
Algebraic Laws for Process Subtyping -
Extended Version

José Dihego, Pedro Antonino, and Augusto Sampaio

Universidade Federal de Pernambuco, Centro de Informática,
P.O.Box 7851 50740-540 Recife PE, Brazil

{jdso,prga2,acas}@cin.ufpe.br

Abstract. This work presents a conservative extension of OhCircus,
a concurrent specification language, which integrates CSP, Z, object-
orientation and embeds a refinement calculus. This extension supports
the definition of process inheritance, where control flow, operations and
state components are eligible for reuse. We present the extended OhCircus
grammar and, based on Hoare and He’s Unifying Theories of Program-
ming, we give the formal semantics of process inheritance and its sup-
porting constructs. The main contribution of this work is a set of sound
algebraic laws for process inheritance. The proposed laws are exercised
in the development of a case study, with guidelines for FDR verification.

Keywords: Behavioural Subtyping, OhCircus, Algebraic Laws, UTP

1 Introduction

Several formalisms offer support for modelling behavioural and data aspects of
a system. For instance, CSP-OZ [11], CSP-B [25], Mosca (VDM+CCS) [27] and
Circus [18] are some contributions in this direction. Particularly, Circus is a com-
bination of Z [26] and CSP [12], which includes constructions in the style of
Morgan’s refinement calculus [15]. With the intention to also handle object ori-
entation, the OhCircus [8] language has been proposed as a conservative extension
of Circus.

Circus has a refinement calculus that embodies a comprehensive set of laws
[7,18,24]. These laws are also valid for OhCircus. Nevertheless, although there is
a notion of process inheritance in OhCircus, the current calculus does not include
any laws for dealing with process inheritance. The laws developed in Section 4
aim to contribute to a more comprehensive set of algebraic laws for OhCircus,
taking into account this relevant language feature.

Class inheritance, in the object-orientated paradigm, is a well-established
concept [14]; several works, based on the substitutability principle, have devel-
oped theories that recognize suitable inheritance notions between classes [14,28,1].
On the other hand, the semantics of process inheritance is not consolidated. Some
of the most well known works about this topic [29,11,16] have used the failures
behavioural model of CSP to define a process inheritance relation.

2 José Dihego, Pedro Antonino, and Augusto Sampaio

Process inheritance, as originally defined for OhCircus, has a practical dis-
advantage: there is no way of explicitly referencing the inherited elements in
the subprocesses; as a consequence, there is no support for taking advantage of
redefinitions, which are strongly connected with the concept of inheritance. As
our first contribution, we develop an extended syntax for OhCircus, which allows
reuse of all the process elements, but still keeping processes as encapsulated units
concerning their use in process compositions. Typing rules are developed to vali-
date programs considering the new syntax, and a formal semantics is given in the
Unifying Theories of Programming (UTP) [13]. The second major contribution
of this work is the proposal of sound laws to support the stepwise introduction
or elimination of process inheritance and process elements in the presence of
this feature. We have also mechanised these rules based on the Eclipse Mod-
elling Framework and on the Xtext and the ATL integrated tools. The overall
approach is illustrated through the development of a case study.

In the next section we briefly introduce OhCircus through an example, al-
ready considering the extended grammar we propose. The semantics for process
inheritance is presented in Section 3. A selection of the proposed laws is given
in Section 4; the laws are exercised in a case study in Section 5. In Section 6 we
briefly consider the mechanisation of the laws. Finally, in Section 7, we present
our conclusions and future work.

Appendix A presents the OhCircus process semantics used in proof of our
laws. Appendix C list the lemmas used in proofs that change access level. Ap-
pendix B explaining how the case study might be verified in the model checker
FDR. Appendix D summarizes our laws.

2 Process Inheritance with Code Reuse

We have extended the syntax of OhCircus in two central ways: the creation of
a new access level to allow visibility of processes elements (state and schema
operation) by its subprocesses (like the protected mechanism in Java) and the
addition of a new clause to define Z schemas [26], very similar to the Z schema
inclusion feature, with the aim of allowing schema redefinitions. The super
clause allows schemas in a subprocess to refer to protected schemas.

As originally designed, a process, both in Circus and OhCircus, is a black box
with interaction points through channels that exhibit a behaviour defined by
its main action. Actually, in a subprocess specification, all the definitions of the
superprocess (state components, actions, and auxiliary definitions) are in scope;
this has been motivated by the fact that the main action of the subprocess is
implicitly composed in parallel with the main action of the superprocess. On the
other hand, there is no notation for explicitly referencing the inherited elements
for supporting code reuse, for instance, in operation redefinitions. The effort
of introducing inheritance with this process structure is prohibitive because the
benefits of code reuse cannot be reached and the introduction of a type hierarchy,
by itself, is not enough to justify inheritance, from a practical perspective. This

Algebraic Laws for Process Subtyping - Extended Version 3

OhProcessDefinition ::= process N =̂ [extends N] Process

Process ::= begin
PParagraph∗

[state N Schema-Exp | Constraint]
PParagraph∗

• Action
end

| . . .

PParagraph ::= SchemaText | N =̂ Action
| [PQualifier] N SchemaText

SchemaText ::= ((Ξ | ∆) N)+ [Declaration+] [super.N+] [Predicate]

Schema-Exp ::= ([PQualifier] Declaration)∗

PQualifier ::= protected

N ::= identifier

Fig. 1. OhCircus extended syntax

has motivated the new access level introduced in OhCircus to allow code reuse.
The keyword protected signalises states and schemas belonging to this level.

The syntax for the proposed extensions is presented in Figure 1. A process
is a sequence of paragraphs, possibly including a state defined in the form of a
Z schema (formed of variable declarations and a predicate), followed by a main
action that captures the active behaviour of the process. A process paragraph
(PParagraph) includes Z schemas (typically defining operations) and auxiliary
actions used by the main action; a paragraph is allowed to refer to one or more
Z schemas defined in the process itself or inherited from its superprocesses, in
any level of inheritance. Syntactically a process might extend only one process;
multiple inheritance is not allowed, mainly due to the possible duplication and
ambiguity that arise from this feature.

A Z schema can be defined using an explicitly access modifier, protected, or,
if no modifier is used, the default level (inherited but not directly referenced by
subprocesses) is adopted. Only Z schemas in the protected level are eligible for
use in a super clause. The overriding of protected schemas is also supported and
it allows a subprocess to redefine a protected schema introduced in or inherited
by the closest superprocess up in the inheritance tree.

Similarly to schemas it is allowed to define an access level for each state
component. It generates some restrictions in the subprocess state component
declaration. This new syntax and its restrictions are exemplified in the sequel.

2.1 An Example

Buffers are an essential topic in the study of communication protocols, asyn-
chronous systems, the compiling parsing phase, security modeling [20] and buffer
tolerance in synchronous systems [21], among other applications. We model the
standard concept of an abstract unbounded buffer considering the extensions we

4 José Dihego, Pedro Antonino, and Augusto Sampaio

channel input , output : N
channel start

process Buffer =̂ begin

state St
protected queue : seqN

Init
St ′

queue ′ = 〈〉

Fig. 2. Buffer ’s initial and state components

propose to OhCircus. Part of the buffer specification is in Figure 2. The relevant
channels are start , input and output . The first one is a signal for the buffer ini-
tialization, and the other two communicate inputs and outputs, respectively. We
introduce the process Buffer that implements the buffer concept in OhCircus.
The singleton state component of the Buffer process is a sequence of natural
numbers, which is used to implement the behaviour of a queue. It is initialized
by the Init schema.

The operations and main action of the buffer is presented in Figure 3. The
behaviour of the buffer is to input and output on different channel, according to
a FIFO policy. Whenever it is empty, it cannot refuse to input and, whenever it
is non-empty, it cannot refuse to output. The schema Add receives and adds an
element to the buffer, by storing it in the end of the sequence representing the
queue. The schema Remove retrieves and removes an element from the buffer
(the head of the sequence). The behaviour of the Buffer process is given by a
main action in the style of CSP, but may also reference the process paragraphs.
The process Buffer , after engaging in an event communicated by the start chan-
nel, executes its initializer Init . The operator ‘;’ stands for sequential compo-
sition, and indicates that if and only if start → Init finishes successfully the
process behaves like µX • (A); X , a recursive process that behaves like A and
if A terminates successfully it behaves again like A, and so on. In our example,
A stands for an external choice of input and output actions (Input 2 Output).
The Input action receives an input value through the channel input and then
behaves like the Add operation; this establishes a binding between the variable e
in the input communication and the homonymous input variable in the schema
Add . In the case of the Output action, a local variable is introduced to create a
binding with the corresponding variable in the Remove schema. Then its value
is communicated through the output channel.

We provide an implementation of this abstract unbounded buffer, BufferImp
(see Figure 4). It has a flexible capacity that duplicates whenever it is full.
It is possible to query the ratio size/capacity. Furthermore, it provides double
addition capability.

The schema Add in BufferImp uses the super clause to reuse the original
behaviour of the Add operation of Buffer , plus duplicating the buffer length
whenever it is full. The schema Add2 adds two elements to the buffer by se-
quential executions of the Add operation. The operation FactorCapacity gives

Algebraic Laws for Process Subtyping - Extended Version 5

protected Add
∆St
e? : N

queue ′ = 〈e?〉a queue

protected Remove
∆St
e! : N

#queue > 0
e! = last queue
queue ′ = front queue

Input =̂ input?e → Add
Output =̂ (#queue > 0)&

var e : N • Remove; output !e → SKIP

• start → Init ;
µX • (Input 2 Output); X

end

Fig. 3. Buffer ’s schemas and main action

the ratio between the buffer’s size and length1. The main action, after initial-
izing the buffer initial length, recursively offers the behaviour Input2 2 Fac.
The local action Input2 receives two elements through the channels input and
input2, adding them to the buffer by behaving as Add2. The action Fac uses the
Z schema FactorCapacity to inform the ratio size/lenght.

The semantics of process inheritance is given by the parallel composition
of the main action of the subprocess with that of its immediate superprocess.
The formal details are the subject of the next section. In our example, the
semantics of BufferImp is given by the interleave composition of its main action
with the Buffer main action. The schemas Add is redefined in BufferImp and,
by dynamic binding, the redefined version is the one considered when the main
action of BufferImp is executed. Although relatively simple, this example already
illustrates one of our contributions: the extension of OhCircus to allow operation
redefinition and reuse in processes inheritance.

3 Semantics

Three models to define the behaviour of a CSP process are formally established
in [12,22]: traces, failures and failures-divergences. A trace s ∈ traces(P) of a pro-
cess P is a finite sequence of symbols recording the events in which it has engaged
up to some moment in time. Another model to describe the process behaviour
is based on failures. A failure f ∈ failures(P) is a pair (s,X) meaning that after
the trace s ∈ traces(P), P refuses all events in X . Finally, failures-divergences
extend the failures model with the addition of the process divergences. A di-
vergence of a process is defined as a trace after which the process behaves like
Chaos, the most nondeterministic CSP process.

Perhaps the most well-established notion of process inheritance is that de-
fined in [29,16], in which a process Q is a subprocess of P if the following re-
finement holds in the failures model: P v (Q \ (αQ − αP)), where αP is the

1 Note that Ξ is used to indicate that the state is unchanged by the operation, whereas
∆ indicates the possibility of state modification

6 José Dihego, Pedro Antonino, and Augusto Sampaio

channel length : N1

channel input2 : N.N
channel fc : R

process BufferImp =̂
extends Buffer begin

state St
length : N1

#queue ≤ length

Init
St ′

length? : N1

length ′ = length?

Add
∆St
super Add

#queue = length⇒ length ′ = length ∗ 2

Add2 =̂ Add o
9 Add [f ?/e?]

