Automatic Generation of Architectural Models From
Goals Models

Monique Soares, Jodo Pimentel, Jaelson Castro, Carla Silva, Cleice Talitha, Gabriela Guedes, Diego Dermeval
Centro de Informatica
Universidade Federal de Pernambuco/UFPE
Recife, Brazil
{mcs4, jhep, jbe, ctlls, ctns, ggs, ddmem} @cin.ufpe.br

Abstract—The STREAM (Strategy for Transition Between Re-
quirements and Architectural Models) process presents an ap-
proach that allows the generation of early architectural design
described in Acme ADL from goal oriented requirements models
expressed in i*. The process includes activities that defines trans-
formation rules to derive such architectural models. In order to
minimize the effort to apply the process and decrease the possi-
bility of making mistakes it is vital that some degree of automa-
tion is provided. This paper explains in detail the transformation
rules proposed and their corresponding formalization in a model
transformation language.

Requirements Engineering,
Transformation Rules, Automation.

Software Architecture,

L INTRODUCTION

The STREAM (Strategy for Transition between Require-
ments Models and Architectural Models) is a systematic ap-
proach to integrate requirements engineering and architectural
design activities, based on model transformations to generate
architectural models from requirements models [3]. The source
language is i * (iStar) [11] and the target language is Acme [2].

Our proposal is in line with the current MDD (Model-
Driven Development) paradigm, as we support the transfor-
mation of models of higher levels of abstraction to more con-
crete models. The MDD advantages are: greater productivity
and, therefore, a lower development time; increased portability;
increased interoperability; and lower maintenance costs, due to
the improved consistency and maintainability of the code [7].

Currently, the transformation rules defined in the STREAM
approach are informally described and are manually applied.
Hence, their use is time consuming and effortful, as well as
error prone. In order to overcome these shortcomings, we pro-
pose to use an imperative transformation language (QVTO [8])
to properly describe them and to provide tool support.

The aim of this paper is to automate the vertical transfor-
mation rules proposed in the STREAM. For this, it was neces-
sary to: Define these rules in a proper transformation language;
Make these rules compatible with the IStarTool and
AcmeStudio tools; and illustrate the use of them rules.

The remainder of this paper is organized as follows. Section
2 describes the background required for a better understanding
of this work. Section 3 presents the description and automation

444

of the vertical transformation rules in QVT. Section 4 presents
an application example. Section 5 presents the related works
and Section 6 discuss the results of this work and future re-
search.

II. BACKGROUND

This section presents an overview on i*, Acme andthe
STREAM process, which are used in our approach.

A. iStar

The i* language is a goal-oriented modeling language able
to represent features of both the organization and of the system
to be acquired/developed by/for the organization. Stakeholders
and systems are represented as actors, which are active entities
able to perform tasks, reach goals and provide resources. In
order to achieve their own goals, actors have dependencies with
each other [11].

i* is comprised of two models: a SD (Strategic Dependen-
cy) model describes dependency relationships among actors in
the organization; a SR (Strategic Rationale) model explains
how actors achieve their goals and dependencies.

In a dependency, a depender actor relies on a dependee ac-
tor to achieve something (the dependum). A dependum can be a
goal, which represents the intentional desire of an actor, to be
fulfilled; a softgoal to be satisfied, which is a goal with the
acceptance criterion not so clear; a resource to be pro vided; or
a task to be performed. Figure 1 presents an excerpt of the i*
metamodel defined for the iStarTool tool [6].

B. Acme

Acme is an ADL (Architectural Description Language) de-
signed to describe the components and connectors (C&C) view
of the system architecture [2]. It relies on six main types of
entities for architectural representation: Components, Connect-
ors, Systems, Ports, Roles, and Representations. Figure 2 pre-
sents the Acme metamodel, based on the AcmeStudio tool [1].

Components represent the primary computational elements
and data stores of a system. Connectors characterize interac-
tions among components. Systems denote configurations of
components and connectors. Each port identifies a point of
interaction between the component and its environment. Roles
define the connector’s interfaces. Representation supports hier-
archical descriptions of architectures. [2].

