
Photonic Data Services:

Integrating Data, Network and Path Services to

Support Next Generation Data Mining

Applications

Robert L. Grossman, Yunhong Gu,
Dave Hanley, Xinwei Hong, Jorge Levera and Marco Mazzucco

Laboratory for Advanced Computing
University of Illinois at Chicago

Dave Lillethun, Joe Mambretti, and Jeremy Weinberger
iCAIR

Northwestern University

May 11, 2004

This is a draft of the paper Robert L. Grossman, Yunhong Gu,
Dave Hanley, Xinwei Hong, Dave Lillethun, Jorge Levera, Joe Mam-
bretti, Marco Mazzucco, and Jeremy Weinberger, Photonic Data Ser-
vices: Integrating Path, Network and Data Services to Support Next
Generation Data Mining Applications, Data Mining: Next Gener-
ation Challenges and Future Directions, H. Kargupta, A. Joshi, K.
Sivakumar, and Y. Yesha, editors, AAAI Press, 2004.

Abstract

We describe an architecture for next generation, distributed data min-
ing systems which integrates data services to facilitate remote data anal-
ysis and distributed data mining, network protocol services for high per-
formance data transport, and path services for optical paths. We also
present experimental evidence using geoscience data that this architec-
ture scales the remote analysis of Gigabyte size data sets over long haul,
high performance networks.

1 Introduction

A fundamental challenge for next generation data mining is to develop systems
for remote data analysis and distributed data mining which scale to large and

1



very large data sets. The data may be at rest in the sense that it resides on
remote disks and tapes or it may be in motion in the sense that it is collected
and streamed from a remote instrument.

The analysis and mining of this type of data is difficult for several reasons:

1. The majority of prior work has focused on agent-based systems in which
local models are built on data in place and at rest, the models moved, and
then combined at a central location.

2. TCP-based data transport itself becomes a bottleneck when working with
remote and distributed data, even in high bandwidth networks, due to
TCP’s current congestion control mechanism [1]. This is because the con-
gestion control mechanism for TCP behaves poorly for flows over links
with a high bandwidth delay product. The bandwidth delay product can
be approximated by multiplying the round trip time for a packet by the
maximum bandwidth of the least capable link that a packet transverses.
As an example, a standard TCP flow over a 155 Mb/s OC-3 link connect-
ing Chicago and Amsterdam is in practice limited to about 5 Mb/s unless
extensive network tuning is undertaken.

3. In the last few years, we have gained a better understanding of the prim-
itives required to integrate data mining with databases. On the other
hand, we do not yet have a good understanding of the primitives required
for distributed, high performance data mining.

In this paper, we introduce an architecture for remote data analysis and dis-
tributed data mining which integrates services to set up optical paths, network
protocols designed for high performance networks, and data services supporting
the remote analysis and distributed mining of large data sets. We also show
experimentally the speedup gained with this approach for some typical data
mining algorithms such as computing simple correlations for streaming data.

We believe that the work described here is novel for the following reasons:

1. This is the first paper that we know of describing an architecture for in-
tegrating a) data services supporting primitives to facilitate remote data
analysis and distributed data mining, b) network protocols designed to
move packets efficiently over high performance networks, and c) services
designed to set up paths on demand for photonic networks when required
by applications. Integrated services like these can provide the founda-
tion for scaling distributed data mining to large data sets. We call this
architecture Photonic Data Services.

2. This is the first experimental study that we are aware of demonstrating
the feasibility of the distributed mining of Gigabyte size data sets that are
separated by thousands of miles and over a hundred milliseconds in packet
round trip time.

2



In Section 2, we describe related work. In Section 3, we describe the basic
idea. In Section 4, we describe the architecture we introduce called Photonic
Data Services or PDS. In Sections 5-7, we describe the three main layers of PDS.
In Section 8, we describe the testbed we use for our experiments. In Section 9,
we describe our experimental studies involving distributed mining of geoscience
data. Section 10 is the summary and conclusion.

We are currently continuing the experiments described in this paper and
preparing an expanded version of this paper [13].