FactorCapacity
ΞSt
fc! : R

fc! = #queue div length

Input2 =̂ input2?e?f → Add2
Fac =̂ var fc : N • FactorCapacity ; fc!fc → SKIP

• length?length → Init ;
µX • (Input2 2 Fac); X

end

Fig. 4. BufferImp: a subprocess of Buffer

alphabet of the process P (set of events in which the process can engage), S1−S2

stands for set subtraction, and P \ S a process that behaves as P but hiding the
events in the set S . Considering the failures semantics, the previous refinement
holds if and only if failures (Q .act \ (αQ .act−αP .act)) ⊆ failures(P .act). This
notion of inheritance from [29] is the same adopted in OhCircus. This is reflected
in the obligation that a subprocess main action (its behaviour) must refine, in the
failures semantics, the main action (hiding the new events) of its superprocess.
In this way the substitutability principle is satisfied. We have actually formally
verified this refinement in FDR (see Appendix B).

In [18] it is presented a complete account of the Circus [18] denotational
semantics based on Hoare and He’s Unifying Theories of Programming [13].
As OhCircus is a conservative extension of Circus we can use the semantics de-
fined in [18] as a basis to formalise the process inheritance notion. So if two
processes P and Q have, respectively, P .act and Q .act as their main actions,
Q extends P ⇔ P .act vF Q .act \ (αQ−αP). The object-oriented constructs
present in OhCircus are not addressed in this work since our focus is on process
inheritance. Nevertheless, object-oriented constructs are sufficiently independent
and do not interfere in the subset of OhCircus we are tackling.

3.1 Semantics of Inheritance

We propose the semantics of process inheritance, from which we prove algebraic
laws that deal with this feature. Particularly, we define a mapping from processes
with inheritance into regular processes, whose semantics is completely defined in
[18]. Therefore, it is possible to formally prove the soundness of the proposed set
of laws. We give a UTP semantics for a new parallel operator, which turned out
to be necessary in the definition of inheritance, as well as for the super clause

Algebraic Laws for Process Subtyping - Extended Version 7

and the protected mechanism. Consider the processes Super and Sub below;
see Appendix B for more details.

process Super
state st =̂ st1 ∧ st2
pps1
pps2
• act

end

process Sub =̂ extends Super
state st
pps
• act

end

The state components Super .st2 and Super .st1 are assumed to be qualified
with protected and default visibility mechanisms, respectively. The same visibil-
ity considerations are assumed for the schemas Super .pps1 and Super .pps2. In
the process given below, Super .pps2

ref is obtained from Super .pps2 by eliminat-
ing the paragraphs redefined in Sub.pps. Then, given the above considerations,
the meaning of Sub is defined as:

Sub =̂

begin state =̂ Super .st ∧ Sub.st

Super .pps1∧ Ξ Sub.st

Super .pps2
ref

∧ Ξ Sub.st

Sub.pps
• Super .act [[Super .st | Super .st ∧ Sub.st]]Sub.act

end

In the context of Sub, paragraphs in Super .pps do not modify the state

elements in Sub.st . The Z schema expression ΞSub.st captures this state preser-
vation. The effect of Super .pps1∧ Ξ Sub.st is to ensure that no paragraph in
Super .pps1 modifies state elements in Sub.st ; the same is true of paragraphs
in Super .pps2

ref . Although all components of Super are in the scope of Sub,
only its protected components can be directly accessed by the original declared
elements of Sub; as already explained, those with the default qualification cannot
be accessed by Sub. Because Super .act can refer to any schema in Super .pps1 or
in Super .pps2, and these to any state in Super .st , we need to bring all protected
and default elements from Super to Sub.

Concerning the main action in the semantics of Sub, it is given by the parallel
composition of the main action of Sub with that of Super , but we need to impose
a protocol concerning access to the shared state elements. This required the
definition of a new parallel operator for OhCircus, as further explained in the
sequel.

3.2 UTP Semantics for new Parallel Operator, Visibility and super
Clause

An important issue is related to the parallel composition semantics given in
[17]. If we have A1[[ns1 | cs | ns2]]A2, the final state of the variables in ns1 is

8 José Dihego, Pedro Antonino, and Augusto Sampaio

given by A1 and those variables in ns2 by A2, such that ns1 ∩ ns2 = ∅. It
avoids conflicts about what action will determine the final value of a possible
shared variable. Our semantics for process inheritance does not respect this
principle. This becomes evident from the main action of Sub, Super .act [[Super .st |
Super .st ∧ Sub.st]]Sub.act presented in 3.1. This apparent inconsistency with
the semantics of parallel composition can be resolved, if we consider that the
changes made in a state component by a schema sc in a subprocess cannot
contradict the changes made by sc in its superprocess, since the former refines
the latter; it follows the same principle described in [14].

Formally if we consider ns1 ∩ ns2 6= ∅ in A1[[ns1 | ns2]]A2 (cs empty implies
that A1 and A2 are composed by interleaving), we are using a new operator, and
it arises the obligation of defining its semantics. We define the semantics of this
new operator in UTP (Unifying Theories of Programming) [13] based on the
semantics given in [17] when ns1 ∩ ns2 = ∅. The differences between the current
and new interleaving operator are highlighted at the end of this section.

A program is called reactive if its behavior can be observed or even altered
at intermediate stable states between initialization and termination [13]. This
is the precise case of OhCircus. There are four observational variables used to
define a program behavior: the Boolean variable ok is true for a program that
has started in a stable state; its decorated version ok ′ is true when a program,
subsequently, stabilizes in an observable state. The Boolean variable wait is true
if a program is prepared to engage but is waiting for some event; wait ′ is true
if a program is in a stable intermediate state and false when the program has
reached a final state. The variable tr records the sequence of events engaged
by a process. The variable ref records the set of events that a process may
refuse before starting; ref ′ records the set of events that a process may refuse in
a stable intermediate state of its execution. The non-observational variables v
and v ′ stand, respectively, for the initial and intermediate values of all program
variables.

In the UTP a process is defined as a reactive design of the form R(pre ` post).
The design pre ` post means ok ∧ pre ⇒ ok ′ ∧ post : if a program starts in a
state satisfying its preconditions it will terminate and satisfy its postconditions
[17]. Using the reactive design we present bellow the formal UTP semantics
for A1[[ns1 | ns2]]A2, which represents the interleave of the actions A1 and A2

considering a possibly non empty intersection between the variables in ns1 and
ns2.

A1[[ns1 | ns2]]A2 =̂

R

¬ A1
f
f ∧ ¬ A2

f
f

`
((A1

t
f ; U 1(outα A1)) ∧ (A2

t
f ; U 2(outα A2))){v ,tr}; M|||

The precondition A1

f
f ∧ ¬ A2

f
f is a shortcut for A1[false/ok ′][false/wait] ∧

¬ A2[false/ ok ′] [false/wait]. A[false/ok ′][false/wait] represents an action A that
diverges when it is not waiting for its predecessor to finish. Since both A1 and A2

Algebraic Laws for Process Subtyping - Extended Version 9

may execute independently, the interleaving of these actions diverges if either of
them diverge [13]. So the precondition guarantees that A1 and A2 do not diverge
when they are not waiting for their predecessor to finish.

In the postcondition we follow the parallel by merge principle used in [17]
and defined in [13]. It executes both actions independently, merging their results
when both finish. The notation At

f represents an action A that does not diverge

when it is not waiting for its predecessor to finish. Consider that A1
t
f ; U 1(outα A1).

A1
t
f indicates the execution of A1 without divergence. outα A and inα A stand,

respectively, for the initial observations of the observational variables in A (un-
decorated) and for the subsequent observations (eventually the final ones) of
A’s observational variables (dashed). As we are defining a postcondition, we are
interested only in the final values of the observational variables of A1 and A2.
To avoid name conflicts in the predicate we use a renaming function Ui that
prefixes with i the variables in these actions, generating a predicate in the form:

Ui({v ′
1, . . . , v

′
n}) = i .v ′

1 = v1 ∧ . . . ∧ i .v ′
n = vn (1)

For example the application of U 1 to {ok ′, tr ′} will generate the predi-
cate 1.ok ′ = ok ∧ 1.tr ′ = tr . Divergence can only happen if it is possible
for either of the actions to reach divergence, so the predicate the predicate
((A1

t
f ; U 1(outα A1)) ∧ (A2

t
f ; U 2(outα A2))) says that both A1 and A2 do

not diverge. This predicate is extended with the state components and local
variables v and traces tr accompanied by their dashed counterparts. It is ex-
pressed using the notation P{n}, where P is a predicate and n a variable or
trace, that means P ∧ n ′ = n.

The last entire predicate is passed to the interleave merge function, which
merges the traces of both actions (tr), the state components, local variables (v)
and the UTP observational variables (outα A1 and outα A2), exactly as the
parallel merge function found in [17].

M||| =̂ tr ′ − tr ∈ (1.tr − tr ||| 2.tr − tr)

∧

(

(1.wait ∨ 2.wait) ∧
ref ′ ⊆ (1.ref ∪ 2.ref)

)
< wait ′ >
¬ 1.wait ∧ ¬ 2.wait ∧ MSt

In M||| the sequence of traces generated by the execution of A1 and A2,

(tr ′ − tr) must be a sequence generated by the interleave composition of the
traces of A1 and A2; this operator is defined in [22]. The interleave composition
only terminates if both actions do so. So if wait ′ is true it is because one of the
actions has not finished, 1.wait ∨ 2.wait , and the refusals is contained or equals
to the refusals of A1 and A2 together. Otherwise if wait ′ is false it means that
both actions has terminated ¬ 1.wait ∧ ¬ 2.wait and the state components and
local variables have changed according to the predicate generated by MSt .

10 José Dihego, Pedro Antonino, and Augusto Sampaio

MSt =̂ ∀ v • (v ∈ ns1 ∧ v /∈ ns2 ⇒ v ′ = 1.v) ∧ (v ∈ ns2 ∧ v /∈ ns1 ⇒ v ′ = 2.v) ∧
(v ∈ ns1 ∩ ns2⇒ v ′ = 1.v = 2.v) ∧
(v /∈ ns1 ∪ ns2⇒ v ′ = v)

This predicate says that each variable in v is changed by A1 if it belongs
uniquely to ns1, by A2 if it belongs uniquely to ns2. If v ∈ ns1 ∩ ns2, A1 and
A2 must agree in the final value of v . This apparent inconsistency with the
semantics of parallel composition is solved, if we consider that the changes made
in a state component by schemas in a subprocess cannot contradict the changes
made schemas in superprocess.

The new parallel operator is symmetric, associative and distributive. The
proof of these properties is similar to the original parallel operator.

The main difference between our interleaving operator and that defined in
[17] concerns mainly MSt . The original form to this function considers ns1 and
ns2 disjuncts.

The semantics of our new parallel operator assures that if ns1 and ns2 are
disjuncts it behaves exactly as the interleave parallel operator defined in [17]. It
guarantees that the laws developed for OhCircus and Circus still valid.

3.3 UTP Semantics for super and protected

The formal meaning of super clause, crucial in the proofs of our algebraic laws,
must be given, as well as the meaning of the new protected access level. We
formalize these new constructions in the UTP, as previously done for the new
interleave operator.

Schemas in OhCircus can be normalized in the same way as schemas in Z.
The normalization technique moves all restrictions from the declaration part of
a schema to its predicate part. This reduces the declaration part to a canonical
form [31]. As an illustration of the schema normalization, consider a process with
state St and a schema NextMonth, as bellow:

St
month : N
year : N

1 ≤ month ≤ 12
year ≥ 2011

NextMonth
∆St

month ′ = (month + 1) mod 12
(month + 1) = 13⇒

years ′ = years + 1

The normalization of NextMonth will generate the equivalent schema:

NextMonth
month,month ′, year , year ′ : Z

month ∈ N ∧ month ′ ∈ N ∧ month ′ = (month + 1) mod 12 ∧
(1 ≤ month ≤ 12) ∧ (1 ≤ month ′ ≤ 12) ∧
year ∈ N ∧ year ′ ∈ N ∧ ((month + 1) = 13⇒ years ′ = years + 1) ∧
year ≥ 2011 ∧ year ′ ≥ 2011

Algebraic Laws for Process Subtyping - Extended Version 11

The notation ∆St introduces four state variables (month,month ′, year and
year ′) of type N, but in the canonical form they assume the more general type
Z. Next, this restriction about the type of the four variables is included in the
schema predicate, as well as its original schema predicate and the invariant of
St .