ContributionLink | SOUrce

target

o

0.1

Task| Source 0.1 Element

target 0.1

0.1
0.1

MeansEnd source

target

‘m
. ;7Y7

NodeObject

meansEnd
decompositionTasks,

contributionLinks, >

Actor

source
0.1

Model

ActorAssociation

target

source 0.1

associations

Link

Arl

Dependency Link

elements

Figure 1. Excerpt of the i* metamodel

Property * properties‘ System ‘ attachment
-name -name
-value
-type
" M —_
|
3 £
= ., x. =
g — - <
5 n * acmeElements
A
-name 2
L2
®
I
]
Component 2
Connector 5
o

*
—

ports
*

Port 1 secondPort|

Binding

2.* roles

Role

*
role

firstPort

port

1.*

Figure 2. Acme metamodel

C. STREAM

The STREAM process includes the following activities: 1)
Prepare requirements models, 2) Generate architectural solu-
tions, 3) Select architectural solution, and 4) Refine architec-
ture. In activities 1) and 2), horizontal and vertical rules are
proposed, respectively. Horizontal rules are applied to the i*
requirements models to increase its modularity and prepare
them for early architectural transformation. There are four hor-
izontal transformation rules (HTRs) [9]. Vertical rules are used
to derive architectural models in Acme from modularized i*
models. Non-Functional Requirements are used to select initial
candidate architecture in the 3) activity. Certain architectural

445

patterns can be applied to allow appropriate refinements of the
chosen candidate architectural solution in 4) activity [5].

In the Vertical Transformation Rules (VTRs), the i* actors
and dependencies are mapped to Acme elements. Thus, an i*
actor is mapped to an Acme component. An i* dependency
becomes an Acme connector. The depender and dependee
actors in a dependency can be mapped to the roles of a con-
nector. In particular, we can distinguish between required ports
(mapped from depender actors) and provided ports (mapped
from dependee actors). Thus, a connector allows communica-
tion between these ports. A component provides services to
another component using provided ports and it requires ser-
vices from another component using required ports.

The four types of dependencies (goal, softgoal, task and re-
source) will define specific design decisions in connectors,
ports and roles that are captured as Acme Attachments. An
object dependency is mapped to a Boolean property. A task
dependency is mapped directly to a port provided. The resource
dependency is mapped to a return type of a property provided
port. A softgoal dependency is mapped to a property with enu-
merated type

These transformation rules were defined in a semi formal
way in [13] and now they need to be precisely specified using a
suitable model transformation language, such as Que-
ry/View/Transformation Operational — QVTO [8]. In doing so,
we can validate them, as well as provide support to (partially)
automate the process, hence enabling the STREAM process to
become a full-fledged MDD approach.

III. AUTOMATION OF THE VERTICAL TRANSFORMATION

RULES

In the STREAM process, the user begins by using i* to
model the problem at hand. Some heuristics can guide the se-
lection of sub-set(s) of candidate elements to be refactored.
Once they are selected, the HTRs can be applied to improve the
modularization of the i* model [5].

Since the vertical transformations do not consider the inter-
nal elements of the actors, we first create an intermediary SD
model from the modular i* SR model. We proceed to apply the
VTRs (see Table I). The first rule (VTR1) maps i* actors to
Acme components, while VTR2 transforms i* dependencies to
Acme connectors. The VTR3 converts the depender actor onto
a required port of the Acme connector. The VTR4 translates
the dependee actor onto a provided port of the Acme connector.

We relied on the Eclipse based tool for i* modeling, the
iStarTool [6], to create the i* model. This model is the input for
the first STREAM activity. This tool generates a XMI of the
modularized i* SD model, which can be read by the QVTO
Eclipse plugin [4], to serve as input for the VTRs execution.

The VTRs described in QVTO are based on the
metamodels presented in Section 2, they are referenced during
the execution of the transformation. The models created with
the VTRs execution are represented as XMI files.

In our work, we were able to automate 3 horizontals
(HTR2-HTR4) and 4 verticals transformation rules [14]. How-
ever, due to space limitation, in this paper, we only discuss how

we dealt with the verticals rules. Table 1 illustrates the ele-
ments present in the source model and their corresponding
elements present in the target model.

TABLE L VERTICAL TRANSFORMATION RULES
Source (i*) Target (Acme)
VTRI Actor Companent
VTR2 (E%E%E) Dependum
VTR3 DependerActor
VTR4 WDependesActor

To map i* actors to Acme components, we need to obtain
the number of actors present in the modularized i* SD model
artifact. So, we create the same amount of Acme components,
giving to this components, the same names of the i * actors. The
XMI file obtained as output of this transformation will contain
the components represented by tags (Figure 06).

while (actorsAmount > 0) {
result.acmeElements += object Component{
name := self.actors.name->at (actorsAmount) ;
}
actorsAmount := actorsAmount - 1;

Figure 3. Excerpt of the QVTO code for VTR1

In the VTR2 each i* dependency creates two XMI tags, one
capturing the depender to the dependum connection and anoth-
er one captures the dependum to the dependee.