2 Background and Related Work

In this paper, we are concerned with supporting remote data analysis and dis-
tributed data mining applications with high performance data transport ser-
vices. In addition, many applications will also require high performance com-
pute services, which we do not address. Today, these would be typically pro-
vided by local compute clusters or by virtual compute clusters accessed via a
computational grid [9] or computational middleware architecture [29].

There have been three main architectural approaches to date for distributed
data mining: agent based systems, data grid based systems, and data web based
systems. We consider each in turn.

The first approach is to use agents over commodity networks to move data,
remotely control the data mining algorithms at the different sites, and to collect
the intermediate results and models. Systems with this architecture include the
JAM system developed by Stolfo et al. [33], the BODHI system developed by
Kargupta et al. [20], the Kensington system developed by Guo et al. [5], and
the Papyrus system developed by Grossman et al. [12].

The second approach is to use cluster middleware. Systems with this archi-
tecture include those developed by Subramonian et al. [30], Moore et al. [27],
and Grossman et al. [12]. More recently, Globus has emerged as the dominant
middleware for working with distributed clusters [9]. The Globus infrastructure
for data intensive computing is called the data grid, and includes services for
parallel TCP striping (GridFTP), and data replication services (Globus Replica
Catalog and Globus Replica Management) [6].

Other grid middleware services that have been used for data mining include
the DataCutter developed by Saltz et al. [2] and Discovery Net developed by
Guo et al. [32]. For example, Du and Agrawal recently used the DataCutter for
some distributed data mining experiments [7].

The third approach, and the one described in this paper, is to use data webs
which are web based infrastructures for data [10]. Unlike grid middleware which
is built over authentication, authorization and access (AAA) control mechanisms
for rationing and scheduling presumably scarce high performance computing
resources [9], data webs are built using W3C standards and emerging standards
for web services and packaging (SOAP and XML). Data webs in contrast to
data grids are designed to encourage the open sharing of data resources without
AAA controls, in the same way that the web today encourages the sharing of

3



document resources without AAA controls [34].
For small data sets, data webs use W3C standards and emerging standards

to manage both the data and metadata. These include HTTP, DWTP (Data
Web Transport Protocol) and other emerging standards for transport [11], and
SOAP and XML for packaging [34]. For large data sets, this infrastructure
is used just for the meta-data, while specialized network protocols and data
services (the photonic data services described below) are used to manage the
data itself. Providing separate mechanisms for control paths and data paths
is an old idea in high performance computing going back to at least the IBM
High Performance Storage System (HPSS). Developing the appropriate data
web services and protocols to work with large remote and distributed data is a
fundamental research challenge.

As mentioned above, the performance of data flows with large bandwidth
delay products (BDP) is usually quite poor in practice [1].

There have been several approaches for dealing with this problem. One
approach to improving TCP performance for data intensive applications is to
adjust the TCP window size to be the product of the bandwidth and the RTT
delay of the network [18]. This approach requires modifying and tuning the
kernel of each of the operating systems transporting the packets and ensuring
that the networking hardware can support these large or jumbo packets.

Another approach to overcoming the limitations of TCP is to stripe TCP
over several standard TCP network connections. In contrast to the first ap-
proach, this can be done at the data middleware or application level. This
approach has been implemented several times, including PSockets [16] and
GridFTP [3]. It has been observed that effectively utilizing high performance
links can require dozens to hundreds of sockets. This can create an overhead,
limiting the usefulness of this approach. In addition, the window size must be
carefully tuned, as with the first approach.

Another approach is to use a protocol that combines a UDP-based data
channel with a TCP-based control channel. UDP can effectively transport data
at high rates even over high BDP paths. The TCP control channel can be used
to create a reliable algorithm, while the appropriate rate and congestion control
algorithms can be used in the control channel so that the algorithm is friendly to
other flows. PDS uses a protocol called SABUL [15], which takes this approach
and is described in more detail below. Since SABUL is based upon TCP and
UDP, it can be deployed as an application library without making any changes
to the existing network infrastructure.

Another approach is to improve TCP in various ways. High Speed TCP
[8], Scalable TCP [22], and FAST [19] are examples of this approach. Although
these approaches all appear to be promising, work is still required to understand
their friendliness, performance, and scalability. In addition, new TCP variants
require significant changes to the current network infrastructure.

