
1

Anticipating Requirements Changes - Using

Futurology in Requirements Elicitation

João Pimentel, Universidade Federal de Pernambuco, Brazil

Emanuel Santos, Universidade Federal de Pernambuco, Brazil

Jaelson Castro, Universidade Federal de Pernambuco, Brazil

Xavier Franch, Universitat Politècnica de Catalunya, Spain

ABSTRACT

It is well known that requirements changes in a later phase of software developments is a major source of

software defects and costs. Thus, the need of techniques to control or reduce the amount of changes during

software development projects. We advocate the use of foresight methods as a valuable input to

requirements elicitation, with the potential to decrease the number of changes that would be required after

deployment, by anticipating them. In this paper we define a process for using a foresight method, namely

Futures Wheel, for requirements elicitation. To illustrate the use of this approach, we perform a case study

using a route planning system.

Keywords: Requirements elicitation, Requirements changes, Requirements Evolution, Studies of the

 future, Foresight methods, Autonomic Computing, Self-adaptive systems.

INTRODUCTION

In the life cycle of a software product,

maintenance is considered to be one of the most

costly phases (Schach, 2002; Wall & Sinnadurai,

1998). This is largely due to the correction of errors

that were introduced in previous phases as well as

requirements changes due to the increasingly

dynamic context in which the systems run.

Moreover, the dynamic business environments and

technological improvements lead to the high

occurrence of requirements changes. However,

requirements evolution may impact other

requirements, as well as affect system design, code

and test cases. Requirements changes are also one of

the main causes of software defects (Javed,

Maqsood & Durrani, 2004; Navarro, Leveson &

Lundqvist, 2000; Oz, 1994; RAE & BCS, 2004). It

has been reported that the sooner a change is

detected the better, i.e., the costs for dealing with it

are reduced (Rosenberg & Hyatt, 1996). Thus, if we

can anticipate these changes during the initial

development of the system, we have better chances

to minimize their impact on the overall product life

cycle.

Nowadays, there is a type of system that is

expected to analyze and implement some of these

changes at runtime (Lapouchnian, Yu, Liaskos &

Mylopoulos, 2006). Indeed, autonomic and self-

adaptive systems are able to monitor the

environment on which they are running, in order to

identify the need for changing their behavior. In

order to do so, it is required that these alternative

behaviors are previously identified and defined.

Therefore, identifying the expected changes in

system requirements and defining how to handle

these changes is a key research challenge in

information systems engineering.

In this paper we claim that the use of foresight

methods can provide valuable inputs for

2

requirements elicitation, with the potential of

decreasing the number of changes in the software

lifecycle. Some works have already shown the

benefits of using and adapting well-established

methods from social sciences – e.g., ethnography,

for requirements elicitation (Neto, Gomes, Castro &

Sampaio, 2005). Based on these experiences, we

believe that elaborating on the current methods of

foresight used by social scientists and futurists is a

promising way to predict requirements changes.

Thus, in this paper we outline a process based on a

specific foresight method – Futures Wheel (Glenn,

1972) – to enrich a requirements model. In order to

analyze the suitability of the proposed approach, we

performed a case study using a route planning

system.

DISCOVERING THE FUTURE

If discovering the current requirements of a

system is already a complex task, what to say about

the requirements for the future? We can affirm that

it is even more challenging, since we may face

several cases in which it is impossible to know for

sure if an event expected to happen in the future is

really going to happen. On the other hand, the

understanding of the future does not have to be as

detailed as the understanding of the problem as it is

nowadays. This is the case because the study of the

future will be an additional source for requirements

elicitation, rather than its basis.

Definition 1 (Future event): a future event is an

event that is expected to take place in the future.

According to Kotonya and Sommerville (1998),

there are four dimensions to requirements elicitation,

regarding problem analysis: Application domain,

Problem to be solved, Business context and

Stakeholder needs and constraints. If we aim at

eliciting requirements dealing with future events, we

need to consider the projection of these four

dimensions in the future. For this purpose, some

kind of representation of the future becomes

necessary.

Definition 2 (Representation of the future): a

representation of the future is a model that describes

a set of future events.

A representation of the future can be either

intentionally or accidentally created, and it can be of

either a formal or an informal nature (Loveridge,

1996). Hence, it may occupy any position on the

axes of Figure 1. The best representations of the

future would be obtained if it was possible to create

a formal and intentional model of the future, but not

every project has sufficient resources or knowledge

to create such a model. In these cases, the

requirements engineer may collect some clues about

the future while using normal elicitation techniques:

listening to stakeholder comments during group

sessions, reviewing the regulatory environment,

analyzing the client plans, among others (Ecklund,

Delcambre & Freiling, 1996). This model would be

informal, and could be either accidentally or

intentionally created.

In the literature of future studies, futurology, and

foresight there are several techniques and methods
that support a rational discovery of possible futures
(Glenn, 1999; Porter et al., 2003). These
representations of futures may contain just one
specific future event, or multiple future events. They
are often stated as diagrams, textual descriptions or
mathematical representations. The foresight methods
can be classified as qualitative or quantitative, and
they may have other uses than just future studies, as
is the case in Econometrics (Heckman & Leamer,
2007) and Scenarios (Schwartz, 1991), among
others.

Figure 1 - Axes for characterization of a

representation of the future

A
cc

id
en

ta
l

In
te

n
ti

o
n
al

Formal Informal

3

Definition 3 (Foresight method): a foresight

method is a means of creating a representation of

the future.

In a previous paper we presented a survey on

foresight methods, on which seventeen methods that

may be used for requirements elicitation were

identified and briefly described: Delphi, Futures

Wheel, Participatory methods, Econometrics

forecast, Regression Analysis, Trend Impact

Analysis, Structural Analysis, System Dynamics,

Agent Modeling, Cross Impact Analysis, Relevance

Trees, Simulation Modeling, Multiple Perspectives,

Causal Layered Analysis, Scenarios, Field Anomaly

Relaxation, and Simulation & Gaming (Pimentel,

Castro, Perrelli, Santos & Franch, 2011).

There are approaches relating software

engineering and some foresight methods, like Delphi

(Boehm, 1981), System Dynamics (Mao, Vassileva

& Grassmann, 2007), Agent Modeling (Tesauro &

Kephart, 2000) and Simulation Gaming (Boissau &

Castella, 2003). Some of the foresight methods are

even used for requirements elicitation, but not with

the perspective of studying the future; e.g.,

Participatory methods and Scenarios. From the

existing foresight methods, we identified Futures

Wheel (Glenn, 1972) as a suitable method for

requirements elicitation because: (i) it provides a

clear picture of the future events that may impact the

system, (ii) it is easy to be understood and used by

stakeholders and (iii) it requires less effort than the

other approaches, therefore not compromising the

project schedule.

BACKGROUND

In this section we present the Futures Wheel

foresight method and its notation for writing

representations of the future (Glenn, 1999) which

will be used in our requirements elicitation

processes. Also, we describe a goal modeling

notation that will be used to express system

requirements in our case study.

