Towards Architectural Evolution through Model
Transformations

Jodo Pimentel, Emanuel Santos, Diego Dermeval,
Jaelson Castro

Centro de Informatica
Universidade Federal de Pernambuco
Recife, Brazil
{jhep, ebs, ddmem, jbc}@cin.ufpe.br

Abstract—The increasing need for dynamic systems, able to adapt
to different situations, calls for underlying mechanisms to
support software evolution. In this sense, model-based techniques
can be used to automate one of the evolution aspects — the
modification of models. However, the use of model-based
techniques is tailored to the specific modeling languages being
used. Thus, efforts to automate the modification of models can be
undermined by the several different modeling languages used in
different approaches for software evolution. Aiming to facilitate
the use of model-driven development in the context of
architectural evolution, we propose an approach to define basic
transformation rules. This novel approach relies on a conceptual
model and a set of basic operations for architectural evolution,
which are used to define transformation rules for a specific
architectural modeling language of interest. We illustrate the
application of our approach by defining transformation rules for
Acme using QVT.

architectural evolution;

Keywords-software architecture;

autonomic systems

L INTRODUCTION

Software evolution has become a key research area in
software engineering [7]. Software artifacts and systems are
subject to many kinds of changes at all levels, from
requirements through architecture and design, as well as source
code, documentation and test suites. Since the abstraction level
of software architecture is adequate for identifying and
analyzing the ramifications of changes [11], it could be one of
the software evolution pillars [17]. As the architecture evolves,
mechanisms are required for supporting these dynamic changes
[1][14][19]. There are several approaches for tackling different
aspects of architectural evolution, often relying in some kind of
model transformation. However, these approaches do not use
of model-driven engineering techniques, which provide
underlying mechanisms for model transformation.

In this paper we present a novel approach for creating basic
transformation rules with the focus of facilitating model-based
architectural evolution. We defined a conceptual model and a
set of basic operations that can be applied to the different
languages used for architectural modeling. We illustrate our
approach by defining transformation rules for architectural
evolution on a specific ADL — Acme [9]. The contribution of
this paper is twofold. On one hand, our basic operations can be
used as a common vocabulary for the different architectural

448

Anthony Finkelstein

Department of Computer Science
University College London
London, United Kingdom
a.finkelstein@ucl.ac.uk

evolution approaches — f acilitating their integration. On th e
other hand, it can guide the creation of transformation rules for
a specific modeling language.

The remainder of this paper is structured as follows. In
Section 2 we present the background for this work. Our
conceptual framework is d escribed in Section 3. Section 4
illustrates the use of our approach in Acme. Lastly, Section 5
concludes the paper.

II. BACKGROUND

Architectural evolution has been acknowledged as a key
element for achieving software evolution [17]. According to
[6], there are 5 types of software evolution: Enhancive,
Corrective, Reductive, Adaptive and Performance. In the case
of autonomic, self-adaptive or self-managing systems this
evolution is performed at runtime, with some degree of
automation. Architectures that can evolve at runtime are
classified as dynamic architectures. Our approach supports
evolution both at design time and at runtime.

A survey on formal architectural specification approaches,
regarding their ability to enact architectural changes at runtime
is reported on [5]. That survey analyzes the approaches
regarding the type of changes they support: Component
Addition, Component Removal, Connector Addition and
Connector Removal. As result, 9 out of 11 approaches were
found to support all these basic operations: CommUnity,
CHAM, Dynamic Wright, PiLar, Gerel, ZCL, Rapide, as well
as the approaches by Le Métayer and by Aguirre-Maibaum.
Moreover, all these 9 approaches have some kind of support for
composing these operations. The need for structural change is
clear in the architectural deployment view, for example, by
replicating application servers in order to improve the system
performance. Additionally, the use of subtyping mechanisms to
enable architectural evolution has also been suggested [15].
From the 9 architectural description languages analyzed in
[15], 4 show some kind of support for evolution through
subtyping mechanisms: Aesop, C2, SADL and Wright.

As the elements and connectors of an architecture evolve,
their properties may be modified as well. These properties may
be related to the element itself (e.g. performance), or to the use
of the element (e.g. workload). The modification of the
properties may happen at design time or at runtime. For
instance, at runtime, we may consider a connector (in a

deployment view) that isr eified in a physical network.
Properties such as reliability and bandwidth of this connector
may be subject to change over time. This kind of changes in
properties of architectural elements is often ignored in the
architectural models. We advocate that the evolution of these
properties should be reflected in the models, as it allows us to
(i) monitor the evolution of these properties, which in turn can
be used to trigger adaptations, and to (ii) analyze the actual
characteristics of a system using its architectural models. This
alignment between what was designed (the initial model) and
the actual implementation/deployment can help identify and
reduce architectural erosion [15]. A particular research field
that considers the evolution of the properties of architectural
elements is that of service-oriented architectures. For instance
[4][8] match services properties with non-functional
requirements for selecting which services to use.