Another approach is to create entirely new protocols, such as Explicit Con-
trol Protocol (XCP) [21] and the Datagram Congestion Control Protocol (DCCP)
[23]. Again, deploying these new protocols will take some time due to the sig-
nificant changes required to the current network infrastructure.

4



3 The Basic Idea

Today data intensive applications working with remote and distributed data
are generally based upon standard networking (IP) and transport (TCP) pro-
tocols. For data mining applications running on commodity networks analyzing
small data sets these protocols work extremely well. Data mining applications
involving large, distributed data sets have generally used specialized networks
such as NSF’s vBNS network or the Internet 2’s Abilene network. In practice,
very large bandwidth applications have to be scheduled on these networks and
require the use of specialized transport protocols [16].

As optical networking architectures become more common, a new possibility
is emerging. A bandwidth demanding application can request an optical con-
nection between the data sources and the data sinks for a specific application.
More specifically, the application can request the set up, status and tear down of
the required optical paths. Clearly there is a cross over point: for short transfers
of small data, TCP is clearly preferable, while for long transfers of very large
data, a dedicated optical path might be preferable.

For the purposes here, the layered network model we use is a standard ex-
tension of the standard 5-layer model in which we split the top layer into a layer
providing specialized data services for remote data analysis and distributed data
mining and a top application layer. More generally, two additional layers would
be added between layers 5 and 6 below: one for the description of data services
(for example, WSDL) and one for the discovery of data services (for example,
UDDI) [34].

1. Physical Links. We assume that the physical links are provided by multi-
channel wavelength-division multiplexed (WDM) communications, as well
as by Ethernet, and other technologies.

2. Path Services Layer. We assume that there are services allowing us to set
up paths between devices, tear down paths, check the status of paths, set
up routing, etc.

3. Internet Layer. This layer provides a common network addressing and
routing across multiple networks. For our applications, we use the Internet
Protocol (IP) in this layer.

4. Network Protocol Services Layer. We assume that there are transport ser-
vices including TCP, UDP, and other more specialized protocols providing
high performance over the paths. Our applications use specialized high
performance protocols in this layer.

5. Data Services Layer. We assume that there are standard services for
moving data such as SOAP-based web services, as well as more specialized
data services designed for performance networks.

6. Application Layer. We assume that the remote data analysis and dis-
tributed data mining applications can request standard and specialized
network services depending upon the applications’ requirements.

5



In this paper, we describe specialized integrated services for layers 2, 3 and
5 and illustrate their use on the analysis of distributed geoscience data.

Layer Description Implementation
6 Application DWTP applications
5 Data Services SOAP, DWTP
4 Network Protocol TCP, UDP, SABUL
3 Internet Protocol IP
2 Path Services ODIN
1 Physical Links WDM, Ethernet, ...

4 Photonic Data Services

In this paper, we introduce the idea of integrating 1) specialized photonic path
services; 2) high performance network protocols and 3) high performance data
services providing data mining primitives for remote data analysis and dis-
tributed data mining. We call these integrated services photonic data services
or PDS.

As an example, consider a distributed data mining application in which
1.8 GB of vegetation data over a region specified by latitude and longitude
coordinates will be correlated with 1.8 GB of climate data over the same region.
Assume both data sets are in the US in different locations, but that the client
doing the correlation is in Amsterdam.

Assume that both data sources are connected to the client by an OC-12
network operating at 622 Mb/s. Today, the data would be moved to a common
location using a standard network protocol such as TCP, merged, and then
correlated. Without the correlation, this process takes over 3000 seconds, as we
will see in Section 9.

In general an experimental OC-12 is not available. Using the photonic data
services described below, a photonic path can be set up in less than a minute
and the two 1.8 GB streams transported and merged in less than 70 seconds, as
we will see in Section 9. As the path services software matures, we expect the
minute set up time to be reduced substantially, so that a data mining compu-
tation that today requires about an hour could be done in about a minute.