Futures Wheel

In this section we are going to present Futures

Wheel according to its standard definition (Glenn,

1999). Futures Wheel is a foresight method that

provides a model based on the consequences of a

future event or a current trend. This model is a

representation of the future. The method is

subjective and qualitative, relying on the experience

and knowledge of the participants. Its low

complexity allows its usage without requiring any

specialized training. Nonetheless, it does require a

deep understanding of the problem domain being

analyzed, so that the generated representation of the

future may be as accurate as possible. Therefore, the

strong involvement of project stakeholders during

the model generation, including client’s

representatives and domain experts, is a key success

factor.

Futures Wheel can be performed either by a

single person – e.g., the requirements analyst of a

project – or it can be performed collaboratively,

usually by means of meetings lead by a mediator.

The method itself consists of two steps.

The first step is to identify trends or events that

are likely to occur in a near future and that are

related to the problem domain. A trend is something

that has already started and is growing stronger, like

“Use of electric car” or “Stream of live videos on the

Internet”. A future event is simply something that is

expected to happen - e.g. “The entire population of

Country X will have access to the Internet” or “A

woman will be elected president of the USA”. For

the sake of simplicity, we will hereafter refer to

trend or future event only as event. This naming

decision does not imply that a future event has more

priority or importance over trends.

The second step is to refine the event, adding its

consequences. For each event, we will ask “what are

the impacts, or consequences, of this event”? Then,

for each consequence, identify the secondary

consequences – i.e., the consequences of the

consequences –, the tertiary consequences, and so

on. A leaf consequence is a consequence that has no

further consequences.

4

The application of Futures Wheel creates a

representation of the future for each event - a graph

in which it is possible to analyze the possible

consequences of that event. The event is represented

by a circle with a thick border. The consequences

are represented by a circle with a normal border. The

main event is linked to the primary consequences by

a single line arrow; the primary consequences are

linked to the secondary consequences by a double

line arrow, and so on. This notation is depicted in

Figure 2. The circle with a thick border shows that A

is the event being analyzed. The single line arrows

indicate that B and C are the primary consequences

of A. The double line arrows indicate that X is a

consequence of B and of C, and that Y is a

consequence of C – Therefore, X and Y are

secondary consequences. Note that this notation

cannot represent that two or more consequences are

alternative, mutually exclusive, or any other kind of

relationship but that of consequence.

Goal modeling

In goal-oriented approaches (Lamsweerde, 2001),

the role of Requirements Engineering (RE) is related

to the discovery, the formulation, the analysis and

the agreement of what is the problem being solved,

why the problem must be solved and who is

responsible for solving the problem. As a

consequence of the increasing use of goal-

orientation in RE, several frameworks, languages

and techniques where goals are used as abstraction

have emerged, including KAOS (Dardenne,

Lamsweerde & Fickas, 1993), the NFR Framework

(Chung, Nixon, Yu & Mylopoulos, 2000), i* (Yu et

al., 2010), V-Graph (Yu, Leite & Mylopoulos, 2004)

and Techne (Jureta, Borgida, Ernst & Mylopoulos,

2010).

Among these approaches, we chose i* (Yu et al.,

2010), which will be briefly presented in this

subsection. Besides being the notation used in the

original requirements document of the system

considered in our case study, i* provides a suitable

mechanism for representing alternative behaviors of

a system, through means-end links. This

characteristic makes it more natural to integrate the

future-influenced requirements with the current goal

model of the system. A future-influenced

requirement is a requirement that was created or

modified based on a future event.

i* defines models to describe both the system and

its environment in terms of intentional dependencies

among strategic actors (Lucena et al., 2008) (who).

There are two different diagrams, or views, of an i*

model: the Strategic Dependency (SD) diagram

presents only the actors and the dependency links

amongst them, whilst the Strategic Rationale (SR)

diagram shows the internal details of each actor.

Within a SR diagram it is defined why each

dependency exists and what is required to fulfill

them.

Besides the actor, there are four key elements in

i*: goals, softgoals, tasks and resources. Goals

represent the strategic interests of actors, that is,

their intentions, needs or objectives to fulfill their

roles within the environment in which they operate.

Softgoals are similar to goals, but in this case the

interests are of subjective nature. They are not

measured in concrete terms, but are generally used

to describe the actors' desires related to quality

attributes of their goals. Tasks represent a way to

perform some activity to obtain satisfaction of a goal

or of a softgoal. Resources represent data or

information that an actor may provide or receive.

There is one kind of dependency related to each

one of the four elements previously defined. A goal

dependency states that the depender needs the

dependee to satisfy one of its goals. Similarly, in a

softgoal dependency the depender needs the

dependee to meet a softgoal. In a task dependency,

the dependee is asked to perform an activity for the

depender. A resource dependency express that the

depender needs some resource that may be provided

by the dependee.

Figure 2 – Example of the Futures Wheel notation

A

B

C

X

Y

5

In the SR diagram, the actor will be detailed

using task-decomposition, means-end and

contribution links (Figure 3). Means-end links

define which alternative tasks (means) may be

performed in order to achieve a given goal (end)

(e.g., Task T1 is a possible means to achieve Goal

G1). Task-decomposition links describe what should

be done to perform a certain task (e.g., Task T1 is

decomposed onto Task T2 and Task T3). Finally, the

contributions links suggest how a task can contribute

(positively or negatively) to satisfy a softgoal (e.g.,

Task T2 contributes negatively to Softgoal S1).

These contributions allow the selection of alternative

tasks driven by the satisfaction of softgoals, which

includes non-functional requirements. Lastly, the

resource dependency between Actor A1 and Actor

A2 means that, in order to perform Task T3, Actor

A1 needs Resource R1 that can be provided by the

execution of Task T4 by Actor A2.

FUTURES WHEEL EXTENSION FOR
REQUIREMENTS ELICITATION

As noted earlier, a Futures Wheel model describes a

future event and its consequences. Naturally, there is

still a large gap between the consequences and the

system requirements. In order to diminish this gap,

we have enlarged the notation with a new type of

consequence, that we name direct consequence.

Direct consequences act as a layer between regular

consequences and system requirements.

Hence, for each regular consequence, we may ask

“how does this consequence affect the system”? I.e.,

what kind of direct system support (service,

operation, function) is required? The answer will be

one or more direct consequences, since they are

directly related to the system. To make it explicit

which are the direct consequences, we represent

them as circles with a dashed border.

Figure 4 shows an example of an extended

Futures Wheel model. The consequences X, W and

Z were, at first, leaf consequences. Then we added

the direct consequences P, Q and S, which are

consequences directly related to the system. Not

necessarily all leaf consequences have direct

consequences, as is the case of the consequence.

The metamodel of this extended Futures Wheel

notation is presented in Figure 5, using the Unified

Modeling Language - UML (OMG, 2009b).