In [17], the semantics of a Z schema is obtained by transforming it into a
statement, whose semantics is given by the following reactive design.

w : [pre, post] =̂ R (pre ` post ∧ ¬ wait ′ ∧ tr ′ = tr ∧ u ′ = u)

By this reactive design a statement terminates successfully (¬ wait ′), sat-
isfying its postcondition, if its precondition holds. The traces are unchanged
(tr ′ = tr) as well as the variables outside w , represented by u (u ′ = u). A
transformation of a normalized schema into a statement is given bellow.

[udecl ; ddecl ′ | pred] =̂ ddecl : [∃ ddecl ′ • pred , pred]

In a normalized schema the notations for input (?) and output (!) are re-
placed by undashed (udecl) and dashed(ddecl ′) variables, respectively. A predi-
cate (pred) determines the effect of the schema. In the statement the variables
in ddecl assume a final state that satisfies the predicate (pred), the precondition;
the predicate itself is the postcondition. As an example consider the meaning of
NextMonth in this semantics.

month, year :

∃month ′, year ′ : Z •
month ∈ N ∧ month ′ ∈ N ∧ month ′ = (month + 1) mod 12 ∧
(1 ≤ month ≤ 12) ∧ (1 ≤ month ′ ≤ 12) ∧
year ∈ N ∧ year ′ ∈ N ∧ ((month + 1) = 13⇒ year ′ = year + 1) ∧
year ≥ 2011 ∧ year ′ ≥ 2011

 ,

month ∈ N ∧ month ′ ∈ N ∧ month ′ = (month + 1) mod 12 ∧
(1 ≤ month ≤ 12) ∧ (1 ≤ month ′ ≤ 12) ∧
year ∈ N ∧ year ′ ∈ N ∧ ((month + 1) = 13⇒ year ′ = year + 1) ∧
year ≥ 2011 ∧ year ′ ≥ 2011

We extend this definition to deal with schemas having a super clause; it

formalizes the super semantics. Consider the processes P1,P2, . . . ,Pn , where
P1 < P2 < . . . < Pn and the schemas P1.sc1,P2.sc2, . . . ,Pn .scn where sc1
references sc2 via super clause, which itself references sc3 and so on; scn has no
super clause. The semantics of sc1, in the UTP, is given bellow. We consider
each sc as a normalized protected schema.

sc1 =̂ [sc1.udecl ; . . . ; scn .udecl ; sc1.ddecl ′; . . . ; scn .ddecl ′ | sc1.pred ; . . . ; scn .pred]

12 José Dihego, Pedro Antonino, and Augusto Sampaio

The UTP semantics for protected is quite simple since it does not change
the original semantics for a schema. Therefore a protected schema sc means
exactly what means in default level.

protected sc =̂ sc

The same is true for a rotected state component. Nevertheless, a protected
schema or state component in a superprocess impacts in the meaning of its sub-
processes, in any hierarchy level. Consider two processes P and Q , where Q < P .

process P =̂
state st ∧ [x : T | pred]
sc
pps
• act

end
process Q =̂ extends P

state st
pps
• act

end

The meaning of Q , in the UTP, is given by:

Q =̂

begin state =̂ P .st ∧ [x : T | pred] ∧ Q .st

P .pps1 ∧ sc∧ Ξ Q.st

P .pps2
ref

∧ Ξ Q.st

Q .pps
• P .act [[P .st ∧ P .x | P .st ∧ P .x ∧ Q .st]]Q .act

end

where P .pps2
ref are obtained removing the elements redefined in Q .pps. The

schemas in Q .pps1 have not the super clause and cannot access the default
state components P .st1 ∧ P .x . This is possible for schemas in Q .pps2, which
have the super clause. If we change the above specification to:

Algebraic Laws for Process Subtyping - Extended Version 13

process P =̂
state st ∧ [protected x : T | pred]
protected sc
pps
• act

end
process Q =̂ extends P

state st
pps
• act

end

The meaning of Q in UTP becomes:

Q =̂

begin state =̂ P .st ∧ [protected x : T | pred] ∧ Q .st
P .pps1∧ Ξ Q.st

P .pps2
ref

∧ Ξ Q.st

protected sc
Q .pps
• P .act [[P .st ∧ P .x | P .st ∧ P .x ∧ Q .st]]Q .act

end

As P .sc is now a protected schema, it can be overridden by Q , therefore the

addition of Ξ Q .st to this schema is removed. Changing P .x to protected allows
all schemas, including the main action of Q to access it directly.

4 Algebraic Laws

This section presents a set of soundness algebraic laws for OhCircus. These laws
address specifications with a process hierarchy. As far as we are aware, this
is an original contribution of this work, as it seems to be the first systematic
characterization of a comprehensive set of laws for process inheritance that use
rich data types and access control for state components and behavior components
(Z schemas).

The proposed laws act on the process hierarchy of a specification, as well as
on the state components and schemas of a process. Laws of actions for Circus,
proposed in [6], are also valid for OhCircus, so this is not the focus in this work.

The laws are classified into two groups. Simple laws are justified directly from
the semantics, whereas composite laws are proved to be a consequence of other
laws, simple or composed laws.

Each law may have a provided clause that contains the premisses that must
be satisfied before its application. As an algebraic law has always two directions
of application, we must define the premisses for each direction.

14 José Dihego, Pedro Antonino, and Augusto Sampaio

Consider two processes P and Q . If P is refined by Q (P v Q) the main
action of P is refined by that of Q (P .act v Q .act). From the semantics of
process inheritance, if Q < P , the state components of Q are those declared
in Q and those inherited from P . The same rule is applied to Z schemas. As
process inheritance is a transitive relation, the elements inherited from P are
those declared in P and those inherited from its immediate superprocess, and so
on. Differently from state components and schemas, actions cannot be inherited,
so any action defined in P is hidden from Q . Although the actions are not eligible
for inheritance, the behavior of the main action of a subprocess Q is given by
that declared in Q in interleave with that representing (not necessarily the
declared action) the behavior of its immediate superprocess. The reason is that
the superprocess P might itself inherit from another process.

The behavior of a process is not given only by its declared main action.
For a subprocess Q there is an implicity main action, Q .act , formed by the
interleave of its declared main action Q .act and the implicit main action P .act
of its immediate superprocess P . If P is at the top of the inheritance hierarchy,
then P .act = P .act , otherwise it follows the same reasoning applied for Q .

If we have Q < P , it implies that P .act v Q .act . This implication is used in
the proof of correctness of our laws. As already mentioned, the laws of actions
are the subject of [6]. We use such laws to justify some of the laws we propose
for processes involved in an arbitrary inheritance hierarchies.

4.1 The semantics of Circus processes

In accordance with [17] (see Appendix A) a process meaning is given by a com-
mand. Consider the process P as bellow:

P =̂

begin state =̂ P .st

P .pps
• P .act

end

The meaning of such a process is the command:

varP .st .decl • ER(P .act ,P .st .inv ,P .pps) (2)

which, also by [17], is defined by the existential quantification:

∃P .st .decl ,P .st .decl ′ • ER(P .act ,P .st .inv ,P .pps) (3)

In the above predicate P .st .decl denotes the declaration part of P .st . Its in-
variants P .st .inv are conjoined with the schemas P .pps and in the main action
P .act , in the form ifP .st .inv → Skip[]Stop, after each atomic component action.

Algebraic Laws for Process Subtyping - Extended Version 15

Finally all occurrences of schemas P .pps (conjoined with P .st .inv) in the
main action are replaced by semantically equivalent commands (specification
statements) following the semantics for schemas presented in [17]. All this work
is done by the enforce-replace (ER) function.

ER : Action 7→ PConstraint 7→ PPParagraph 7→ Action
ER a ∅ ∅ = a
ER a ∅ p = R(a, p)
ER a inv ∅ = E (a, inv)
ER a i : invs p : pps = ER(E (R(a,E (p, i)), i), invs, pps)

When this function receives an action and empty sets of constraints and
paragraphs returns the action unchanged. If the set of invariants is empty, the
function R replace the occurrences of a given schema p in the action a by its
equivalent specification statement (see Subsection 3.3). When the set of schemas
is empty, the function E enforces the action a in order to guarantee the invariant
inv . In the general case, the function recursively enforces all paragraphs with the
invariants, replaces them in the action, and enforces this resulting action with
the invariants.

E : Action 7→ Constraint 7→ Action
E a inv = a; if inv → Skip[]Stop
E (a op b) inv = E (a, inv) op E (b, inv)

The function E receives an action and an invariant, if the action a is atomic
E returns a; if inv → Skip[]Stop. Otherwise if the action can be written as a
composition of other actions (a op b), using a proper operator op, the function
enforces each action and composes the result actions with op. We overload this
function to schemas. It receives a schema and an invariant and returns a schema
whose predicate is conjoined with the invariant.

E : Paragraph 7→ Constraint 7→ Paragraph
E [udecl ; ddecl ′ | pred] inv = [udecl ; ddecl ′ | pred ∧ inv]

Finally the function R replaces all occurrences of a schema in an action by
its equivalent specification statement. If an atomic action a is just a call for
a schema sc (a = sc with a small abuse of notation), it can be replaced by
sc equivalent specification statement, otherwise a is returned unchanged. If the
action can be written as a composition of other actions (a op b), using a proper
operator op, the function replaces in each action all occurrences of sc by its
equivalent specification statement and composes the resulting actions with op.

R : Action 7→ Paragraph 7→ Action
R a sc =̂ [udecl ; ddecl ′ | pred] = if a = sc then [udecl ; ddecl ′ | pred] else a
R (a op b) sc = R(a, sc) op R(b, sc)

To prove some of the laws presented in this section we need to work with
the semantics of a process at the predicate level. These laws, excepting the Law

16 José Dihego, Pedro Antonino, and Augusto Sampaio

3, are proved from the UTP semantics for process inheritance, based on [17].
Since [17] does not present the semantics for a program, we use in the Law 3
the semantics developed in [30] for a Circus program. Considering the absent
of object-orientation constructs we can apply this semantics to a program in
OhCircus, where process inheritance was removed by our semantics developed in
Section 3. It is not our intent to provide a possible theory of equivalence between
[30] and [17].

4.2 Laws

We categorize the laws in three groups: localized eliminations, access modifica-
tions and element interchanges between processes related by inheritance. The
laws in the first group insert or remove elements of a process considering its
hierarchy. In the second group we have the laws that change the access mod-
ifiers of state components and schemas. The latter groups laws responsible for
interchange elements between a process and one of its subprocess.

Access Modifications
To change the access level of a schema sc in P from protected to default we

must guarantee that all superprocesses of P do not declare a schema homony-
mous to sc, or if it happens, this schema must have the default access level. Note
that it is not possible to have a default schema in a subprocess with the same
name as one in the protected level in any of its superprocesses; therefore we do
not need explicit side conditions to capture this. In addition, all subprocesses of
P cannot redefine sc.

The provisos in the reverse direction of the law application guarantee that
the superprocesses of P have not a schema homonymous to sc. According to
our typing rules a default schema cannot redefine a protected one. Furthermore,
the subprocesses of P have not a schema homonymous to sc. The typing rule
mentioned motivates this restriction.

Law 1 (change schema access level).

process P =̂ extends Q
state st
protected sc
pps
• act

end

=pds

process P =̂ extends Q
state st
sc
pps
• act

end

provided
(→) (1) ∀Q | P < Q • (∀ s ∈ Q .pps | N (s) = N (sc)→ ¬ PL(s))
(2)∀R | R < P • ¬ occurs(sc,R.act) ∧ ∀ s ∈ R.pps • (¬ N (sc) = N (s) ∧
¬ occurs(sc, s))
(←) (1) ∀Q | P < Q • sc /∈ P .pps (2)∀R | R < P • sc /∈ R.pps

Algebraic Laws for Process Subtyping - Extended Version 17

proof

The meaning of P on the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
protected P .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

= [By Lemma 1]

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
P .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

That is the exact meaning of P , in the UTP, on the right-hand template.

