
A metamodel to guide a requirements elicitation
process for embedded systems

Tarcı́sio Pereira13, Aêda Sousa1, Reinaldo Silva1, Deivson Albuquerque13 Fernanda Alencar12, Jaelson Castro1

Universidade Federal de Pernambuco1

Universidade de Pernambuco2

Recife, Brazil
Instituto Federal do Sertão Pernambucano3

Petrolina, Brazil
Email: {tcp,amcsb,ras12,mdac,jbc}@cin.ufpe.br, fernanda.ralencar@ufpe.br

Abstract—[Context] In the embedded systems (ES) area, more
than 50% of problems occur at system delivery and are related
to misconceptions in capturing requirements. Therefore, it is
necessary to address what should be considered by requirements
engineers in the elicitation and specification phases of embedded
systems. However, understanding embedded systems and their
environment is a strenuous activity. Hence, requirements engi-
neers need to know the core concepts related to ES and also
a systematic guide to consider these concepts in the develop-
ment process. [Goal] This paper presents a metamodel based
on a systematic literature review (SLR) that can support the
elicitation of ES concepts. Additionally, we used the metamodel
as a guide to the development of a requirements elicitation
process. [Method] We used the studies of an SLR as a basis
for the metamodel development and their concepts as input
for an investigation of actions that are suitable to be used in
our elicitation process. The proposed metamodel concepts were
evaluated by a domain expert, and we applied the actions of
the process to elicit requirements of an infusion pump system.
[Results] The metamodel has 118 entities that represent the RE
concepts for ES, and the elicitation process has 49 actions to
guide requirements identification and definition. [Conclusion]
The metamodel can be used by practitioners to check if they
are eliciting the appropriate information for the development
of embedded systems. Moreover, it can assist future research.
Besides, the process can help organizations in improving their
requirements practices to support completeness and correctness
of ES elicitation.

Keywords—embedded systems, requirements engineering, re-
quirements elicitation, process, metamodel.

I. INTRODUCTION

In everyday life, people are dependent on several critical
services supported by software, many of them are ubiquitous
nature. Examples of such systems include traffic air control,
road monitoring, telecommunication system control, medical
equipment control, automation technology, and automotive
control systems. Broy [1] define Embedded System (ES) as
a system that regulates a physical device by sending control
signals to actuators in reaction to input signals provided by its
users and by sensors capturing the relevant state parameters
of the system.

Frequently, an embedded system is a component of a larger
system embedded in a product and transparent to the final
user [2], [3]. Furthermore, such systems are designed to

repeatedly carry out a specific function, keeping its operation
under different constraints from the ones of general purpose
systems [2], [4]. According to Berger [5], different from a
Personal Computer, embedded systems have real-time, and
power constraints and they are cost-sensitive. Besides, they
often operate under extreme environmental conditions, and
software failure causes severe damages.

Embedded systems are known for their high complexity,
caused by the increasing number of functions and the growing
number of interactions among different functions. Due to
their complexity, the risk of undetected errors and deficien-
cies increases considerably. In the embedded system domain,
more than 50% of the problems occur when the system is
delivered [1]. However, several problems are not related to
the correctness of implementation but due to misconceptions
of requirements.

These shortcomings are the result of inappropriate Require-
ments Engineering (RE) tasks, resulting in incomplete require-
ments, incorrect elicitation and specification, high complexity,
and economic or human loss. However, to understand em-
bedded systems and their environment is a strenuous activity.
Hence, requirements engineers need to know the core concepts
related to ES and also an elicitation process.

The requirements for software products and systems are
gathered, analyzed, documented, and managed through the
Requirements Engineering (RE) process, which focuses on
the development of processes, methods, techniques, and tools
to help in the conception of software and systems. It covers
the activities of elicitation, analysis, specification, validation,
and management of requirements [6]. Hence, a requirements
engineering process is crucial in order to meet time, cost, and
quality goals [7].

There are some studies that investigated the concepts that
should be considered during Embedded Systems development
[8]–[10]. However, these studies did not capture the core
concepts and appropriate evidence. Moreover, they did not
perform any systematic investigation of the literature. In fact,
there is much confusion among requirements engineers and
stakeholders due to the different kinds of information that need
to be managed. In this context, a well-defined metamodel that
captures ES concepts with their interrelations would constitute

a significant step forward to improve the requirements quality
of embedded systems.

In this paper, we extend our previous work [11]. We have
updated and evaluated a Metamodel for Embedded Systems
(MM4ES). It was based on an SLR whose aim was to support
the elicitation of ES concepts in RE process. Our metamodel
consists of 118 entities and relationships among them that
should be considered in the development of embedded sys-
tems. Given that the metamodel was based on an extensive
literature review that addressed concerns from academic and
industry context, it may be a means for requirements engineers
to improve the completeness and correctness of the embedded
system elicitation and specification.

Therefore, we used the metamodel concepts to develop
the Requirements Engineering Process for Embedded Systems
(REPES). Organizations can use the process as a guide for
improving the requirements elicitation for ES by adopting
selected actions supported by the process. In this paper,
we focus on requirements elicitation actions of the REPES
process. As a proof of concept, we use the proposed process
to elicit requirements for a Patient Control Analgesia (PCA)
pump. Finally, we provide guidelines for further research.

