
related concepts used in this paper, and to ensure consistency, we 
describe them using as example the insulin infusion pump system 
(IIPS) [3][4]. The system goal is to provide safe and effective 
treatment for people suffering from Diabetes Mellitus (DM1) and 
to enhance the long-term health of the patients. 

Figure 5 presents a conceptual model for safety requirements 
specification. The figure presents an abstract meta-model, which 
defines and relates the conceptual constructs presented in 
conceptual foundation. These concepts were elicited considering 
the most common concepts, reported in the information sources 
investigated, that should be specified early in the development 
process.  

In the following, we define some of these concepts adopted 
in this work. 

Accident: an undesired and unplanned (but not necessarily 
unexpected) event that results in (at least) a specified level of loss 
[2] (including loss of human life or injury, property damage, 
environmental pollution, and so on) [5][6]. In the IIPS, an 
accident can be incorrect treatment received by the patient 
(overdose, underdose); electrical shock; patient infection; and 
damage to the environment.  

Accident impact level: the accident can have five levels of 
impact [10]: Catastrophic, Hazardous/Severe-Major, Major, 
Minor or No Effect. The incorrect treatment received by the 
patient has Hazardous/Severe-Major impact level. 

Environmental condition: the state of the environment [2]. 
The set of factors including physical, cultural, demographic, 
economic, political, regulatory, or technological elements 
surrounding the system that could affect its safety [5]. For 
example, in the IIPS, an environmental condition can be 
Obstruction in the delivery path; the air pressure inside the pump 
is much smaller/larger than the air pressure environment; the 
pump is positioned much higher than the infusion place, causing 
no intentional flow. 

Hazard: system state [6] or set of conditions that, together 
with a particular set of worst-case environmental conditions, will 
lead to an accident (loss) [2] [5]. One hazard of the IIPS can be an 
insulin overdose; power failure due to spent battery; bad contact 
of sensors and actuators; parts of the machine break inside the 
patient's body. 
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Figure 5. Conceptual model for safety requirements specification. 
 

Cause of hazard: reason that produces hazard as effect [7]. 
They occur due to environmental hazard, procedural hazard, 
interface hazard, human factor or system cause [6][7]. A free flow 
is one cause of the overdose hazard as well as the presence of air 
in the catheter and insulin leakage. 

Safety Requirement: is typically of the form of a quality 
criterion (a system-specific statement about the existence of a sub-
factor of safety) combined with a minimum or maximum required 
threshold along some quality measure. It directly specifies how 
safe the system must be [6]. In the IIPS, the difference between 
the programmed infusion and the delivered infusion shall not be 
greater than 0.5%. 

Functional Safety Requirement: The requirement to 
prevent or mitigate the effects of failures identified in safety 
analysis [1]. To mitigate the overdose hazard caused by free flow, 
the system can monitor the insulin reservoir. 

Safety-critical element: can be defined as any equipment, 
structure or system whose failure could cause a hazard that can 
contribute to a major accident, or it is used in the system with the 
intention of avoid or reduce the accident impact level [11]. 

Hazardous event: is an event can lead to the occurrence of a 
hazard [11] such as the pump controller cannot monitor the status 
of the components. 

Risk: is associated with Hazard and it is a combination of 
consequence (severity hazard) and likelihood of the hazard (risk = 

probability hazard x severity hazard) [9]. In the case of the insulin 
pump, an intolerable risk is an overdose of insulin. 

Criticality level of safety-critical element: indicates the 
degree of criticality of a safety-critical element on some pre-
defined scale [10]. Examples: in RTCA DO-178B [12] safety 
standard the categories are “A”, “B”, “C”, “D”, “E”, and in IEC 
61508 [11]: “SIL 1”, “SIL 2”, “SIL 3”, “SIL 4. 

Constraint: describes how  the  software  must  be  designed  
and implemented  providing  additional information regarding 
requirements that must be met in order to a given goal to be 
achieved [13][14]. 