Therefore, an extended Future Wheel model is an

instance of this metamodel. The Event class is a

singleton, since we are going to define only one

future event at each model. An event may have an

indefinite number of consequences. There are two

types of consequence: regular consequence and

Figure 4 – Example of the extended Futures Wheel

model notation

A

B

C

X

Y

P

Q

Z

S

W

L
e
g
e
n
d

Event/
Trend Consequence Direct

Consequence

Figure 3 – Example of a goal model to illustrate i*

main concepts

Actor A1

Task T1
Softgoal S1

H
u
rt

Goal G1

Task T3Task T2

Actor A2

Task T4

D

D

Goal Task
Actor

Softgoal Resource

Legend

Means-
ends link

Decomposition
link

label

Contribution
link

Resource

R1

6

direct consequence. Each consequence must have at

least one source, either an event or a regular

consequence. A regular consequence may have any

number of (sub-)consequences.

Both the Event class and the Consequence class

have an attribute to represent the description of their

instances – for instance, to describe what is the

future event being modeled. This attribute is

inherited by the Regular Consequence and Direct

Consequence classes. The Event class has two

additional attributes: Timeframe, that states when

that event is expected to take place; and Probability,

that indicates the likelihood of that event to happen.

We decided not to include attributes such as

priority, source, impact, and others, since this would

depend on the requirements process and templates

being used.

FUTURES WHEEL FOR REQUIREMENTS
ELICITATION – THE PROCESS

We now present our process to guide the use of the

Futures Wheel method for requirements elicitation.

It was designed to be deployed in concert with some

other current requirements engineering process.

Hence, the process does not restrict the elicitation

techniques to be used, neither the requirements

models to be created, and so on.

Figure 6 outlines the Futures Wheel for

Requirements Elicitation Process. The inputs are the

Requirements Document and the possible templates

that the organization may already have for using

Futures Wheel (Futures Wheel Plan Template and

Futures Wheel Document Template). The output of

the process is the Futures Wheel Document, which

may contain the Futures Wheel models and

additional descriptions of the models.

The process comprises four activities (Figure 7):

Plan Futures Wheel, Perform Futures Wheel, Define

Direct Consequences, and Analyze Direct

Consequences. These activities will be described in

the following sub-sections.

Both figures 6 and 7 present the process using the

Business Process Model and Notation – BPMN

(OMG, 2009)

Plan Futures Wheel

This activity consists of defining how the Futures

Wheel method is going to be deployed in the

specific project under consideration. If the

organization has already adopted a Futures Wheel

Plan Template, it can be used to guide this planning,

for management purpose. Similarly, if it also has a

Futures Wheel Document template, in this activity it

will be instantiated to the specific project being

carried on. This instantiated document will contain

Figure 6 – Inputs and Outputs of the Futures Wheel

for Requirements Elicitation Process

+

Futures Wheel for

Requirements

Elicitation Process

Futures Wheel

Plan Template

Futures Wheel

Document Template

(organizational)

Requirements

Document

Futures Wheel

Document

Figure 5 – Metamodel of the extended Futures

Wheel notation

-Description

Consequence

DirectConsequence

-Description

-TimeFrame

-Probability

Event

1

1

RegularConsequence

*

1source

target

{disjoint, complete}

*

{XOR}

7

the Futures Wheel models generated throughout the

process.

The Futures Wheel Document Template may

include, among others, the following sections:

History Control, Index, Scope, Timeframe, Futures

Wheels Models, Futures Wheels Descriptions,

Assumptions, and Glossary.

The template for Futures Wheel Document may

contain usual project plan sections, such as History

Control, Index, Scope, Stakeholders, Resources,

Schedule, Budget, Risks, Change Control, Work

Breakdown Structure, Assumptions, and Glossary.

The 5W2H (What, Why, Where, When, Who, How

and How much) dimensions can be used to guide the

planning for carrying the Futures Wheel method:

What – What tasks are going to be realized? For

instance: Interviews, Questionnaires, Focus groups,

Reviews.

Why – What is the rationale for each task to be

realized?

How – How each task is going to be performed?

For instance, how are conflicts going to be solved

during the focus group? Is there going to be a

facilitator? Will the meeting be recorded? Will the

meeting be held in-person or through the Internet?

And so on.

Who – Who is going to be involved in each task?

What are their roles? For instance, in a focus group,

who are the participants and who is going to be a

facilitator?

Where – Where are the tasks going to take place?

When – What is the schedule for performing the

process?

How much – How much will it cost to perform

these tasks?

The planning may have different degrees of

details, according to the size of the developing

organization and to the complexity of the particular

project being developed. It is important to note that

additional information about the organization and

about the project being carried can be useful to this

planning activity. Such information includes the

organization size, structure, resources, the project

duration, the requirements techniques being used,

and so on.

The outputs of this activity are a Futures Wheel

Document Template (instantiated for the project)

and a Futures Wheel Plan.

Perform Futures Wheel

After the planning, the Futures Wheel itself can be

performed. This activity consists of creating the

Futures Wheel models, which results in a

representation of the future with events and

consequences that may have some impact in the

system to be developed. These models are

documented in the Futures Wheel Document.

Each event will be identified, as well as the

consequences for each event, the consequences of

each consequence, and so on, as described in

previous sections. When doing so, it is important to

consider the system in focus, whether by an informal

description or by a brief analysis of its already

elicited requirements – which justifies considering

the Requirements Document as input for this

activity. Otherwise, there would be the risk of

identifying too many future events and

consequences that are not related at all with the

system. Nonetheless, it is important to not restrain

too much the modeling to the system requirements,

since this could prevent the creation of richer and

more useful models.

Creating the Futures Wheel models is a matter of

information elicitation. Thus, usual techniques, such

as interviews, questionnaires, and focus group, can

be used. Moreover, the same good practices and

guidelines for requirements elicitation in general can

be considered, such as the ones proposed by

Sommerville & Sawyer (1997). The decision on

how to create these models is taken in the previous

activity (Plan Futures Wheel), being described in the

Futures Wheel Plan. For specific guidance on

creating Futures Wheel models, please refer to the

Background - Futures Wheel section in this paper.

Additional information is also available in Glenn

(1999).

When identifying the consequences, we should

consider the four requirements elicitation

dimensions presented in (Kotonya & Sommerville,

1998): Application domain, Problem to be solved,

Business context and Stakeholder needs and

constraints.

The output of this activity is a Futures Wheel

Document.

8

Define Direct Consequences

This activity has a stronger focus on the desired

system, rather than the future scenario. Besides the

Futures Wheel Document, the Requirements

Document of the system under development is also

an input to this activity. Based on these two input

documents, the direct consequences will be defined

and included in the Futures Wheel Document. A

direct consequence describes how a consequence in

the Futures Wheel model affects the system being

developed. During this activity, the participants may

also identify other consequences that will help them

to more clearly define the direct consequences.

Additionally, if a regular consequence in the model

is identified as being a direct consequence, it just has

to be stated as so (by changing its border to a dashed

one).