In the next three sections, we describe the three service layers we have imple-
mented and integrated to create photonic data services to support data mining.
Our implementation of the path services is called ODIN [24]; our implementa-
tion of the network protocol services is called SABUL [15]; our implementation
of the streaming merge which is the data service or data mining primitive for
the example above is called the continuously generated merge or CGM [26].
The work described in this paper is the first time we have integrated these three
service layers and performed experimental studies using them.

6



5 Path Services

The path services used in PDS are called the Optical Dynamic Intelligent Net-
work Service Layer or ODIN [24]. We now describe these systems following [24].
ODIN receives requests for circuits by applications, which for PDS are usually
from the data service layer, and contacts the required network switches, includ-
ing both optical-domain DWDM switches and traditional Ethernet switches and
IP routers, to set up the circuits. ODIN also provides services to tear down paths
and to check their status.

ODIN consists of two sub-systems: one, called the TeraScale High Perfor-
mance Optical Resource Regulator or THOR, interfaces to the optical fabric;
while the other, called the Dynamic Ethernet Intelligent Transit Interface or
DEITI, interfaces to the traditional Ethernet/IP fabric.

ODIN is designed to dynamically provision and control global light paths.
The ODIN subsystem THOR is based on new signaling methods for dynamically
provisioning light paths. These light paths can be used to create optical VPNs
(OVPNs), as well as to extend these light paths to edge resources through other
types of dynamically provisioned paths, such as vLANs.

Currently, ODIN sets up paths only within a single administrative domain.
In future work, similar path services are planned for multiple administrative
domains.

6 Network Protocol Services

In this section, we describe a network protocol designed for high performance
data transfer called the Simple Available Bandwidth Utilization Library or
SABUL following [15]. We emphasize that several of the other network pro-
tocols mentioned above could also be used. We chose to use SABUL since as an
application level library no change to the existing network infrastructure was
required. In addition, SABUL does not require the sometimes delicate tuning
required by IETF RFC 1323.

The idea behind SABUL is simple. SABUL combines the UDP protocol in
order to send data at a high rate with the TCP protocol in order to do this in a
reliable fashion. UDP has no flow control, rate control, or reliable transmission
mechanisms. SABUL implements these control functions in a separate TCP
control channel. This approach is in contrast to the approach of other high
performance protocols such as NETBLT [4] which combine the data and control
channels.

In SABUL, the packets on the UDP channel consist of the usual UDP header
plus a 32 bit field for a sequence number. On the TCP channel, each packet
consists of: a list of lost data packets, a field stating the requested data rate,
and a field reserved to report the state of the receiver’s available buffer size. We
define the communication state information to be the information contained in
these TCP packets.

The flow is assumed to be unidirectional. Data is sent to the receiver over

7



the UDP channel, while current communication state information is sent over
the TCP channel, from the receiver to the sender. Since the communication
state information is passed over TCP, its arrival is ensured; since the amount
of this information is relatively small, it has a negligible effect on the overall
performance of SABUL.

One of the advantages of SABUL is its continuous updating of state infor-
mation. In contrast, NETBLT uses a mechanism that sends buffers of data at a
fixed rate. At the end of transmission of each buffer, the receiving side of NET-
BLT sends the sender a list of packets that were lost in the transmission of this
buffer. The sender then resends these packets; the process continues until all
packets in the buffer are accounted for. Then the next buffer can be transmitted
by NETBLT. NETBLT needs to block until all packets are accounted for on the
sending side before sending another buffer. This process can be further delayed
since packet loss information is transmitted unreliably by the receiver to the
sender (since this information is sent over UDP). Another deficit of NETBLT
is that it needs to wait for at least one round trip time to get each update of
packets lost.

In SABUL, however, each time the receiver notices at least one missing
packet, it uses the TCP channel to transmit to the sender a list of packets that
were lost. It does not have to block the sending of packets over the UDP channel
to wait for an incoming packet containing the communication state information.
This allows for changing the rate and flow of data, and retransmission of any
missing packets during the transmission of the data. The list of missing packets
is updated every time a missing packet is received. If during a predefined amount
of time no packet was lost, and thus no transmission sent to the sender on the
TCP channel, the receiver sends a notification of this fact to the sender with
communication state information. This allows the sender to empty its buffer of
packets which have successfully been received and adjust the rate and flow if
necessary.