A subprocess of P , lets say R, in pds means:

R =̂

begin state =̂ Q .st ∧ P .st ∧ R.st
Q .pps1∧ Ξ P.st∧R.st

Q .pps2
ref

∧ Ξ P.st∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

protected P .sc
R.pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

[[Q .st ∧ P .st |Q .st ∧ P .st ∧ R.st]]
R.act

end

= [By Lemma 1]

18 José Dihego, Pedro Antonino, and Augusto Sampaio

R =̂

begin state =̂ Q .st ∧ P .st ∧ R.st
Q .pps1∧ Ξ P.st∧R.st

Q .pps2
ref

∧ Ξ P.st∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

P .sc
R.pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

[[Q .st ∧ P .st |Q .st ∧ P .st ∧ R.st]]
R.act

end

The above process is the exact meaning of R, in the UTP, on the right-hand

template. This can be generalized for each subprocess of P , in any hierarchy level.
This concludes our proof. The application of this law in the reverse direction is
similar and we omit it here.

�
To reduce the access level of a state component st1 in P , from protected to

default level, it cannot be used by schemas nor actions of P ’s subprocesses. As
the superprocesses of P do not even know that P exists and the overriding of
state components is not allowed, no restrictions are applied to them.

A protected state component is unique in a process hierarchy, so if a process
declares a protected state component st1 neither of its super/subprocesses can
have one homonymous to st1. The proviso for the right application of the law
guarantees that the state component st1 is unique in the P ’s hierarchy. The
uniqueness for protected state components does not apply for those with default
access level. Therefore it is perfectly possible to have a default state component
A.st1 and a protected B .st1, where B < A, as A.st1 is not visible in B . Otherwise
if A.st1 is protected, it is visible in B and we have that st1 /∈ B .st .

Law 2 (change state component access level).

process P =̂ extends Q
state st ∧ protected st1
pps
• act

end

=pds

process P =̂ extends Q
state st ∧ st1
pps
• act

end

provided
(→) ∀R | R < P • ¬ occurs(R.st1,R.act) ∧ ¬ occurs(R.st1,R.pps)
(←) ∀R | R < P • st1 /∈ PS (R.st) ∧ ∀Q | P < Q • st1 /∈ PS (Q .st)

Algebraic Laws for Process Subtyping - Extended Version 19

proof

The meaning of P in the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st ∧ protected st1

Q .pps1∧ Ξ P.st∧P.st1

Q .pps2
ref

∧ Ξ P.st∧P.st1
P .pps
• Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act

end

= [By Lemma 2]

P =̂

begin state =̂ Q .st ∧ P .st ∧ st1

Q .pps1∧ Ξ P.st∧P.st1

Q .pps2
ref

∧ Ξ P.st∧P.st1
P .pps
• Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act

end

The above process is the exact meaning of P , in the UTP, on the right-hand
template.

A subprocess of P , lets say R, in pds means:

R =̂

begin state =̂ Q .st ∧ P .st ∧ protected P .st1 ∧ R.st
Q .pps1∧ Ξ P.st∧P.st1∧R.st

Q .pps2
ref

∧ Ξ P.st∧P.st1∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act

[[Q .st ∧ P .st ∧ P .st1 |Q .st ∧ P .st ∧ P .st1 ∧ R.st]]
R.act

end

= [By Lemma 2]

20 José Dihego, Pedro Antonino, and Augusto Sampaio

R =̂

begin state =̂ Q .st ∧ P .st ∧ P .st1 ∧ R.st
Q .pps1∧ Ξ P.st∧P.st1∧R.st

Q .pps2
ref

∧ Ξ P.st∧P.st1∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act

[[Q .st ∧ P .st ∧ P .st1 |Q .st ∧ P .st ∧ P .st1 ∧ R.st]]
R.act

end

The above process is the exact meaning of R, in the UTP, on the right-hand
template. This can be generalized for each subprocess of P , in any hierarchy
level. This concludes our proof. The application of the this law in the reverse
direction is similar.

�

Localized Eliminations

The meaning of a program in OhCircus is given by the meaning of each
process and class declaration. Furthermore, global Z schema, constant, channel,
and channel set definitions [30] are also taken into account.

A process having its main action as Skip does not affect the meaning of a
program in OhCircus. In addition it does not have a superprocess, but can be
one, since the meaning of its subprocesses remains unchanged with or without
the inheritance relation.

We use the notation occurs(P , pds) to represent the fact that the process P is
used (as superprocess or in a process composition) by at least one process in pds.
The function N defines the set of process names of a set of process declarations.

On the right-hand side of this law, the proviso guarantees that the process P
is not used in pds. On the left-hand side the process declared in pd1 has a fresh
name in pds.

Algebraic Laws for Process Subtyping - Extended Version 21

Law 3 (process elimination).
pds pd1 = pds

where
pd1 = process P =̂ begin • Skip end

provided
(↔) ¬ occurs(P , pds)

proof
This law can be directly justified from the semantics of programs given in [30],
where a program is defined as a conjunction of the semantics of each component
process. Therefore in the semantics of pds pd1 bellow, [[prog]]

PROG
stands for

the semantics of a program prog and [[p]]
P

for the semantics of a process p. The
semantics is defined as a relation where Skip is mapped into an empty relation.

[[pds pd1]]
PROG

= [From the semantics of programs]

[[pds]]
PROG

[[pd1]]
P

= [From the assumption]

[[pds]]
PROG ∅

= [Skip is the empty relation]

[[pds]]
PROG

�
A default schema P .sc can be eliminated from P when it is no longer ref-

erenced by P’ schemas or used by its actions. No restrictions are applied to its
superprocesses or subprocesses. This is justified by the fact that a default schema
cannot be inherited and, consequently, it cannot be redefined. PL(sc) represents
the fact that sc is a protected schema.

The addition of a default schema sc in P is allowed if sc is distinct from those
schemas declared in P and if in all superprocesses of P there is not a protected
schema with the same name as sc. The latter condition must hold because a
default schema cannot refine a protected one. There are no restrictions about
the subprocesses of P since the default elements of P are hidden.

Law 4 (default schema elimination).

process P =̂ extends Q
state st
sc
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

22 José Dihego, Pedro Antonino, and Augusto Sampaio

provided
(→) ¬ occurs(P .sc,P .act) ∧ ¬ occurs(P .sc,P .pps)
(←) sc /∈ P .pps ∧ (∀Q | P < Q • sc /∈ Q .pps, ifPL(sc))
proof
The semantics of P on the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
P .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

= [By A.1]

varQ .st .decl ∧ P .st .decl • ER(Q .act [[Q .st |Q .st ∧ P .st]] (4)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps ∧ P .sc)

= [By A.3]

∃Q .st .decl ∧ P .st .decl ,Q .st .decl ′ ∧ P .st .decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st]](5)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps ∧ P .sc)

In the above predicate Q .st .decl denotes the declaration part of Q .st ; the same
applies to P .st .decl (their dashed values represents variables final values). Their
invariants, respectively Q .st .inv and P .st .inv are conjoined with the schemas
Q .pps ∧ P .pps ∧ P .sc and enforced in the main action Q .act [[Q .st | Q .st ∧
P .st]]P .act by the ER function.

Finally all occurrences of schemas Q .pps ∧ P .pps ∧ P .sc (conjoined with
Q .st .inv ∧ P .st .inv) in the main action are replaced by semantically equiva-
lent commands (specification statements) following the semantics for schemas
presented in [17]. All this work is done by the enforce-replace (ER) function.

Considering an action A, ER(A, inv , pps ∧ sc) = ER(A, inv , pps) if ¬ occurs(sc,A)
and ¬ occurs(sc, pps). Considering this and the provisos we have that the se-
mantics of P is:

∃Q .st .decl ∧ P .st .decl ,Q .st .decl ′ ∧ P .st .decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st]](6)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.3]

Algebraic Laws for Process Subtyping - Extended Version 23

varQ .st .decl ∧ P .st .decl • ER(Q .act [[Q .st |Q .st ∧ P .st]] (7)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.1]

P =̂

begin state =̂ Q .st ∧ P .st

Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

The above process is the exact meaning of P , in the UTP, on the right-hand
template. This concludes our proof. The application of the this law in the reverse
direction is similar and we omit it here.

�

To remove a default state component st1 from P it is necessary that st1 be not
used by actions nor schemas of P . No restrictions are applied to the subprocesses
of P since st1 is a default schema and cannot be inherited.

The insertion of default state component st1 in P is conditional to the absence
of a state component in P homonymous to st1. No restrictions are applied to
super/subprocesses of P since default state components can appear many times
in a process hierarchy, whereas protected state components are unique.

Law 5 (default state component elimination).

process P =̂ extends Q
state st ∧ st1
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ¬ occurs(P .st1,P .act) ∧ ¬ occurs(P .st1,P .pps)
(←) st1 /∈ P .st

24 José Dihego, Pedro Antonino, and Augusto Sampaio

proof
The semantics of P in the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st ∧ P .st1

Q .pps1∧ Ξ P.st∧P.st1

Q .pps2
ref

∧ Ξ P.st∧P.st1
P .pps
• Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act

end

= [By A.1]

varQ .st .decl ∧ P .st .decl ∧ P .st1.decl • ER(Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]](8)

P .act ,P .st .inv ∧ P .st1.inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.3]

∃Q .st .decl ∧ P .st .decl ∧ P .st1.decl ∧ Q .st .decl ′ ∧ P .st .decl ′ ∧ P .st1.decl ′ (9)

• ER(Q .act [[Q .st |Q .st ∧ P .st ∧ P .st1]]P .act ,

P .st .inv ∧ P .st1.inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

Considering that ∃ x ; x ′, y , y ′ : T • A = ∃ x ; x ′ : T • A if y , y ′ do not occur
in A; and for an atomic action act , act → if inv → Skip[]Stop = act if inv is a
predicate about a variable not used in act (this implies that before and after act
execution, inv has the same evaluation), the existential quantification, consider-
ing also the provisos, becomes:

∃Q .st .decl ∧ P .st .decl ∧ Q .st .decl ′ ∧ P .st .decl ′ (10)

• ER(Q .act [[Q .st |Q .st ∧ P .st]]P .act ,

P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.3]

varQ .st .decl ∧ P .st .decl • ER(Q .act [[Q .st |Q .st ∧ P .st]] (11)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

Algebraic Laws for Process Subtyping - Extended Version 25

= [By A.1]

P =̂

begin state =̂ Q .st ∧ P .st

Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

The above process is the exact meaning of P, in the UTP, on the right-hand
template. This concludes our proof. The proof of the this law in the reverse
direction is similar and we omit it here.

�

The insertion of a protected state component st1 in P is possible if its super-
processes and subprocesses, including P itself, do not declare a protected state
component homonymous to st1. The function PS determines, from a set of state
components, those in the protected level.

The provisos for the right-hand side application of the law guarantee that
the protected state component st1 is not used by P nor by its subprocesses.

Law 6 (protected state component elimination).

process P =̂ extends Q
state st ∧ protected st1
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ∀R | R ≤ P • ¬ occurs(R.st1,R.act) ∧ ¬ occurs(R.st1,R.pps)
(←) ∀R | R ≤ P • st1 /∈ PS (R.st) ∧ ∀Q | P < Q • st1 /∈ PS (Q .st)

26 José Dihego, Pedro Antonino, and Augusto Sampaio

proof
The proof of this law is a consequence of Law 2 and Law 5. We present the
left-hand side proof; the right-hand side is similar.

process P =̂ extends Q
state st ∧

protected st1
pps
• act

end

= [By Law 2 application]

process P =̂ extends Q
state st ∧ st1
pps
• act

end

= [By Law 5 application]

process P =̂ extends Q
state st
pps
• act

end

�

The insertion of a protected schema sc in P is possible if its superprocesses
and subprocesses, including P itself, do not have a schema with the same name
as sc. We abuse the notation when we write sc ∈ pps; in fact, it is true if the
name of schema sc is used by at least one schema in pps.

In the case where a subprocess of P has a schema with the same name as that
of sc, this must refine sc. Likewise, if a superprocess of P has an homonymous
schema to sc, this schema must be refined by sc. Therefore, there is a restriction
about schema overriding: if a schema is overridden in a subprocess the specialized
version must maintain the same level of access as the original version, obviously,
the protected level.