Usually direct consequences will be identified

from leaf consequences, but this is not mandatory.

Even so, it is not expected that every leaf

consequence will have a direct consequence.

Anyhow, the participants of this activity should keep

in mind that defining a direct consequence by no

means declares a commitment into actually

incorporating that consequence in the system.

Further analysis may be needed.

The output of this activity is an updated version

of the Futures Wheel Document, including the new

direct consequences and other document changes.

Analyze Direct Consequences

The inputs of this activity are the Futures Wheel

Document – with the direct consequences – and the

Requirements Document of the information system

being developed.

In this activity, the direct consequences will be

analyzed, in order to determine whether they should

be actually considered in the requirements process.

This analysis is performed considering the

Figure 7 – Process for using Futures Wheel for Requirements Elicitation

Plan Futures

Wheel

Perform

Futures Wheel

Define Direct

Consequences

Analyze Direct

Consequences

Requirements

Document

Futures Wheel

Document

Template

(project)

Futures Wheel

Document
Futures Wheel

Document

(Updated)

Futures Wheel

Document (Updated)

Futures Wheel

Plan Template
Futures Wheel

Plan

Futures Wheel

Document Template

(organizational)

9

probability of those consequences, their impact, if

they are within the project scope, among other

factors. Ideally, the system should be implemented

so that it can deal with all of the foreseen changes.

But in practice, there must be a compromise

between the probability of the direct consequence to

occur and the cost of implementing the system in a

way to support that consequence. For example, if the

probability is too low and the cost is too high, the

risk of anticipating the change may be higher than

the risk of not anticipating it.

Additionally, it is important to detect and handle

contradictory or conflicting consequences. However,

it is important to note that we are not dealing with

certainties, but rather with probabilities. Thus, in

some cases it may be useful to maintain both

conflicting consequences, as long as the conflict is

described in the Futures Wheel Document.

After the analysis, the direct consequences are

either confirmed or dropped. The revised document

will be considered an additional input for the

requirements engineering process used by the

developing organization. This may result in creating

new requirements or in changing already existing

requirements. Note that the requirements refinement,

prioritization, analysis, and so forth, can be

performed as usual in that organization.
In the next section we present a case study that

uses the Futures Wheel for Requirements Elicitation
process to refine a requirements model.

CASE STUDY

In order to analyze the suitability and exemplify the

usage of our approach, we developed a case study

based on the By The Way – UFPE (BTW-UFPE)

system. This system was developed for the SCORE

contest, a software engineering competition held at

the 31
st
 International Conference on Software

Engineering (ICSE) in 2009. We chose this project

because it is a real case study that resulted in an

awarded software system. Moreover the produced i*

models are of moderate complexity.

The system itself consisted on a route-planning

system that helps users through advices about a

specific route searched by the user. This information

is posted by other users and might be filtered to

provide for the user only relevant information about

the place that he/she intends to visit. It was targeted

for people that are going to travel to a city and need

not only to find out routes to move throughout the

city, but also to know additional info based on that

route – for instance, entertainment places near the

route, or accessibility info on the streets of the route.

The BTW-UFPE project used a process based on

the Tropos method (Mylopoulos, Castro & Kolp,

2000) process, consisting of the following

disciplines: early requirements, late requirements,

architectural design, detailed design,

implementation, verification and project

management. For requirements elicitation, the

following techniques were used: literature analysis,

interviews, competitor analysis and prototyping. The

i* models were created using the Process

Reengineering i* Methodology (PRiM) (Grau,

Franch & Maiden, 2005). Originally, no foresight

methods were used.

We describe next the original requirements model

of the BTW-UFPE system (Figure 8), which will be

used throughout this case study. Then, we present

the step-by-step application of Futures Wheel for

requirement elicitation – i.e., the case study itself. In

the sequel, we present the results of the case study.

Later on, in the Discussion section, we present

further considerations on this case study.

Original Requirements

The requirements document is an input of the

Futures Wheel for Requirements Elicitation process,

used in its two last activities. For the sake of this

case study, we are going to consider the BTW-UFPE

system i* model as being its requirements

document. The actual document contains extra

information, such as Detailed Interaction Scenarios

and Assumptions. As a result of the Futures Wheel

for Requirements Elicitation process, this model will

be modified. Thus, in the remainder of this

subsection we describe i* model of the BTW-UFPE

system.

Figure 8 is an i* model showing the BTW actor

and its internal details, as presented at (Castro et al.,

10

in press). For the sake of simplicity, we are omitting

the dependencies related to this actor.

The BTW actor represents the software system to

be developed. Its main functional goal is Trip

Advices be Provided. Throughout the refinement of

this main goal, other two major goals were

identified: User Access Be Controlled, and Map be

Handled. Each one of these goals can be achieved

through these respective tasks: Provide Advice

Service, Manage User Access and Provide Maps

Services. These tasks represent the main

functionalities of the system. The decomposition of

the Provide Advice Service task onto the Security

softgoal means that this task shall be performed

securely. It is further decomposed onto the Advice

be Updated goal, the Add Advice task, and the Show

Figure 8 – Initial goal model of the BTW-UFPE system.

Help

M
a
k
e

Usability
Be Easy

to Use Fast

Response

Provide

Advice

Service

Require

Password

Trip Advices

be Provided

Manage

User

Access

Manage

User

Profile

Control

Access to

Services

Collect

Information at

Registration

User Access

Be Controlled

Security

Show

Advices

Add

Advice

Select

Advice

Theme

No User

Feedback

Implicit

Feedback by

Monitoriong
Require

Explicit

Feedback

Advice be

Updated

Information

be Published

in Map

Select

Advice by

User History

Calculate

Intersections

Access

Maps

Database

Filter Advices

for a Route

Precise

Advices

Relevance

Add Advice

Content

Add Text Add

Photo
Display

Map

Search by

Address Display

Route in

Map

Provide Maps

Services

Map be

Handled

Trace

Route

Edit

Route

H
u
rt

H
e

lp

And

Help B
re

ak

H
e
lp

Help

Make

Hurt

Write

Information

About a Path
Write

Information

About a Point

Write

Information

About an Area

M
a
ke H
u
rt

BTW

Select Advice by

User Profile

Similarity
Update

Profile

Fulfill

Initial

Profile

Compare

Profile

Access

Specific

Services

Maintain

Access

History

Use Highly

Interactive User

Interface
Performance

Relevant

Advice be

Chosen

Select

Placemark

H
el

p

H
e
lp

And

Goal Task
Actor

Softgoal Resource

Legend

Means-
ends link

Decomposition
link

label

Contribution
link

11

Advices task. There are three means to fulfill the

Advice be Updated goal: without user feedback,

with implicit feedback (by monitoring) or requiring

explicit feedback (from the users).