The main contributions achieved by the development of
the metamodel are the followings: (i) a knowledge-based
metamodel which serves as a resource model for integrating
characteristics of the significant concepts appearing in em-
bedded systems; (ii) a reference model that can be used as
input for model transformation if model-driven development
is intended. It can also be used to develop a domain specific
language; (iii) the metamodel can be used as a guide for
further research; and (iv) a requirements elicitation process
for embedded systems that can contribute to eliminate errors
and requirements problems from the beginning.

This paper is structured as follows: The related works are
presented in Section II. In Section III we describe the research
methodology adopted in this study. In Section IV we present
our metamodel. Then in Section V we present the requirements
elicitation process and an example of its application. Finally,
in Section VI we provide some conclusion and indications for
future work.

II. RELATED WORK

Requirements engineering for embedded systems is a chal-
lenging activity since these systems require the specification of
several issues related to software, hardware, environment, and
multiple stakeholders [12]. However, due to the complexity of
ES, the traditional RE methods are inappropriate [8]. Hence,
the specification of ES should be carefully conducted to avoid
incorrect requirements.

A metamodel allows the concepts of a particular domain
to be structured. It captures abstraction and relationships of
the target domain concepts [13]. However, according to our
previous work [11], there is no ES metamodel based on an
SLR. Besides, there is no study that proposes a requirements
process for the embedded systems domain guided by a meta-
model. Thus, this paper presents a metamodel whose aim is

to support the elicitation of ES concepts. The focus relies
on software, hardware, environment, business, and contextual
information. Our goal is to define a generic metamodel for
the embedded systems domain and to present a requirements
elicitation process guided by the proposed metamodel.

Several approaches addressing requirements engineering for
embedded systems have already been presented. Among these,
the closest to our work are [13]–[15]. Arpinen et al. [13]
present a metamodel for requirements management which
focuses on software and embedded system domains. Their
approach addresses concepts such as stakeholders, product
description, functional and non-functional requirements, and
risks. As shown in this paper, the context of an embed-
ded system is more than software. In our metamodel, we
also consider concepts that are related to business, software,
hardware, environment, and context information. By contrast,
these concepts were extracted from the results of an extensive
literature review.

The work presented by Li et al. [14] is related to ours
because it proposes a metamodel for embedded real-time
systems requirements variability. They are only interested in
the representation of functional, physical, and non-functional
variability. They provide a separate view of the system re-
quirements to represent those concepts. However, Li et al. [14]
do not specify any of them. Embedded systems engineering
is a complex discipline. It includes consideration of domain
knowledge, process infrastructure requirements, manufacture,
and hardware / software components. In our metamodel,
we consider these issues as well as the ones proposed in
[14]. Moreover, we specify the concept of 58 non-functional
requirements (NFRs) and the concept of Hardware Device
in 12 devices. Thus, our metamodel provides a much more
information than those presented in [14].

Dubois et al. [15] propose a metamodel for requirements
traceability. They have explored the concepts described in [16]
and [17] to construct their model which focuses on system
requirements. Thus, there is only one requirement class, and
this class is decomposed into a set of other requirements
such as project requirement, system requirement, and process
requirement. The system requirement, in turn, is divided into
functional and non-functional requirements, and constraints.
Different from the study presented in [15], we have looked
for concepts in 84 studies. Besides, our metamodel covers a
broader range of requirements concepts than the one described
in [15] such as business, environment, design, NFRs, software,
and hardware.

Despite the number of studies that have reported require-
ments engineering approaches for embedded systems domain,
no previous study has had such a focus, to systematically
develop a metamodel to represent the core RE concepts for
ES based on a systematic literature review. Additionally, these
studies do not consider the use of a metamodel to guide the
development of a requirements process.

III. RESEARCH METHODOLOGY

In this section, we present the process followed by us to
develop and provide a standard representation for the design
and development of embedded systems. The process was based
on our experience on metamodeling [18] and on the method
for developing taxonomies proposed by Usman et al. [19]. In
order to evaluate the result obtained through the execution of
the process, we included an additional phase called Evaluation.
The process is illustrated in Fig. 1. In the next sections, we
present the details of each step of the process.

A. Planning

This work belongs to research whose the objective is to
improve the activities of requirements engineering in the em-
bedded systems domain. In this research line, we are working
on the development of a well-defined RE process to support
practitioners in the development of embedded systems.

In the planning phase, we defined requirements engineering
as the software engineering knowledge area for the new
metamodel. We also defined its objectives and scope (task
1). The development of the metamodel was driven by the
following research question: “What is the core set of re-
quirements engineering information that should be specified
by requirements engineers in the development of embedded
systems?”.

As source data for the metamodel, we initially considered
the studies captured by our previous SLR [11]. The studies are
from academic and industrial context and also from different
domains to get a broad coverage of the state of practice.
Additionally, we have also updated the period of time covered
by the SLR.

B. Identification and extraction

In this step, we read all articles of our systematic lit-
erature review to look for concepts that make part of the
domain knowledge of an embedded system (task 2). Then,
we structured the domain knowledge in a glossary of terms of
the domain vocabulary identified in the previous specification
activity (task 3). The majority of the concepts definitions
were obtained from the IEEE Standard Glossary of Software
Engineering Terminology while the remaining were retrieved
from articles, books, and websites1. The core concepts of
our metamodel are depicted in Fig. 2. These concepts were
extracted from the Glossary of Terms2 developed in Task 3 of
the process.