Obstacle: denotes the reason why a goal failed [14] consisting 
in behaviors or other goals that prevent or block the achievement 
of a given goal [13]. 

Pre and post condition: describes actions that must be 
executed before or after some scenario [14]. 

Safety strategy: are tactics or decisions defined to minimize 
the consequence or probability of the hazard [8]. 

Resource: assets, such as money, materials, staff, documents, 
etc., provided or used by a person or organization in order to 
achieve some goal [12][13]. 

In the next section, we present and describe the features of 
SCS to be supported by requirements languages. 
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5. FEATURES OF SAFETY-CRITICAL 
SYSTEMS 

Important challenges must be addressed by requirements 
languages to enable an adequate representation of SCS 
[1][8][5][27] such as the uniformization of the information to be 
elicited and specified.   

In this paper, we outline a set of safety concepts and features 
that should be supported by RE languages allowing requirements 
engineers to represent the results of a preliminary safety analysis 
(PSA). In a complete safety analysis, a richer set of attributes and 
relationships are specified. In this paper, we are concerned with 
the core concepts that are available in the RE process. 
Accordingly, the full list addressed of concepts used in safety 
analysis, such as design options and components, is out of the 
scope of this paper. 

The high level specification of such safety concepts will be 
used by safety engineers as an input of a rigorous and detailed 
safety analysis in the preparation of reports for system 
certification.  

We based our identification of features, that should be 
supported by requirements languages, in the results of the SLR we 
conducted [8] and in the requirements extracted from safety 
standards common to general industry sectors (such as ISO/IEC 
61508, ISO/IEC 25010, ISO 9126, ISO 15998) whereas others are 
domain specific such as ISO 26262 for the automotive domain.  

We depict the set of features to be supported by requirements 
languages for safety requirements specification in Table 3.  

Requirements languages should have the ability of modeling 
the safety-related concepts (accidents – f1, hazards – f2, their 
causes – f3, environmental conditions – f4, functional safety 
requirements –f5). These concepts, described in Section 4, are the 
core information addressed in a PSA that should be specified early 
in the development process by requirements engineers [1][8][5].  

Another important set of concepts for the specification of 
safety requirements are constraints (f6), obstacles (f7) and 
pre/post conditions (f8). The specification requirements languages 
must address these concepts since they may affect the functioning 
of some system element making it safety-critical. Accordingly, 
constraints, obstacles and pre/post conditions may lead to the 
occurrence of a hazardous event if they are not properly satisfied 
by the system. 

The representation of safety-related concepts in a graphical 
way (f9) contributes to press the stakeholders to clarify system's 
aspects early in the design process [8][16]. Therefore, the models 
provide a shared meaning that engineers can use to collaborate, as 
when stakeholders consult a requirements specification to 
determine how to design a portion of the system or to perform the 
safety analysis [8]. Accordingly, the complex relationships of 
safety information are somehow mitigated with graphical 
representations being more consistent and less ambiguous than 
informal specification documents [19]. 

Accidents are a combination of a hazardous situation and a 
set of environmental conditions (context). In the analysis of the 
DO-178B safety standard [12], Zoughbi et al. [10] produced 54 
information requirements that UML-based solution should 

support. Among them, it is the need of specify how a particular 
event affects system safety (f10). Based on the requirements of 
DO-178B standard and the conclusions of Zoughbi et al., we 
argue that a RE language should support this feature. 

 
Table 3: List of features for safety requirements specification 

to be supported by RE languages. 

