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Abstract

Great e�orts have been paid in the Intelligent Database

Systems Research Lab for the research and development of
e�cient data mining methods and construction of on-line

analytical data mining systems.

Our work has been focused on the integration of data min-

ing and OLAP technologies and the development of scalable,
integrated, and multiple data mining functions. A data min-

ing system, DBMiner, has been developed for interactive min-

ing of multiple-level knowledge in large relational databases
and data warehouses. The system implements a wide spec-

trum of data mining functions, including characterization,

comparison, association, classi�cation, prediction, and clus-
tering. It also builds up a user-friendly, interactive data

mining environment and a set of knowledge visualization

tools. In-depth research has been performed on the e�-
ciency and scalability of data mining methods. Moreover,

the research has been extended to spatial data mining, mul-

timedia data mining, text mining, and Web mining with
several new data mining system prototypes constructed or

under construction, including GeoMiner, MultiMediaMiner,

and WebLogMiner.

This article summarizes our research and development

activities in the last several years and shares our experiences
and lessons with the readers.

1 Introduction

The research into data mining in our lab started in

early 1989, when we proposed an e�cient knowledge dis-

covery method, attribute-oriented induction [4]. Since

then, we have investigated a set of interesting data

mining methods for mining relational data, data ware-

house data, spatial data, data formed with complex ob-

jects, text data, and multimedia data. These include

enhancement of attribute-oriented induction [13, 16],

automatic generation and adjustment of concept hier-

archies [16], mining multi-level association rules [15],
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meta-rule guided mining of associations [22], incremen-

tal and distributed mining of associations [8, 7], con-

straint pushing in association mining [10, 27], mining

periodicity and similarity in time-series data [11, 30],

multi-level classi�cation and prediction [23, 6], spatial

data cube construction [21], spatial association rule

mining [24], OLAP mining [12], Weblog mining [31],

etc.

A data mining system, DBMiner [16, 14], has been

constructed with our years of research and development.

The system integrates data mining with on-line analyt-

ical processing (OLAP) and implements a spectrum of

data mining functions, including characterization, com-

parison, association, classi�cation, prediction, and clus-

tering. An important goal of the system is to perform

multiple functional, on-line analytical mining in large

databases and data warehouses, where the on-line ana-

lytical mining implies that data mining is performed in

a way similar to on-line analytical processing (OLAP)

in multi-dimensional databases, i.e., mining can be per-

formed, interactively (i.e., by mouse clicking and with

quick response) when possible, in di�erent portions of

a multi-dimensional database and at di�erent levels of

abstraction.

This paper summarizes our work related to the

research and development of on-line analytical mining

mechanisms. The remaining of the paper is organized as

follows. In Section 2, we present the on-line analytical

mining mechanisms designed and implemented in the

DBMiner system. In Section 3, we introduce our

additional research into analytical mining methods. In

Section 4, we present our work on mining complex types

of data, including spatial data, complex data objects,

text data, multimedia data, and Web data. Finally, we

summarize our study and point out some future research

directions in Section 5.

2 OLAP + Data Mining ! On-Line

Analytical Mining

On-line analytical processing (OLAP) is a powerful data

analysis method for multi-dimensional analysis of data
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warehouses [5]. Motivated by the popularity of OLAP

technology, we develop an On-Line Analytical Mining

(OLAM) mechanism for multi-dimensional data mining

in large databases and data warehouses. We believe this

is a promising direction to pursue based on the following

observations.

1. Most data mining tools need to work on integrated,

consistent, and cleaned data, which requires costly

data cleaning, data transformation, and data inte-

gration as preprocessing steps [9]. A data warehouse

constructed by such preprocessing serves as a valu-

able source of cleaned and integrated data for OLAP

as well as for data mining.

2. E�ective data mining needs exploratory data analy-

sis. A users often likes to traverse exibly through

a database, select any portions of relevant data,

analyze data at di�erent granularities, and present

knowledge/results in di�erent forms. On-line ana-

lytical mining provides facilities for data mining on

di�erent subsets of data and at di�erent levels of ab-

straction, by drilling, pivoting, �ltering, dicing and

slicing on a data cube and on some intermediate data

mining results. This, together with data/knowledge

visualization tools, will greatly enhance the power

and exibility of exploratory data mining.

3. It is often di�cult for a user to predict what kinds of

knowledge to be mined beforehand. By integration

of OLAP with multiple data mining functions, on-

line analytical mining provides exibility for users to

select desired data mining functions and swap data

mining tasks dynamically.