C. Design and construction

In this step, we performed the identification and description
of the concepts and relationships in a relation cardinality docu-
ment (RC). It consist of the name of the classes, relationships,
and cardinality between them. Table I shows the results of
tasks 4 and 5. For example see in Fig. 2, the EmbeddedSystem
class has a relationship called hasDomainKnowledge with the

1http:whatis.techtarget.com/glossary
2The complete glossary can be downloaded at https://bit.ly/2K5UasW

DomainKnowledge class; The Software Requirements class has
a relationship defines with the Software class.

We used the relation cardinality document to implement the
metamodel (task 6). Each line of the document was mapped
to a UML class with its relationships.

TABLE I
RELATION CARDINALITY DOCUMENT EXCERPT

Class name Relation Cardinality Class name
Embedded System hasDomainKnowledge 1..1 Domain Knowledge
Embedded System hasAbstractionLevel 1..0* Abstraction Level
Embedded System hasSoftware 1..1* Software
Embedded System hasStakeholder 1..1* Stakeholder
Embedded System hasContext 0..1 Context
Embedded System hasHardware 1..0* Hardware
Embedded System hasAction 1..0* Action
Embedded System hasBusiness 1..1 Business
Embedded System hasEnvironmentRequirements 1..0* Environment Requirements
Software Requirements defines 1*..1* Software
Functional Requirements is-a Software Requirement
Non-Functional Requirements is-a Software Requirement
Hardware hasHardwareRequirements 1..1* Hardware Requirements
Hardware Requirements defines 1..1* Hardware Device
Sensor is-a Hardware Device
Sensor monitors 1..0* Control Variables
Actuator is-a Hardware Device
Actuator generates 1*..1* Action
Environment hasEmbeddedSystem 1..0* Embedded System

D. Evaluation

In the evaluation phase, we considered two ways to evaluate
our metamodel (task 7), both rely on an Infusion Pump
example to demonstrate its utility.

The first version of the metamodel is described in our
previous work [12]. As a first evaluation, the metamodel was
analyzed three times by a domain expert to check if the
concepts were correct from his point of view in the context of
medical device development.

In the second evaluation, we tried to demonstrate the utility
of the metamodel by tracing the results of the elicitation
process actions to the embedded systems concepts using
the metamodel as a basis. In Section V, we describe the
process and also the usage example. Whenever the results are
presented, its number is highlighted in bold. Thus, we can
check the number in the metamodel to see the concept the
results are related.

IV. METAMODEL FOR EMBEDDED SYSTEMS - MM4ES

We hope that the MM4ES will contribute to requirements
engineers express their knowledge about the domain and con-
solidate the information that should be elicited and specified
during the beginning of RE. Thus, it may help to meet schedule
time, reduce cost, and quality goals.

In order to provide an update state of the art about RE for
embedded systems, we updated our SLR (1970 - September
2016) to consider studies from 1970 to March 2018. Thus, was
necessary to improve our metamodel performing for the sec-
ond time the metamodel development process depicted in Fig.
1. The goal was to provide an updated metamodel and identify
possible missing concepts and perceived adjustments. It is
important to note that our previous SLR presented in [11] had
75 papers, while in this updated study considered 84 papers.
All references can be downloaded at https://bit.ly/2ljIGqO.

Fig. 1. Metamodel development process

In our previous work, the metamodel has 41 concepts, while
118 concepts are presented and discussed in this new study
(see Fig. 2, 3, and 4). The green boxes are new concepts,
and the blue boxes were updated with a set of attributes.
What remains the same from our previous work are the yellow
classes.

The main concepts in Fig. 2 related to an Embedded System
are Stakeholder, Business, Domain Knowledge, Environment,
Environmental Requirements, Hardware, Software, Action,
Context, and Risk. These concepts should be considered during
the requirements engineering process for embedded systems
development.

Stakeholder is a person, group or organization that has in-
terest or concern in an organization or (system). Requirements
engineering for embedded systems is a multi-disciplinary
approach. It requires domain experts from several areas, such
as mechanical engineers for physical context, electrical engi-
neers for the hardware context, as well as Human-Machine-
Interface (HMI) experts for the usability aspects, in addition to
requirements engineers and software developers, testers, and
maintainers with a computer science background [20]. Thus,
Stakeholders can play one or multiple Roles.

The Business defines the Market Pressure, Suppliers Rela-
tionships, and Migration of Standards. The Market Pressure
involves the consumer changes, environmental, and regulatory
needs. All of these can impact the requirements engineer-
ing for ES since it is necessary to move fast and change
requirements to facilitate the agility and flexibility needs of
its container [20]. The market is shared by suppliers, manu-
facturers and tool vendors which need to improve processes
exchangeability among them and the reuse of software in
different product lines. This issue raises the challenge of the
reduction of development time [21]. Associated with Business,
we have the Business Rules, which aims at description of
a business policy or procedure. Business Rules are usually
expressed at the atomic level, i.e., they cannot be broken down
any further.

An embedded system requires that the Domain Knowledge
should be understood. In general, domain is an area of control
or a sphere of knowledge. It defines the Execution Environment
of the system, Certification Process, Process Infrastructure,
Product Infrastructure and Manufacture.

Execution Environment requirements should capture the
essential properties of the environment such as temperature,
humidity, the area of operation, and electric current in which

the embedded system under development will operate [22].
Certification Process requirements aim the application of a
particular development process, guidelines, documentation,
and steps for the product under development. These issues
will depend on the embedded system domain, such as avion-
ics, automotive, industrial automation, and medical. Process
Infrastructure requirements and standards are related to the
way the results of RE activities and tasks will be documented,
managed and which development tools must be used [23].