Some modeling languages that are not considered ADL can
also be used for architectural modeling. Architectural behavior
has been defined in languages such as Statecharts,
ROOMcharts, SDL, Z, Use-Case, Use-Case Maps, Sequence
diagrams, Collaboration diagrams and MSCs [2]. For instance,
Statecharts can be used to describe the different states of a
component, as well the transitions between them; Use-Case
diagrams can express the different activities performed by an
element of a system, from the user’ point-of-view. Thus, when
dealing with architectural evolution, we cannot neglect these
languages. Similarly, the use of goal-based notations such as
Kaos and i* for architectural modeling has been promoted in
some research endeavors [12][18].

III. CONCEPTUAL FRAMEWORK

Based on a review of the architectural modeling approaches
mentioned in the previous section, we devised a framework for
empowering architectural evolution through model
transformations, which can be applied to different modeling
languages. This framework comprises a conceptual model,
used to classify the different constructs of a modeling language,
as well as a set of basic architectural evolution operations
defined upon the conceptual model.

Architectural models are composed of architectural
elements — e.g., components, services, classes and states — and
links that define connections between these elements — e.g.,
connectors, requests, association links and events. Both
elements and links may have properties, which can be used to
provide a detailed description of elements and links. Moreover,
elements may have sub-elements, i.e., elements that are part of
them. Fig. 1 shows a model that represents these concepts.
Using the graph terminology, elements can be considered typed
nodes, links can be considered directed edges and properties
can be considered labels of a node/edge.

This conceptual model can be applied to different
architectural description languages, as well as to other
modeling languages that are used for architectural modeling
(e.g., Statecharts, Sequence diagrams, Use-Case and i*). The
(meta-)metamodel of the VPM language [3] resembles our
conceptual model, being essentially composed by elements
(entities) and links (relations) but neglecting their properties.
That work provides a metamodeling language, whereas our
conceptual model is used to classify the constructs of existing

449

b ! Element Property
S 1 *
[}
v
o)
=23
(%]
* * *
[0} -
E (V]
5 g
o ©
[-
* *
Link
1

Figure 1. Conceptual Model

metamodels in order to guide the creation of transformation
rules. Thus, our approach isn ot tied to any particular
metamodeling nor transformation specification language.

A. Basic Architectural Evolution Operations

This conceptual model enabled us to define 7 basic
operations required to s upport architectural evolution with
model transformations: Add Element, Remove Element, Add
Link, Remove Link, Add Property, Remove Property and
Change Property. These operations support the 2 different
types of architectural model changes described in Section 2 —
structural/topology changes and property changes. These
operations are described next.

1) Add Element
Inserts a new element in a model. A particular case is when
the new element is a sub-element of another element. Usually,
an element has a name or an identifier.

2) Remove Element
Deletes an element from a model. Caution should be taken
when removing elements from a model, as it is important to
maintain the integrity of the model. For instance, if an element
is removed, it is most likely that it will also be necessary to
remove the links associated with that element.

3) Add Link
Inserts a new link connecting elements of the model.

4) Remove Link
Deletes a link from a model. Here again caution should be
taken, as elements without links may result in invalid models.

5) Add Property
Inserts a property in an element or in a link. Usually, the
property has a name or an identifier, as well as other attributes
such as value, default value and type.

6) Remove Property
Deletes a property from an element or from a link.

7) Change Property
Modifies the content of an attribute of a property, e.g., the
actual value, or its type. A similar effect could be achieved by
combining the Remove Property and the Add Property
operations. However, as modifying a property is conceptually

different from replacing it, we decided to define this specific
operation.

We decided against the definition of Change Element and
Change Link operations as they essentially consist of changing
their properties or adding/removing sub-elements.

These operations are similar to the five basic operations for
graph-based model transformations [13]: create node, connect
nodes, delete node, delete edge and set label. Our notion of
property can be seen as an elaborated kind of label, leading us
to defining three different property-related operations.
Moreover, our conceptual model also supports the definition of
sub-elements, which is an important feature in some
architectural modeling languages.

B. Model Transformation Rules

In order to use the power of model-driven development for
architectural evolution, it is necessary to define transformation
rules for a particular modeling language. In order to describe
these rules, the first step is to classify the constructs of the
language based on the conceptual model of Fig. 1 - i.e., to
identify which are the elements, sub-elements, links and
properties of that particular language. Then one can proceed to
instantiate the basic architectural evolution operations for each
element, link and property of the language.

Once all basic operations are defined, the transformation
rules can be developed using a model transformation
framework (such as QVT) or using a general-purpose
programming language. The development of these rules can be
quite straightforward, as presented in the next section.
However, the complexity of the language in focus may pose
some additional challenges.