However, data mining functions usually cost more

than simple OLAP operations. E�cient implementa-

tion and fast response is the major challenge in the real-

ization of on-line analytical mining in large databases or

data warehouses. Therefore, our study has been focused

on the e�cient implementation of the on-line analytical

mining mechanism. The methods that we developed in-

clude the e�cient computation of data cubes by integra-

tion of MOLAP and ROLAP techniques, the integration

of data cube methods with dimension relevance analy-

sis and data dispersion analysis for concept description,

and data cube-based multi-level association, classi�ca-

tion, prediction and clustering techniques. These meth-

ods will be discussed in detail in the following subsec-

tions.

2.1 Architecture for on-line analytical mining

An OLAM engine performs analytical mining in data

cubes in a similar manner as an OLAP engine performs

on-line analytical processing. Therefore, it is suggested

to have an integrated OLAM and OLAP architecture

as shown in Figure 1, where the OLAM and OLAP en-

gines both accept users' on-line queries (instructions)

User
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Warehouse
DataData

Base
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data integration filtering
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Meta
Data

Figure 1: An integrated OLAM and OLAP architecture

and work with the data cube in the analysis. Fur-

thermore, an OLAM engine may perform multiple data

mining tasks, such as concept description, association,

classi�cation, prediction, clustering, time-series analy-

sis, etc. Therefore, an OLAM engine is more sophisti-

cated than an OLAP engine since it usually consists of

multiple mining modules which may interact with each

other for e�ective mining.

Since some requirements in OLAM, such as the

construction of numerical dimensions, may not be

readily available in the commercial OLAP products,

we have chosen to construct our own data cube

and build the mining modules on such data cubes.

With many OLAP products available on the market,

it is important to develop on-line analytical mining

mechanisms directly on top of the constructed data

cubes and OLAP engines. Based on our analysis,

there is no fundamental di�erence between the data

cube required for OLAP and that for OLAM, although

OLAM analysis may often involve the analysis of a

larger number of dimensions with �ner granularities,

and thus require more powerful data cube construction

and accessing tools than OLAP analyses. Since OLAM

engines are constructed either on customized data cubes

which often work with relational database systems,

or on top of the data cubes provided by the OLAP

products, it is suggested to build on-line analytical

mining systems on top of the existing OLAP and

relational database systems, rather than from the

ground up.
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2.2 Data cube construction

Data cube technology is essential for e�cient on-line

analytical mining. There have been many studies on

e�cient computation and access of multidimensional

databases, such as [1, 5, 33].

Our early development of attribute-oriented induc-

tion method [13] adopts two generalization techniques:

(1) attribute removal, which removes attributes which

represent low-level data in a hierarchy, and (2) at-

tribute generalization, which generalizes attribute val-

ues to their corresponding high level ones. Such gener-

alization leads to a new, compressed generalized relation

with count and/or other aggregate values accumulated.

This is similar to the relational OLAP (ROLAP) imple-

mentation of the roll-up operation.

For fast response in OLAP and data mining, our

later implementation has adopted data cube technology

as follows: when data cube contains a small number

of dimensions, or when it is generalized to a high

level, the cube is structured as compressed sparse

array but is still stored in a relational database (to

reduce the cost of construction and indexing of di�erent

data structures). The cube is precomputed using

a chunk-based multiway array aggregation technique

similar to [33]. However, when the cube has a large

number of dimensions, it becomes very sparse with

a huge number of chunks. In this case, a relational

structure is adopted to store and compute the data

cube, similar to the ROLAP implementation. We

believe such a dual data structure technique represents

a balance between multidimensional OLAP (MOLAP)

and relational OLAP (ROLAP) implementations. It

ensures fast response time when handling medium-sized

cubes/cuboids and high scalability when handling large

databases with high dimensionality.

Notice that even adopting the ROLAP technique, it

is still unrealistic to materialize all the possible cuboids

for large databases with high dimensionality due to the

huge number of cuboids. It is wise to materialize more

of the generalized, low dimensionality cuboids besides

considering other factors, such as accessing patterns and

the sharing among di�erent cuboids.

A 3-D data cube/cuboid can be selected from a high-

dimensional data cube and be browsed conveniently

using the DBMiner 3-D cube browser as shown in Figure

2, where the size of a cell (displayed as a tiny cube)

represents the entry count in the corresponding cell, and

the brightness of the cell represents another measure of

the cell. Pivoting, drilling, and slicing/dicing operations

can be performed on the data cube browser with mouse

clicking.

2.3 Concept description

Concept/class description plays an important role in

descriptive data mining. It consists of two major func-

Figure 2: Browsing of a 3-dimensional data cube in

DBMiner

Figure 3: Graphical output of the Characterizer of

DBMiner

tions: data characterization and data discrimination (or

comparison).