Product Infrastructure requirements and standards aim the
definition of which implementation technology (programming
language, code pattern) must be used or which standard
components have to be reused [23]. Finally, Manufacture
requirements aim the production of relevant information/ doc-
umentation for fabricating the product [24]. The Environmen-
tal Requirements should define the environmental assump-
tions/constraints such as human users, temperature, and local
of operation required by the system to its correct operation.

Hardware is the physical equipment used to process, store,
or transmit computer programs or data. Hardware Require-
ments specify the Hardware Devices characteristics that should
be provided to the embedded system. The requirements for
hardware should include information such as hardware func-
tions, user interaction, hardware characteristics (temperature
range, humidity range, battery, e.g.), action buttons, memory
specification, e.g., [25].

The main Hardware Devices are Sensor, Actuator, External
Interface and Hardware Adapter. A Sensor is any system
providing up-to-date information about the context where the
system is running. Sensors monitor Control Variables and
Environment Variables. Besides, it can send messages to the
Software. Control Variable is one that the system can control,
maintaining or changing its value to keep the system properly
running. On the other hand, Environment Variables are a set
of dynamic named values that can affect the way embedded
systems will behave.

An Actuator is any actuator in the environment which can
receive commands from the system to act on the environment
context. Actuators generate Actions, that can be a Software
Behavior or Hardware Behavior. An Action is any activity
performed by the system, and Software Behavior is a function
performed by software while Hardware Behavior is a function
performed by hardware.

External Interface provides external communication in dif-
ferent ways such as USB, CAN, Serial, Serial Peripheral

Fig. 2. Metamodel for embedded systems - MM4ES

Interface, and Inter-Integrated Circuit. A Hardware Adapter
is a physical device that allows one hardware or electronic in-
terface to be adapted (accommodated without loss of function)
to another hardware or electronic interface. The HWConnector
of a Hardware Adapter is an enumeration with the following
options: HWInput (hardware input), and HWOutput (hardware
output).

Fig. 3 presents a set of 16 Hardware Devices identified in
our study (Controller, Memory RAM, Memory ROM, Proces-
sor, Microprocessor, Microcontroller, Digital Signal Proces-
sor, Legacy Hardware, Seven-Segment Display, LCD Display,
Graphical Display, Trimmer Potentiometer, Keypad, Buttons,
Storage Device and Power Supply).

Fig. 3. Hardware devices for embedded systems

Software Requirements defines the services that the Software
should provide and they set out constraints on the system’s
operation. Besides, they should address the following issues:
functionality (what is the software supposed to do?), external
interfaces (how does the software interact with people, system
hardware, other hardware, and other software?), performance
(e.g. what is the speed, availability, response time, recovery
time of various software functions?), attributes (e.g. what are
the portability, correctness, maintainability, security, consider-
ations?), and design constraints imposed on an implementation
[26].

The Software Requirements is classified into (i) Functional

Requirements, i.e., a functionality of the system, and (ii)
Non-Functional Requirements, i.e., a feature or characteris-
tics that affect an item quality. A Software Interface is a
software responsible for connecting one or more softwares.
The SWConnector of a Software Interface is an enumeration
with the following options: SWInput (software input), and
SWOutput (software output). SW/HWConnector is a special
communication component. It works as a bridge for the
communication between software and hardware [27]. Port
Type of an SW/HWConnector is an enumeration with the fol-
lowing options: SWInput (software input), SWOutput (software
output), HWInput (hardware input), and HWOutput (hardware
output).

An embedded system can be associated with several Con-
texts. A Context is a state of the world that is relevant to an
actor goal. Contextualization can be used as a way to allow
for changes at both design and run-time. Abstraction Level
defines a view of an object that focuses on the information
relevant to a particular purpose and ignores the remainder of
the information.

A Failure is an event where a software or hardware com-
ponent does not exhibit the expected behavior. It has an
enumeration called Probability which can be Frequent, Proba-
ble, Occasional, Remote, and Improbable. The possibility that
something bad will happen is a Risk. Risk Type is a property
that defines if the Risk is acceptable (Accepted) or not (Not
Accepted).

Fig. 4 presents a set of 58 Non-Functional Requirements
and their refinements, which characterizes specific issues that
must be considered to achieve such quality requirement. De-
pending on the ES domain, all refinements or part of them
can be implemented. The requirements with refinements are
Security, Performance, Safety, Time, Privacy, Resource, and
Temporal. For example, Safety has five refinements, such as
ReactionToViolationOfPrevention, PreventionOfHazards, Pre-

Fig. 4. Non-functional requirements for embedded systems

ventionOfSafetyRisk, PreventionOfSafetyIncidents, and Detec-
tionOfViolationOfPrevention. The rest of the requirements
have no refinements. As ongoing work, we are using the NFRs
presented Fig. 4 to develop a catalog to support requirements
engineers during the elicitation process.

V. REQUIREMENTS ELICITATION PROCESS

The contribution presented in this section is part of an
on going Ph.D Thesis that consists on the development of
a requirements engineering process for embedded systems. In
this paper, we focus on its requirements elicitation actions.

A. Process development methodology

We have followed 6 steps to develop the requirements
elicitation process.

1) Knowledge acquisition: In this first step, we investigated
the literature available about RE for embedded systems to
become familiar with the domain. To accomplish this goal,
we performed an SLR to evaluate and synthesize the evidence
available in the literature to answer research questions on
the use of approaches, methods, techniques, and processes to
support the RE in the ES domain.