7 Data Services

In this section, we describe data services designed to be component services
or primitives for distributed data mining applications. This section is adapted
from [11].

The data model, access model, and query model for PDS are based upon
data webs. Data webs are web based infrastructures designed to facilitate the
analysis and mining of remote and distributed data [11]. Data webs use a
protocol for working with remote data called the Data Web Transfer Protocol
or DWTP (formerly known as the DataSpace Transfer Protocol or DSTP) in
the same way that the standard web uses HTTP to access remote documents.
Data webs also support access to remote data using SOAP as the packaging
protocol.

The PDS experiments described below use a data web implementation called
DataSpace, which we sketch briefly below [11].

8



• Distributed Columns of Numerical Data. The data model for PDS is sim-
ple. Data is divided into rows (data records) and columns (data fields
or data attributes). Both may be distributed over the web. Access to
the data itself is through a DWTP server. The current DataSpace DWTP
servers can also access data using SOAP. Physically, the data itself may be
stored as files, in databases, or using other specialized storage mechanisms.
Logically, data is just a distributed collection of columns.

• Universal Correlation Keys. A Universal Correlation Keys (UCK) is a
globally unique id (GUID) and is used for relating columns of data on two
different DWTP servers. Each column of data is associated with at least
one column of UCKs.

• Multi-Dimensional UCKs. UCKs may be combined to provide multi-
dimensional keys. This is essential for working with scientific and engi-
neering data, such as the geoscience data used in the experiments below.
For example, this data uses latitude and longitude as the UCKs.

• Column Based Meta-Data. Associated with each column of data is at-
tribute meta-data and with each data set (a collection of columns) data
set meta-data. DWTP applications may or may not use this meta-data.
On the other hand, this meta-data is essential for building and deploy-
ing statistical models. DWTP servers provide a simple mechanism for
associating metadata to columns and collections of columns.

Universal correlation keys enable distributed columns to be correlated in the
following fashion: Pairs (ki, xi), where ki is a UCK value and xi is an attribute
value, on DWTP Server 1 can be combined with pairs (kj , yj) on DWTP Server
2 to produce a table (xk, yk) in a DWTP client. The DWTP client can then,
for example, find a function y = f(x) relating x and y. This simple mechanism
of distributed columns identified by UCKs (perhaps vector valued) is sufficient
information for many data mining algorithms.

Depending upon the request, DWTP servers may return one or more columns,
one or more rows, or entire tables. DWTP uses XML to describe the metadata.
On the other hand, for efficiency and scalability, by default data itself is trans-
mitted as records delimited by carriage returns, with fields delimited by commas.
As an alternative, data may also be transmitted using SOAP. The DWTP client
may also indicate that a specialized high performance protocol such as SABUL
should be used for the data channel. To summarize, the DWTP protocol uses
XML for metadata and small data, while data is typically streamed, with large
amounts of data streamed using SABUL or other high performance network
protocols.

The DWTP protocol includes commands for retrieving metadata, retriev-
ing UCKs, retrieving data and subsets of data, and mechanisms for sampling,
working with missing data, and merging by UCKs.

9



8 Physical Testbed

We assume that our network consists of Dense Wavelength-Division Multiplexed
optical devices together with standard Ethernet/IP devices. For our experi-
ments we used the Chicago area OMNInet [25] and the global Terra Wide Data
Mining Testbed [35].

OMNInet is an optical networking testbed deployed in the Chicago metropoli-
tan area. OMNInet currently provides 1 GE and 10 GE services between
Northwestern, the University of Illinois at Chicago, and the StarLight facility
in Chicago. OMNInet is operated by a research consortium consisting of iCAIR
at Northwestern, the Electronic Visualization Laboratory at the University of
Illinois at Chicago, Argonne National Laboratory, SBC, and Nortel.