Data characterization summarizes and characterizes

a set of task-relevant data by data generalization. Data

characterization and its associated OLAP operations,

such as drill-down, roll-up (also called drill-up), slice,

and dice can be performed on data cubes. Drilling op-

eration facilitates users to examine data characteristics

at multiple levels of abstraction.

An output of the DBMiner characterizer is shown in

Figure 3.

Data characterization, though can be implemented

e�ciently using data cube structures, is di�erent from

simple OLAP operations in data warehouse in two

aspects. First, the data cube approach con�nes the

data types of the dimensions in a data cube to be
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simple, nonnumeric data and the measures to be simple,

aggregated numeric value, whereas many applications

may require the analysis of more complex data types in

both dimensions and measures. Second, a simple OLAP

operation does not answer some important questions in

concept description, such as which dimensions should

be included in concept description, and at what level(s)

that a generalization process should reach. It is

user's responsibility to select appropriate dimensions

and decide which level the generalization should reach.

With regard to the �rst aspect, DBMiner allows nu-

merical attributes to serve as dimensions with a facility

of automatic generation of numerical hierarchies based

on the value distributions of the numerical attribute in

the database. One may choose to generate a numeri-

cal hierarchy with naturally segmented, approximately

equal-lengthed intervals at each level, or generate a hi-

erarchy with segmentation based on relatively even dis-

tribution of certain measure, such as count or sum of

sales, in the database. Also, one may choose to gener-

ate hierarchies by applying some sophisticated cluster-

ing or segmentation algorithms. Moreover, besides stor-

ing simple, aggregated numeric value as measures in a

data cube, one may store in cube cells pointers to one

or a group of (aggregated) objects. For example, the

measure in a spatial data cube could be a spatial ob-

ject pointer, pointing to either a precomputed, merged

spatial object or a collection of spatial object identi�ers.

The second aspect is handled as follows. A dimension

relevance analysis method is used to rank the relevance

of the dimensions and only the more relevant dimen-

sions will be included in data characterization. More-

over, instead of performing generalization step by step

by repeated mouse clicking in OLAP, characterization

generalizes each dimension directly to a desired level

controlled by a default or user/expert- speci�ed dimen-

sion threshold. Further drill-down or roll-up on the gen-

eralized result along a dimension can be performed by

the user. The drill-down can be implemented e�ciently

by saving a minimally generalized cuboid or saving a

set of cuboids at the levels lower than that of currently

generalized cuboid.

Discrimination or comparison is to �nd a set of

discriminant features or rules which distinguish the

general properties of a target class from that of the

contrasting class(es) speci�ed by a user.

Concept discrimination (or comparison) is imple-

mented as follows. First, the set of relevant data in

the database is collected by query processing and par-

titioned respectively into a target class and one or a set

of contrasting class(es). Second, dimension relevance

analysis is performed on these classes and only the rel-

evant dimensions are included in the further analysis.

Third, generalization is performed on the target class to

the level controlled by a user/expert- speci�ed dimen-

Figure 4: Association plane for visualizing two-

dimensional associations in DBMiner

sion threshold, which results in a prime target cuboid.

The concepts in the contrasting class(es) are generalized

to the same level as those in the prime target cuboid,

forming the prime contrasting cuboid(s). Finally, the

resulting classes can be presented in the form of tables,

graphics, and rules. Synchronous drilling can be per-

formed on the target and contrasting classes in order to

adjust the results to the desired levels.

Moreover, analytical descriptive data mining is not

con�ned to characterizing measures of simple aggregate

functions, such as count, average, sum, maximum, and

minimum. More comprehensive statistical measures can

be included in data characterization and discrimination.

For example, one can display the approximate boxplot

for a combination of two selected dimensions and drill

along one dimension to show the behavior of data in re-

gard to both central tendency and dispersion, where the

approximate boxplot contains the approximations of the

�rst quartile, median, the third quartile, the whiskers,

and the potential outliers or outlier blocks. Such ap-

proximate boxplot can be implemented e�ciently in data

cubes with numerical dimensions. Similarly, one can

construct the approximate quantile-quantile plot based

on the same principle and compare interesting data dis-

tribution properties among di�erent groups of data. No-

tice that by computing such statistical measures in data

cubes, multi-dimensional OLAP analysis, such as inter-

active drill-down and roll-up along any dimension, can

be integrated with statistical analysis to make descrip-

tive data mining an e�ective and enjoyable process.