2) Problem definition: After answering a set of questions
regarding RE for embedded systems, we investigated the prob-
lem relevance, i.e. (i) the lack of a requirements engineering
process. Therefore, we conclude that there was a need for
proposing the process according to the goals and scope of our
work. This issue lead us to another problem, (ii) what should
be considered to develop the RE process?

3) Metamodel development: To overcome question men-
tioned before, we followed the steps described in this paper
to develop a metamodel that captures ES concepts with their
interrelations.

4) Identification of information sources: In this step, we
took the concepts of the metamodel and looked for them in
the studies of the SLR (84 studies) and the main RE standards

to identify and select the information sources for the require-
ments engineering sub-processes, and actions/practices. We
considered the following RE standards: IEEE Std 1233:1998,
IEEE Std 830:1998, ISO/IEC 12207, ISO/IEC 29158, ISO/IEC
15289, ISO/IEC 15288, INCOSE Handbook, SE-CMM, and
CMMI-DEV. In this paper, we focus on the requirements
elicitation activity.

5) Definition of process design: After the analysis of the
information sources, we chose the design of the process. We
followed the structure of Uni-REPM, since it is an universal
lightweight model to evaluate the maturity of a RE process
[28].

The model is structured in three levels, namely: Main
Process Area (MPA), Sub-Process Area (SPA) and Action
(ACT). On the top level of the model, there are four Main
Process Areas (Business Requirements, System Requirements,
Software Hardware Requirements and Security Requirements).
Each MPA is further broken down into several SPAs and, on
the bottom level, an Action denotes a particular activity that
should be executed or a specific item that should be present.
In the context of this paper, we focus on the activities that
should be performed to elicit/identify requirements.

6) Development of the process: In this step, we developed
the process. Hence, we have defined in total 4 process areas,
24 sub-processes, and 89 elicitation actions. See Tables II and
III.

B. The REPES process

To save space, we are objectives by describing the elicitation
actions. Thus, we do not present them in the structure defined
for the process (step 5). Note that the number of each action
is traced to the concept that supported its development (see
Figures 2, 3, and 4). Using the process, ES engineers can
manage the elicitation activity in an organized way. The
process is divided into four process area, named Business
Requirements (BR), System Requirements (SR), Software

TABLE II
REPES ELICITATION ACTIONS - PART 1

ID Description
BR Business Requirements
BR.ISS Identification of System Stakeholder

1 BR.ISS.a1 Identify the stakeholders to be involved in the system life
cycle

2 BR.ISS.a2 Define their roles and responsibilities
BR.DPI Define Process Infrastructure Requirements

3 BR.DPI.a1 Describe the way the results of the requirements engineering
activities will be documented

4 BR.DPI.a2 Define one or more tools, or an environment, required to
support the activities towards the RE

BR.CPR Define Certification Process Requirements
5 BR.CPR.a1 Define and document a specific development process for the

company
6 BR.CPR.a2 Define a step by step for the product development consid-

ering the chosen development process
7 BR.CPR.a3 Establish a set of items/artifacts that must be produced and

documented by the requirements engineering
BR.ASP Acquire and Supply Products or Services

8 BR.ASP.a2 Identify and document a set of supplier candidates for the
project that is being carried out

BR.MMP Management of Market Pressure
9 BR.MMP.a3 Document and share with the project team the applicable

legislation, organizational constraints, industry standards,
and regulatory needs

BR.BEE Business and Environmental Elicitation
10 BR.BEE.a1 Elicit and include in the business documentation a set of

business processes in which the embedded system will
operate

11 BR.BEE.a2 Elicit and include in the business documentation a set of
business rules

12 BR.BEE.a3 Elicit and document a set of environmental information
BR.DAN Domain Analysis

13 BR.DAN.a1 Elicit information about system domain restrictions
14 BR.DAN.a2 Elicit information about technical infrastructure of the sys-

tem
15 BR.DAN.a3 Elicit information about operational domain of the system
16 BR.DAN.a4 Elicit information about system boundaries

BR.PIR Product Infrastructure Requirements
17 BR.PIR.a1 Define a set of implementation technology
18 BR.PIR.a2 Establish one or more case tools, or an environment to

support the activities towards the embedded systems devel-
opment

BR.ALD Abstraction Level Definition
19 BR.ALD.a1 Identify and define different kinds of representations, such

as models, to be produced by the sub-processes
20 BR.ALD.a2 Identify and associate the stakeholders who have different

skills with each model to be produced
21 BR.ALD.a3 Establish the levels of detail of the representations based

on the different skills of the people involved after the
stakeholder’s identification

SR System Requirements
SR.DSG Define System Goals

22 SR.DSG.a1 Provide short statements describing what the system must
accomplish

23 SR.DSG.a3 Elicit a set of system goals from stakeholder’s needs
SR.IEA Identification of Environmental Assumptions

24 SR.IEA.a1 Establish and document the monitored and controlled vari-
ables

25 SR.IEA.a5 Establish a list of devices that monitor the monitored and
controlled variables

SR.DBR Definition of Behavioral Requirements
26 SR.DBR.a1 Provide a set of software behaviors to document the actions

the software should perform
27 SR.DBR.a2 Provide a set of hardware behaviors to document the actions

the hardware should perform
SR.MCI Management of Contextual Information

28 SR.MCI.a1 Analyze the input documents to identify the contexts that
can affect the system operation

29 SR.MCI.a2 Identify and document statements, facts, and variables
SHR Software and Hardware Requirements
SHR.HRC Hardware Constraints