The Add Advice task consists of publishing the

information in a map, as well as in adding advice

content, and in selecting the advice theme (i.e., its

category). The information can be related to a path

in a map (for instance, information about a street), to

a point in a map (for instance, a specific restaurant)

or to an area in a map (for instance, a car parking

area). These alternatives may have different impacts

on how precise the advices are, which is a constraint

of the Show Advices task. Relevance is another

softgoal of interest. The Relevance of the advices is

affected by the way advices are updated, as well as

by the content that is added: Text and Photo. Lastly,

it is also influenced by the Relevant Advice be

Chosen goal. This goal might be achieved by

selecting advices to be shown either by the user

history or by users profile similarity. This last option

has an impact on Performance, which contributes to

Fast Response. In its turn, the Fast Response

softgoal impacts Usability. In order to perform the

Show Advices task, it is also required to Filter

Advices for a Route, i.e., to select only the advices

related to a route being searched. In order to do so, it

is necessary to perform the Access Maps Database

and Calculate Intersections tasks.

The Provide Maps Services task is decomposed

onto four tasks: Display Map, Search by Address,

Display Route in Map and Select Placemark. The

Trace Route and Edit Route tasks are the

decomposition of the Display Route in Map task.

Related to Security, the Control Access to

Services task is a decomposition of the Manage

User Access task. Control Access to Services is

decomposed onto Access Specific Services and

Require Password. The later has an impact on the

Be Easy to Use softgoal, which impacts Usability.

The Use Highly Interactive User Interface task also

impacts the Be Easy to Use softgoal. Lastly, the

Manage User Profile task is decomposed onto

Maintain Access History, Compare Profile, Update

Profile, and Fulfill Initial Profile. The later consists

of collecting information at registration.

Using the Futures Wheel Process for

Requirements Elicitation

The first activity of the Futures Wheel for

Requirements Elicitation process (depicted in Figure

7) is the planning. We used the 5W2H technique to

guide the planning, which was documented in a

simple Futures Wheel Plan. Then, we designed the

Futures Wheel Document Template that we would

use in this case study.

In order to perform the other activities of the

process, we invited three researchers not related to

this paper. For each one of these volunteers, a work

meeting was held. At these meetings, the BTW-

UFPE system and the Futures Wheel method were

briefly described by a facilitator, in 15 to 20 minutes

presentations. The facilitator was an author of this

paper. The participants were already familiar with

i*, but not with Futures Wheel. Afterwards, in the

same meeting, the volunteers were asked to create

Futures Wheel models with the help of the

facilitator.

When the Futures Wheel models were created

(Activity 2), we asked the invited researchers to

identify the direct consequences (Activity 3). Note

that the i* model depicted in Figure 8 was an input

for this activity. Table 1 presents some

measurements taken on the resulting models – the

number of events, consequences, leaf consequences

and direct consequences defined by each invited

researcher. This data showed some correlations that

will be further explored in the Discussion section.

Table 1 – Measurements taken on the Futures Wheel models created during the case study

Author Events Consequences Leaf consequences Direct consequences

XX 5 22 18 9

XY 6 34 17 14

XZ 3 51 25 13

12

After the creation of three different sets of

Futures Wheel models – one by each volunteer – the

facilitator analyzed these models. Based on this

analysis, the facilitator generated a consolidated

model, merging the different models when there

were similar events. Afterwards, the Futures Wheel

document that contains these models was validated

by the same group of volunteers, individually.

The last activity consists in analyzing the direct

consequences described in the Futures Wheel

Document. This was performed by the facilitator,

along with other authors of this paper. In Figure 9

we present an excerpt of the resulting Futures Wheel

models, including three events. The first one is the

increasing willingness of users to share information

and to interact with other users. The second event is

about the widespread use of mobile devices, such as

smartphones and tablets, to access Internet websites.

The last event is related to the availability of better

network infrastructure (i.e., faster Internet

connections). All these events were defined

considering a timeframe of 5 years, which was the

timeframe decided during the first activity.

From these three events, seven direct

consequences were defined (Figure 9). The first one

is related to communication mechanisms (A); the

second one is related to social networks accounts

(B); the third one is about sharing personal

information on social networks (C); the fourth

consequence is about user interaction with specific

devices (D); the fifth one is about the use of GPS

(E); the sixth and the seventh one are related to

videos on the Internet (F and G).

 Results

Considering the direct consequences presented in

Figure 9, we analyzed the goal model of Figure 8 in

order to identify how it could be modified in order to

properly address the consequences.

Table 2 shows the changes that were made to the

goal model, for each direct consequence. Addressing

consequence A, we included the functionalities of

chat and comments. To support consequence B, we

added the option to login using a social network

account. Consequence C was addressed with new

options to publish advices and to share advices in

social networks. Consequence D resulted in a new

requirement of porting the system to specific

devices. To address consequence E we included the

option to search address by user position provided

by a GPS. Lastly, consequences F and G were taken

care of with the option of adding video when adding

advices.

The resulting goal model of the BTW-UFPE

system is presented in Figure 10. Without the

analysis on the Futures Wheel models, these

changes would only be made when the system was

Figure 9 – Futures wheel models for the BTW-

UFPE system

Users more

willingly to

share and

interact

Users favouring

websites where

they can interact

with other users

Dominance of

social networks

in the Internet

The system will

need to provide

communication

mechanisms

Several

users with

social

networks

accounts

Several users

sharing personal

information on

social networks

Increasing

usage of

Internet through

mobile devices

New ways of

interacting with

websites

Users expecting

website interaction

suitable with

device being used

GPS data

available

More people

with high speed

Internet

More users

uploading

personal

videos to the

Internet

Users more

attracted to

video stream

1)

2)

3)

A

B

C

D

E

F

G

L
e
g
e
n
d

Event/
Trend Consequence Direct

Consequence

13

already developed and released in production, which

more costly than making the changes before the

system is actually developed.

DISCUSSION

An important tradeoff when anticipating changes

is that between the cost of doing it and the cost of

not doing it. Hence, the issue to be discussed is the

cost to perform these changes now versus delaying

them to the appropriate moment. We already know

that some technological changes may have dire

consequence, for example, in a system’s

architecture, causing even the system to be totally

redeveloped. Moreover, whilst anticipating

decisions based on one expected future may be

rewarding if this prevision shows to be correct,

unnecessary costs may arise if the prevision was not

correct. So it is also needed a balance between the

costs and the probability of the future change to

happen. Regarding this probability, the bigger the

time frame used for foresight, the smaller is its

accuracy. According to Tonn, Hemrick and Conrad

(2006) people imagine the future very clearly in a 2

years’ timeframe; somewhat clearly in a 2 to 20

years’ timeframe, and; not very clearly after 20

years.

Note that Kotonya and Sommerville (1998)

defined six factors that lead to requirements change:

(i) requirements errors, conflicts and

inconsistencies; (ii) evolving customer/end-user

knowledge of the system; (iii) technical, schedule or

cost problems; (iv) changing customer priorities; (v)

environmental changes and; (vi) organizational

changes. The usage of foresight techniques does not

reduce requirements changes related to factors (i),

(ii) and (iii). However, it does have an influence on

the last three factors: (iv), (v) and (vi).