In order to map these dependencies in Acme connectors it
is necessary to recover the two dependencies tags, observing
that have the same dependum. It is necessary not consider the
actor which plays the role of depender in some dependency and
dependee in another. Once this is performed, there are only
dependums left. For each dependum, one Acme connector is
created. The connector created receives the name of the
dependum of the dependency link. Two roles are created within
the connector, one named dependerRole and another named
dependeeRole. The XMI output file will contain the connectors
represented by tags (see Figure 4).

The XMI output file will contain “ports” tags within the
acmeElement tag of component type. Moreover, since they are
required ports, there will be one property with an attribute
named "Required" whose value is set to "true".

Last but not least, the VTR4 maps all dependee actors to
provided ports in the corresponding components obtained by
those actors. For this, we list all dependee actors in the model.
Every port generated has a name and a property. The port name
is given at random. The port property name is "Provided", the
port type is set to "boolean" and the port value is set to "true".

while (dependencyBAmount > 0) {
if (self.actors.name->includes (self.links.source-
>at (dependencyAmount) .name) and
self.actors.name-
>at (actorsAmount) .=(self.links.source-
>at (dependencyAmount) .name)) then {
ports += object Port{
name := "port"+countPort.toString();
properties := object Property {
name := "Required";
value := "true"
}i
}i
} endif;
dependencyAmount := dependencyAmount - 1;
countPort := countPort + 1;
Y

Figure 5. Excerpt of the QVTO code for VTR3

<acmeElements xsi:type="Acme:Component”" name="Comp">
<ports name="portl7">
<properties name="Provided" value="true"
type="boolean"/>
</ports>
</acmeElements>

<acmeElements xsi:type="Acme:Connector" name="Conn">
<roles name="dependerRole"/>
<roles name="dependeeRole"/>

</acmeElements>

Figure 4. Connector in XMI

The VTR3 converts a depender actor into a required port
present in the component obtained from that actor (see Figure
5). First, we create one Acme port for each actor depender.
Each port created has a name and a property. The port name is
given at random, just to control them. The property must have a
name and a v alue, so to the property name is assigned "Re-
quired" as we are creating a required port and the value is true.

446

Figure 6. Provided port, component and properties in XMI

After creation of the basics Acme elements, it is necessary
to create the Attachment object, element responsible for associ-
ating the connectors to the required and provided ports present
in the components. Therefore, an attachment is created for each
port of a component. Each A#tachment has a component as an
attribute, a port, a connector and a role.

Next section presents an example to illustrate our approach.

IV. RUNNING EXAMPLE

MyCourses is a scheduling system that provides, as optimal
as possible, a plan for scheduling courses. It allows universities
to perform tasks, such as checking and listing available lecture
rooms, teachers, students enrolled in any course. It was one of
the project proposals for the ICSE 2011 Student Contest on
Software Engineering [10].

The modularized i* SD model for the MyCourses system
(Figure 7) was used as input model for the execution of the
VTRs. These rules have the objective to transform a modular-
ized i* SD model into an Acme initial architectural model.

After the automated application of the VTRs, a XMI model
representing the output model and compatible with the Acme
metamodel, will be generated. Figure 8 shows the graphical
representation of that XMI model for the MyCourses system.

Conflicts D Resources
Manager Optimizer

Generate
XML

Users
Autenticator

Report
Generator
Conflicts

fairbud e
:nnﬂi(sﬂ:]
0
Users

Autenticator

Generator

XML
Generator

Figure 8. Acme Model from MyCourses

V. RELATED WORK
Our work is unique in supporting the STREAM approach.

MaRiSA-MDD [15] presents a strategy based on models
that integrate aspect-oriented requirements, architecture and
detailed design, using AOV-graph, Aspectual ACME and
aSideML languages, respectively. It defines representative
models and a number of transformations between the models of
each language. The transformation language used was ATL.

Silva et al [16] specify, through a model-driven approach,
the transformations necessary for architectural models de-
scribed in UML, from architectural organizational models de-
scribed in i*. The transformation language used was ATL.

VI. CONSIDERATIONS AND FUTURE WORKS

It this paper, we advocated the use of model transformation
to generate architectural models from requirements models. We
reviewed the STREAM process, which defines and applies
(manually) a set of model transformation rules to obtain Acme
architectural models from i* requirements models.