30 SHR.HRC.a1 The constraints for each hardware device previously identi-
fied are defined and documented

SHR.HRD Hardware Requirements Definition
31 SHR.HRD.a2 Elicit and specify a set of non-functional requirements that

the hardware devices must fulfill
32 SHR.HRD.a3 Provide an overview of the hardware components to be used

in the development of an embedded system
33 SHR.HRD.a4 Elicit the mechanical requirements
34 SHR.HRD.a5 Elicit electrical requirements

TABLE III
REPES ELICITATION ACTIONS - PART 2

ID Description
35 SHR.HRD.a6 Identify and document the microcontroller of the embedded

system based on the results of previous actions
36 SHR.HRD.a9 Elicit a set of manufacture requirements

SHR.DIO Define Input and Output User Interface
SHR.DIO.a1 Define and document interface standards

37 SHR.DIO.a2 Define and document a set of input user interface
38 SHR.DIO.a3 Define and document a set of output user interface

SHR.DSA Define Sensors and Actuators
39 SHR.DSA.a1 Define and document a set of sensors and actuators standards
40 SHR.DSA.a2 Identify and document a set of sensors
41 SHR.DSA.a5 Identify and document a set of actuators

SHR.DEI Define External Interfaces and Hardware Adapter
42 SHR.DEI.a1 Identify and document a set of external interfaces and

hardware adapters standards
43 SHR.DEI.a2 Identify and document a set of external interfaces
44 SHR.DEI.a3 Identify and document the hardware adapters

SHR.SFC Software Constraints
45 SHR.SFC.a1 Identify and document the software constraints

SHR.SRD Software Requirements Definition
46 SHR.SRD.a1 Elicit and document a set of functional software require-

ments
47 SHR.SRD.a5 Elicit and document a set of non-functional requirements

SER Security Requirements
SER.RMG Risk Management

48 SER.RMG.a1 Identify and document potential risks
SER.FMG Failure Management

49 SER.FMG.a1 Identify, classify, and document potential software and hard-
ware failures

Hardware Requirements (SHR) and Security Require-
ments (SER). These process areas are organized in 24 sub-
processes that have 89 actions, which 49 of them are related
to requirements elicitation. However, some of them can also
be associated with others RE activities (example: elicit and
specify non-functional requirements).

All actions are responsible for generating artifacts that will
be part of the ES requirements. Additionally, the actions of
BR and SR process areas help engineers to move from high-
level requirements to more specific technical requirements.
The process steps are not meant to be strictly sequential,
apart from the first step; they are only given for guidance.
A summary of the REPES process with focus on elicitation
actions is shown in Tables II and III.

C. Process usage

A typical scenario in which the REPES can be used is when
an organization decides to introduce requirements engineer-
ing activities in its embedded systems development process.
Applying the process in a specific domain, we can perform
the actions in a sequential way to get a document with the
requirements elicited.

As a proof of concept, we applied the process provided
in this paper to elicit requirements from a patient control
analgesia pump. The goal is to demonstrate the utility of
the process by presenting examples as results of the actions.
See Tables II and III to verify the action that was used to
elicit the requirements. Note that we can check the number
in the metamodel to see the correspondent embedded system
concept. This cross-referenced is also a way to demonstrate
the utility of the metamodel.

Due to space limitation, it is difficult to provide in this
paper a detailed description and to include all the results of the

elicitation actions. As a usage example, we performed actions
from all process areas, resulting in 13 actions (26.5%) of the
49 ones presented in the elicitation process. Hence, this can
be a limitation of our work.

We used the documents provided by the SAnToS re-
search group at Kansas State University (KSU) and the Na-
tional Science Foundation US Food and Drug Administra-
tion Scholar-in-Residence (NSF FDA SIR) as input for the
elicitation actions execution. The documents are available at
https://rtg.cis.upenn.edu/gip/.

The real world scenario used is related to a medical device.
The following description was retrieved from Pennsylvania
Patient Safety Authority [29]: Patient-controlled analgesic
(PCA) infusion pumps allow patients to give themselves pain-
relieving medication within certain limits as prescribed by a
doctor or other licensed professional. PCA therapy is used
for patients after an operation, obstetric patients, terminally ill
patients and patients who have a serious injury. PCA pumps
deliver medication through a needle (e.g., intravenously) and
allow patients to give themselves the medication by the push
of a button. Next, we present the actions we have performed
and their results, i.e., the elicited requirements.

First, we started executing actions from the Business Re-
quirements process area. For example, performing action 1,
(BR.ISS.a1 - Identify the stakeholders to be involved in the
system life cycle) we can identify the Clinician and the
Patient. Executing action 2, (BR.ISS.a2 - Define their roles
and responsibilities) we can get following results: (i) clinician
- initialization, attachment, basal infusion, detachment; and (ii)
patient - extra dose upon patient-determined need. Continuing
with the execution of action 9, (BR.MMP.a3 - Document
and share with the project team the applicable legislation,
organizational constraints, industry standards, and regulatory
needs) we can obtain the (i) ASTM International F2761-09
Medical Devices and Medical Systems; and (ii) IEC 60601-1-
8 Medical electrical equipment.