2.4 Data cube-based association analysis

Association analysis is an important data mining func-

tion. There have been many studies on mining associa-

tion rules in transaction databases [3, 29, 15]. Data cube

o�ers additional exibility and e�ciency in association

rule mining.
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Two kinds of associations can be mined in a data

cube: inter-dimension association and intra-dimension

association. The former is an association among dif-

ferent dimensions; whereas the latter is an association

with regard to one or a set of dimensions (called ref-

erence dimension) by grouping the remaining set of di-

mensions into transaction-like sets. In DBMiner, inter-

dimension association is called multi-dimensional asso-

ciation, whereas intra-dimension association is called

transaction-based association.

The distinction between the two kinds of associations

is illustrated in the following example.

Example 1. Suppose the cube \grading" for a univer-

sity database contains four dimensions as shown below.

grading = hstudent; course; semester; gradei.

Inter-dimension association is the association among

a set of distinct dimensions of a data cube. For example,

the association between course and grade, such as \the

courses in computing science tend to give good grades",

is an inter-dimension association.

Intra-dimension association is the association with

regard to one or a set of reference dimensions by group-

ing the remaining set of dimensions into a transaction-

like set. For example, the associations between each

student and his/her overall course performance is an

intra-dimension association because taking hstudenti as
the reference dimension and the student id as the ref-

erence level, the remaining set of dimensions, \hcourse,
semester, gradei", are grouped into a transaction-like

set. A possible association rule could be \a student tak-

ing course A in this semester is likely to take course B

in the next (semester)." 2

Data cube provides exibility for mining both kinds

of associations. First, it is easy to group data according

to one or a set of dimensions using the cube structure.

Second, count and other aggregate values may have been

computed in data cube which facilitates the association

testing and �ltering. Moreover, multi-level association

can be mined by drilling along any dimension in the

data cube with mouse clicking.

Take mining multi-level, inter-dimension association

rule as an example. A count cell in a cuboid stores

the number of occurrences of the corresponding multi-

dimensional data value; whereas the sum of counts

of the cells in the whole dimension is also stored in

the cuboid. With this structure, it is straightforward

to calculate the support and con�dence measures of

association rules based on the values in these summary

cells. A set of such cuboids, ranging from the

minimally generalized one to rather high level ones,

facilitate mining of association rules at multiple levels

of abstraction.

Figure 5: Association rule graph for visualizing multi-

dimensional associations in DBMiner

Moreover, it is preferable to push user-speci�ed

constraints into the association rule mining process.

Such constraints can be speci�ed in a meta-rule (or

meta-pattern) form [22], which con�nes the search to

speci�c forms of rules. For example, a meta-rule

\P (x; y) ! Q(x; z; w)", where P and Q are predicate

variables matching di�erent properties in a database,

can be used as the rule template constraint in the

search. With this rule template, one may �nd a rule like

\major(x; \cs") ! takes(x; \intro DBs"; \3rd year")",

which means if a student x majors in computer science,

he or she is likely to take the course, \introduction to

database systems", at the third year.

Two-dimensional or two-item association rules can be

visualized using association plane as shown in Figure 4.

Association rules containing more than two predicates

may need the help of an association rule graph, as shown

in Figure 5.

2.5 Data cube-based classi�cation

Classi�cation is the process of �nding a set of models

(or functions) describing data classes or concepts. It is

based on the analysis of a set of training data, where

typically, a unique class label for each data object is

known. In an ideal world, the model for a given target

class would describe all of the objects of that class, and

none of the objects from the contrasting classes. In the

real world, however, it is recognized that the derivation

of such \ideal" models may not be possible.

The data mining view of classi�cation recognizes that

although ideal models may be impossible to obtain

due to noise or over�tting avoidance, the major factor

preventing the creation of ideal models is due to the

wide diversity of data in large databases. Given such

diversity, it is more probable to assume that a given

object may belong to more than one class, particularly

when the data have been generalized to high levels of
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Figure 6: Graphical output of the Classi�er of DBMiner

abstraction. Therefore, each model will end up covering

most of the objects of the class it represents, while

maximally distinguishing the properties of the class from

that of the other classes. Furthermore, consider the use

of such models to classify a given object whose class

label is unknown. Such classi�cation models will return

a class probability distribution, rather than a unique

class prediction. This distribution allows the user to

view, for each class, the predicted probability that the

object can belong to that class.

There have been many classi�cation methods studied,

including decision-tree methods, such as ID-3 and C4.5

[28], statistical methods, neural networks, rough sets,

as well as some recently proposed database-oriented

classi�cation methods [25].

Our classi�cation method consists of four steps: (1)

collection of the relevant set of data and partitioning

of the data into training and test data, (2) analysis

of the relevance of the attributes, (3) construction

of classi�cation (decision) tree, and (4) test of the

e�ectiveness of the classi�cation using the test data set.