In order to decrease time and effort required to perform the
STREAM process and minimize the errors introduced by the
manual execution of the transformation rules, we proposed to
use the QVTO language to automatize the execution of these
rules. Our focus was on the automation of the VTRs, responsi-
ble to generate an initial Acme architectural model.
Metamodels of the i* and Acme languages were provided. The
input models of the VTRs are compatible with the iStarTool
and the output models are compatible with Acme metamodel,
supported by the AcmeStudio tool.

447

Currently, the output of our process is an XMI file with the
initial Acme architectural model. But the AcmeStudio tool
reading files described in Acme textual language. As a conse-
quence, the current architectural model cannot be graphically
displayed. Hence, our plan is to provide new transformation
rules to generate the textual representations. Case studies are
still required to validate our approach.

REFERENCES

[1] ACME. Acme. Acme - The AcmeStudio, 2009. Available in:
<http://www.cs.cmu.edu/~acme/AcmeStudio/>. Accessed in: May 2012.

[2] GARLAN, D., MONROE, R., Wile, D. Acme: An Architecture
Description Interchange Language. In: Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative research
(CASCON’97). Toronto, Canada.

[3] LUCENA, M., CASTRO, J., SILVA, C., ALENCAR, F., SANTOS, E.,
PIMENTEL, J. A Model Transformation Approach to Derive
Architectural Models from Goal-Oriented Requirements Models. In: 8th
IWSSA - OTM Workshops 2009. Lecture Notes in Computer Science,
2009, Volume 5872/2009, 370-380.

[4] ECLIPSE M2M. Model To Model (M2M).
<http://eclipse.org/m2m/>. Accessed in: May 2012

[S] CASTRO, J.; LUCENA, M.; SILVA, C.; ALENCAR, F.; SANTOS, E.;
PIMENTEL, J.C hanging Attitudes Towards the Generation of
Architectural Models. Journal of Systems and Software, 2012.

[6] MALTA, A.; SOARES, M.; SANTOS, E.; PAES, J.; ALENCAR, F.;
CASTRO, J. iStarTool: Modeling requirements usingthe i* framework.
IStar 11, August 2011.

[7] OMG. Object Management Group. MDA Productivity Study, Juny 2003.
Available in: <http://www.omg.org/mda/mda_filessMDA_Comparison-
TMC_final.pdf>. Accessed in: May 2012

[8] OMG. QVT 1.I. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, January 2011. Available in:
<http://www.omg.org/spec/QVT/1.1/>. Accessed in: May 2012

[9] LUCENA, M.; SILVA, C.; SANTOS, E.; ALENCAR, F.; CASTRO, J.
Applying Transformation Rules to Improve i* Models. SEKE 2009: 43-
48.

[10] SCORE 2011. The Student Contest on Software Engineering - SCORE
2011, 2011. Available in: <http://score-contest.org/2011/>. Accessed in:
May 2012.

[11] YU, E.; GIORGINI, P.; MAIDEN, N.; MYLOPOULOS, J. Social
Modeling for Requirements Engineering. Cambridge, MA: MIT Press.
2011. ISBN: 978-0-262-24055-0.

[12] MENS, T.; CZARNECKI, K.; VAN GORP, P. A Taxonomy of Model
Transformations. In: Proceedings of the Language Engineering for
Model-Driven Software Development. Dagstuhl, Germany 2005.

PIMENTEL, J.; LUCENA, M.; CASTRO, J.; SILVA, C.; SANTOS, E.;
ALENCAR, F. Deriving software architectural models from
requirements models for adaptative systems: the STREAM-A approach.
Requirements Engineering Journal, 2011.

[14] SOARES, M. C. Automatization of the Transformation Rules on the
STREAM process (In Portuguese: Automatizagio das Regras de
Transformagdo do Processo STREAM). Dissertation (M.Sc.). Center of
Informatic: UFPE, Brazil, 2012.

[15] MEDEIROS, A. MARISA-MDD: An Approach to Transformations
between Oriented Aspects Models: from requirements to Detailed
Project (In Portuguese: MARISA-MDD: Uma Abordagem para
Transformagdes entre Modelos Orientados a Aspectos: dos Requisitos ao
Projeto Detalhado). Dissertation (M.S.c). Center for Science and Earth:
UFRN, Brazil, 2008.

[16] SILVA, C.; DIAS, P ARAUJO, J; MOREIRA, ANA. From
Organizational Architectures in i* Agent-based: A model-driven
approach (De Arquitecturas Organizacionais em i* a A rquitecturas
Baseadas em Agentes: Uma abordagem orientada a modelos). WER'I 1.

Available in:

[13