The action 14 (BR.DAN.a2 - Elicit information about tech-
nical infrastructure of the system) is responsible for the iden-
tification of external software that interacts with the system
such as the Integrated Clinical Environment (ICE). A system
which allows clinician’s to remotely monitor the operation of
the pump. The result of the action 15 (BR.DAN.a3 - Elicit
information about the operational domain of the system) is
the following description: The PCA pump will operate in
a hospital room or similar clinical setting: controlled am-
bient temperature, assured power, lighting, infection-control
procedures and equipment, regular electromagnetic fields and
particles.

Actions from the System Requirements process area were
executed as follows: Performing action 22, (SR.DSG.a1 -
Provide short statements describing what the system must
accomplish) we can determine that a PCA infusion pump
infuses narcotic, liquid pain-killer at a prescribed basal rate
plus any bolus doses that the patient may request to alleviate
their pain, or be commanded by an attending clinician, most
often, a registered clinician. Executing action 23, (SR.DSG.a3

- Elicit a set of system goals from stakeholder’s needs) we can
define the following goals: (G1) the pump will safely infuse
drugs intravenously for pain relief, and (G2) the patient should
receive enough drug to reduce his pain.

Through the execution of action 26, (SR.DBR.a1 - Provide a
set of software behaviors to document the actions the software
should perform) we can define that (i) after the start button
has been pushed, a timer counter shall be displayed, and (ii)
when the infusion is in progress, a boolean signal shall be
displayed. Carrying out action 27, (SR.DBR.a2 - Provide a set
of hardware behaviors to document the actions the hardware
should perform) we can determine that (i) after the button A
has been pushed, a red light shall be lit, and (ii) after the dose
button has been pushed, two beeps shall be sounded, and the
pump will begin delivering the demand dose.

Next, we present two actions from the Software Hardware
Requirements process area. Executing action 43, (SHR.DEI.a2
- Identify and document a set of external interfaces) we can
identify the delivery tube and needle. The drug is conveyed
from the pump to a needle to be infused into the patient. The
needle is placed into a vein, usually in an arm or hand. The
results of action 47 (SHR.SRD.a5 - Elicit and document a
set of non-functional requirements) are: (i) response time to a
button press shall be less than 200 msec (performance), and
(ii) software access shall be password protected (security).

Two actions belong to the Security Requirements process
area. Performing action 48, (SER.RMG.a1 - Identify and doc-
ument potential risks) we can define (i) the execution environ-
ment of the system, while executing action 49, (SER.FMG.a1
- Identify, classify, and document potential software and hard-
ware failures) we can identify mechanical failure and classify
it as deterioration and/or shock.

Analogously, the same can be done for the rest of the
actions.

VI. CONCLUSION AND FUTURE WORK

According to our Systematic Literature Review (SLR) [11],
no evidence explicitly depicts how an embedded system must
be elicited and specified. Despite all information collected,
analyzed, and interpreted, some issues remain: (i) the studies
did not present what should be considered by requirements
engineers during the elicitation and specification of embedded
systems, and (ii) there is a need for a specific RE process for
embedded systems.

In this paper, we propose a metamodel for embedded
systems to describe the concepts that should be elicited and
specified by requirements engineers. We focused on the repre-
sentation and relationships between the identified concepts in
our SLR and the feedback provided by a domain expert. Then,
we used the metamodel to guide the development of a require-
ments elicitation process. The process provided in this paper
describes the actions to be performed for the identification and
definition of embedded systems requirements. We aim to help
organizations towards a more mature process execution.

The main contributions of this paper are the followings:
(i) a knowledge-based metamodel which serves as a resource

model for integrating characteristics of the significant concepts
appearing in embedded systems; (ii) a reference metamodel
that can be updated in future works to consider more embed-
ded systems concepts; (iii) a metamodel that can be used as
input for model transformation if model-driven development
is intended, allowing the development of a domain specific
language from scratch or to extend an existing language;
(iv) a metamodel that can help practitioners to improve the
traceability of the requirements specification; (v) an elicitation
process that was guided by a metamodel that covers ES
concepts identified by studies applied in academy and industry;
and (vi) the process can be used as a guide to assess the
requirements activities of organizations.

As limitations of this paper, we can highlight: (i) RE
for embedded systems is a difficult activity. Thus, only a
metamodel can not address all characteristics of an ES for
a specific domain; (ii) the metamodel and the requirements
elicitation process was not evaluated in the industry yet; and
(iii) a threat may be the selection of actions that are included
in the REPES process since they were based on the metamodel
concepts and RE standards.

As future work, we intend to execute an evaluation of the
process in the industry to get more realist results. Moreover,
this study has generated some research directions that we
intend to address in future works: (1) How can we evaluate
the completeness of the proposed metamodel? (2) How can we
extend the metamodel to represent the specific characteristics
of the different domains of an ES? (3) How can we evaluate
whether the process has sufficient coverage of actions? (4)
How can we validate the usefulness and ease of use of the
process? (5) How can we develop a CASE tool to support the
process? (6) How can we conduct a comparative analysis with
other studies using the same case study (PCA)?

ACKNOWLEDGMENT

The following Brazilian institutions have supported this
work: CNPQ and FACEPE.

REFERENCES

[1] M. Broy and T. Stauner, “Requirements engineering for embedded
systems,” Informationstechnik und Technische Informatik, vol. 41, pp.
7–11, 1999.

[2] S. Haldar and A. Aravind, Operating systems. Pearson Education India,
2010.

[3] F. Vahid and T. Givargis, “Embedded system design: A unified hard-
ware/software approach,” Department of Computer Science and Engi-
neering University of California, 1999.