We overload the function occurs in occurs (sc,R.act), occurs (sc,R.pps) and
occurs (sc,R.sc). The former represents the fact that the schema sc is used in
R.act ; the second, the fact that sc is used in P .pps; the latter the fact that sc
is referenced via the super clause in R.sc.

Algebraic Laws for Process Subtyping - Extended Version 27

The proviso, on the right-hand side of the law, guarantees that the schema
sc is not used by any subprocess of P , neither by P itself. If it is the case, sc can
be removed from P . This condition is needed since sc is in the protected level
and all subprocesses of P inherits it. If a subprocess of P redefines sc without
including it using the super clause, the removal of sc from P is still valid.

Law 7 (protected schema elimination).

process P =̂ extends Q
state st
protected sc
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ∀R | R < P • ¬ occurs(sc,R.act) ∧ ¬ occurs(sc,R.pps) ∨
N (sc) ∈ N (R.pps)⇒ P .sc v R.sc ∧ ¬ occurs(sc,R.sc)
(←) sc /∈ P .pps ∧ (∀R | R < P • sc /∈ R.pps ∨ (sc ∈ R.pps ∧ P .sc v R.sc)) ∧
(∀Q | P < Q • sc /∈ Q .pps ∨ (sc ∈ Q .pps ∧ Q .sc v P .sc))

proof
The proof of this law is a consequence of Law 1 and Law 4. We present the
left-hand side proof; the right-hand side is similar.

process P =̂ extends Q
state st
protected sc
pps
• act

end

= [By Law 1 application and its provisos]

process P =̂ extends Q
state st
sc
pps
• act

end

28 José Dihego, Pedro Antonino, and Augusto Sampaio

= [By Law 4 application and its provisos]

process P =̂ extends Q
state st
pps
• act

end

�

To remove ′super sc′ from a schema sc in R, it is necessary that there exists
a protected schema sc, in a superprocess of R, as in the bellow definition. This
superprocess must be the closest process to R in its hierarchy. If P .sc has the
super clause, this is first resolved; as a process hierarchy is a finite structure,
it is always possible to find a schema without super. The symbol � stands for
the Z notation Ξ or ∆.

Law 8 (super elimination).

process P =̂ extends Q
state st

protected sc
�st
decls

pred

pps
• act

process R =̂ extends P
state st

sc
�st
decls
super sc

pred

pps
• act

=pds

process P =̂ extends Q
state st

protected sc
�st
decls

pred

pps
• act

process R =̂ extends P
state st

sc
�st
�P .sc.st
decls
P .sc.decls

pred
P .sc.pred

pps
• act

Algebraic Laws for Process Subtyping - Extended Version 29

proof
This law is a direct consequence of the semantics of super, which is given in the
process level.

�

Whenever there is a protected schema sc in a superprocess of P , it is possible
to define in P a protected schema P .sc, whose body is composed uniquely by a
super clause referring to sc (see super semantics in subsection 3.3). P .sc is a
trivial redefinition of sc. This trivial redefinition can be removed, no matter the
context.

Law 9 (eliminating a trivial schema redefinition).

process Q =̂ extends M
state st
protected sc
pps
• act

end

process P =̂ extends Q
state st
protected sc =̂ [super sc]
pps
• act

end

=

process Q =̂ extends M
state st
protected sc
pps
• act

end

process P =̂ extends Q
state st
pps
• act

end

proof

The meaning of P on the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
protected P .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

According to the semantics of super clause, P .sc has the same meaning as
Q .sc; therefore, P becomes:

30 José Dihego, Pedro Antonino, and Augusto Sampaio

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ P.st

Q .pps2
ref

∧ Ξ P.st

P .pps
protected Q .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

The above process is the exact meaning of P , in the UTP, on the right-hand

template. This concludes our proof. The application of the this law in the reverse
direction is similar and we omit it here.

�
Element Interchanges
A state component st2 of a process P can be moved to one of its subprocesses,

say R, if st2 is not used by P neither by its subprocesses, except those that are
also subprocesses of R, including itself. For these, the state component st2 will
be inherited from R instead of P , and no restriction must be applied to them.
It must be clear that st2 is unique through P process hierarchy, so we do not
need to check, for example, that st2 /∈ R.st , since according to our typing rules
it must be satisfied by a valid specification in OhCircus.The provisos consider
P .st2 as a protected element.

If st2 is a protected state component it can be moved to P if its subprocesses,
excepting those that are also subprocesses of R, do not declare a protected state
component equals to st2.

Law 10 (moving state component to subprocess).

process P =̂ extends Q
state st1 ∧ st2
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1
pps
• act

end

process R =̂ extends P
state st ∧ st2
pps
• act

provided
(→) ∀S | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2,S .pps) ∧ ¬ occurs(st2,S .act)
(←) ∀S | S ≤ P ∧ ¬ (S ≤ R) • st2 /∈ PS (S .st)

Algebraic Laws for Process Subtyping - Extended Version 31

proof

We observe that this law is not a compositional application (to remove and
after insert st2 from P to R) of the Law 4 nor Law 7. Move is an atomic operation,
there is no intermediate states.

The meaning of P on the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2

Q .pps1∧ Ξ ∧P.st1∧P.st2

Q .pps2
ref

∧ Ξ ∧P.st1∧P.st2
P .pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

end

= [By A.1]

var Q .st .decl ∧ P .st1.decl ∧ P .st2.decl • ER(Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]](12)

P .act ,Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,Q .pps ∧ P .pps)

= [By A.3]

∃Q .st .decl ∧ P .st1.decl ∧ P .st2.decl ∧ Q .st .decl ′ ∧ P .st1.decl ′ ∧ (13)

P .st2.decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act ,

Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,Q .pps ∧ P .pps)

Considering that ∃ x , x ′, y , y ′ : T • pred(x) ∧ pred(y) ⇒ ∃ x , x ′ : T • pred(x)
and st2 does not occurs in P .pps nor P .act the above predicate becomes:

∃Q .st .decl ∧ P .st1.decl ∧ Q .st .decl ′ ∧ P .st1.decl ′ •(14)

ER(Q .act [[Q .st |Q .st ∧ P .st1]]P .act ,Q .st .inv ∧ P .st1.inv ,Q .pps ∧ P .pps)

= [By A.3]

var Q .st .decl ∧ P .st1.decl • ER(Q .act [[Q .st |Q .st ∧ P .st1]]P .act , (15)

Q .st .inv ∧ P .st1.inv ,Q .pps ∧ P .pps)

32 José Dihego, Pedro Antonino, and Augusto Sampaio

= [By A.1]

P =̂

begin state =̂ Q .st ∧ P .st1

Q .pps1∧ Ξ ∧P.st1

Q .pps2
ref

∧ Ξ ∧P.st1
P .pps
• Q .act [[Q .st |Q .st ∧ P .st1]]P .act

end

The above process is the exact meaning of P, in the UTP, on the right-hand
template. The meaning of R on the left-hand side template is:

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act

end

= [P .st2 = R.st2]

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ R.st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧R.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧R.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ R.st2]]P .act

[[Q .st ∧ P .st1 ∧ R.st2 |Q .st ∧ P .st1 ∧ R.st2 ∧ R.st]]
R.act

end

Algebraic Laws for Process Subtyping - Extended Version 33

= [P .pps and P .act does not access R.st2]

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ R.st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧R.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧R.st2∧R.st

P .pps1∧ Ξ R.st∧R.st2

P .pps2
ref

Ξ R.st∧R.st2
R.pps
• Q .act [[Q .st |Q .st ∧ P .st1]]P .act

[[Q .st ∧ P .st1 |Q .st ∧ P .st1 ∧ R.st2 ∧ R.st]]
R.act

end

The above process is the exact meaning of R, in the UTP, on the right-hand
template. This concludes our proof. The application of the this law in the reverse
direction is similar.

�

If the main action of a process P can be written as a parallel composition
of two actions act1 and act2, that access exclusively st1 and st2, respectively,
we can move one of these actions (in this case, act2) to a subprocess of P , say
R. The state components in st2 must be protected, so it is possible to refer to
them in the R’s main action. This law changes the behavior of P , so it cannot
be extended by any process in pds excepting R and its subprocesses (indirectly).
Finally, P cannot be used by any of processes declared in pds, excepting by
inheritance as already mentioned.

The semantics of R is unchanged as a consequence of the meaning of in-
heritance. The implicit main action of R, R.act is given by its declared main
action R.act in parallel composition with the implicit main action of P , P .act , so
R.act = P .act [[P .st | R.st]]R.act . Finally, note that act2 is restricted to change
st2. It cannot know about R.st state components, excepting those that are in-
herited, including st2.

The application of this law in the opposite direction will also change the
behavior of P , so it cannot be used by any process in pds except through inheri-
tance, directly by R, and indirectly by its subprocesses. The semantics of R and
its subprocesses is unchanged since act2 will be part of the implicit main action
of R, no matter if it is in P or in R.

34 José Dihego, Pedro Antonino, and Augusto Sampaio

Law 11 (move action to subprocess).

process P =̂ extends Q
state st1 ∧ st2
pps
• act1[[st1 | st2]]act2

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1 ∧ st2
pps
• act1

end

process R =̂ extends P
state st
pps
• act [[st | st2]]act2

provided
(↔)∀S | S ∈ pds ∧ S 6= R • ¬ occurs(P ,S)
(→)PL(st2)

proof

The meaning of P is changed, otherwise the meaning of R is unchanged just
as the meaning of the whole program, since no matter the localization of act2 if
we consider the law provisos.

The meaning of R in the left-hand side template is:

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]](P .act1[[P .st1 | P .st2]]P .act2)

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act

end

Algebraic Laws for Process Subtyping - Extended Version 35

= [R.act is able to access Q .st ∧ P .st1 ∧ P .st2 ∧ R.st ;
associativity of interleaving operator]

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act1

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act [[R.st | P .st2]]P .act2

end

= [P .act2 = R.act2]

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act1

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act [[R.st | P .st2]]R.act2

end

That is the exact meaning of R, in the UTP, on the right-hand template.
This concludes our proof. The application of this law in the reverse direction is
similar.

�

If part of the behavior of a schema in a superprocess (including a subset of
the state components, related declarations and a predicate) are relevant only for
one of its subprocesses, we can introduce a redefinition of this schema in the
subprocess and move this part of the original schema to its redefinition.

The state components of P are partitioned in two sets st1 and st2. P .sc, on
the right-hand side, changes only st1, but st2 is left undefined. R.sc includes
P .sc and explicitly constrains the values of the st2 components according to the
predicate pred2; This requires that the state components in this set have the
protected access level. Finally there must be no redefinitions of P .sc except in
the subprocesses of R.

36 José Dihego, Pedro Antonino, and Augusto Sampaio

Law 12 (splitting a schema among processes).

process P =̂ extends Q
state st1 ∧ protected st2

protected sc
�st1
�st2
decls1
decls2

pred1

pred2

pps
• act

end

process R =̂ extends P
state st
pps
• act

end

=pds

process P =̂ extends Q
state st1 ∧ protected st2
protected sc =̂

[�st1 decls1 | pred1]
pps
• act

end

process R =̂ extends P
state st
protected sc =̂

[�st2 decls2 super sc | pred2]
pps
• act

end

provided
(↔) ∀S | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2,S .pps) ∧ ¬ occurs(st2,S .act) ∧
¬ impact(st1, st2) 2

(→) PL(st2) ∧ N (sc) /∈ N (R.pps)

proof
The meaning of P on the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2
Q .pps1∧ Ξ ∧P.st1∧P.st2

Q .pps2
ref

∧ Ξ ∧P.st1∧P.st2
P .pps
protected P .sc
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

end

2 impact(st1, st2) is true iff the value of a state component st1 is affected by the value
of st2

Algebraic Laws for Process Subtyping - Extended Version 37

= [By A.1]

var Q .st .decl ∧ P .st1.decl ∧ P .st2.decl • ER(Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]](16)

P .act ,Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,Q .pps ∧ P .pps ∧ P .sc)

= [By A.3]

∃Q .st .decl ∧ P .st1.decl ∧ P .st2.decl ∧ Q .st .decl ′ ∧ P .st1.decl ′ ∧ (17)

P .st2.decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act ,

Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,Q .pps ∧ P .pps ∧
sc =̂ [�st1 decls1 | pred1] ∧ [�st2 decls2 | pred2])

Considering that ∃ x , x ′, y , y ′ : T • pred(x) ∧ pred(y) ⇒ ∃ x , x ′, y , y ′ : T •
pred(x) and the st1 values are independent of those of st2 and st2 does not occur
in P .pps nor in P .act we can remove [�st2 decls2 | pred2] from sc.