IV. MODEL TRANSFORMATIONS FOR ARCHITECTURAL
EVOLUTION ON ACME

In this section we illustrate the use of our conceptual
framework to enable architectural evolution on a specific ADL:
Acme [9]. Acme components characterize computational units
of as ystem. Connectors represent and mediate interactions
between components. Ports correspond to external interfaces of
components. Roles represent external interfaces of connectors.
Ports and roles are points of interaction, respectively, between
components and connectors — they are bound together through
attachments. Systems are collections of components,
connectors and a description of the topology of the components
and connectors. Systems are captured via graphs whose nodes
represent components and connector and whose edges
represent their interconnectivity. Properties are annotations that
define additional information about elements (components,
connectors, ports, roles, representations or systems).
Representations allow a component or a connector to describe
its design in detail by specifying a sub-architecture that refines
the parent element. The elements within a representation are
linked to (external) ports through bindings.

A. Applying the conceptual framework

Considering our conceptual framework, we identified the
basic operations required to evolve an architectural model in
Acme. The Acme elements are Component, Connector, Role,
Port and Representation. Particularly, the last three elements

450

are sub-elements — Role is a sub-element of Connector, Port is
a sub-element of component and Representation is a sub-
element of both Component and Connector. Please note that
Connector is not an actual link — instead, it is an element that is
(indirectly) linked to Component through Attachment. The only
links in Acme are Attachment and Binding. An attachment
links an internal port of a component to a role of a connector,
while a binding links an internal port to an external port of a
representation. Lastly, Property expresses the properties of
each element or of a System.

Thus, the basic operations for architectural evolution in
Acme were defined: Add Component, Add Port, Add
Connector, Add Role, Add Representation; Remove
Component, Remove Port, Remove Connector, Remove Role,
Remove Representation; Add Attachment, Add Binding;
Remove Attachment, Remove Binding; Add Property; Remove
Property; Change Property. Since all properties in Acme share
the same structure, we did not need to define different property
operations — e.g., there is no benefit in defining different Add
Component Property and Add Connector Property operations.

B. Acme evolution with QVT

In this section we present how the basic operations can be
implemented using a model transformation framework. Here
we are using QVT, which comprises a language for specifying
model transformations based on the Meta Object Facility —
MOF and on the Object Constraint Language — OCL.

Fig. 2 s hows the QVT Operational code for the Add
Component operation. The first line states the metamodel that
will be used in the transformation, which is the Acme
metamodel. The second line declares the Add Component
transformation, informing that the same model (aliased
acmeModel) will be used both as input and as output. Other
than the input models, QVT transformations accept input
through the mechanism of configuration properties. Line 3
presents the input variable of this transformation, which is the
component name. In QVT, the entry point of the transformation
is the signature-less main operation. Our main operation (lines
4-7) calls the mapping of the root object of the model, which is
System. The transformation itself is performed by the Apply
Add Component mapping (lines 8-12), which inserts a new
component. The component constructor is defined in lines 13-
16, it simply assigns the given name to the component.

Fig. 3 presents the mapping of the Remove Port
transformation (the other elements of the transformation are
very similar to that of Fig. 2). In this mapping we traverse all
ports of the model (Line 3), so that when port with the given
name is found (Line 5) it is deleted from the model (Line 7).

Here we have described a straightforward implementation
of the basic architectural evolution operations for Acme.
However, there is room for improvement. For example, where
clauses can be defined for preventing the addition of a
component with an empty name, or the removal of a port that is
still attached to some role.

V. CONCLUSION AND FUTURE WORK

The conceptual framework defined in this paper is generic
enough to allow its application on different architectural

1 modeltype Acme uses Acme('acme2');
2 transformation AddComponent(inout acmeModel :
3 configuration property componentName : String;

Acme);

4 main()

6 acmeModel.rootObjects()[System].map
applyAddComponent();
}

8 Mapping inout System::applyAddComponent()
9 {

10 self.acmeElements += new

11 Component(this.componentName);

12 }

13 constructor Component::Component(myName
14 {

15 name := myName;

16 }

: String)

Figure 2. QVT code for the Add Component operation

mapping inout System::applyRemovePort()

{
self.allInstances(Port)->forEach(p)

{
if (p.name.=(this.portName)) then

acmeModel.removeElLement(p);

CONO UV A WNBE

}

endif;

o}

10 }s
11 }

Figure 3. QVT code excerpt for the Remove Port operation

modeling languages of different architectural views (e.g.,
module, components and connectors, and allocation views
[10]). By classifying the constructs of the modeling language
according to our conceptual model, and then defining its basic
operations, one can systematically develop transformation rules
for that particular language. These rules can then be used to
automate model transformation, in the context of model-driven
engineering. Moreover, by defining transformation rules based
on a common set of basic operations, the integration of
different architecture evolution approaches can be facilitated. It
is worth noting that our approach is not intended to replace
current approaches for architectural evolution, but instead to
empower them by facilitating the use of model transformations
on the diverse set of modeling languages in use.