Attribute relevance analysis is performed based on the

analysis of an uncertainty measurement, a measurement

which determines how much an attribute is in relevance

to the class attribute. Other measurements, such as

entropy-based information gain [28] and Gini index [25],

can be used for relevance analysis as well. Several top-

most relevant attributes are retained for classi�cation

analysis; whereas the weakly or irrelevant attributes are

not considered in the subsequent classi�cation process.

In the classi�cation process, our classi�er adopts

a generalization-based decision-tree induction method

which integrates data cube technology with a decision-

tree induction technique, by �rst performing minimal

generalization on the set of training data, and then

performing decision tree induction on the generalized

data.

Since a generalized cell comes from the generaliza-

tion of a number of original cells, the count information

is associated with each generalized cell and plays an

important role in classi�cation. To handle noise and

exceptional data and facilitate statistical analysis, two

thresholds, classi�cation threshold and exception thresh-

old, are introduced. The former is used for justi�cation

whether it is needed to continue classi�cation on a node

if a signi�cant set of the examples of the node belongs

to a single class; whereas the latter is used to terminate

further classi�cation on a node if the node contains only

a negligible number of examples.

With the availability of data cube, drilling can be

performed on any dimension as well as on the class

attribute, and classi�cation will be performed at the

new, corresponding abstraction space.

An output of the classi�cation module of DBMiner is

shown in Figure 6.

2.6 Data cube-based prediction

A predictor predicts data values or value distributions

on the attributes of interest based on similar groups of

data in the database. For example, one may predict

the amount of research grants that an applicant may

receive based on the data about the similar groups of

researchers.

The power of data prediction should be con�ned

to the ranges of numerical data or the nominal data

generalizable to only a small number of categories. It is

unlikely to give reasonable prediction on one's name or

social insurance number based on other persons' data.

For successful prediction, the factors (or attributes)

which strongly inuence the values of the attributes of

interest should be identi�ed �rst. This can be done by

the analysis of data relevance or correlations by statis-

tical methods, decision-tree classi�cation techniques, or

be simply based on expert judgement. Similar to the

method used in our classi�er, we use the uncertainty

measurement in the analysis of attribute relevance. This

process ranks the relevance of all the attributes selected

and only the highly ranked attributes will be used in

the prediction process.

After the selection of highly relevant attributes, a

generalized linear model has been constructed which can

be used to predict the value or value distribution of the

predicted attribute.

When a query probe is submitted, the corresponding

value distribution of the predicted attribute can be

plotted based on the curves or pie charts generated

above. The values in the set of highly relevant predictive

attributes can be used for trustable prediction.

The prediction output has two forms of presentation:

curve graph and pie chart depending whether the pre-

dictive attribute is a numeric attribute or a categorical

attribute. When the predictive attribute is a numeric

one, the output is a set of curves, each indicating the
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Figure 7: Graphical output of the Predictor of DBMiner:

numeric predictive attribute (left) and categorical pre-

dictive attribute (right)

trend of likely changes of the value distribution of the

predicted attribute, as shown in the left half of Figure

7. When the predictive attribute is a categorical one,

the output is a set of pie charts, each indicating the dis-

tributions of the value ranges of the predicted attribute,

as shown in the right half of Figure 7.

On-line analytical mining for prediction can be

performed easily using the data cube structure. Drilling

can be performed along any predicted or predicting

attribute (or dimension), and prediction will then be

performed in the corresponding abstraction space.

2.7 Data cube-based clustering analysis

Data clustering is a process of partitioning a set of

data into a set of classes, called clusters, with the

objects in each cluster sharing some interesting common

properties. A good clustering method should produce

high quality clusters to ensure that the intra-cluster

similarity is high and inter-cluster similarity is low.

Clustering analysis has many interesting applications.

For example, it can be used to help marketers discover

distinct groups in their customer bases and develop

targeted marketing programs.

Data clustering has been studied in statistics, ma-

chine learning, image processing, and data mining with

di�erent methods and emphases [26, 32]. A data cube-

based clustering analyzer must e�ectively deal with

large amount and high dimensionality of data and �nd

interesting clusters. Moreover, most of the existing data

clustering methods can only handle numeric data or

cannot produce good quality results in the case where

categorical domains are present. A data cube-based al-

gorithm should handle both numerical and categorical

data and make good use of concept hierarchy informa-

tion as well.