The Terra Wide Data Mining Testbed (TWDM) is a testbed built on top of
DataSpace for the remote analysis, distributed mining, and real time exploration
of scientific, engineering, business, and other complex data. Currently, the
TWDM Testbed consists of five geographically distributed workstation clusters
linked by optical networks through StarLight in Chicago. These sites include
StarLight itself, the Laboratory for Advanced Computing at UIC, iCAIR at
Northwestern University, SARA in Amsterdam, and Dalhousie University in
Halifax. SARA is connected to StarLight via the Netherlands’ Surfnet network
and Dalhousie is connected to StarLight via Canada’s CANARIE network.

The experimental setup was as follows. Data servers were located at the
SARA research facility in Amsterdam and at the University of Illinois at Chicago
and connected via an OC-12 network. The merge was done at the StarLight
Facility in Chicago. StarLight and the University of Illinois at Chicago are
located several miles a part. The machine performing the distributed merge
was connected by OC-12 paths to both remote data sources.

The machine in Amsterdam was a dual P4, 1700 Mhz, with 512M RAM.
The machines in Chicago were dual PIIIs, 1000Mhz, with 512M RAM. The
machines were all running Linux, with the 2.4.x kernels. The network traffic
was over SurfNet and OMNInet with routing providing 622 Mb/s of maximum
bandwidth.

9 PDS Application: Lambda Joins

In this section, we describe a sample distributed data mining application de-
veloped using photonic data services. The core application is the merging of
distributed geoscience data from NCAR [28]. We have described previously the
remote analysis of small NCAR data sets with DWTP clients and servers [11]
over the commodity internet

For the work described in this section, we integrated the data services pro-
vided by DWTP servers, the network protocol services provided by SABUL,
and the path services provided by ODIN. To support the correlation of dis-
tributed data in the NCAR format, we separately developed a continuous merge
algorithm for streaming data over high performance networks called the Con-

10



tinuously Generated Merge or CGM [26]. Once the streaming data has been
merged, simple counts using a finite buffer can be done in a variety of ways [14].

This approach is quite general and, for example, could be used to merge and
do simple analyses of other distributed data using multi-dimensional keys.

Continuously Generated Merge (CGM) Algorithm. We now briefly re-
view the CGM algorithm following [26]. In the CGM algorithm we assume the
data is partially presorted. Without loss of generality, assume there are two
data streams, A and B, being drawn into a client in approximately ascending
order and we are trying to merge on one UCK. The CGM algorithm depends
upon two parameters: a parameter N determining the number of records in a
window, which is used to buffer the streaming data, and Nh, the number of
entries in two auxiliary hash tables. The algorithm has an even step and an odd
step. The even steps of the algorithm are as follows:

1. The client grabs some fixed number of records N , from both stream A
and stream B and places them in window A and window B respectively
(each has room for exactly N records).

2. A hash is done on the value of each UCK in window A and the record
is placed in the appropriate location in hash table A, overwriting any
previous record.

3. A hash is done on the value of each UCK in window B and if the value
hashes to an occupied location in hash table A, both the records are
merged. If the value does not hash to an occupied location in hash table
A, then the record is placed in the appropriate location in hash table B,
overwriting any previous record.

In the odd steps of the algorithm, the above algorithm is executed, but
reversing the roles of A and B.

Experimental Results. The first results below are from the CGM algorithm
running using TCP as the network protocol and DWTP as the data service
protocol. Each data stream was 300 MB in size. The CGM algorithm used a
hash table size of 50,000 and a window size of 10,000. The data was atmospheric
data from NCAR. The randomization was done by replacing every n’th row (for
example, for 10 percent every 10th row) with a random row which was within
50,000 lines of the current row.

As can be seen from the table, the average speed varied between 4-5 Mb/s,
despite the fact that each link had a maximum available bandwidth of 622 Mb/s.
We note that this type of result is typical.

Rand % Match % Time sec Data Rate Mb/s
2 96.6 513 4.68
10 89.9 540 4.44
20 81.5 531 4.52
33 73.1 563 4.26

11



The next two results below are from the CGM algorithm running SABUL as
the network protocol, DWTP as the data service protocol, and ODIN to provide
path service. In this experiment, ODIN was called statically, not dynamically
by the application. The data size this time was 1.8 GBs so that in total 3.6 GBs
of data were merged by the algorithm. The average speed varies between 400-500
Mb/s. This means that CGM over SABUL was about 600x faster on average,
since the amount of data was 6x greater and the elapsed time was about 100x
greater.