There are several works that point out the high

cost of changing requirements in later phases of the

software development process, such as design or

implementation – for instance, (Ferreira, Collofello,

Shunk & Mackulak, 2009; Rosenberg & Hyatt,

1996). Moreover, changes are one of the main

causes of software defects or high cost of the

software (Boehm & Papaccio, 1988; Javed,

Maqsood & Durrani, 2004; Navarro, Leveson &

Lundqvist, 2000; Oz, 1994; RAE & BCS, 2004).

Therefore, we hope that foresight methods can help

to identify changes that would be required after the

Table 2 - Traceability information of the direct
consequences and their impact on the goal
model

Direct consequences Specific Impact

(A) The system will need

to provide

communication

mechanisms

Add “Provide Interaction

Among Users” goal, with

the following means:

“Provide Chat” and

“Provide Comments in

Advices”

(B) Several users with

social network accounts

Add “Identify User” goal;

Remove task

decomposition from

“Control Access to

Services” to “Require

Password”; Add means-

end link from “Require

Password” to “Identify

User”; Add “Use Social

Network Account” as a

means to “Identify User”

(C) Several users sharing

personal information on

social networks

Add “Share Route in

Social Networks” task,

with decomposition link

from “Display Route in

Map”

(D) Users expecting

website interaction

suitable with device

being used

Add “Have Different

Versions for Specific

Devices” goal, with Help

contribution to “Be easy to

use”

(E) GPS data available Remove “Search by

Address” task; Add

“Search by Address” goal,

with the following means:

“Search by User-defined

Address” and “Search by

User Position”

(F) More users uploading

personal videos to the

Internet

Add “Add Video” task,

with a decomposition link

from “Add Advice

Content” and a Help

contribution link to

“Relevance”

(G) Users more attracted

to video stream

Add “Add Video” task,

with a decomposition link

from “Add Advice

Content” and a Help

contribution link to

“Relevance”

14

system development (due to a future event). This

may help to reduce the overall maintenance cost.

The representations of the future may also help

release planning and affect other project decisions,

such as whether to develop families of system or just

a single system.

It is important to note that the constant evolution

of Software Engineering techniques and Computer

Aided Software Engineering (CASE) tools, the

impact of some changes have been significantly

reduced. In eXtreme Programming, this ease of

modifying software is referred to as an embrace

changes attitude. However, some kinds of changes

still have a large impact on software projects,

especially those related to non-functional

requirements.

Regarding requirements documentation, there is

already an adaptation of use cases for future

requirements, called change cases (Ecklund,

Delcambre & Freiling, 1996). Further work may

need to be performed in order to document future

requirements with other requirements description

techniques, such as goal models or viewpoints. In

this paper, instead of defining a new notation

include the future requirements, we opted for

changing the original requirements model to

incorporate the selected requirements that would

arise in the future. This changing may be performed

by provoking (i) the creation of new requirements;

(ii) the exclusion of requirements that already exist;

Figure 10 – Final goal model of the BTW-UFPE system

Help

M
ake

Usability

Be Easy

to Use

Fast

Response

Provide

Advice

Service

Require

Password

Trip Advices

be Provided

Manage

User

Access

Manage

User

Profile

Control

Access to

Services

Collect

Information at

Registration

User Access

Be Controlled

Security
Show

Advices

Add

Advice

Select

Advice

Theme

No User

Feedback

Implicit

Feedback by

Monitoriong

Require

Explicit

Feedback

Advice be

Updated

Information

be Published

in Map

Select

Advice by

User History

Calculate

Intersections

Access

Maps

Database

Filter Advices

for a Route

Precise

Advices

Relevance

Add Advice

Content

Add Text

Add

Photo

Display

Map
Display

Route in

Map

Provide Maps

Services

Map be

Handled

Trace

Route

Edit

Route

H
u
rt

Help

And

H
el

p

B
re

ak

H
e
lp

Help

Make

Hurt

Write

Information

About a Path
Write

Information

About a Point

Write

Information

About an Area

Make

Hurt

BTW

Select Advice by

User Profile

Similarity

Update

Profile

Fulfill

Initial

Profile

Compare

Profile

Access

Specific

Services

Maintain

Access

History

Use Highly

Interactive User

Interface

Performance

Relevant

Advice be

chosen

Select

Placemark

H
elp

H
e
lp

And

Identify User

Use Social

Network

Account

Publish in

Social

Networks

Share Route

in Social

Networks

Add

Video

H
e
lp

Search by

User-defined

Address

Search by

Address

Search by

User Position

Provide

Interaction

Among Users

Provide

Chat

Provide

Comments in

Advices

Have Different

Versions for

Specific Devices

H
e
lp

Goal Task
Actor

Softgoal Resource

Legend

Means-
ends link

Decomposition
link

label

Contribution
link

15

(iii) changes on requirements that already exist; or

(iv) by combining any of these three types of

change.

Case Study

An analysis on the measurements on the Futures

Wheel models created during the case study (Table

1) suggests that metrics could be created to evaluate

some characteristics of these models. The ratio of

leaf consequences per regular consequences may

express the degree of details of the model. For

example, in the given case study we could observe

the following correlation: the lowest this ratio, the

higher the details.

We may express this metric in OCL (OMG,

2010), considering the metamodel depicted in Figure

5. In order to do so, we will need to calculate the

number of regular consequences in this model. This

can be achieved with the following expression:

AmountOfRegularConsequences ::=

RegularConsequence.allInstances()->size()

. The number of leaf consequences, ignoring direct

consequences, is the number of regular

consequences that do not have any other regular

consequence as target. Thus,

AmountOfLeafConsequences ::=

RegularConsequence.allInstances()->select(e|e.target-

>select(d|d.oclIsTypeOf(RegularConsequence))->size()

= 0)->size()

. Hence, to calculate the given ratio, we just have to

divide the amount of leaf consequences (not

considering direct consequences) by the amount of

regular consequences:

Metric1 ::= RegularConsequence.allInstances()-

>select(e|e.target-

>select(d|d.oclIsTypeOf(RegularConsequence))->size()

= 0)->size() / RegularConsequence.allInstances()-

>size()

Another possible metric is the ratio between

direct consequences and leaf consequences. The

empirical evaluation of the models created during

the BTW-UFPE case study showed that the models

with a lower value in this ratio are less focused and

somewhat less useful. To express this metric using

OCL, we need to calculate the amount of direct

consequences in the model:

AmountOfDirectConsequences ::=

DirectConsequence.allInstances()->size()

Dividing the number of direct consequences by

the number of leaf consequences, we have a second

metric:

Metric2 ::= DirectConsequence.allInstances()->size() /

RegularConsequence.allInstances()->select(e|e.target-

>select(d|d.oclIsTypeOf(RegularConsequence))->size()

= 0)->size()

A third metric that emerged from the analysis of

the case study is counting how many incoming

arrows a direct consequence has. I.e., a direct

consequence is a sub-consequence (target) of how

many consequences. We expect that higher the value

of this metric, the more important the given direct

consequence may be, assuming equal priorities.