Based on these considerations, a data cube-based,

multi-level clustering module is being developed in

DBMiner. The general idea of the method is to grow the

clusters from low dimensions to higher ones, and from

high abstraction space to low abstraction ones. Also,

multi-level hierarchy information is associated with the

categorical data in the form of weight to quantize the

di�erences among the data in di�erent relative positions

in the hierarchy.

On-line analytical mining for cluster analysis allows

drilling along di�erent dimensions. By doing so,

clustering analysis will then be performed on the

corresponding new abstraction space.

3 More on Analytical Mining Methods

Besides the techniques presented above which have been

or are being implemented in the DBMiner system, more

studies have been performed on e�cient and e�ective

on-line analytical mining. These include the design of

a data mining language, incremental and distributed

mining of association rules, constrained association

mining, mining periodic patterns, wavelet technique for

similarity-based time-series analysis, intelligent query

answering with data mining techniques, and a multi-

layer database model.

3.1 Design of a data mining query language

To support ad-hoc and interactive data mining, it is

essential to design a good data mining query language.

Such a language can be used to serve as the underlying

core of di�erent graphical user interfaces of a variety

of commercial data mining systems and facilitate the

standardization and wide adoption of the technology.

Based on our study of data mining systems, a

data mining language, DMQL [18], has been proposed

and partially implemented in the DBMiner system.

The language adopts an SQL-like syntax and provides

primitives for speci�cation of di�erent data mining

tasks. Especially, it provides a variety of primitives for

the speci�cation of rule templates and query constraints

for query-based data mining.

3.2 Incremental and distributed mining of

association rules

With huge amounts of data in a database, it is highly

preferable to update data mining results incrementally

rather than mining from scratch on database updates.

It is straightforward to work out incremental data

mining algorithms for concept description since a data

cube can be updated incrementally on database updates

[13]. However, it is nontrivial to update association

rules incrementally.

Let's examine the issue under the Apriori framework

[3]. Upon insertion of �DB (a set of database

tuples) into a DB, some previously large (i.e., frequent)

k-itemsets (Lk for any k) may become small (i.e.,

infrequent), whereas some previously small ones may
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become large. With the same support threshold, an

itemset is large in DB [�DB if it is large in both DB

and �DB, and it is small in DB [�DB if it is small

in both. Thus we only need to examine whether an

itemset which is large in DB but small in �DB may

pass the support threshold test (which is an easy task),

or whether an itemset which is large in �DB but small

in DB may pass the test (which needs a scan of DB).

Some additional techniques can be used to further speed

up the processing. A detailed discussion is presented in

[8].

Similar heuristics and some additional techniques

can be applied to parallel and/or distributed mining

of association rules so that locally large itemsets can

be mined in each partition, and with minimal message

passing, one may compute the globally large itemsets

without redistributing data to di�erent sites. A detailed

study is presented in [7].

3.3 Constrained association rule mining

It is highly desirable to promote ad-doc query-based

data mining since users may like to examine di�erent

portions of data with di�erent constraints. Constrained

association rule mining is to support constraint-based,

human-centered exploratory mining of associations and

investigate how user-speci�ed constraints can be pushed

deeply into the association mining process to reduce the

search space.

Some foundational issues of constrained association

mining are examined systematically in [27] by putting

a rich set of constraint constructs, including domain,

class, and SQL-style aggregate constraints into the same

framework and discovering two properties of constraints

that are critical to pruning: anti-monotonicity and

succinctness.

For example, suppose a query requires Sl, the set of

items at the left hand side of the rule, satisfy the follow-

ing three constraints: (1) Sl � fmilk; bread; cheeseg,
(2) max(Sl :price) < 1000, and (3) avg(Sl :price) < 500.

The �rst two constraints are anti-monotonic in the sense

that if a set S does not satisfy the constraint C, adding
more items into S will not make it satisfy C. Thus

both constraints can be pushed deeply into each itera-

tion under the Apriori framework. However, the third

constraint \avg(Sl :price) < 500" cannot be pushed in

because it is not anti-monotonic in the sense that if a

set S does not satisfy the constraint, adding more items

to S may make it satisfy the constraint.

A systematic study on what kinds of constraints are

anti-monotonic and/or succinct is performed in [27]

which also presents an e�cient algorithm for constraint

pushing.

3.4 Mining periodicity patterns

Many patterns are periodic or approximately periodic

in nature, e.g., seasons change periodically by year,

temperatures change periodically by day, etc. However,

in many cases, some particular points or segments in

a sequence could be (approximately) periodic although

the whole sequence has no periodicity behavior. For

example, Tomwatches CBS news at 8:00{8:30amalmost

everyday but his TV watching habit is \irregular" at

other hours.