∃Q .st .decl ∧ P .st1.decl ∧ P .st2.decl ∧ Q .st .decl ′ ∧ P .st1.decl ′ ∧ P .st2.decl ′(18)

• ER(Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act ,

Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,Q .pps ∧ P .pps ∧ sc =̂ [�st1 decls1 | pred1])

= [By A.3]

varQ .st .decl ∧ P .st1.decl ∧ P .st2.decl • ER(Q .act [[Q .st |Q .st ∧ (19)

P .st1 ∧ P .st2]]P .act ,Q .st .inv ∧ P .st1.inv ∧ P .st2.inv ,

Q .pps ∧ P .pps ∧ sc =̂ [�st1 decls1 | pred1])

= [By A.1]

P =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2
Q .pps1∧ Ξ ∧P.st1∧P.st2

Q .pps2
ref

∧ Ξ ∧P.st1∧P.st2
P .pps
protected sc =̂ [�st1 decls1 | pred1]
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

end

38 José Dihego, Pedro Antonino, and Augusto Sampaio

The above process is the exact meaning of P, in the UTP, on the right-hand
template. The meaning of R on the left-hand side template is:

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

protected sc =̂ [�st1 decls1 | pred1] ∧
[�st2 decls2 | pred2]

R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act

end

From the semantics of super, the above process is equivalent to:

R =̂

begin state =̂ Q .st ∧ P .st1 ∧ P .st2 ∧ R.st
Q .pps1∧ Ξ P.st1∧P.st2∧R.st

Q .pps2
ref

∧ Ξ P.st1∧P.st2∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

protected sc =̂ [super sc � st2 decls2 | pred2]
R.pps
• Q .act [[Q .st |Q .st ∧ P .st1 ∧ P .st2]]P .act

[[Q .st ∧ P .st1 ∧ P .st2 |Q .st ∧ P .st1 ∧ P .st2 ∧ R.st]]
R.act

end

The above process is the exact meaning of R, in the UTP, on the right-hand
template. This concludes our proof. The application of the this law in the reverse
direction is similar.

�

To move a schema sc from P to R, where R < P , it is necessary, if sc is
protected, that it is not being used by P , neither by its subprocesses, excepting
those that are also subprocesses of R. Note that we can apply this law, even if
a subprocess of P (excepting R) has a redefinition of sc.

To bring a protected schema R.sc to P , where R < P , we must guarantee
that P neither its subprocesses, excepting those that are also subprocesses of R,
have schema equals to sc.

Algebraic Laws for Process Subtyping - Extended Version 39

Law 13 (move a protected schema to subprocess).

process P =̂ extends Q
state st
protected sc
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st
pps
• act

end

process R =̂ extends P
state st
protected sc
pps
• act

provided
(↔) ∀S | S < P ∧ ¬ (S < R) • ¬ occurs(sc,S .pps) ∧ ¬ occurs(sc,S .act)

proof
The meaning of P in the left-hand side is defined as:

P =̂

begin state =̂ Q .st ∧ P .st
Q .pps1∧ Ξ ∧P.st

Q .pps2
ref

∧ Ξ ∧P.st

P .pps
protected P .sc
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

= [By A.1]

varQ .st .decl ∧ P .st .decl • ER(Q .act [[Q .st |Q .st ∧ P .st]] (20)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps ∧ P .sc)

= [By A.3]

∃Q .st .decl ∧ P .st .decl ,Q .st .decl ′ ∧ P .st .decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st]](21)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps ∧ P .sc)

40 José Dihego, Pedro Antonino, and Augusto Sampaio

Considering an action A, ER(A, inv , pps ∧ sc) = ER(A, inv , pps) if ¬ occurs(sc,A)
and ¬ occurs(sc, pps). Considering this and the provisos we have that the se-
mantics of P is:

∃Q .st .decl ∧ P .st .decl ,Q .st .decl ′ ∧ P .st .decl ′ • ER(Q .act [[Q .st |Q .st ∧ P .st]](22)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.3]

varQ .st .decl ∧ P .st .decl • ER(Q .act [[Q .st |Q .st ∧ P .st]] (23)

P .act ,P .st .inv ∧ Q .st .inv ,Q .pps ∧ P .pps)

= [By A.1]

P =̂

begin state =̂ Q .st ∧ P .st

Q .pps1∧ Ξ ∧P.st

Q .pps2
ref

∧ Ξ ∧P.st

P .pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

end

This is the meaning of P , in the UTP, on the right-hand side template. The
meaning of R in the left-hand side template is:

R =̂

begin state =̂ Q .st ∧ P .st ∧ R.st
Q .pps1∧ Ξ P.st∧R.st

Q .pps2
ref

∧ Ξ P.st∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

protected P .sc
R.pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

[[Q .st ∧ P .st |Q .st ∧ P .st ∧ R.st]]
R.act

end

Algebraic Laws for Process Subtyping - Extended Version 41

= [P .sc = R.sc]

R =̂

begin state =̂ Q .st ∧ P .st ∧ R.st
Q .pps1∧ Ξ P.st∧R.st

Q .pps2
ref

∧ Ξ P.st∧R.st

P .pps1∧ Ξ R.st

P .pps2
ref

Ξ R.st

protected R.sc
R.pps
• Q .act [[Q .st |Q .st ∧ P .st]]P .act

[[Q .st ∧ P .st |Q .st ∧ P .st ∧ R.st]]
R.act

end

The above process is the exact meaning of R, in the UTP, on the right-hand
template. This concludes our proof. The application of the this law in the reverse
direction is similar and we omit it here.

�
A default schema sc can be moved from P to R, where R < P , if sc is not

being used by P and is not defined in R. As sc is default, R is not aware about
it, and we must check if R does not define a schema homonymous to sc. It must
be clear that the schema R.sc, if exists, is not a overriding of P .sc since it is
default.

To move the default schema R.sc to P the proviso must guarantee that R
doesn’t use sc, since R cannot access, directly, a default schema in P . About
P , it cannot has a schema equals to sc and neither of its superprocesses define
a protected schema homonymous to sc, because it would create an invalid re-
definition of this schema. The function PS selects the protected schemas from a
set.

Law 14 (move a default schema to subprocess).

process P =̂ extends Q
state st
sc
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st
pps
• act

end

process R =̂ extends P
state st
sc
pps
• act

42 José Dihego, Pedro Antonino, and Augusto Sampaio

provided
(→)¬ occurs(sc,P .pps) ∧ ¬ occurs(sc,P .act) ∧ N (sc) /∈ N (R.pps)
(←)¬ occurs(sc,R.pps) ∧ ¬ occurs(sc,R.act) ∧
∀T | P < T • N (sc) /∈ N (PS (T .pps))

proof

This proof is similar to Law 13 and we omit it here.
�

Subprocess Extraction
In the initial specification of a system it is common to model processes with

a very specific behavior that hides a generic behavior specialized in face of a
particular situation. Therefore we develop a composite law that extracts from a
process this generic behavior as a superprocess specializing it with a subprocess.
This promotes code reuse and favor a better conceptual representation of the
system.

Law 15 (subprocess extraction).

This law is composite because its is obtained from the successive application
of some of the simple/composite laws presented before.

process P =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps2
• act1[[st1 | st1 ∧ st2]]act2

end

=pds

process R =̂ extends Q
state st1
pps1
pps ′2
• act1

end

process P =̂ extends R
state st2
pps ′′2
• act2

end

provided
(↔) R /∈ N (pds)

proof
As already mentioned, this law is derived from previous laws. Particularly,

it can be proved from : Law 3 (process elimination), Law 11 (move action to
subprocess), Law 12 (splitting a schema among processes), Law 13 (move a
protected schema to subprocess), Law 14 (move a default schema to subprocess)
and Law 10 (moving state component to subprocess).

Algebraic Laws for Process Subtyping - Extended Version 43

process P =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps2
• act1[[st1 | st1 ∧ st2]]act2

end

= [By Law 3 and renaming]

process R =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps2
• act1[[st1 | st1 ∧ st2]]act2

end

process P =̂ extends R
• Skip

end

= [By Law 11]

process R =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps2
• act1

end

process P =̂ extends R
• act2

end

44 José Dihego, Pedro Antonino, and Augusto Sampaio

The Law 12 (splitting a schema among processes) is then applied for each
schema in P .pps2. The set P .pps ′2 stands for the schemas in P .pps2 affected by
the law and S .pps ′′2 for those created in S .

process R =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps ′2
• act1

end

process P =̂ extends R
pps ′′2
• act2

end

The Laws 13 (move a protected schema to subprocess) and 14 (move a default
schema to subprocess) can be or not applied at this point, the application of this
step is optional and for the sake of conciseness we omit it here.

= [By Law 10]

process R =̂ extends Q
state st1
pps1
pps ′2
• act1

end

process P =̂ extends R
state st2
pps ′′2
• act2

end

This concludes the derivation.

�

Algebraic Laws for Process Subtyping - Extended Version 45

This law can be applied in every context where we have a logical division of
schemas and actions concerning state components elements. The unique proviso,
in both application directions, must guarantees that R is not used in pds.

4.3 Completeness

The algebraic laws developed in this work focus on the improvement of the
process inheritance relations in an OhCircus specification. They address state
components, schemas and main actions of processes engaged in a hierarchy. Our
laws are not concerned with transformations for CSP actions or classes; the
works [23] and [3] have already dealt with these topics. Although our work can
be part of a completeness theory for OhCircus, it is not our intent to establish
it, so we just present how process inheritance relations can be removed from
specification.

An important issue is a notion of completeness for the proposed set of laws,
particulary with respect to inheritance.

Our measure for the completeness of the proposed laws is whether their ex-
haustive application is capable to remove all subprocess from the target specifica-
tion; this is exactly what our laws provide if guided by a strategy. In a reduction
strategy we apply the laws in a opposite than that applied in the development
phase.

Our strategy for subprocess removal can be summarized as the application,
in opposite direction, of the laws used in our composite Law 15 (subprocess
extraction). Therefore, in an high level view, we must apply the laws: Law 10
(moving state component to subprocess), Law 14 (move a default schema to
subprocess), Law 13 (move a protected schema to subprocess), Law 12 (splitting
a schema among processes), Law 11 (move action to subprocess) and Law 3
(process elimination) in this order.

Some other simple laws might be necessary in the reduction process. For
example, we change the visibility of all schemas and state components of the
subprocess S , which we want to move to P (S ’s superprocess), to protected.
This transformation might generate name conflicts that can be solved with a
simple renaming. After this, Law 10 (moving state component to subprocess)
can be successively applied to move up each state component from S to P .

5 Case Study

Consider the process Buffer as defined in Figures 5 and 6. Our intention is
to transform this design into a more reusable one, as presented in Section 2.1
(see Figures 2, 3 and 4). The process Buffer (in Figures 5 and 6) encompasses
two abstractions: an abstract unbounded buffer with no concerns about mem-
ory space, and a more concrete specialisation that deals with practical memory
limitations and offers more functionalities: memory size monitoring and double
buffer addition.

46 José Dihego, Pedro Antonino, and Augusto Sampaio

channel input , input2, output : N
channel length : N1

channel fc : R
channel start

process Buffer =̂ begin

state St
queue : seqN
length : N1

#queue ≤ length

Init
St ′

length? : N1

queue ′ = 〈〉
length ′ = length?