One of the limitations of our approach is that it does not
consider architectural evolution as a whole, focusing solely on
the modification of models. In future works we intend to
explore the use of triggers to initiate the modification of the
architectural model, as well as the selection of which
modification to perform [20]. Additionally, we intend to
automate the creation of the basic transformation rules for a
given language, based on its m etamodel. Moreover, we will
investigate how this approach can be used in connection with
modeling languages other than architectural ones.

451

[1]

[2]

[3]

[6]

[7]
[8]

[9]

[10

[11]

[12]

[13

[14]

[15

[16

[17

[18]

[19

[20

REFERENCES

Allen, R., Douence, R., Garlan, D. Specifying and Analyzing Dynamic
Software Architectures. Proc. of 1998 Conference on Fundamental
Approaches to Software Engineering, Lisbon, Portugal, March, 1998.

Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J. Documenting Software Architecture: Documenting
Behavior. CMU/SEI-2002-TN-001, January 2002.

Balogh, A., Varrd, D. Advanced Model Transformation Language
Constructs in the VIATRA2 Framework. ACM SAC, pp. 1280-1287,
France, 2006.

Baresi, L., Heckel, R., Thone, S., Varro, D. Modeling and validation of
service-oriented architectures: application vs. style. SIGSOFT Softw.
Eng. Notes 28, 5, pp. 68-77, September 2003.

Bradbury, Jeremy S.; Cordy, James R.; Dingel, Juergen and
Wermelinger, Michel (2004). A survey of self-management in dynamic
software architecture specifications. In: Proceedings of the 1st ACM
SIGSOFT Workshop on Self-managed Systems, November 2004.

Chapin, N., Hale, J., Khan, K., Ramil, J., Than, W.. Types of software
evolution and software maintenance. Journal of software maintenance
and evolution, pp. 3-30, 2001.

Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.) Software
Evolution and Feedback: Theory and Practice, Wiley, Chichester (2006).

Franch, X., Grinbacher, P., Oriol, M., Burgstaller, B., Dhungana, D.,
Lopez, L., Marco, J., Pimentel, J. Goal-driven Adaptation of Service-
Based Systems from Runtime Monitoring Data. In: Proceedings of the
5th International IEEE Workshop on R equirements Engineering for
Services (REFS), Munich, Germany, July 2011.

Garlan D, Monroe R, Wile D (1997) Acme: An Architecture Description
Interchange Language. In: Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative research (CASCON’97).
Toronto, Canada.

Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P.,
Merson, P. Documenting software architectures: views and beyond, 2nd
ed. Addison-Wesley Professional, 2010.

Garlan, D., Perry, D. Introduction to the Special Issue on Software
Architecture. In: Journal IEEE Trans. on Soft. Eng. Vol. 21, Issue 4
(1995)

Grau, G., Franch, X. On the Adequacy of i* Models for Representing
and Analyzing Software Architectures. Proceedings of the ER
Workshops 2007, LNCS 4802, pp. 296-305 (2007).

Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H. A Systematic
Approach to Metamodeling Environments and Model Transformation
Systems in VMTS. GraBaTs’04.

Magee, J., Kramer, J. Dynamic Structure in Software Architectures.
Proceeding SIGSOFT '96 Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering 1996.

Medvidovic, N. A Classification and Comparison Framework for
Software Architecture Description Languages. Technical Report UCI-
1CS-97-02, University of California, February 1996.

OReilly, C., Morrow, P., Bustard, D. Lightweight prevention of
architectural erosion. Proceedings of the Sixth International Workshop
on Principles of Software Evolution (IWPSW), pp. 59-64, September
2003.

Oreizy, P., Medvidovic, N., Taylor, R. Architecture-Based Runtime
Software Evolution. Proceedings of the International Conference on
Software Engineering 1998 (ICSE'98). Kyoto, Japan, April 1998.

Pimentel, J., Franch, X., & Castro, J. (2011). Measuring architectural
adaptability in i* models. In Proceedings of the XIV Ibero-American
Conference on Software Engineering, pp. 115-128,2011.

Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.
Deriving software architectural models from requirements models for
adaptive systems: the STREAM-A approach. In: Requirements
Engineering Journal, published online, 2011.

Pimentel, J.; Santos, E.; Castro, J. Conditions for ignoring failures based
on a requirements model. In: Proceedings of the 22nd International
Conference on Software Engineering and Knowledge Engineering
(SEKE). p. 48-53,2010.