# Feature Source/Inspiration 

1 Modeling of accident [8][13][47][48]  

2 Modeling of hazard [8][13] [47][48] 

3 Modeling of cause of hazard [8][13] [47][48] 

4 
Modeling of environmental 
condition 

[8][13] [47][48] 

5 
Modeling of functional safety 
requirement 

[8][13] [47][48] 

6 
Representation of constraint [13][14][15] 

[47][48] 

7 
Representation of obstacle [13][14][15] 

[47][48] 

8 
Representation of pre and post 
condition 

[13][14][15] 
[47][48] 

9 

Allow to represent the relationships 
among hazards, their causes, the 
environmental conditions and the 
functional safety requirements in a 
graphical form 

[8][16] 

10 
Ability to specify how a particular 
event affects system safety 

[10][12] [47][48] 

11 

Ability to specify the criticality level 
of safety-critical elements or the 
element’s contributions to failure 
conditions 

[17][18] [47][48] 

12 
Model and reasoning of safety 
strategies 

[8][10][12] 

13 Ability to model resources [10][12] 

14 
Modeling of accident impact level [8][10][12] 

[47][48] 

15 
Support of textual description of 
safety requirements 

[8] [47][48] 

 
Safety-critical elements do not have equal magnitude or 

criticality to personnel safety and mission success. The 
consequences of hazardous events may be minimal or catastrophic 
depending on the system [17].  The criticality is established by 
analyzing the element in relation to the system and defining the 
level of control it exercises over functionality and contribution to 
accidents and hazards [18]. The determination of an element 
critically is part of the software system safety analysis process to 
define the amount of analysis and testing required to assess the 
software contributions to the system-level risk [18]. Therefore, a 
RE language should have the ability to specify the criticality level 
of safety-critical elements (f11). 
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Hazardous situations can be reduced with distinct kinds of 
safety mitigation strategies [8], for example, prevention, detection 
reaction, and adaptation, with different costs and benefits. 
Accordingly, modeling and reasoning of safety strategies (f12) is 
essential for the specification of a SCS and RE language should 
support it [10]. 

The development of safety-critical systems requires the use 
of many assets to operate properly. Therefore, since it involves the 
specification of many information, the ability to model resources 
(f13) is a feature to be provided by RE languages [10]. 

A hazard is a state of the system that could ultimately lead to 
an accident that may result in a loss in human life [10]. Hence, the 
visualization of the impact level of an accident (f14), and the 
hazards associated as well as safety requirements should be 
supported by RE languages. 

The support of textual description (f15) is essential for 
stakeholders that do not understand the graphical representation 
such as end user. Accordingly, a RE language may support it 
natively or be complemented with external artifacts. Scenarios or 
the Use Case Description are a popular choice to represent 

requirements and are adopted mainly in domain-independent 
approaches [8]. 
 

6. COMPARISON OF GORE LANGUAGES 
An elaborated requirements engineering approach is crucial in the 
development of SCS in order to meet time, cost, and quality goals 
in SCS development [27].  

Accordingly, safety concerns should be considered early in the 
development process, especially in the RE phase [1][8]. 
Considering this need, we evaluated the ability of four GORE 
languages to support a set of fundamental features described in 
Section 5. 

In this paper, we characterized some GORE languages with 
respect to their capabilities against the proposed set of features for 
early specification requirements specification. We evaluated the 
languages using a three-grade scale score (Yes/Partially/No) as 
presented in Table 1. In this table, Y (yes) indicates that a given 
feature is supported, P means that a feature is Partially supported; 
N indicates that a feature is currently Not supported. The results 
are presented in Table 4. 
 

Table 4: Comparison of GORE modeling languages. 
 Feature i* KAOS GRL NFR Framework 

1 Modeling of accidents N P (Obstacle) N N 

2 Modeling of hazards N P (Obstacle) N N 

3 Modeling of causes of hazards N P (Sub-obstacles) N N 

4 Modeling of environmental conditions N Y (Trigger conditions) N N 

5 Modeling of functional safety requirements Y (Tasks) Y (Operationalizations) 

6 Representation of constraints Y (Contribution Links) 

7 Representation of obstacles N Y (Obstacle) N N 

8 Representation of pre and post conditions N Y (pair Precondition, 
PostCondition) 

N N 

9 Allow to represent the relationships among hazards, their 
causes, the environmental conditions and the functional 
safety requirements in a graphical form 

N N N N 

10 Ability to specify how a particular event affects system 
safety 

Y (Sofgoals and Contribution Links) 

11 Ability to specify the criticality level of safety-critical 
elements or the element’s contributions to failure conditions 

N N N Y (Priority “!” symbol 
in softgoals) 

12 Model and reasoning of safety strategies Y (Sofgoals and Contribution Links) Y (Operationalizations 
and Contribution Links) 

13 Ability to model resources Y (Resource Element) Y (operationalizations) 

14 Accident impact level N N N N 

15 Support of textual description of safety requirements N N N N 

 
In summary, all surveyed approaches lack explicit modeling 

constructs to express how hazards can occur in the system, the 
accidents, their impact and how they can mitigated. 