Fig. 5. Buffer without inheritance - Part I

Add
∆St
e? : N

queue ′ = 〈e?〉a queue
#queue = length⇒

length ′ = length ∗ 2

Remove
∆St
e! : N

#queue > 0
e! = last queue
queue ′ = front queue

Add2 =̂ Add o
9 Add [f ?/e?]

FactorCapacity
ΞSt
fc! : R

fc! = #queue div length

Input =̂ input?e → Add
Output =̂ (#queue > 0)&

var e : N • Remove; output !e → SKIP

Input2 =̂ input2?e?f → Add2
Fac =̂ var fc : N • FactorCapacity ; fc!fc → SKIP

• start → length?length → Init ;
µX • (Input 2 Output 2 Input2 2 Fac); X

end

Fig. 6. Buffer without inheritance - Part II

Separating these concerns increases reuse and maintainability, and the na-
ture of the design is more faithfully reflected. To achieve these benefits Law
15 (subprocess extraction) can be applied generating the two processes shown
in Section 2.1. A key point, before applying the law, is the adaptation of the
specification of BufferImp to exactly match the left-hand side of Law 15.

Figure 7 shows part of the adaptations we need to perform to apply this law.
As a first step, the schemas Add and Remove are signed as protected. Then,
the process state is represented as a conjunction of St1 and St2, the initialization
schema and main action are split accordingly. These transformations are justi-
fied by laws of actions, which are not our focus here but can be found in [7].
With these transformations we can apply Law 15. As explained in the previous
section, it embodies several small transformations: Law 3 is applied to create
the subprocess BufferImp; Law 13 is applied to the schema Add ; the state com-
ponent St2, its related initial clause and main action are moved to BufferImp,
by the Laws 10 and 14 and 11, respectively; and the state St1, its related initial
clause and main action remains in Buffer . Several rename operations, as St1 to

Algebraic Laws for Process Subtyping - Extended Version 47

process Buffer =̂ begin

state =̂ St1 ∧ St2
. . .

St1
protected queue : seqN

St2
length : N1

#queue ≤ length

protected Add
∆St
e? : N

queue ′ = 〈e?〉a queue
#queue = length⇒

length ′ = length ∗ 2

. . .
• start → Init1;
µX • (Input 2 Output); X

[[St1 | St1 ∧ St2]]
length?length → Init2;
µX • (Input2 2 Fac); X

end

Fig. 7. Buffer adaptations

St and Init1 to Init are omitted for the sake of conciseness. The result is the
design in Section 2.1.

6 Tool support

We developed a tool to support our strategy based on the Eclipse Modelling
Framework (EMF), which was chosen mostly because of the facility for inte-
grating the variety of tools needed, which is archived by the use of a default
metamodel, Ecore, across most of EMF technologies. Among EMF tools, we
used Xtext for describing the OhCircus language, and ATL (Atlas Transforma-
tion Language) to encode the algebraic laws and to carry out the mechanised
application of the laws.

Using Xtext we are able to generate an Ecore metamodel from an EBNF-
grammar like description of OhCircus. The next step was the encoding of the al-
gebraic laws, using ATL, which provides reasonable support for model-to-model
transformation. For each algebraic law two ATL modules were created, one for
each direction of application.

The only drawback of using ATL is that it is normally used in the context
of transformations involving distinct source and target models. In our case, the
proposed laws relate elements of a same language (OhCircus). In this case, one has
to encode auxiliary rules to capture the fact that some elements are preserved by
the transformation, by explicitly copying them from the source to the destination
of the transformation. Also, when an element is removed as an effect of the
transformation, such copying rules have to be disabled, not only for the element
itself, but for all its constituent elements.

After having implemented all ATL modules, we built a simple tool in Java
to mechanically apply the laws. The Java class ATLTransformation acts like
an ATL engine. It receives the input models, the input metamodel, the output
metamodel and the ATL module. With all this information provided, it executes
the transformation generating the target model.

48 José Dihego, Pedro Antonino, and Augusto Sampaio

Currently we have developed a subset of the laws as a proof of concept 3.

7 Conclusions

In this work we proposed a set of sound algebraic laws for OhCircus, with focus
on process inheritance. As far as we are aware, this is an original contribution,
as it seems to be the first systematic characterization of a comprehensive set
of laws for process inheritance in the context of rich data types and access
control for state and behaviour components. With this goal in mind we started
by defining a notion of process inheritance in OhCircus. Extending the model of
process inheritance [29] for CSP, based on the failures model [12], we defined the
semantics for process inheritance in OhCircus.

The original design of OhCircus makes process components invisible even for
its subprocesses, which prevents code reuse. This motivated us to extend the
syntax and the semantics of OhCircus through the creation of a new access level
to signalize the superprocess elements which will be visible to its subprocesses.
We needed to introduce a new parallel operator, and its UTP semantics, to be
able to define the meaning of process inheritance.

Several works have addressed the notion of behavioural subtyping [19,14,10,29]
[1,5,4,2]. In [1,14] a subtype relation is defined in terms of invariants over a state,
in addition to pre/post conditions and constraint rules over methods. The other
cited works define a subtype relation based on some process algebra model, like
failures and failures-divergences proposed for CSP, relating process refinement
with inheritance [29].

In [14] a subtype is allowed to extend the behaviour of its supertype, adding
new methods, provided there exists a function that maps these new methods as a
combination of the supertype methods; this is not allowed in [29]. Here we allow,
in a subtype, new methods like in [14] and even more: new state components,
method overriding, reducing the non-determinism, and methods that change
both inherited and declared state components.

Previous works have proposed refinements and algebraic laws for Circus [24,7]
and these are consequently applicable to OhCircus. In [24] the meaning of refine-
ment of processes and their actions are defined based on forward simulation. It
also proposes laws in the process grain, as splitting and indexing processes, as
part of a general method of development for Circus, based on refinement. The
work reported in [24] also includes laws for actions, and provides an accom-
panying iterative development strategy, involving the application of simulation,
action and, most importantly, process refinement. In this context, our work com-
plements [24] with a formal notion of process inheritance and the associated laws.

The mechanization of the formal semantics of Circus given in the UTP is
provided in [18]. The extension of this work for OhCircus, in the form proposed
here, is our next immediate goal.

3 http://www.cin.ufpe.br/~prga2/TG/CircusRefiningTool/

http://www.cin.ufpe.br/~prga2/TG/CircusRefiningTool/

Algebraic Laws for Process Subtyping - Extended Version 49

A UTP framework

Semantics of processes, schemas and commands developed in [17].

A.1 OhCircus Processes

Derived from [17], since the action in the command is submitted to the ER
function.

begin state [decl | pred]PPars • A end =̂ var decl • ER(A, pred ,PPars)

ER : Action 7→ PConstraint 7→ PPParagraph 7→ Action
ER a ∅ ∅ = a
ER a ∅ p = R(a, p)
ER a inv ∅ = E (a, inv)
ER a i : invs p : pps = ER(E (R(a,E (p, i)), i), invs, pps)

E : Action 7→ Constraint 7→ Action
E a inv = a; if inv → Skip[]Stop
E (a op b) inv = E (a, inv) op E (b, inv)

E : Paragraph 7→ Constraint 7→ Paragraph
E [udecl ; ddecl ′ | pred] inv = [udecl ; ddecl ′ | pred ∧ inv]

R : Action 7→ Paragraph 7→ Action
R a sc =̂ [udecl ; ddecl ′ | pred] = if a = sc then [udecl ; ddecl ′ | pred] else a
R (a op b) sc = R(a, sc) op R(b, sc)

A.2 Schema Expressions

[udecl ; ddecl ′ | pred] =̂ ddecl : [∃ ddecl ′ • pred , pred]

A.3 Command

var x : T • A = ∃ x ; x ′ : T • A

50 José Dihego, Pedro Antonino, and Augusto Sampaio

B Verification of case study in FDR

This Appendix explaining how components of the study cases might be verified
in the model checker FDR (for Failure-Divergence-Refinement). The appendix
is not intended to detail the study cases or the strategy presented in this work,
but to focus on the aspects that ease their verification.

-- channel declarations --

n = 2

channel input,Ninput, output : {0..n}

channel input2 : {0..n}.{0..n}

channel div

channel fc:{0..n}

-- auxiliary function --

reverse(<>) = <>

reverse(<x>^s) = reverse(s)^<x>

-- a regular buffer ---

Buffer(queue) =

#queue < 4 & input?x -> Buffer(<x>^queue)

[]

#queue > 0 & output.head(reverse(queue)) ->

Buffer(reverse(tail(reverse(queue))))

-- a buffer implementation --

BufferImp(queue,len) =

(#queue < 4 & input?x -> Buffer(<x>^queue)

[]

#queue > 0 & output.head(reverse(queue)) ->

Buffer(reverse(tail(reverse(queue))))

[]

#queue == len and len<=2 & BufferImp(queue,len*2)

[]

fc.(len - #queue) -> Buffer(queue)

)

|||

(#queue < (len-1) & input2?x?y ->

BufferImp(<y>^<x>^queue,len))

-- verifying subtype without sharing --

Tester2(queue,len) = BufferImp(queue,len) \ {| input2,fc |}

assert Buffer(<>) [F= Tester2(<>,1)

Algebraic Laws for Process Subtyping - Extended Version 51

-- verifying subtyping with sharing

New2Old = All

|~| Old

All = input2?x?y -> P1(x,y)

[] fc?x -> P3(x)

[] input?x -> New2Old

[] output?x -> New2Old

P1(x,y) = div -> DIV

[] Ninput.x -> P2(y)

P2(y) = div -> DIV

[] Ninput.y -> New2Old

P3(x) = div -> DIV

[] New2Old

DIV = DIV

Old = input?x -> New2Old

[] output?x -> New2Old

Tester(queue,len) =

((BufferImp(queue,len)

[| {| input, output, input2,fc |} |]

New2Old)

\ {| input2, div,fc |})

[[Ninput <- input]]

Tester2(queue,len) = BufferImp(queue,len) \ {| input2,fc |}

assert Buffer(<>) [F= Tester(<>,1)

52 José Dihego, Pedro Antonino, and Augusto Sampaio

C Access Levels Equivalence

Some laws change the access level of schemas or state components, the proofs of
these laws use the bellow lemmas based on the similar lemmas for ROOL[9]:

Lemma 1 (access levels equivalence between schema in semantics level).

Consider Γ and Γ ′ proper typing environments, where Γ.vis P sc = default and
Γ ′.vis P = Γ.vis P ⊕ {sc 7→ protected}. We have that:

Γ, pds B P : Process = Γ ′, pds B P : Process

provided
(→) (1) ∀Q | P < Q • (∀ s ∈ Q | N (s) = N (sc)→ ¬ PL(s))
(2)∀R | R < P • ¬ occurs(sc,R.act) ∧ ∀ s ∈ R.pps • (¬ N (sc) = N (s) ∧
¬ occurs(sc, s))
(←) (1) ∀Q | P < Q • sc /∈ P .pps (2)∀R | R < P • sc /∈ R.pps

proof By induction, since the semantics is defined in terms of the extended
typing system which does not enforce the visibility constraints, the difference
between Γ and Γ ′ is irrelevant.

Lemma 2 (access levels equivalence between state components in se-
mantics level).

Consider Γ and Γ ′ proper typing environments, where Γ.vis P st1 = default
and Γ ′.vis P = Γ.vis P ⊕ {st1 7→ protected}. We have that:

Γ, pds B P : Process = Γ ′, pds B P : Process

provided
(→) ∀R | R < P • ¬ occurs(R.st1,R.act) ∧ ¬ occurs(R.st1,R.pps)
(←) ∀R | R < P • st1 /∈ PS (R.st) ∧ ∀Q | P < Q • st1 /∈ PS (Q .st)

proof Similar to Lemma 1.