When testing the algorithm we realized the largest single affect on the per-
formance of the merge was the length of the record. The longer the record size
the memory copying required, the greater the merge time. To illustrate this we
ran two tests. In the first, both data files contain 1 UCK and 1 attribute; in
the second, both data files contain 1 UCK and 7 attributes.

Rand % Match % Time sec Data Rate Mb/s
2 99 53.3 550
10 91 52.4 550
20 83 56.2 512
33 78 54.6 527

Rand % Match % Time sec Data Rate Mb/s
2 99 66.3 434
10 92 65.7 438
20 82 64.2 449
33 79 65.1 442

10 Summary and Conclusion

In this paper, we have introduced an architecture called Photonic Data Ser-
vices or PDS which integrates data services, network protocol services, and
path servers. With intelligent path services, distributed data mining applica-
tions can intelligently signal for a special photonic path, use this for distributed
data mining, and then release it for use by other applications. With high per-
formance network protocols, data mining applications can work effectively with
remote Gigabyte size data sets over high performance networks. These types of
protocols are sometimes several hundred times faster than traditional protocols
over the same high performance networks. With specialized data services such
as streaming merges, distributed data mining services can effectively correlate
distributed Gigabyte size data sets.

In this paper, we have provided experimental evidence that our implemen-
tations scale to remote Gigabyte size data sets that can be distributed over
thousands of miles and accessed via long haul networks with packet round trip
times (RTT) of a hundred milliseconds or more. Compared to current implemen-
tations of data mining primitives for merging two data streams and computing
counts, our Photonic Data Services are significantly faster. For example, to

12



stream two 1.8 Gigabyte data streams of geoscience data using latitude and
longitude as keys across the Atlantic, merge the results by key, and compute
simple counts required over an hour with conventional services and less than a
minute using the photonic data services described in this paper. We emphasize
that both experiments used the same high performance network.

Data webs built with this architecture complement data grids which require
authentication, authorization and access controls supplied by Globus and other
grid middleware, and the various custom agent based distributed data mining
systems which have developed over the past several years. Data webs, and
indeed data grids, built over photonic data services are one means of meeting
the challenges posed by the large distributed and streaming data sets which will
become more common with next generation data mining applications.

References

[1] Joseph Bannister, Andrew Chien, Ted Faber, Aaron Falk, Robert Gross-
man, and Jason Leigh. Transport protocols for high performance: Whither
tcp? Communications of the ACM, to appear.

[2] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J.Saltz.
Distributed processing of very large datasets with datacutter. Parallel Com-
puting, 27(11):1457–1478, 2001.

[3] A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke. Protocols and ser-
vices for distributed data-intensive science. ACAT2000 Proceedings, pages
161–163, 2000.

[4] D. Clark, M. Lambert, and L. Zhang. Netblt: A high throughput transport
protocol. Frontiers in Computer Communications Technology: Proceedings
of the ACM-SIGCOMM ’87, pages 353–359, 1987.

[5] John Darlington, Yike Guo, Janjao Sutiwaraphun, and Hing Wing To.
Parallel induction algorithms for data mining. Lecture Notes in Computer
Science, 1280, 1997.

[6] Globus data grid. Retrieved from http://www.globus.org/datagrid/,
September 2, 2002.

[7] Wei Du and Gagan Agrawal. Using general grid tools and compiler tech-
nology for distributed data mining: Preliminary report. In Parthasarathy
et al. [31], pages 51–61.

[8] Sally Floyd. Highspeed tcp for large congestion windows.
http://www.icir.org/floyd/hstcp.html, 2002.

[9] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, California, 1999.

13



[10] Robert Grossman, Mark Hornick, and Gregor Meyer. Data mining stan-
dards initiatives. Communications of the ACM, 45(8):59–61, 2002.

[11] Robert Grossman and Marco Mazzucco. Dataspace - a web infrastruc-
ture for the exploratory analysis and mining of data. IEEE Computing in
Science and Engineering, 2002.