Can we mine the periodicity of such patterns in large

databases? Note that the traditional periodicity detec-

tion methods, such as Fast Fourier Transformation, �nd

the periodicity of the whole sequence but not the peri-

odicity of particular point/segment in the sequence as

illustrated in the above example.

We examine the problem in two cases: mining

periodicity (1) with a given period and (2) with an

arbitrary period, and propose an OLAP-based technique

to mine such periodicity [11]. For user-speci�ed given

period, such as per day, per week, per quarter, etc.,

the potential activity patterns can be aggregated with

respect to the given period along the time dimension in

a data cube. Such aggregation will indicate the patterns

which are periodic with respect to the given period,

and such patterns may grow from small segments to

larger ones by merging its neighborhood cells. For

mining periodic patterns with arbitrary periods, similar

OLAP-based methods can apply with the augmentation

of some cycle merging properties. Notice also with

OLAP-based cube manipulation, one can drill-down,

roll-up, slice and dice the time-related cuboids to �nd

such periodicity patterns on-the-y. A detailed study is

presented in [11].

3.5 Wavelet technique for similarity-based

time-series analysis

Similarity-based time-series analysis is to �nd similar

time-related patterns (trends, segments, etc.) in a large

time-series database, such as stock market database.

Traditional trend analysis techniques, such as Fourier

transformation, are adopted in most previous analyses

of similarity-based time-series [2]. With the popular

adoption of wavelet transformation and analysis meth-

ods, we examine the wavelet transformation-based sim-

ilarity mining methods for discovery of trends and/or

similar curves or curve segments [30]. Template seg-

ments can be speci�ed by users based on the given

curve segments or using template primitives. Then

wavelet transformation techniques can be used for curve

smoothing and approximation, scaling, and translation,

and then fragment-based pattern matching analysis.

Our study shows that the method is e�cient and ef-

fective at mining large time-series databases.

3.6 Intelligent query answering with data

mining techniques

With data mining techniques available, database queries

can be answered intelligently using concept hierarchies,
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data mining results, or on-line data mining techniques

[17]. For example, instead of presenting bulky answers,

one can present a summary of answers and allow users

to manipulate such a summary by drilling or dicing.

One can present related answers or rules in the form of

associations or correlations based on association mining

results. Moreover, one may add useful dimensions to

extend the width of the result table, or add additional

(neighborhood) tuples as an extension of the height of

the table. OLAP techniques and data mining methods

provide useful tools for e�cient and e�ective intelligent

query answering.

3.7 A multi-layer database model for

heterogeneous databases

A major challenge for cooperating multiple databases is

the semantic heterogeneity among di�erent databases.

This is di�cult to handle due to the autonomy and

semantic heterogeneity of the component databases.

Methods for schema analysis, transformation, integra-

tion, and mediation have been investigated in the

database community in order to produce tools to handle

this problem. However, schema level analysis may some-

times be too general to solve the problem. Data level

analysis, i.e., the analysis of database contents, should

be taken into serious consideration.

With generalization-based data mining, a multi-layer

database model can be constructed by utilizing some

commondata access API and generalizing database con-

tents from primitive level to multiple, higher levels [19].

A set of mutually related, generalized databases form a

multi-layer database. Such a multi-layer database not

only provides a useful architecture for intelligent query

answering but also helps information exchange and in-

teroperability among heterogeneous databases. This is

because the low-level heterogeneous data can be trans-

formed into high-level, relatively homogeneous infor-

mation which can be used for e�ective communication

and query/information transformation among multiple

databases.

Methods for construction and maintenance of multiple-

layer databases and for information exchange among

heterogeneous databases are studied in [19].

4 Towards On-Line Analytical Mining

of Complex Types of Data

It is challenging to extend the on-line analytical mining

method to complex types of data, such as complex data

objects, spatial data, text and multimedia data and

Web-based data. Here we report our preliminary studies

towards this direction.

4.1 Data mining in object-oriented and

object-relational databases

Object-oriented and object-relational databases intro-

duce a set of advanced concepts in database systems,

including object identity, complex structured objects,

methods, class/subclass hierarchies, etc.

A generalization-based data mining method is pro-

posed which generalizes complex objects, constructs a

multi-dimensional object cube, and performs analytical

mining in such an object cube [20]. Notice that objects

with complex structures can be generalized to high-level

data with relatively simple structures. For example, an

object identi�er can be generalized to the class identi�er

of the lowest class where the object resides. An object

with a sophisticated structure can be generalized into

several dimensions of data which reect the structure,

the generalized value, or other features of the object. A

method associated with an object can be generalized to

the data returned by the application of the method to

the object. Generalization of a class of objects should

be performed in a way similar to the generalization of

a data relation, and it results in a generalized class and

forms the basis for an object data cube.