KAOS is a multiparadigm framework that allows to combine 
different levels of expression and reasoning: semi-formal for 
modeling and structuring goals, qualitative for selection among  

 
the alternatives, and formal, when needed, for more accurate 
reasoning [13]. 

Thus, the KAOS language combines semantic nets for 
conceptual modeling of goals, assumptions, agents, objects, and 
operations in the system, and linear-time temporal logic for the 
specification of goals and objects, as well as state-base 
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specifications for operations [13]. Since this language is 
composed by different models and have more concepts than other 
languages, KAOS better supports some features in relation to the 
other languages such as Modeling of accidents (f1), Modeling of 
hazards (f2), Modeling of causes of hazards (f3), Modeling of 
environmental conditions (f4), and Representation of pre and post 
conditions (f8). 

KAOS was the only GORE language present in the SLR we 
conducted about the integration between RE and safety analysis 
[8]. The work found used the KAOS language to propose new 
tactics for elaborating system safety goals across a composite 
system. 

i* (istar) is the second language in the ranking. The i* 
modeling language is basis for Tropos [22], a requirements-driven 
agent-oriented development methodology. i* is capable of 
representing the dependencies and relationships among actors in 
socio technical systems [23]. The features not supported by 
KAOS are either not supported by i*. 

GRL has its roots in i* and the NFR Framework [25]. This 
language takes  into  account  that  not  all  high-level  goals  and  
non-functional requirements  are  equally  important  to the 
stakeholder.  Therefore, an importance attribute (quantitative or 
qualitative) may be specified for intentional elements inside 
actors, which is used when evaluating strategies for the goal 
model [26]. i* and GRL have similar coverage. 

Although NFR concentrates on systematically model and 
refine non-functional requirements and to expose positive and 
negative influences of different alternatives on these requirements, 
this language is the least appropriate language to specify the 
requirements of safety-critical systems. It does not have constructs 
to model accidents, hazards, their causes, environmental 
conditions, obstacles, and pre and post conditions. 

NFR has the purpose of analyzing non-functional requirements 
and the elements that contribute or not to their satisfaction. 
Therefore, it does not have the ability to model resources (f13) 
among other features demonstrated in Table 4 and previously 
discussed. 
 

7. THREATS TO VALIDITY 
The threats to validity of Wohlin classification [28] considers 

four levels: construct, conclusion (reliability in qualitative 
research), internal, and external validity. We will discuss only the 
threats to validity we consider relevant in this work.  

Construct validity threats were minimized with the properly 
definition of the safety-related concepts, presented in Section 4, 
used in this work. Hence, the safety constructs can be interpreted 
in the same way by the authors and readers.  

We have evaluated four GORE languages and we were not 
able to find extensions for the languages related with safety. 
Considering that the GORE languages do not support safety, we 
are working on such extension. 

Moreover, in this paper, we did not consider extensions to 
security or other domains that are too specific and do not cover the 
concepts and needs of SCS. 

The extensions to security are not proposed to solve the safety 
problem, although they have some similar constructs, they are 
very different areas. However, security extensions may have the 
ability to (partially) support an early safety requirements 
specification, hence, we plan to increase the completeness of 
presented comparison in future studies. 

One may argue that the assessment of the languages against 
the proposed set of criteria may be subjective or error prone. We 
have tried to mitigate this threat by trying to define and using 
clear features (see Section 5), and by having at least two people 
evaluating them. When we got disagreements, we checked by 
reading again the papers adopted for each language (Table 2). As 
in the work of Horkoff et al. [21], we have opted not to collect a 
formal method of agreement such as Kappa measure.  