[12] Robert L. Grossman, Stuart Bailey, A. Ramu, Balinder Malhi, Harinath
Sivakumar, and Andrei Turinsky. Papyrus: A system for data mining
over local and wide area clusters and super-clusters. In Proceedings of
Supercomputing 1999. IEEE and ACM, 1999.

[13] Robert L. Grossman, Yunhong Gu, Dave Hanley, Xinwei Hong, Dave Lil-
lethun, Jorge Levera, Joe Mambretti, Marco Mazzucco, and Jeremy Wein-
berger. Experimental studies using photonic data services at igrid 2002.
Journal of Future Computer Systems, to appear.

[14] Robert L. Grossman, Jorge Levera, and Marco Mazzucco. Aggregate
queries on streams of data using a small buffer. UIC Laboratory for Ad-
vanced Computing Technical Report, 2002.

[15] Robert L. Grossman, Marco Mazzucco, Harinath Sivakumar, and Yiting
Pan. Simple available bandwidth utilization library for high-speed wide
area networks. Journal of Supercomputing, to appear.

[16] Robert L Grossman, Harinath Sivakumar, and S. Bailey. Psockets: The
case for application-level network striping for data intensive applications
using high speed wide area networks. In Supercomputing. IEEE and ACM,
2000.

[17] D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors. Pro-
ceedings the Third International Conference on the Knowledge Discovery
and Data Mining, Menlo Park, California, 1997. AAAI Press.

[18] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high perfor-
mance. IETF RFC 1323, May, 1992.

[19] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, and S. Singh. Fast tcp: From theory to experiments. IEEE
Communications Magazine, submitted for publication.

[20] H. Kargupta, I. Hamzaoglu, and B. Stafford. Scalable, distributed data
mining using an agent based architecture. In Heckerman et al. [17], pages
211–214.

[21] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. Proceedings of the ACM SIGCOMM,
2002.

14



[22] Tom Kelly. Scalable tcp: Improving performance in highspeed wide area
networks. submitted for publication, 2002.

[23] Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhye. Data-
gram congestion control protocol (dccp). http://www.icir.org/kohler/dcp/,
retrieved on January 10, 2003.

[24] Dave Lillethun, Joe Mambretti, and Jeremy Weinberger. Odin: Path ser-
vices for optical networks, in preparation. www.icair.org, 2002.

[25] Joel Mambretti. Omninet www.icair.org/omninet, 2002.

[26] Marco Mazzucco, Asvin Ananthanarayan, Robert L. Grossman, Jorge
Levera, and Gokulnath Bhagavantha Rao. Merging multiple data streams
on common keys over high performance networks. In Proceedings of Super-
computing 2002. IEEE and ACM, 2002.

[27] R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan. Data-
intensive computing. In The Grid: Blueprint for a New Computing Infras-
tructure [9], pages 105–129.

[28] National Center for Atmospheric Research, Community Climate Model.
Retrieved from www.cgd.ucar.edu/cms/ccm3/, April 10, 2002.

[29] NSF middleware initiative. Retrieved from www.nsf-middleware.org,
September 2, 2002.

[30] S. Parthasarathy and R. Subramonian. Facilitating data mining on a net-
work of workstations. Advances in Distributed and Parallel Knowledge
Discovery, 2000.

[31] Srinvasan Parthasarathy, Hillol Kargupta, Vipin Kumar, David Skillicorn,
and Mohammed Zaki, editors. High Performance Data Mining, Philadel-
phia, Pennsylvania, 2002. SIAM.

[32] Patrick and Yike Guo. The design of a platform for distributed kdd com-
ponents. In Parthasarathy et al. [31], pages 63–78.

[33] S. Stolfo, A. L. Prodromidis, and P. K. Chan. Jam: Java agents for meta-
learning over distributed databases. In Heckerman et al. [17].

[34] W3c semantic web. Retrieved from www.w3.org/2001/sw/, September 2,
2002.

[35] Terra wide data mining testbed. Retrieved from
www.ncdm.uic.edu/testbeds.htm, September 2, 2002.

15