Algebraic Laws for Process Subtyping - Extended Version 53

D Algebraic Laws

D.1 Access Modifications

Law 1 (change schema access level).

process P =̂ extends Q
state st
protected sc
pps
• act

end

=pds

process P =̂ extends Q
state st
sc
pps
• act

end

provided
(→) (1) ∀Q | P < Q • (∀ s ∈ Q .pps | N (s) = N (sc)→ ¬ PL(s))
(2)∀R | R < P • ¬ occurs(sc,R.act) ∧ ∀ s ∈ R.pps • (¬ N (sc) = N (s) ∧
¬ occurs(sc, s))
(←) (1) ∀Q | P < Q • sc /∈ P .pps (2)∀R | R < P • sc /∈ R.pps

�

Law 2 (change state component access level).

process P =̂ extends Q
state st ∧ protected st1
pps
• act

end

=pds

process P =̂ extends Q
state st ∧ st1
pps
• act

end

provided
(→) ∀R | R < P • ¬ occurs(R.st1,R.act) ∧ ¬ occurs(R.st1,R.pps)
(←) ∀R | R < P • st1 /∈ PS (R.st) ∧ ∀Q | P < Q • st1 /∈ PS (Q .st) �

54 José Dihego, Pedro Antonino, and Augusto Sampaio

D.2 Localized Eliminations

Law 3 (process elimination).
pds pd1 = pds

where
pd1 = process P =̂ begin • Skip end

provided
(↔) ¬ occurs(P , pds)

�

Law 4 (default schema elimination).

process P =̂ extends Q
state st
sc
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ¬ occurs(P .sc,P .act) ∧ ¬ occurs(P .sc,P .pps)
(←) sc /∈ P .pps ∧ (∀Q | P < Q • sc /∈ Q .pps, ifPL(sc)) �

Law 5 (default state component elimination).

process P =̂ extends Q
state st ∧ st1
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ¬ occurs(P .st1,P .act) ∧ ¬ occurs(P .st1,P .pps)
(←) st1 /∈ P .st �

Algebraic Laws for Process Subtyping - Extended Version 55

Law 6 (protected state component elimination).

process P =̂ extends Q
state st ∧ protected st1
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ∀R | R ≤ P • ¬ occurs(R.st1,R.act) ∧ ¬ occurs(R.st1,R.pps)
(←) ∀R | R ≤ P • st1 /∈ PS (R.st) ∧ ∀Q | P < Q • st1 /∈ PS (Q .st) �

Law 7 (protected schema elimination).

process P =̂ extends Q
state st
protected sc
pps
• act

end

=pds

process P =̂ extends Q
state st
pps
• act

end

provided
(→) ∀R | R < P • ¬ occurs(sc,R.act) ∧ ¬ occurs(sc,R.pps) ∨
N (sc) ∈ N (R.pps)⇒ P .sc v R.sc ∧ ¬ occurs(sc,R.sc)
(←) sc /∈ P .pps ∧ (∀R | R < P • sc /∈ R.pps ∨ (sc ∈ R.pps ∧ P .sc v R.sc)) ∧
(∀Q | P < Q • sc /∈ Q .pps ∨ (sc ∈ Q .pps ∧ Q .sc v P .sc))

�

56 José Dihego, Pedro Antonino, and Augusto Sampaio

Law 8 (super elimination).

process P =̂ extends Q
state st
protected sc =̂

[�st decls | pred]
pps
• act

process R =̂ extends P
state st
protected sc =̂

[�st decls super sc | pred]
pps
• act

=pds

process P =̂ extends Q
state st
protected sc =̂

[�st decls | pred]
pps
• act

process R =̂ extends P
state st
protected sc =̂

[�st � P .sc.st
decls P .sc.decls |
pred P .sc.pred]

pps
• act

�

Law 9 (eliminating a trivial schema redefinition).

process Q =̂ extends M
state st
protected sc
pps
• act

end

process P =̂ extends Q
state st
protected sc =̂ [super sc]
pps
• act

end

=

process Q =̂ extends M
state st
protected sc
pps
• act

end

process P =̂ extends Q
state st
pps
• act

end

�

Algebraic Laws for Process Subtyping - Extended Version 57

D.3 Element Interchanges

Law 10 (moving state component to subprocess).

process P =̂ extends Q
state st1 ∧ st2
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1
pps
• act

end

process R =̂ extends P
state st ∧ st2
pps
• act

provided
(→) ∀S | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2,S .pps) ∧ ¬ occurs(st2,S .act)
(←) ∀S | S ≤ P ∧ ¬ (S ≤ R) • st2 /∈ PS (S .st)

�

Law 11 (move action to subprocess).

process P =̂ extends Q
state st1 ∧ st2
pps
• act1[[st1 | st2]]act2

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st1 ∧ st2
pps
• act1

end

process R =̂ extends P
state st
pps
• act [[st | st2]]act2

provided
(↔)∀S | S ∈ pds ∧ S 6= R • ¬ occurs(P ,S)
(→)PL(st2)

�

58 José Dihego, Pedro Antonino, and Augusto Sampaio

Law 12 (splitting a schema among processes).

process P =̂ extends Q
state st1 ∧ protected st2

protected sc
�st1
�st2
decls1
decls2

pred1

pred2

pps
• act

end

process R =̂ extends P
state st
pps
• act

end

=pds

process P =̂ extends Q
state st1 ∧ protected st2
protected sc =̂

[�st1 decls1 | pred1]
pps
• act

end

process R =̂ extends P
state st
protected sc =̂

[�st2 decls2 super sc | pred2]
pps
• act

end

provided
(↔) ∀S | S ≤ P ∧ ¬ (S ≤ R) • ¬ occurs(st2,S .pps) ∧ ¬ occurs(st2,S .act) ∧
¬ impact(st1, st2) 4

(→) PL(st2) ∧ N (sc) /∈ N (R.pps)

�

4 impact(st1, st2) is true iff the value of a state component st1 is affected by the value
of st2

Algebraic Laws for Process Subtyping - Extended Version 59

Law 13 (move a protected schema to subprocess).

process P =̂ extends Q
state st
protected sc
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st
pps
• act

end

process R =̂ extends P
state st
protected sc
pps
• act

provided
(↔) ∀S | S < P ∧ ¬ (S < R) • ¬ occurs(sc,S .pps) ∧ ¬ occurs(sc,S .act)

�

Law 14 (move a default schema to subprocess).

process P =̂ extends Q
state st
sc
pps
• act

end

process R =̂ extends P
state st
pps
• act

=pds

process P =̂ extends Q
state st
pps
• act

end

process R =̂ extends P
state st
sc
pps
• act

provided
(→)¬ occurs(sc,P .pps) ∧ ¬ occurs(sc,P .act) ∧ N (sc) /∈ N (R.pps)
(←)¬ occurs(sc,R.pps) ∧ ¬ occurs(sc,R.act) ∧
∀T | P < T • N (sc) /∈ N (PS (T .pps))

�

60 José Dihego, Pedro Antonino, and Augusto Sampaio

D.4 Subprocess Extraction

Law 15 (subprocess extraction).

process P =̂ extends Q
state st1 ∧ st2
pps1∧ Ξ st2
pps2
• act1[[st1 | st1 ∧ st2]]act2

end

=pds

process R =̂ extends Q
state st1
pps1
pps ′2
• act1

end

process P =̂ extends R
state st2
pps ′′2
• act2

end

provided
(↔) R /∈ N (pds)

�

Algebraic Laws for Process Subtyping - Extended Version 61

References

1. Pierre America. Designing an Object-Oriented Programming Language with Be-
havioural Subtyping. In Proceedings of the REX School/Workshop on Foundations
of Object-Oriented Languages, pages 60–90, London, UK, 1991. Springer-Verlag.

2. C. Balzarotti, Fiorella de Cindio, and Lucia Pomello. Observation equivalences
for the semantics of inheritance. In Proceedings of the IFIP TC6/WG6.1 Third
International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS), pages 455–, Deventer, The Netherlands, The Netherlands,
1999. Kluwer, B.V.

3. Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio. Algebraic
reasoning for object-oriented programming. Sci. Comput. Program., 52:53–100,
August 2004.

4. H. Bowman, C. Briscoe-smith, J. Derrick, and B. Strulo. On Behavioural Subtyping
in LOTOS, 1996.

5. Howard Bowman and John Derrick. A Junction between State Based and Be-
havioural Specification (Invited Talk). pages 213–239, Deventer, The Netherlands,
The Netherlands, 1999. Kluwer, B.V.

6. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Refinement of
Actions in Circus. In Proceedings of REFINE’2002, Eletronic Notes in Theoretical
Computer Science, 2002. Invited paper.

7. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

8. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes
and Processes. Software and System Modelling, 4(3):277 – 296, 2005.

9. M. L. Cornlio. Refactorings as Formal Refinements. PhD thesis, Centro de In-
formtica - UFPE, Recife-Brazil, 2004. BC2004-481.

10. Elspeth Cusack. Refinement, conformance and inheritance. Formal Aspects of
Computing, 3:129–141, 1991. 10.1007/BF01898400.

11. Clemens Fischer. CSP-OZ: a combination of object-Z and CSP. In Proceedings of
the IFIP TC6 WG6.1 international workshop on Formal methods for open object-
based distributed systems, pages 423–438, London, UK, UK, 1997. Chapman &
Hall, Ltd.

12. C. A. R. Hoare. Communicating Sequential Processes. volume 21, pages 666–677,
New York, NY, USA, August 1978. ACM.

13. C.A.R. Hoare and J. He. Unifying theories of programming, volume 14. Prentice
Hall, 1998.

14. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994.

15. Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1990.

16. Ernst-Rüdiger Olderog and Heike Wehrheim. Specification and (property) inheri-
tance in CSP-OZ. Sci. Comput. Program., 55(1-3):227–257, March 2005.

17. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Cir-
cus. PhD thesis, Department of Computer Science - University of York, UK, 2006.
YCST-2006-02.

18. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Seman-
tics for Circus. Formal Aspects of Computing, 21(1):3 – 32, 2007. The original
publication is available at www.springerlink.com.

62 José Dihego, Pedro Antonino, and Augusto Sampaio

19. Franz Puntigam. Types for Active Objects Based on Trace Semantics. In Proceed-
ings FMOODS 96, pages 4–19. Chapman and Hall, 1996.

20. A. W. Roscoe. Csp and determinism in security modelling. In In Proc. IEEE
Symposium on Security and Privacy, pages 114–127. Society Press, 1995.

21. A. W. Roscoe. The pursuit of buffer tolerance, 2005.
22. A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of

Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.
23. A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in

Circus. In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods
– Getting IT Right, volume 2391 of Lecture Notes in Computer Science, pages
451—470. Springer-Verlag, 2002.

24. Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement in Circus.
Lecture Notes in Computer Science, 2391:451–470, 2002.

25. Steve Schneider and Helen Treharne. Communicating B Machines. In Proceedings
of the 2nd International Conference of B and Z Users on Formal Specification
and Development in Z and B, ZB ’02, pages 416–435, London, UK, UK, 2002.
Springer-Verlag.

26. J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

27. Hans Toetenel and Jan van Katwijk. Stepwise development of model-oriented
real-time specifications from action/event models. In Proceedings of the Second
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, London, UK, UK, 1991. Springer-Verlag.

28. Peter Wegner and Stanley B. Zdonik. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn’t Like. In Proceedings of the European Con-
ference on Object-Oriented Programming, ECOOP ’88, pages 55–77, London, UK,
1988. Springer-Verlag.

29. Heike Wehrheim. Behavioral Subtyping Relations for Active Objects. Form. Meth-
ods Syst. Des., 23(2):143–170, 2003.

30. Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. In Proceedings of
the 2nd International Conference of B and Z Users on Formal Specification and
Development in Z and B, ZB ’02, pages 184–203, London, UK, UK, 2002. Springer-
Verlag.

31. Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

	Algebraic Laws for Process Subtyping - Extended Version
	Introduction
	Process Inheritance with Code Reuse
	An Example

	Semantics
	Semantics of Inheritance
	UTP Semantics for new Parallel Operator, Visibility and super Clause
	UTP Semantics for super and protected

	Algebraic Laws
	The semantics of Circus processes
	Laws
	Completeness

	Case Study
	Tool support
	Conclusions
	UTP framework
	OhCircus Processes
	Schema Expressions
	Command

	Verification of case study in FDR
	Access Levels Equivalence
	Algebraic Laws
	Access Modifications
	Localized Eliminations
	Element Interchanges
	Subprocess Extraction