[4] M. Wolf, Computers as components: principles of embedded computing
system design. Elsevier, 2012.

[5] A. Berger, Embedded Systems Design: An Introduction to Processes,
Tools and Techniques. CMP Books; 1st edition, 2001.

[6] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2011.
[7] E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research

directions in requirements engineering for embedded systems,” Require-
ments Engineering, vol. 17, no. 1, pp. 57–78, 2012.

[8] J. Ossada, “Gerse: Requirements elicitation guide for small and medium
size companies, in portuguese: Gerse: Guia de elicitação de requisitos
para pequenas e médias empresas,” Piracicaba, Sao Paulo, Brazil, 2010.

[9] G. Kainz, C. Buckl, S. Sommer, and A. Knoll, “Model-to-metamodel
transformation for the development of component-based systems,” in
13th International Conference on Model Driven Engineering Languages
and Systems. Springer, 2010, pp. 391–405.

[10] H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürst, K.-P. Schnelle,
W. Grote, N. Maldener, T. Weber, F. Wohlgemuth et al., “Achievements
and exploitation of the autosar development partnership,” Convergence,
2006.

[11] T. Pereira, D. Albuquerque, A. Sousa, F. M. R. Alencar, and J. Castro,
“Retrospective and trends in requirements engineering for embedded
systems: A systematic literature review,” in Proceedings of the XX
Iberoamerican Conference on Software Engineering, 2017.

[12] T. Pereira, D. Albuquerque, A. Sousa, F. Alencar, and J. Castro,
“Towards a metamodel for a requirements engineering process of
embedded systems,” in VI Brazilian Symposium on Computing Systems
Engineering, 2016.

[13] T. Arpinen, T. Hämäläinen, and M. Hännikäinen, “Meta-model and
uml profile for requirements management of software and embedded
systems,” EURASIP Journal on Embedded Systems, vol. 2011, no. 1, p.
592168, 2011.

[14] M. Li, F. Batmaz, L. Guan, A. Grigg, M. Ingham, and P. Bull, “Model-
based systems engineering with requirements variability for embedded
real-time systems,” in Fifth Model-Driven Requirements Engineering
Workshop at 23rd IEEE International Requirements Engineering Con-
ference, 2015.

[15] H. Dubois, M.-A. Peraldi-Frati, and F. Lakhal, “A model for require-
ments traceability in a heterogeneous model-based design process:
Application to automotive embedded systems,” in 15th ieee international
conference on engineering of complex computer systems, 2010.

[16] A. Albinet, S. Begoc, J. Boulanger, O. Casse, I. Dal, H. Dubois,
F. Lakhal, D. Louar, M. Peraldi-Frati, Y. Sorel et al., “The memvatex
methodology: from requirements to models in automotive application
design,” in 4th European congress of Embedded Real Time Software,
2008.

[17] M. Glinz, “On non-functional requirements,” in Requirements Engineer-
ing Conference, 2007, pp. 21–26.

[18] T. Pereira, “Bvccon-tool: A modelling tool to support a dynamic busi-
ness process configuration approach, in portuguese: Bvccon-tool: Uma
ferramenta para apoiar uma abordagem de configuração de processos de
negócios dinâmicos,” Recife, Pernambuco, Brazil, 2014.

[19] M. Usman, R. Britto, J. Börstler, and E. Mendes, “Taxonomies in soft-
ware engineering: A systematic mapping study and a revised taxonomy
development method,” Information and Software Technology, 2017.

[20] I. Krüger, C. Farcas, E. Farcas, and M. Menarini, “7 requirements
modeling for embedded realtime systems,” in Model-Based Engineering
of Embedded Real-Time Systems, 2010.

[21] J.-L. Boulanger et al., “Requirements engineering in a model-based
methodology for embedded automotive software,” in IEEE International
Conference on Research, Innovation and Vision for the Future. IEEE,
2008, pp. 263–268.

[22] C. J. Fidge and A. M. Lister, “Disciplined approach to real-time systems
design,” Information and Software Technology, pp. 603–610, 1992.

[23] M. Broy and O. Slotosch, “From requirements to validated embed-
ded systems,” in First International Workshop on Embedded Software.
Springer, 2001, pp. 51–65.

[24] K. H. Pries and J. M. Quigley, Project Management of Complex and
Embedded Systems: Ensuring Product Integrity and Program Quality.
CRC Press, 2008.

[25] L. Martins Galvao, J. Ossada, A. Belgamo, and B. Ranieri, “Require-
ments elicitation guide for embedded systems: An industry challenge,”
The Eighth International Conference on Software Engineering Advances,
2013.

[26] IEEE, “Ieee recommended practice for software requirements specifica-
tions,” IEEE Std 830-1998, pp. 1–40, Oct 1998.

[27] X. F. Zha, S. J. Fenves, and R. D. Sriram, “A feature-based approach
to embedded system hardware and software co-design,” in Computers
and Information in Engineering Conference. American Society of
Mechanical Engineers, 2005, pp. 609–620.

[28] G. Tony and T. Kaarina, “Universal require-
ments engineering process maturity model,”
=http://www.gorschek.com/doc/REPM Project files/uniREPM v09CR.pdf,
2011, acessed: 2018-06-19.

[29] B. R. Larson and J. Hatlicff., “Open patient-controlled analge-
sia infusion pump system requirement,” http://santoslab.org/pub/open-
pca-pump/artifacts/Open-PCA-Pump-Requirements.pdf, 2018, accessed:
2018-06-04.