However, we were not able to establish such a

correlation based on the data of our case study.

Expressing this metric in OCL, for a given direct

consequence, we have the following expression:

context DirectConsequence

Metric3 ::= self.source->size()

Of course, the above metrics are only a first

attempt to develop metrics for futures wheel models.

Further experiments need to be conducted in order to

better understand and validate these metrics.

Autonomic Computing

Particularly, studies of the future seem to be very

promising for the development of autonomic

computing systems and adaptive systems. It may

facilitate the implementation of such systems not

only during requirements elicitation, but also

enabling forecasts performed by the system itself

16

during runtime, based on information from its

sensors, as mentioned in (Kephart, 2005).

Recall that Autonomic computing systems have

four main characteristics, which are: self-

configuration, self-optimization, self-healing and

self-protection (Kephart & Chess, 2003). All these

four characteristics may be made easier to

implement if a representation of the future is used

for requirements elicitation. If the system knows

how its environment will be in the future, the system

reconfiguration to adapt to the environment may be

facilitated, enabling self-configuration. If the system

knows how its environment will be in the future, it

may be able to make long-term optimizing decisions

instead of just short-term decisions (self-

optimization). If the system can predict some of the

problems that it may face in the future, it may be

easier for it to take actions to avoid or to correct

them (self-healing). Finally, if the system knows that

some expected change on its environment may open

breach to malicious attacks that it did not suffer yet,

it may take actions to protect itself from these

attacks (self-protection). Table 3 summarizes these

advantages.

If an autonomic system is designed to support a

defined space of possible behaviors (Lapouchnian,

Yu, Liaskos & Mylopoulos, 2006; Santos et al.,

2011) foresight methods could proof to be an

invaluable input to their design. A similar situation

occurs on (self)-adaptive systems, which modify

their own behavior in response to

changes in its operating environment (Oreizy et al.,

1999). In most of the approaches, such as (Franch et

al., 2011; Morandini, Penserini & Perini, 2008;

Pimentel et al., in press), the changes to which the

system may respond to, as well as the responses

themselves, need to be defined at design time.

Foresight approaches as the one proposed here can

be very useful to identify these changes. For

instance, they may be deployed to define which

components should be adaptable (Pimentel, Franch

& Castro, 2011) as well as to identify the most

relevant failures (Pimentel, Santos & Castro, 2010).

There are also works towards automatically

responding to some classes of requirements changes,

such as (Jian, Li, Liu & Yu, 2010; Qureshi, Perini,

Ernst & Mylopoulos, 2010). However, these

changes are also pre-defined at design time, and

could benefit of foresight methods.

CONCLUSIONS AND FUTURE WORK

This paper presented a process for using a

foresight method for requirements elicitation – in

particular, the Futures Wheel method. The proposed

process comprises four steps: Plan Futures Wheel,

Perform Futures Wheel, Define Direct

Consequences and Analyze Direct Consequences.

Moreover, an extension of the Futures Wheel

modeling notation and of the method itself was

presented, aiming to make them more suitable for

requirements elicitation. The process was design

allowing for its use in conjunction with other

requirements techniques, models and processes.

In order to analyze the suitability of the proposed

approach, a case study was performed in the domain

of route planning. This study proved the concept

and showed that, for this particular case, the

approach provided more inputs for requirements

elicitation, which in its turn provided a richer

requirements model. Further research is required to

evaluate the usefulness of the proposed approach, as

well as of the metrics that were identified during the

case study. Additionally, it would be interesting to

provide more formalized guidance rules for creating

and analyzing Futures Wheel models

Other than that, we intend to perform a thorough

analysis on how foresight methods can be used in

the development of autonomic systems. This

includes analyzing other foresight methods, as those

Table 3 - Summary of advantages of having a
representation of the future, regarding
autonomic computing systems main
characteristics

Characteristic Advantages of having a representation

of the future

Self-

configuration

Allows early planning of some required

adaptations

Self-

optimization

Allows long-term decisions during

runtime

Self-healing Allows early planning on how to deal

with some problems

Self-protection Allows early planning on how to deal

with some attacks

17

presented in (Pimentel, Castro, Perrelli, Santos &

Franch, 2011). Lastly, we intend to investigate the

possibility of using foresight methods in other

software engineering disciplines, such as

architectural design and system testing.

ACKNOWLEDGMENTS
We are thankful to the volunteers who

participated in the case study. This work was

partially supported by CAPES, CNPq, and the

Spanish research project TIN2010-19130-c02-01

REFERENCES

Boehm, B., & Papaccio, P. (1988). Understanding and

controlling software costs. IEEE Transactions on Software

Engineering, 14(10), 1462-1477.

Boehm, B. (1981). Software Engineering Economics. Prentice

Hall PTR.

Boissau, S., & Castella, J. (2003). Constructing a common

representation of local institutions and land-use systems

through simulation gaming and multiagent modeling in

rural areas of northern Vietnam: The samba-week

methodology. Simulation & Gaming, 34(3), 342-357.

Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., &

Pimentel, J. (in press). Changing attitudes towards the

generation of architectural models. Journal of Systems and

Software.

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (1999). Non-

Functional Requirements in Software Engineering.

Springer.

Dardenne, A., Lamsweerde, A., & Fickas, S. (1993). Goal-

directed Requirements Acquisition. Science of Computer

Programming, 20(1-2), 3-50.

Ecklund, E., Delcambre, L., & Freiling, M. (1996). Change

cases: use cases that identify future requirements. In 11th

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications –

OOPSLA (pp. 342-358).

Ferreira, S., Collofello, J., Shunk, D., & Mackulak, G. (2009).

Understanding the effects of requirements volatility in

software engineering by using analytical modeling and

software process simulation. Journal of Systems and

Software, 82(10), 1568-1577.

Franch, X., Grünbacher, P., Oriol, M., Burgstaller, B.,

Dhungana, D., López, L., Marco, J., & Pimentel, J. (2011).

Goal-driven Adaptation of Service-Based Systems from

Runtime Monitoring Data. In 5th IEEE International

Workshop on Requirements Engineering For Services -

REFS.

Glenn, J. (1972). Futurizing Teaching vs Futures Course.

Social Science Record, 9(3).

Glenn, J. (Ed.). (1999). Futures Research Methodology. The

United Nations University.

Grau, G., Franch, X., & Maiden, N. (2005). A Goal-Based

Round-Trip Method for System Development. In 11th

International Conference on Requirements Engineering:

Foundations for Software Quality - REFSQ.

Heckman, J., & Leamer, E. (Ed.). (2007). Handbook of

Econometrics (volume 6A). Amsterdam: Elsevier.