4.2 Spatial OLAP and spatial data mining

A spatial database stores both spatial data which

represents points, lines, and regions, and nonspatial data

which represents other properties of spatial objects and

their nonspatial relationships.

A spatial data cube [21] consists of both spatial

and nonspatial dimensions and/or measures and can be

modeled by the star or snowake schema, resembling its

relational counterpart [5]. Since a spatial measure may

represent a group of aggregated spatial objects, whereas

multi-dimensional spatial aggregation may produce a

great number of such aggregated spatial objects, it is

impossible to precompute and store all of such spatial

aggregations. Therefore, selective materialization of

aggregated spatial objects is a reasonable tradeo�

between storage space and on-line computation time. A

method for selective materialization of spatial objects in

spatial data cube computation is studied in [5].

Spatial data mining can be performed in a spatial

data cube as well as in a spatial database. A spatial

OLAP and spatial data mining system prototype,

GeoMiner, is constructed based on our studies. Because

of the high cost of spatial computation, a multi-tier

computation technique is adopted in spatial data mining

[24]. For example, at mining spatial association rules,

one can �rst apply rough spatial computation, such as

minimal bounding rectangle method, to �lter out most

of the sets of spatial objects which should be excluded

from further consideration (e.g., not spatially close

enough), and then apply relatively costly, re�ned spatial

computation only to the set of promising candidates.
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4.3 Text and multimedia data mining

Text analysis methods and content-based image re-

trieval techniques play an important role at mining text

and multimedia data, respectively. Our method for

on-line analytical mining of text and multimedia data

follows the same philosophy as we did for others, by

�rst building text/multimedia data cubes and then ex-

tending the cube-based relational and/or spatial mining

techniques towards mining text and multimedia data.

Currently, our text data mining is performed on

a library database and an e-mail database, and our

multimedia data mining is experimented on a database

of on-line pictures, most of which were fetched from the

Internet. A MultiMediaMiner system prototype is being

constructed by integration of DBMiner with a content-

based image retrieval system, C-Bird, developed in the

Multimedia Lab of our School.

4.4 Weblog mining

Because of the complexity of the unstructured and semi-

structured data on the Internet, little progress has been

made towards our previously planned WebMiner for the

construction of data warehouses for the Internet and

mining of such data warehouses.

Instead, a WebLogMiner is being constructed to mine

the Web access patterns stored in the Web log records

[31]. Our approach is similar to our previous work on

data cube construction and analytical mining by pre-

processing and cleaning Web log records, building mul-

tiple dimensions based on the Web access information,

such as page start time, duration, user, server, URL,

next page, page type, and so on, constructing aWebLog

cube, and performing time-related, multi-dimensional

data analysis and data mining.

5 Conclusions

On-line analytical mining, which integrates on-line an-

alytical processing and data mining, is a promising di-

rection for mining large databases and data warehouses.

We summarized our work in this direction, including the

research into e�cient mining methods, the development

of the DBMiner system, and the preliminary study of

mining complex types of data.

Our major e�orts have been dedicated to the high

performance and fast response of on-line analytical

mining. Nevertheless, we feel that e�ciency is still a

major challenge to satisfactory exploratory data mining.

However, since data cube technology generalizes a

huge amount of data to a controllable size at a

high level of abstraction, high performance can be

achieved with a trade-o� between the response time and

mining granularity. With fast increase of computing

power (including parallel and distributed processing)

and rapid progress on the research into data mining

performance issues, one can expect on-line analytical

mining will achieve increasingly faster performance and

�ner mining granularity.

With multiple data mining functions available, one

may wonder how to determine which data mining func-

tion is the most appropriate one for a particular applica-

tion. To select an appropriate data mining function, one

needs to be familiar with the application problem, data

characteristics, and the roles of data mining functions.

Sometimes one needs to perform interactive exploratory

analysis to observe which function discloses the most in-

teresting features in the database. Therefore, the build-

ing of exploratory analysis tools and the construction of

an application-oriented semantic layer are two impor-

tant steps. On-line analytical mining provides an ex-

ploratory analysis tool, however, further study should

be performed on the automatic selection of data mining

functions for particular applications.

For e�ective interpretation of data mining results

and interaction with data mining process, visual data

mining seems to be quite important. On-line analytical

mining should be integrated with visual data mining for

e�ective exploratory mining.

Moreover, our research and development of on-line

analytical mining on complex types of data, including

spatial, text, multi-media, and Web data, have just

started. More work will be reported in this direction

in the future.
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