It is important to note that the authors have experience in goal 
modeling. The first author has experience more than five years in 
RE, the second have more than 20 years of experience in GORE 
with many publications with i*, the third author have more than 
10 years of experience in RE, embedded systems and safety 
engineering, the fourth more than 15 years in RE, software 
engineering and safety engineering years, and the fifth more than 
10 years in RE and GORE. This helps to increase our confidence 
in the results obtained. 

 

8. RELATED WORK 
Research regarding the improvement of the specification of 

Safety-Critical Systems (SCS), Self-Adaptive Systems (SAS) [40] 
and Systems-of-Systems (SoS) [41] with safety concerns has been 
an important concern in the literature. 

In the systematic literature review [8] previously conducted, 
we extracted various pieces of safety-related information (data, 
concepts, knowledge, facts) used by the approaches that integrate 
requirements and safety engineering to document the safety 
concerns during the specification of SCS. 

Another research line is the proposal of shared models with 
safety characteristics [5][42] or system engineering best practices 
[43]. In this context, UML [31][10] and SysML [7][38] profiles 
were proposed as well as safety analysis tools have been 
developed [44]. However, many of these studies do not aim to 
follow safety standards (or do it partially) and it is unclear 
whether these approaches can contest with the complexity of the 
large-scale development of software-intensive systems, taking 
inter-departmental and multi-disciplinary aspects into account 
[45]. 

Catalogs in the NFR framework specify the solutions to 
achieve a NFR like operationalizations. Although they are a good 
idea to represent solutions for common problems in safety, and 
may be proposed in future works, they do not provide explicit 
representation of the information that should be specified during 
the RE process. Moreover, there are no catalogues to safety, and 
the strategies to mitigate hazards and accidents are very much 
domain-dependent. Hence, it is out of scope to propose it. 

 

161



SBES, September 2017, Fortaleza, Ceará, Brazil J. Vilela et al. 
 

 

9. CONCLUSIONS 
The development of SCS comprehends the elicitation and 
specification of many information about hazards, their causes, 
environmental conditions, safety (functional) requirements and 
the relationships among them. Therefore, there is a tendency of 
considering these safety concerns early in the development 
process, especially in RE stage. However, currently, there is no 
consensus on the features an RE language must provide to support 
the description of such systems. This paper is a first step towards 
this direction. 

Our study was motivated by three research questions, the first 
one regarding the conceptual foundation for safety requirements 
specification in RE process, the second one about the main 
features that requirements languages should support in terms of 
specification of safety-critical systems; and the third one about the 
similarities and differences among GORE languages support for 
the specification of safety-critical systems. 

We proposed a set of 15 features that requirements languages 
should provide to an early safety requirements specification. This 
set is a novel contribution that can be used as criteria to guide the 
selection of requirements languages for specifying SCS. 
Moreover, we characterized the support of some goal-oriented 
languages in this specification. We evaluated four GORE 
languages (i*, KAOS, GRL, NFR-Framework) against this set of 
features.  

As a result from our evaluation, we observe that none of these 
languages fully support the specification of SCS considering the 
set of proposed features. Nevertheless, KAOS and i* appears to be 
promising languages in which extensions could be proposed to 
support the features.  

An extension of a GORE language can be used to represent the 
results of model-based safety analysis techniques. We believe that 
an extension is necessary and it is under development. 

In the next section, we suggest further research on 
specification of safety-critical systems. 
 

9.1.  Further research 
The results of our comparative analysis pointed out that the 
evaluated languages do not have constructs to modeling safety-
related aspects. Therefore, this study has generated some research 
directions: 

 How is the support of non-GORE languages such as UML to 
describe SCS requirements? 

 In what extent do extensions to security cover the concepts 
and needs of SCS?  

 How can we evaluate the completeness of the proposed set of 
features? 

  How can we adapt the evaluated languages to support the 
features? 
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