Javed, T., Maqsood, M., & Durrani, Q. (2004). A study to

investigate the impact of requirements instability on

software defects. ACM SIGSOFT Software Engineering

Notes, 29(3), 1-7.

Jian, Y., Li, T., Liu, L., & Yu, E. (2010). Goal-Oriented

Requirements Modelling for Running Systems. In 1st

International Workshop on Requirements at Run-time -

RRT.

Jureta, I., Borgida, A., Ernst, N., & Mylopoulos, J. (2010).

Techne: Towards a New Generation of Requirements

Modeling Languages with Goals, Preferences, and

Inconsistency Handling. In 18th IEEE International

Requirements Engineering Conference – RE (pp. 115-124).

Kephart, J. (2005). Research challenges of autonomic

computing. In 27th International Conference on Software

Engineering – ICSE (pp. 15-22).

Kephart, J., & Chess, D. (2003). The Vision of Autonomic

Computing. IEEE Computer, 36(1), 41-50.

Kotonya, G., & Sommerville, I. (1998). Requirements

Engineering: Processes and Techniques. John Wiley &

Sons.

Lamsweerde, A. (2001). Goal-oriented requirements

engineering: A guided tour. In 5th IEEE International

Symposium on Requirements Engineering (pp. 249-262).

Lapouchnian, A., Yu, Y., Liaskos, S., & Mylopoulos, J.

(2006). Requirements-Driven Design of Autonomic

Application Software. In 16th Annual International

Conference on Computer Science and Software

Engineering - CASCON.

Loveridge, D. (1996). Technology Foresight and Models of

the Future. In Policy Research in Engineering, Science and

Technology Ideas in Progress.

Lucena, M., Santos, E., Silva, M., Silva, C., Alencar, F., &

Castro, J. (2008). Towards a Unified Metamodel for i*. In

2nd International Conference on Research Challenges in

Information Science - RCIS (pp. 237-246).

Mao, Y., Vassileva, J. & Grassmann, W. (2007). A System

Dynamics Approach to Study Virtual Communities. In

40th Annual Hawaii International Conference on System

Sciences – HICSS (p. 178).

Morandini, M., Penserini, L., & Perini, A. (2008). Towards

goal-oriented development of self-adaptive systems. In

Workshop on Software Engineering for Adaptive and Self-

Managing Systems – SEAMS (pp. 9–16).

18

Mylopoulos, J., Castro, J., & Kolp, M. (2000). Tropos:

Toward agent-oriented information systems engineering.

In 2nd International Bi-Conference Workshop on Agent-

Oriented Information Systems - AOIS.

Navarro, I., Leveson, N., & Lundqvist, K. (2000). Reducing

the Effects of Requirements Changes through System

Design. SERL report.

Neto, G., Gomes, A., Castro, J., & Sampaio, S. (2005).

Integrating activity theory and organizational modeling for

context of use analysis. In Latin American conference on

Human-computer interaction - CLIHC (pp. 301-306).

Object Management Group – OMG. (2009). Business Process

Model and Notation (BPMN) Version 1.2. Retrieved

September 25, 2011, from

http://www.omg.org/spec/BPMN/1.2/

Object Management Group – OMG. (2009). Unified Modeling

Language. (UML) Version 2.2. Retrieved September 25,

2011, from http://www.omg.org/spec/UML/2.2/

Object Management Group – OMG. (2010). Object Constraint

Language Version 2.2. Retrieved September 25, 2011,

from http://www.omg.org/spec/OCL/2.2/

Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson,

G., Medvidovic, N., Quilici, A., Rosenblum, D., & Wolf,

A. (1999). An Architecture-Based Approach to Self-

Adaptive Software. IEEE Intelligent Systems and Their

Applications, 14(3), 54-62.

Oz, E. (1994). When Professional Standards are Lax, The

CONFIRM failure and its Lessons. Communications of the

ACM, 37(10), 29-43.

Pimentel, J., Franch, X. & Castro, J. (2011). Measuring

Architectural Adaptability in i* Models. In XIV Ibero-

American Conference on Software Engineering – CibSE

(pp. 115-128).

Pimentel, J., Lucena, M, Castro, J., Silva, C., Alencar, F., &

Santos, E. (in press). Deriving Adaptable Software

Architectures from Requirements Models: The STREAM-

A Approach. Requirements Engineering Journal.

Pimentel, J., Santos, E., & Castro, J. (2010). Conditions for

ignoring failures based on a requirements model. In 22nd

International Conference on Software Engineering &

Knowledge Engineering – SEKE (pp. 48-53).

Pimentel, J., Castro, J., Perrelli, H., Santos, E., & Franch, X.

(2011). Towards Anticipating Requirements Changes

through Studies of the Future. In 5th International

Conference on Research Challenges in Information

Science - RCIS.

Porter, A. et al. (2003). Technology Futures Analysis: Toward

Integration of the Field and New Methods. Technological

Forecasting & Social Change, 71, 287-303.

Qureshi, N., Perini, A., Ernst, N., & Mylopoulos, J. (2010).

Towards a Continuous Requirements Engineering

Framework for Self-Adaptive Systems. In 1st International

Workshop on Requirements at Run-time - RRT.

Rosenberg, L., & Hyatt, L. (1996). A Software Quality Model

and Metrics for Identifying Project Risks and Assessing

Software Quality. In Product Assurance Symposium and

Software Product Assurance Workshop (p. 209).

Santos, E., Pimentel, J., Dermeval, D., Castro, J., & Pastor, O.

(2011). Using NFR and Context to Deal with Adaptability

in Business Process Models. In 2nd International

Workshop on Requirements at Runtime - RRT.

Schach, S. (2002). Object-Oriented and Classical Software

Engineering. McGraw Hill.

Schwartz, P. (1991). The Art of the Long View: Planning for

the Future in an Uncertain World. New York: Doubleday.

Sommerville, I., & Sawyer, P. (1997). Requirements

Engineering: A good practice guide, John Wiley & Sons.

Tesauro, G., & Kephart, J. (2000). Foresight-based pricing

algorithms in agent economies. Decision Support Systems,

28(1-2), 49-60.

RAE, & BCS. (2004). The Challenges of Complex IT Projects.

Royal Academy of Engineering and British Computer

Society.

Tonn, B., Hemrick, A., & Conrad, F. (2006). Cognitive

representations of the future: Survey results. Futures,

38(7), 810-829.

Wall, J., & Sinnadurai, N. (1998). The Past, present and future

of EEE components for space application: COTS – The

next generation. In IEEE International Frequency Control

Symposium (pp. 392-404).

Yu, E., Giorgini, P., Maiden, N., & Mylopoulos, J. (Ed.).

(2011). Social Modeling for Requirements Engineering.

Cambridge, Massachusetts: The MIT Press.

Yu, Y., Leite, J., & Mylopoulos, J. (2004). From goals to

aspects: discovering aspects from requirements goal

models. In 12th IEEE International Requirements

Engineering Conference - RE (pp. 33-42).

